import ring_theory.localization import valuation.basic /-! # Extending valuations to localizations In this file we extend valuations on a ring R to localizations of R. We use this to define the valuation field, the valuation ring, and the residue field of a valued ring. If v is a valuation on an integral domain R and `hv : supp v = 0`, then `on_frac v hv` is the extension of v to fraction_ring R, the field of fractions of R. `valuation_field v`, `valuation_ring v`, `max_ideal v` and `residue_field v` are the valuation field, valuation ring, maximal ideal and residue field of v. See [Wedhorn; 1.26]. -/ local attribute [instance] classical.prop_decidable local attribute [instance] classical.DLO noncomputable theory universes u u₀ variables {R : Type u₀} [comm_ring R] variables {Γ₀ : Type u} [linear_ordered_comm_group_with_zero Γ₀] variables {S : set R} [is_submonoid S] namespace valuation open linear_ordered_structure variables (v : valuation R Γ₀) lemma inverse_exists (s : S) : ∃ u : localization R S, u * s = 1 := ⟨(localization.to_units s).inv, units.inv_val _⟩ /-- The underlying function of the extension of a valuation to a localization.-/ def localization_v (h : ∀ s, s ∈ S → v s ≠ 0) : localization R S → Γ₀ := λ (q : localization R S), quotient.lift_on' q (λ rs, v rs.1 * (v rs.2.1)⁻¹) begin rintros ⟨r1, s1, hs1⟩ ⟨r2, s2, hs2⟩ ⟨t, ht, hrst⟩, change (s1 * r2 + -(s2 * r1)) * t = 0 at hrst, show v r1 * (v s1)⁻¹ = v r2 * (v s2)⁻¹, rw [add_mul, ←neg_mul_eq_neg_mul, add_neg_eq_zero] at hrst, replace hrst : v (s1 * r2 * t) = v (s2 * r1 * t) := congr_arg v hrst, apply group_with_zero.mul_inv_eq_of_eq_mul (h s1 hs1), rw [mul_comm, ←mul_assoc], apply group_with_zero.eq_mul_inv_of_mul_eq (h s2 hs2), rw [←v.map_mul, ←v.map_mul, mul_comm], apply group_with_zero.mul_right_cancel (h t ht), rw [←v.map_mul, ←v.map_mul, hrst] end /-- Extension of a valuation to a localization -/ protected def localization (h : ∀ s, s ∈ S → v s ≠ 0) : valuation (localization R S) Γ₀ := { to_fun := v.localization_v h, map_zero' := show v 0 * (v 1)⁻¹ = 0, by rw [v.map_zero, zero_mul], map_one' := show v 1 * (v 1)⁻¹ = 1, by {rw [v.map_one], simp}, map_mul' := λ x y, quotient.induction_on₂' x y begin rintro ⟨r1, s1, hs1⟩, rintro ⟨r2, s2, hs2⟩, -- TODO : I had to write the next line "blind" -- I had to be the compiler. -- Am I missing a trick? show v (r1 * r2) * (v(s1 * s2))⁻¹ = (v r1 * (v s1)⁻¹) * (v r2 * (v s2)⁻¹), have hs12 : s1 * s2 ∈ S := is_submonoid.mul_mem hs1 hs2, apply group_with_zero.mul_inv_eq_of_eq_mul (h (s1 * s2) hs12), rw [mul_comm _ (v (s1 * s2)), ←mul_assoc, ←mul_assoc], apply group_with_zero.eq_mul_inv_of_mul_eq (h s2 hs2), rw [mul_comm _ (v r2), ←v.map_mul, ←mul_assoc, ←v.map_mul, ←mul_assoc, ←v.map_mul], apply group_with_zero.eq_mul_inv_of_mul_eq (h s1 hs1), rw [←v.map_mul], apply congr_arg, ring, end, map_add' := λ x y, quotient.induction_on₂' x y begin rintro ⟨r1, s1, hs1⟩, rintro ⟨r2, s2, hs2⟩, have := v.map_add (r1 * s2) (r2 * s1), rw le_max_iff at this ⊢, show v (s1 * r2 + s2 * r1) * (v (s1 * s2))⁻¹ ≤ v r1 * (v s1)⁻¹ ∨ v (s1 * r2 + s2 * r1) * (v (s1 * s2))⁻¹ ≤ v r2 * (v s2)⁻¹, cases this with h1 