import analysis.calculus.cont_diff import linear_algebra.dual import notations import to_mathlib.analysis.normed_space.operator_norm import to_mathlib.analysis.calculus import to_mathlib.linear_algebra.basic noncomputable theory open function continuous_linear_map section no_norm variables (E : Type*) {E' F G : Type*} variables [add_comm_group E] [module ℝ E] [topological_space E] variables [add_comm_group E'] [module ℝ E'] [topological_space E'] variables [normed_add_comm_group F] [normed_space ℝ F] [normed_add_comm_group G] [normed_space ℝ G] -- TODO: move mathlib's dual_pair out of the root namespace! /-- A continuous linear form `π` and a vector `v` that pair to one. In particular `ker π` is a hyperplane and `v` spans a complement of this hyperplane. -/ structure dual_pair' := (π : E →L[ℝ] ℝ) (v : E) (pairing : π v = 1) namespace dual_pair' variables {E F} local attribute [simp] continuous_linear_map.to_span_singleton_apply lemma ker_pi_ne_top (p : dual_pair' E) : p.π.ker ≠ ⊤ := begin intro H, have : (p.π : E →ₗ[ℝ] ℝ) p.v = 1 := p.pairing, simpa [linear_map.ker_eq_top.mp H] end /-- Given a dual pair `p`, `p.span_v` is the line spanned by `p.v`. -/ def span_v (p : dual_pair' E) : submodule ℝ E := submodule.span ℝ {p.v} lemma mem_span_v (p : dual_pair' E) {u : E} : u ∈ p.span_v ↔ ∃ t : ℝ, u = t • p.v := by simp [dual_pair'.span_v, submodule.mem_span_singleton, eq_comm] /-- Update a continuous linear map `φ : E →L[ℝ] F` using a dual pair `p` on `E` and a vector `w : F`. The new map coincides with `φ` on `ker p.π` and sends `p.v` to `w`. -/ def update (p : dual_pair' E) (φ : E →L[ℝ] F) (w : F) : E →L[ℝ] F := φ + (w - φ p.v) ⬝ p.π @[simp] lemma update_ker_pi (p : dual_pair' E) (φ : E →L[ℝ] F) (w : F) {u} (hu : u ∈ p.π.ker) : p.update φ w u = φ u := begin rw continuous_linear_map.mem_ker at hu, simp only [update, hu, continuous_linear_map.to_span_singleton_apply, add_zero, continuous_linear_map.coe_comp', comp_app, zero_smul, continuous_linear_map.add_apply] end @[simp] lemma update_v (p : dual_pair' E) (φ : E →L[ℝ] F) (w : F) : p.update φ w p.v = w := by simp only [update, p.pairing, continuous_linear_map.to_span_singleton_apply, continuous_linear_map.coe_comp', add_sub_cancel'_right, one_smul, comp_app, continuous_linear_map.add_apply] @[simp] lemma update_self (p : dual_pair' E) (φ : E →L[ℝ] F) : p.update φ (φ p.v) = φ := by simp only [update, add_zero, continuous_linear_map.to_span_singleton_zero, continuous_linear_map.zero_comp, sub_self] lemma inf_eq_bot (p : dual_pair' E) : p.π.ker ⊓ p.span_v = ⊥ := begin rw eq_bot_iff, intros x hx, have : p.π x = 0 ∧ ∃ a : ℝ, a • p.v = x, by simpa [dual_pair'.span_v, submodule.mem_span_singleton] using hx, rcases this with ⟨H, t, rfl⟩, rw [p.π.map_smul, p.pairing, algebra.id.smul_eq_mul, mul_one] at H, simp [H] end lemma sup_eq_top (p : dual_pair' E) : p.π.ker ⊔ p.span_v = ⊤ := begin rw submodule.sup_eq_top_iff, intro x, refine ⟨x - p.π x • p.v, _, p.