import topology.order import group_theory.quotient_group import valuation.canonical /-! # Valuation Spectrum (Spv) The API for the valuation spectrum of a commutative ring. Normally defined as "the equivalence classes of valuations", there are set-theoretic issues. These issues are easily solved by noting that two valuations are equivalent if and only if they induce the same preorder on R, where the preorder attached to a valuation sends (r,s) to v r ≤ v s. ## Implementation details Our definition of Spv is currently the predicates which come from a valuation. There is another approach though: In the proof of Prop 2.2 of “Continuous Valuations” by R. Huber, the relations that come from a valuations are classified as thoe satisfying some axioms. See also Wedhorn 4.7. -/ universes u u₀ u₁ u₂ u₃ local attribute [instance, priority 0] classical.DLO /-- Valuation spectrum of a ring. -/ -- Note that the valuation takes values in a group in the same universe as R. -- This is to avoid "set-theoretic issues". definition Spv (R : Type u₀) [comm_ring R] := {ineq : R → R → Prop // ∃ {Γ₀ : Type u₀} [linear_ordered_comm_group_with_zero Γ₀], by exactI ∃ (v : valuation R Γ₀), ∀ r s : R, v r ≤ v s ↔ ineq r s} variables {R : Type u₀} [comm_ring R] {v : Spv R} local notation r `≤[`v`]` s := v.1 r s /- Spv R is morally a quotient, so we start by giving it a quotient-like interface -/ namespace Spv open valuation variables {Γ₀ : Type u} [linear_ordered_comm_group_with_zero Γ₀] variables {Γ'₀ : Type u₁} [linear_ordered_comm_group_with_zero Γ'₀] variables {Γ''₀ : Type u₂} [linear_ordered_comm_group_with_zero Γ''₀] -- The work is embedded here with `canonical_valuation_is_equiv v` etc. -- The canonical valuation attached to v lives in R's universe. /-- The equivalence class of a valuation. -/ definition mk (v : valuation R Γ₀) : Spv R := ⟨λ r s, v r ≤ v s, ⟨value_monoid v, by apply_instance, canonical_valuation v, canonical_valuation_is_equiv v⟩⟩ @[simp] lemma mk_val (v : valuation R Γ₀) : (mk v).val = λ r s, v r ≤ v s := rfl /-- The value group attached to a term of type Spv R -/ definition out_Γ₀ (v : Spv R) : Type u₀ := classical.some v.2 /-- The value group attached to a term of type Spv R is a linearly ordered commutative group with zero. -/ noncomputable instance (v : Spv R) : linear_ordered_comm_group_with_zero (out_Γ₀ v) := classical.some $ classical.some_spec v.2 /-- An explicit representative of an equivalence class of valuations (a term of type Spv R). -/ noncomputable definition out (v : Spv R) : valuation R (out_Γ₀ v) := classical.some $ classical.some_spec $ classical.some_spec v.2 @[simp] lemma mk_out {v : Spv R} : mk (out v) = v := begin rcases v with ⟨ineq, hv⟩, rw subtype.ext, ext, exact classical.some_spec (classical.some_spec (classical.some_spec hv)) _ _, end /-- The explicit representative of the equivalence class of a valuation v is equivalent to v. -/ lemma out_mk (v : valuation R Γ₀) : (out (mk v)).is_equiv v := classical.some_spec (classical.some_spec (classical.some_spec (mk v).2)) /-- A function defined on all valuations of R descends to Spv R. -/ noncomputable def lift {X} (f : Π ⦃Γ₀ : Type u₀⦄ [linear_ordered_comm_group_with_zero Γ₀], valuation R Γ₀ → X) (v : Spv R) : X := f (out v) /-- The computation principle for Spv: If a function is constant on equivalence classes of valuations, then it descends to a well-defined function on Spv R.-/ theorem lift_eq {X} (f₀ : Π ⦃Γ₀ : Type u₀⦄ [linear_ordered_comm_group_with_zero Γ₀], valuation R Γ₀ → X) (f : Π ⦃Γ₀ : Type u⦄ [linear_ordered_comm_group_with_zero Γ₀], valuation R Γ₀ → X) (v : valuation R Γ₀) (h : ∀ ⦃Γ₀ : Type u₀⦄ [linear_ordered_comm_group_with_zero Γ₀] (v₀ : valuation R Γ₀), v₀.is_equiv v → f₀ v₀ = f v) : lift f₀ (mk v) = f v := h _ (out_mk v) /-- Prop-valued version of the computation principle for Spv: If a predicate is constant on equivalence classes of valuations, then it descends to a well-defined predicate on Spv R.-/ theorem lift_eq' (f₀ : Π ⦃Γ₀ : Type u₀⦄ [linear_ordered_comm_group_with_zero Γ₀], valuation R Γ₀ → Prop) (f : Π ⦃Γ₀ : Type u⦄ [linear_ordered_comm_group_with_zero Γ₀], valuation R Γ₀ → Prop) (v : valuation R Γ₀) (h : ∀ ⦃Γ₀ : Type u₀⦄ [linear_ordered_comm_group_with_zero Γ₀] (v₀ : valuation R Γ₀), v₀.is_equiv v → (f₀ v₀ ↔ f v)) : lift f₀ (mk v) ↔ f v := h _ (out_mk v) /-- For every term of Spv R, there exists a valuation representing it.