h2, { left, apply le_mul_inv_of_mul_le (h s1 hs1), rw [mul_comm, ←mul_assoc], apply mul_inv_le_of_le_mul (h (s1 * s2) (is_submonoid.mul_mem hs1 hs2)), replace h1 := linear_ordered_structure.mul_le_mul_right h1 (v s1), rw [←v.map_mul, ←v.map_mul] at h1 ⊢, rw (show s1 * (s1 * r2 + s2 * r1) = (r1 * s2 + r2 * s1) * s1, by ring), rwa (show r1 * (s1 * s2) = r1 * s2 * s1, by ring), }, { right, apply le_mul_inv_of_mul_le (h s2 hs2), rw [mul_comm, ←mul_assoc], apply mul_inv_le_of_le_mul (h (s1 * s2) (is_submonoid.mul_mem hs1 hs2)), replace h2 := linear_ordered_structure.mul_le_mul_right h2 (v s2), rw [←v.map_mul, ←v.map_mul] at h2 ⊢, rw (show s2 * (s1 * r2 + s2 * r1) = (r1 * s2 + r2 * s1) * s2, by ring), rwa (show r2 * (s1 * s2) = r2 * s1 * s2, by ring), } end } /-- Extension of a valuation to a localization -/ lemma localization_apply (h : ∀ s, s ∈ S → v s ≠ 0) (r : R) : (v.localization h : valuation (localization R S) Γ₀) r = v r := show v r * (v 1)⁻¹ = v r, by simp /-- the extension of a valuation pulls back to the valuation -/ lemma localization_comap (h : ∀ s, s ∈ S → v s ≠ 0) : (v.localization h).comap (localization.of) = v := valuation.ext $ λ r, localization_apply v h r lemma eq_localization_of_comap_aux {v} (w : valuation (localization R S) Γ₀) (h : w.comap (localization.of) = v) : ∀ s, s ∈ S → v s ≠ 0 := λ s hs h0, begin cases inverse_exists ⟨s, hs⟩ with u hu, let s' : units (localization R S) := ⟨localization.of s, u, mul_comm u s ▸ hu, hu⟩, refine group_with_zero.unit_ne_zero (units.map (w : (localization R S) →* Γ₀) s') _, rwa ←h at h0, end /-- If a valuation on a localisation pulls back to v then it's the localization of v -/ lemma eq_localization_of_comap (w : valuation (localization R S) Γ₀) (h : w.comap (localization.of) = v) : v.localization (eq_localization_of_comap_aux w h) = w := begin ext q, induction q, { rcases q with ⟨r, s, hs⟩, show v r * (v s)⁻¹ = w (localization.mk r ⟨s, hs⟩), rw [localization.mk_eq, ←h, w.map_mul], show w r * _ = _, congr, show (w s)⁻¹ = _, rw w.map_units_inv, refl, }, refl end section fraction_ring open localization localization.fraction_ring /-- A ring in which the zero ideal is prime is an integral domain. -/ def integral_domain_of_prime_bot (h : (⊥ : ideal R).is_prime) : integral_domain R := { zero_ne_one := assume zero_eq_one, h.1 $ (ideal.eq_top_iff_one _).mpr $ (submodule.mem_bot R).mpr zero_eq_one.symm, eq_zero_or_eq_zero_of_mul_eq_zero := λ r s, by { repeat {rw ← submodule.mem_bot R}, apply h.2 }, .. ‹comm_ring R› } /-- A ring is an integral domain if it admits a valuation whose support is the zero ideal. -/ def integral_domain_of_supp_zero (hv : v.supp = 0) : integral_domain R := integral_domain_of_prime_bot $ by { rw [← ideal.zero_eq_bot, ← hv], exact valuation.ideal.is_prime v } /-- The extension of valuation on R with support 0 to a valuation on the field of fractions. -/ def on_frac (hv : v.supp = 0) : valuation (fraction_ring R) Γ₀ := v.localization $ λ r hr hnz, begin letI := v.integral_domain_of_supp_zero hv, refine (@mem_non_zero_divisors_iff_ne_zero R _ _ r).mp hr _, rwa [← submodule.mem_bot R, ← ideal.zero_eq_bot, ← hv], end @[simp] lemma