import analysis.convex.hull import data.real.basic import topology.connected import topology.path_connected import topology.algebra.affine import linear_algebra.dimension import linear_algebra.affine_space.midpoint import data.matrix.notation import analysis.convex.topology import to_mathlib.topology.misc /-! # Ample subsets of real vector spaces ## Implementation notes The definition of ample subset asks for a vector space structure and a topology on the ambiant type without any link between those structures, but we will only be using these for finite dimensional vector spaces with their natural topology. -/ open set affine_map open_locale convex matrix variables {E F : Type*} [add_comm_group F] [module ℝ F] [topological_space F] variables [add_comm_group E] [module ℝ E] [topological_space E] /-- A subset of a topological real vector space is ample if the convex hull of each of its connected components is the full space. -/ def ample_set (s : set F) : Prop := ∀ x ∈ s, convex_hull ℝ (connected_component_in s x) = univ /-- images of ample sets under continuous linear equivalences are ample. -/ lemma ample_set.image {s : set E} (h : ample_set s) (L : E ≃L[ℝ] F) : ample_set (L '' s) := begin intros x hx, rw [L.image_eq_preimage] at hx, have : L '' connected_component_in s (L.symm x) = connected_component_in (L '' s) x, { conv_rhs { rw [← L.apply_symm_apply x] }, exact L.to_homeomorph.image_connected_component_in hx }, rw [← this], refine (L.to_linear_equiv.to_linear_map.convex_hull_image _).trans _, rw [h (L.symm x) hx, image_univ], exact L.to_linear_equiv.to_equiv.range_eq_univ, end /-- preimages of ample sets under continuous linear equivalences are ample. -/ lemma ample_set.preimage {s : set F} (h : ample_set s) (L : E ≃L[ℝ] F) : ample_set (L ⁻¹' s) := by { rw [← L.image_symm_eq_preimage], exact h.image L.symm } section lemma_2_13 local notation `π` := submodule.linear_proj_of_is_compl _ _ local attribute [instance, priority 100] topological_add_group.path_connected lemma is_path_connected_compl_of_is_path_connected_compl_zero [topological_add_group F] [has_continuous_smul ℝ F] {p q : submodule ℝ F} (hpq : is_compl p q) (hpc : is_path_connected ({0}ᶜ : set p)) : is_path_connected (qᶜ : set F) := begin rw is_path_connected_iff at ⊢ hpc, split, { rcases hpc.1 with ⟨a, ha⟩, exact ⟨a, mt (submodule.eq_zero_of_coe_mem_of_disjoint hpq.disjoint) ha⟩ }, { intros x hx y hy, have : π hpq x ≠ 0 ∧ π hpq y ≠ 0, { split; intro h; rw submodule.linear_proj_of_is_compl_apply_eq_zero_iff hpq at h; [exact hx h, exact hy h] }, rcases hpc.2 (π hpq x) this.1 (π hpq y) this.2 with ⟨γ₁, hγ₁⟩, let γ₂ := path_connected_space.some_path (π hpq.symm x) (π hpq.symm y), let γ₁' : path (_ : F) _ := γ₁.map continuous_subtype_coe, let γ₂' : path (_ : F) _ := γ₂.map continuous_subtype_coe, refine ⟨(γ₁'.add γ₂').cast (submodule.linear_proj_add_linear_proj_of_is_compl_eq_self hpq x).symm (submodule.linear_proj_add_linear_proj_of_is_compl_eq_self hpq y).symm, _⟩, intros t, rw [path.cast_coe, path.add_apply], change (γ₁ t : F) + (γ₂ t : F) ∉ q, rw [← submodule.linear_proj_of_is_compl_apply_eq_zero_iff hpq, linear_map.map_add, submodule.linear_proj_of_is_compl_apply_right hpq, add_zero, submodule.linear_proj_of_is_compl_apply_eq_zero_iff hpq], exact mt (submodule.eq_zero_of_coe_mem_of_disjoint hpq.disjoint) (hγ₁ t) } end lemma mem_span_of_zero_mem_segment {x y : F} (hx : x ≠ 0) (h : (0 : F) ∈ [x -[ℝ] y]) : y ∈ submodule.span ℝ ({x} : set F) := begin rw segment_eq_image at h, rcases h with ⟨t, ht, htxy⟩, rw submodule.mem_span_singleton, dsimp only at htxy, use (t-1)/t, have : t ≠ 0, { intro h, rw h at htxy, refine hx _, simpa using htxy }, rw [← smul_eq_zero_iff_eq' (neg_ne_zero.mpr $ inv_ne_zero this), smul_add, smul_smul, smul_smul, ← neg_one_mul, mul_assoc, mul_assoc, inv_mul_cancel this, mul_one, neg_one_smul, add_neg_eq_zero] at htxy, convert htxy, ring end lemma joined_in_compl_zero_of_not_mem_span [topological_add_group F] [has_continuous_smul ℝ F] {x y : F} (hx : x ≠ 0) (hy : y ∉ submodule.span ℝ ({x} : set F)) : joined_in ({0}ᶜ : set F) x y := begin refine joined_in.of_line line_map_continuous.continuous_on (line_map_apply_zero _ _) (line_map_apply_one _ _) _, rw ← segment_eq_image_line_map, exact λ t ht (h' : t = 0), (mt (mem_span_of_zero_mem_segment hx) hy) (h' ▸ ht) end lemma is_path_connected_compl_zero_of_two_le_dim [topological_add_group F] [has_continuous_smul ℝ F] (hdim : 2 ≤ module.rank ℝ F) : is_path_connected ({0}ᶜ : set F) := begin rw is_path_connected_iff, split, { suffices : 0 < module.rank ℝ F, by rwa dim_pos_iff_exists_ne_zero at this, exact lt_of_lt_of_le (by norm_num) hdim }, { intros x hx y hy, by_cases h : y ∈ submodule.span ℝ ({x} : set F), { suffices : ∃ z, z ∉ submodule.span ℝ ({x} : set F), { rcases this with ⟨z, hzx⟩, have hzy : z ∉ submodule.span ℝ ({y} : set F), from λ h', hzx (submodule.mem_span_singleton_trans h' h), exact (joined_in_compl_zero_of_not_mem_span hx hzx).trans (joined_in_compl_zero_of_not_mem_span hy hzy).symm }, by_contra h', push_neg at h', rw ← submodule.eq_top_iff' at h', rw [← dim_top ℝ, ← h'] at hdim, suffices : (2 : cardinal) ≤ 1, from not_le_of_lt (by norm_num) this, have := hdim.trans (dim_span_le _), rwa cardinal.mk_singleton at this }, { exact joined_in_compl_zero_of_not_mem_span hx h } } end lemma is_path_connected_compl_of_two_le_codim [topological_add_group F] [has_continuous_smul ℝ F] {E : submodule ℝ F} (hcodim : 2 ≤ module.rank ℝ (F⧸E)) : is_path_connected (Eᶜ : set F) := begin rcases E.exists_is_compl with ⟨E', hE'⟩, refine is_path_connected_compl_of_is_path_connected_compl_zero hE'.symm _, refine is_path_connected_compl_zero_of_two_le_dim _, rwa ← (E.quotient_equiv_of_is_compl E' hE').dim_eq end lemma is_connected_compl_of_two_le_codim [topological_add_group F] [has_continuous_smul ℝ F] {E : submodule ℝ F} (hcodim : 2 ≤ module.rank ℝ (F⧸E)) : is_connected (Eᶜ : set F) := (is_path_connected_compl_of_two_le_codim hcodim).is_connected lemma connected_space_compl_of_two_le_codim [topological_add_group F] [has_continuous_smul ℝ F] {E : submodule ℝ F} (hcodim : 2 ≤ module.rank ℝ (F⧸E)) : connected_space (Eᶜ : set F) := is_connected_iff_connected_space.mp (is_connected_compl_of_two_le_codim hcodim) lemma ample_of_two_le_codim [topological_add_group F] [has_continuous_smul ℝ F] {E : submodule ℝ F} (hcodim : 2 ≤ module.rank ℝ (F⧸E)) : ample_set (Eᶜ : set F) := begin haveI : connected_space (Eᶜ : set F) := connected_space_compl_of_two_le_codim hcodim, intros x hx, have : connected_component_in (↑E)ᶜ x = (↑E)ᶜ, from is_preconnected.connected_component_in (is_connected_compl_of_two_le_codim hcodim).2 hx, rw [this, eq_univ_iff_forall], intro y, by_cases h : y ∈ E, { rcases E.exists_is_compl with ⟨E', hE'⟩, rw (E.quotient_equiv_of_is_compl E' hE').dim_eq at hcodim, have hcodim' : 0 < module.rank ℝ E' := lt_of_lt_of_le (by norm_num) hcodim, rw dim_pos_iff_exists_ne_zero at hcodim', rcases hcodim' with ⟨z, hz⟩, have : y ∈ [y+(-z) -[ℝ] y+z], { rw ← sub_eq_add_neg, exact mem_segment_sub_add y z }, refine (convex_convex_hull ℝ (Eᶜ : set F)).segment_subset _ _ this ; refine subset_convex_hull ℝ (Eᶜ : set F) _; change _ ∉ E; rw submodule.add_mem_iff_right _ h; try {rw submodule.neg_mem_iff}; exact mt (submodule.eq_zero_of_coe_mem_of_disjoint hE'.symm.disjoint) hz }, { exact subset_convex_hull ℝ (Eᶜ : set F) h } end end lemma_2_13