-/ lemma exists_rep (v : Spv R) : ∃ {Γ₀ : Type u₀} [linear_ordered_comm_group_with_zero Γ₀], by exactI ∃ (v₀ : valuation R Γ₀), mk v₀ = v := ⟨out_Γ₀ v, infer_instance, out v, mk_out⟩ /-- The quotient map that sends a valuation to its equivalence class is sound: it sends equivalent valuations to the same class. -/ lemma sound {v₁ : valuation R Γ'₀} {v₂ : valuation R Γ''₀} (h : v₁.is_equiv v₂) : mk v₁ = mk v₂ := begin apply subtype.val_injective, ext r s, apply h, end /-- The induction principle for Spv.-/ lemma induction_on (v : Spv R) (P : Spv R → Prop) (h : Π ⦃Γ₀ : Type u₀⦄ [linear_ordered_comm_group_with_zero Γ₀] (v : valuation R Γ₀), P (Spv.mk v)) : P v := begin rw ← @mk_out _ _ v, apply h end /-- If two valuations are mapped to the same term of Spv R, then they are equivalent. -/ lemma is_equiv_of_eq_mk {v₁ : valuation R Γ'₀} {v₂ : valuation R Γ''₀} (h : mk v₁ = mk v₂) : v₁.is_equiv v₂ := begin intros r s, have := congr_arg subtype.val h, replace := congr this (rfl : r = r), replace := congr this (rfl : s = s), simp at this, simp [this], end @[ext] lemma ext (v₁ v₂ : Spv R) (h : (Spv.out v₁).is_equiv (Spv.out v₂)) : v₁ = v₂ := by simpa only [Spv.mk_out] using Spv.sound h lemma ext_iff {v₁ v₂ : Spv R} : v₁ = v₂ ↔ ((Spv.out v₁).is_equiv (Spv.out v₂)) := ⟨λ h, Spv.is_equiv_of_eq_mk (by simpa only [Spv.mk_out] using h), Spv.ext _ _⟩ /-- A coercion that allows to treat an element of Spv(R) as a function, by picking a random representative of the equivalence class of valuations. -/ noncomputable instance : has_coe_to_fun (Spv R) := { F := λ v, R → out_Γ₀ v, coe := λ v, (out v : R → out_Γ₀ v) } section @[simp] lemma map_zero : v 0 = 0 := valuation.map_zero _ @[simp] lemma map_one : v 1 = 1 := valuation.map_one _ @[simp] lemma map_mul : ∀ x y, v (x * y) = v x * v y := valuation.map_mul _ @[simp] lemma map_add : ∀ x y, v (x + y) ≤ max (v x) (v y) := valuation.map_add _ end section supp /--The support of an equivalence class of valuations.-/ noncomputable def supp (v : Spv R) := v.out.supp /--The support of an equivalence class of valuations is equal to the support of any of its representatives.-/ @[simp] lemma supp_mk (v : valuation R Γ₀) : (mk v).supp = v.supp := (out_mk v).supp_eq end supp section comap variables {S : Type*} [comm_ring S] {T : Type*} [comm_ring T] /--The pullback of an equivalence class of valuations along a ring homomorphism.-/ noncomputable def comap (f : R → S) [is_ring_hom f] : Spv S → Spv R := lift $ λ Γ₀ _ v, by exactI Spv.mk (v.comap f) /--The pullpack of an equivalence class of valuations is the equivalence class of the pullback of any of its representatives.-/ lemma comap_mk (f : R → S) [is_ring_hom f] (v : valuation S Γ₀) : comap f (mk v) = mk (v.comap f) := begin delta comap, rw lift_eq, intros Γ₀ _ v h, resetI, apply sound, exact is_equiv.comap f h end /--The pullback along the identity is the identity.-/ lemma comap_id_apply (v : Spv R) : comap (id : R → R) v = v := begin apply induction_on v, clear v, intros Γ₀ _ v, resetI, rw [comap_mk, valuation.comap_id], end /--The pullback along the identity is the identity.-/ @[simp] lemma comap_id : comap (id : R → R) = id := funext $ comap_id_apply /--The pullback along a composition is the composition of the pullback maps.-/ @[simp] lemma comap_comp_apply (g : S → T) (f : R → S) [is_ring_hom g] [is_ring_hom f] (v : Spv T): comap (g ∘ f) v = comap f (comap g v) := begin apply induction_on v, clear v, intros Γ₀ _ v, resetI, rw [comap_mk, comap_mk, comap_mk, valuation.comap_comp], end /--The pullback along a composition is the composition of the pullback maps.-/ @[simp] lemma comap_comp (g : S → T) (f : R → S) [is_ring_hom g] [is_ring_hom f] : comap (g ∘ f) = comap f ∘ comap g := funext $ comap_comp_apply g f /--The support of the pullback of an equivalence class of valuations is the pullback (as ideal) of the support.-/ lemma supp_comap (f : R → S) [is_ring_hom f] (v : Spv S) : (v.comap f).supp = v.supp.comap f := begin apply induction_on v, clear v, intros Γ₀ _ v, resetI, rw [comap_mk, supp_mk, supp_mk, valuation.comap_supp], end /--An element is contained in the support of the pullback of an equivalence class of valuations if and only if its image is contained in the support.-/ lemma mem_supp_comap (f : R → S) [is_ring_hom f] (v : Spv S) (r : R) : r ∈ (v.comap f).supp ↔ f r ∈ v.supp := by { rw supp_comap, exact iff.rfl } end comap /-- The open sets generating the topology of Spv R. See [Wedhorn, Def 4.1].-/ definition basic_open (r s : R) : set (Spv R) := {v | v r ≤ v s ∧ v s ≠ 0} /-- The topology on the valuation spectrum of a ring. -/ instance : topological_space (Spv R) := topological_space.generate_from {U : set (Spv R) | ∃ r s : R, U = basic_open r s} lemma mk_mem_basic_open {r s : R} (v : valuation R Γ₀) : mk v ∈ basic_open r s ↔ v r ≤ v s ∧ v s ≠ 0 := begin apply and_congr, { apply out_mk, }, { apply (out_mk v).ne_zero, }, end end Spv