on_frac_comap_eq (hv : supp v = 0) : (v.on_frac hv).comap of = v := v.localization_comap _ lemma on_frac_comap_eq_apply (hv : supp v = 0) (r : R) : ((v.on_frac hv).comap of : valuation R Γ₀) r = v r := by rw on_frac_comap_eq /-- Pulling back a valuation on `fraction_ring R` to R and then applying `on_frac` is the identity function. -/ @[simp] lemma comap_on_frac_eq {R : Type*} [integral_domain R] (v : valuation (fraction_ring R) Γ₀) : (v.comap of).on_frac (by {rw [comap_supp, ideal.zero_eq_bot, v.supp.eq_bot_of_prime], apply ideal.comap_bot_of_inj, apply fraction_ring.of.injective }) = v := valuation.eq_localization_of_comap _ _ rfl lemma frac_preorder_comap (hv : supp v = 0) : preorder.lift (localization.of) (v.on_frac hv).to_preorder = v.to_preorder := preorder.ext $ λ x y, begin show (v.on_frac hv) x ≤ (v.on_frac hv) y ↔ v x ≤ v y, rw [←on_frac_comap_eq_apply v hv, ←on_frac_comap_eq_apply v hv], exact iff.rfl end end fraction_ring -- end of section section valuation_field /-- The quotient ring R/supp(v) associated to a valuation. -/ definition valuation_ID := (supp v).quotient /-- the support of a valuation is a prime ideal, so R/supp(v) is an integral domain. -/ instance integral_domain' : integral_domain (valuation_ID v) := by delta valuation_ID; apply_instance /-- The preorder on R/supp(v) induced by Γ₀ via `v.on_quot` -/ instance : preorder (valuation_ID v) := (v.on_quot (le_refl _)).to_preorder /-- The function R → R/supp(v). -/ def valuation_ID_mk : R → valuation_ID v := ideal.quotient.mk (supp v) /-- The function R → R/supp(v) is a ring homomorphism. -/ instance : is_ring_hom (v.valuation_ID_mk) := by unfold valuation_ID_mk; apply_instance /-- The kernel of R → R/supp(v) is supp(v). -/ lemma valuation_ID_mk_ker (r : R) : v.valuation_ID_mk r = 0 ↔ r ∈ supp v := ideal.quotient.eq_zero_iff_mem /-- `valuation_field v` is the field of fractions of R/supp(v). -/ definition valuation_field := localization.fraction_ring (valuation_ID v) /-- The field of fractions of R/supp(v) is a field. -/ instance : discrete_field (valuation_field v) := by delta valuation_field; apply_instance /-- The canonical map R → fraction_ring (R/supp(v)). -/ def valuation_field_mk (r : R) : valuation_field v := localization.of (v.valuation_ID_mk r) /-- The map R → Frac(R/supp(v)) is a ring homomorphism. -/ instance to_valuation_field.is_ring_hom : is_ring_hom (valuation_field_mk v) := by delta valuation_field_mk; apply_instance /-- The kernel of R → Frac(R/supp(v)) is supp(v). -/ lemma valuation_field_mk_ker (r : R) : v.valuation_field_mk r = 0 ↔ r ∈ supp v := ⟨λ h, (v.valuation_ID_mk_ker r).1 $ localization.fraction_ring.eq_zero_of _ h, λ h, show localization.of _ = 0, by rw (v.valuation_ID_mk_ker r).2 h; apply is_ring_hom.map_zero⟩ lemma valuation_field_mk_ne_zero (r : R) (hr : v r ≠ 0) : valuation_field_mk v r ≠ 0 := λ h, hr ((valuation_field_mk_ker v r).1 h) /-- The induced preorder on Frac(R/supp(v)). -/ instance valfield_preorder : preorder (valuation_field v) := ((v.on_quot (le_refl _)).on_frac $ supp_quot_supp v).to_preorder /-- The induced map from R \ supp(v) to the units of Frac(R/supp(v)). -/ def units_valfield_mk (r : R) (h : r ∉ supp v) : units (valuation_field v) := ⟨v.valuation_field_mk r, (v.valuation_field_mk r)⁻¹, mul_inv_cancel (λ h2, h $ ideal.quotient.eq_zero_iff_mem.1 $ localization.fraction_ring.eq_zero_of _ h2), inv_mul_cancel (λ h2, h $ ideal.quotient.eq_zero_iff_mem.1 $ localization.fraction_ring.eq_zero_of _ h2)⟩ /-- The preorder on the units of Frac(R/supp(v)) induced by the extension of v. -/ instance units_valfield_preorder : preorder (units (valuation_field v)) := preorder.lift (λ u, u.val) (by apply_instance) /-- The valuation on Frac(R/supp(v)) induced by v. -/ definition on_valuation_field : valuation (valuation_field v) Γ₀ := on_frac (v.on_quot (set.subset.refl _)) begin rw [supp_quot, ideal.zero_eq_bot], apply ideal.map_quotient_self, end /-- `valuation_ring v` is the elements of Frac(R/supp(v)) whose valuation is at most 1. -/ definition valuation_ring := {x | v.on_valuation_field x ≤ 1} /-- `valuation_ring v` is a subring of Frac(R/supp(v)). -/ instance : is_subring (valuation_ring v) := { zero_mem := show v.on_valuation_field 0 ≤ 1, by simp, add_mem := λ x y hx hy, calc v.on_valuation_field (x + y) ≤ max (v.on_valuation_field x) (v.on_valuation_field y) : v.on_valuation_field.map_add x y ... ≤ 1 : max_le hx hy, neg_mem := by simp [valuation_ring], one_mem := by simp [valuation_ring, le_refl], mul_mem := λ x y (hx : _ ≤ _) (hy : _ ≤ _), show v.on_valuation_field _ ≤ 1, by convert le_trans (linear_ordered_structure.mul_le_mul_left hy _) _; simp [hx] } /-- `max_ideal v` is the ideal of `valuation_ring v` consisting of things with valuation strictly less than 1. -/ definition max_ideal : ideal (valuation_ring v) := { carrier := { r | v.on_valuation_field r < 1 }, zero := show v.on_valuation_field 0 < 1, by apply lt_of_le_of_ne; simp, add := λ x y (hx : _ < 1) (hy : _ < 1), calc v.on_valuation_field (x + y) ≤ max (v.on_valuation_field x) (v.on_valuation_field y) : v.on_valuation_field.map_add x y ... < 1 : max_lt hx hy, smul := λ c x (hx : _ < 1), show v.on_valuation_field _ < 1, begin refine lt_of_le_of_lt _ _, swap, convert (linear_ordered_structure.mul_le_mul_right _ _), exact map_mul _ _ _, swap, convert c.property, simpa using hx end } set_option class.instance_max_depth 40 /-- `max_ideal v` is indeed a maximal ideal of `valuation_ring v`. -/ instance max_ideal_is_maximal : (max_ideal v).is_maximal := begin rw ideal.is_maximal_iff, split, { exact λ (H : _ < _), ne_of_lt H (map_one _) }, { rintros J ⟨x,hx⟩ hJ hxni hxinJ, have vx : v.on_valuation_field x = 1 := by { rw eq_iff_le_not_lt, split; assumption }, have hxinv : v.on_valuation_field x⁻¹ ≤ 1 := by simp [vx], convert J.smul_mem ⟨x⁻¹, hxinv⟩ hxinJ, symmetry, apply subtype.val_injective, apply inv_mul_cancel, show x ≠ 0, assume hxeq0, simpa [hxeq0] using vx } end set_option class.instance_max_depth 32 /-- `residue_field v` is the quotient of `valuation_ring v` by `max_ideal v`. -/ definition residue_field := (max_ideal v).quotient /-- `residue_field v` is a field. -/ instance residue_field.discrete_field : discrete_field (residue_field v) := ideal.quotient.field _ end valuation_field end valuation