π x • p.v, _, _⟩; simp [dual_pair'.span_v, submodule.mem_span_singleton, p.pairing] end lemma decomp (p : dual_pair' E) (e : E) : ∃ u ∈ p.π.ker, ∃ t : ℝ, e = u + t•p.v := begin have : e ∈ p.π.ker ⊔ p.span_v, { rw p.sup_eq_top, exact submodule.mem_top }, simp_rw [submodule.mem_sup, dual_pair'.mem_span_v] at this, rcases this with ⟨u, hu, -, ⟨t, rfl⟩, rfl⟩, use [u, hu, t, rfl] end /-- Map a dual pair under a linear equivalence. -/ @[simps] def map (p : dual_pair' E) (L : E ≃L[ℝ] E') : dual_pair' E' := ⟨p.π ∘L ↑L.symm, L p.v, (congr_arg p.π $ L.symm_apply_apply p.v).trans p.pairing⟩ lemma update_comp_left (p : dual_pair' E) (ψ : F →L[ℝ] G) (φ : E →L[ℝ] F) (w : F) : p.update (ψ ∘L φ) (ψ w) = ψ ∘L p.update φ w := begin ext1 u, simp only [update, add_apply, continuous_linear_map.comp_apply, to_span_singleton_apply, ψ.map_add, ψ.map_smul, ψ.map_sub], end lemma update_comp_right (p : dual_pair' E) (ψ : E' →L[ℝ] F) (φ : E ≃L[ℝ] E') (w : F) : p.update (ψ ∘L ↑φ) w = (p.map φ).update ψ w ∘L ↑φ := begin ext1 u, simp only [update, add_apply, continuous_linear_map.comp_apply, to_span_singleton_apply, map, continuous_linear_equiv.coe_coe, φ.symm_apply_apply], end lemma map_update_comp_right (p : dual_pair' E) (ψ : E →L[ℝ] F) (φ : E ≃L[ℝ] E') (w : F) : (p.map φ).update (ψ ∘L ↑φ.symm) w = p.update ψ w ∘L ↑φ.symm := begin -- todo: use `update_comp_right` ext1 u, simp only [update, add_apply, continuous_linear_map.comp_apply, to_span_singleton_apply, map, continuous_linear_equiv.coe_coe, φ.symm_apply_apply], end end dual_pair' end no_norm namespace dual_pair' variables {E : Type*} [normed_add_comm_group E] [normed_space ℝ E] {F : Type*} [normed_add_comm_group F] [normed_space ℝ F] /- In the next two lemmas, finite dimensionality of `E` is clearly uneeded, but allows to use `cont_diff_clm_apply` and `continuous_clm_apply`. -/ lemma smooth_update [finite_dimensional ℝ E] (p : dual_pair' E) {G : Type*} [normed_add_comm_group G] [normed_space ℝ G] {φ : G → (E →L[ℝ] F)} (hφ : 𝒞 ∞ φ) {w : G → F} (hw : 𝒞 ∞ w) : 𝒞 ∞ (λ g, p.update (φ g) (w g)) := begin apply hφ.add, rw cont_diff_clm_apply, intro y, exact (hw.sub (cont_diff_clm_apply.mp hφ p.v)).const_smul _, end lemma continuous_update [finite_dimensional ℝ E] (p : dual_pair' E) {X : Type*} [topological_space X] {φ : X → (E →L[ℝ] F)} (hφ : continuous φ) {w : X → F} (hw : continuous w) : continuous (λ g, p.update (φ g) (w g)) := begin apply hφ.add, rw continuous_clm_apply, intro y, exact (hw.sub (continuous_clm_apply.mp hφ p.v)).const_smul _ end /-- Given a finite basis `e : basis ι ℝ E`, and `i : ι`, `e.dual_pair' i` is given by the `i`th basis element and its dual. -/ def _root_.basis.dual_pair' [finite_dimensional ℝ E] {ι : Type*} [fintype ι] [decidable_eq ι] (e : basis ι ℝ E) (i : ι) : dual_pair' E := { π := (e.dual_basis i).to_continuous_linear_map, v := e i, pairing := by simp only [basis.coord_apply, finsupp.single_eq_same, basis.repr_self, linear_map.coe_to_continuous_linear_map', basis.coe_dual_basis] } end dual_pair'