import tactic.linarith import algebra.order.with_zero import topology.locally_finite import to_mathlib.set_theory.cardinal.basic /-! # Indexing types This is a stupid file introducing a type class for types that will index locally finite covers of (paracompact) manifolds without having to discuss according to compactness. The only intended instances are `ℕ` and `fin (n+1)`. It also includes a lemma about locally finite cover that doesn't require an indexing index type but will be used with one. -/ class indexing (α : Type*) [linear_order α] := (from_nat : ℕ → α) (to_nat : α → ℕ) (mono_from : monotone from_nat) (from_to : ∀ a, from_nat (to_nat a) = a) instance indexing.has_coe (α : Type*) [linear_order α] [indexing α] : has_coe ℕ α := ⟨indexing.from_nat⟩ instance : indexing ℕ := { from_nat := id, to_nat := id, mono_from := monotone_id, from_to := λ n, rfl } instance (n : ℕ) : indexing (fin $ n + 1) := { from_nat := λ k, if h : k < n + 1 then ⟨k, h⟩ else fin.last n, to_nat := coe, mono_from := λ k l hkl, begin dsimp [fin.of_nat], split_ifs ; try { simp [fin.le_last] }; linarith, end, from_to := begin rintros ⟨k, hk⟩, erw dif_pos hk, refl end } open_locale topological_space lemma foo {X : Type*} [topological_space X] {ι : Type*} [linear_order ι] [nonempty ι] {s : ι → set X} (h : locally_finite s) : ∃ ind : X → ι, ∃ U : X → set X, ∀ x, U x ∈ 𝓝 x ∧ ∀ i > ind x, s i ∩ U x = ∅ := begin choose V V_in hV using h, choose ind hind using (λ x, (hV x).bdd_above), refine ⟨ind, V, λ x, ⟨V_in x, _⟩⟩, intros i hi, by_contra, exact lt_irrefl i (gt_of_gt_of_ge hi $ hind x (set.ne_empty_iff_nonempty.mp h)) end /-- Our model indexing type depending on `n : ℕ` is `ℕ` if `n = 0` and `fin n` otherwise-/ def index_type (n : ℕ) : Type := nat.cases_on n ℕ (λ k, fin $ k + 1) @[simp] lemma index_type_zero : index_type 0 = ℕ := rfl @[simp] lemma index_type_succ (n : ℕ) : index_type (n + 1) = fin (n + 1) := rfl @[simp] lemma index_type_of_zero_lt {n : ℕ} (h : 0 < n) : index_type n = fin n := by rw [← nat.succ_pred_eq_of_pos h, index_type_succ] instance (n : ℕ) : linear_order (index_type n) := nat.cases_on n nat.linear_order (λ _, fin.linear_order) instance (n : ℕ) : indexing (index_type n) := nat.cases_on n nat.indexing (λ _, fin.indexing _) def index_type_encodable : Π n : ℕ, encodable (index_type n) | 0 := nat.encodable | (n + 1) := fin.encodable (n + 1) lemma set.countable_iff_exists_nonempty_index_type_equiv {α : Type*} {s : set α} (hne : s.nonempty) : s.countable ↔ ∃ n, nonempty (index_type n ≃ s) := begin -- Huge golfing opportunity. cases @set.finite_or_infinite _ s, { refine ⟨λ hh, ⟨h.to_finset.card, _⟩, λ _, h.countable⟩, have : 0 < h.to_finset.card, { rw finset.card_pos, exact (set.finite.nonempty_to_finset h).mpr hne}, simp only [this, index_type_of_zero_lt], have e₁ := fintype.equiv_fin h.to_finset, rw [fintype.card_coe, h.coe_sort_to_finset] at e₁, exact ⟨e₁.symm⟩, }, { refine ⟨λ hh, ⟨0, _⟩, _⟩, { simp only [index_type_zero], obtain ⟨_i⟩ := set.countable_infinite_iff_nonempty_denumerable.mp ⟨hh, h⟩, haveI := _i, exact ⟨(denumerable.eqv s).symm⟩, }, { rintros ⟨n, ⟨fn⟩⟩, have hn : n = 0, { by_contra hn, replace hn : 0 < n := zero_lt_iff.mpr hn, simp only [hn, index_type_of_zero_lt] at fn, exact set.not_infinite.mpr ⟨fintype.of_equiv (fin n) fn⟩ h, }, simp only [hn, index_type_zero] at fn, exact set.countable_iff_exists_injective.mpr ⟨fn.symm, fn.symm.injective⟩, }, }, end