import global.relation /-! # Gromov's theorem We prove the h-principle for open and ample first order differential relations. -/ noncomputable theory open set open_locale topological_space manifold variables {E : Type*} [normed_add_comm_group E] [normed_space ℝ E] {H : Type*} [topological_space H] {I : model_with_corners ℝ E H} {M : Type*} [topological_space M] [charted_space H M] [smooth_manifold_with_corners I M] {E' : Type*} [normed_add_comm_group E'] [normed_space ℝ E'] {H' : Type*} [topological_space H'] {I' : model_with_corners ℝ E' H'} {M' : Type*} [topological_space M'] [charted_space H' M'] [smooth_manifold_with_corners I' M'] {F : Type*} [normed_add_comm_group F] [normed_space ℝ F] {G : Type*} [topological_space G] (J : model_with_corners ℝ F G) (N : Type*) [topological_space N] [charted_space G N] [smooth_manifold_with_corners J N] {F' : Type*} [normed_add_comm_group F'] [normed_space ℝ F'] {G' : Type*} [topological_space G'] (J' : model_with_corners ℝ F' G') (N' : Type*) [topological_space N'] [charted_space G' N'] [smooth_manifold_with_corners J' N'] {R : rel_mfld I M I' M'} /-- The non-parametric version of Gromov's theorem -/ lemma rel_mfld.ample.satisfies_h_principle (h1 : R.ample) (h2 : is_open R) : R.satisfies_h_principle := sorry /-- **Gromov's Theorem** -/ theorem rel_mfld.ample.satisfies_h_principle_with (h1 : R.ample) (h2 : is_open R) : R.satisfies_h_principle_with J N := sorry