import for_mathlib.quotient_group import valuation.localization /-! # The canonical valuation The purpose of this file is to define a “canonical” valuation equivalent to a given valuation. The whole raison d'etre for this is that there are set-theoretic issues with the equivalence “relation” on valuations, because the target group Γ can be arbitrary. ## Idea The main idea is this. If v : R → Γ₀ is an arbitrary valuation, then v extends to a valuation on K = Frac(R/supp(v)) and hence to a monoid homomorphism K^* → units Γ₀, whose kernel is A^*, the units in the valuation ring (or equivalently the things in K^* of norm at most 1). This embeds K^*/A^* into Γ₀ and hence gives K^*/A^* the structure of a linearly ordered commutative group. There is an induced map R → (K^*/A^*), and we call this the _canonical valuation_ associated to v; this valuation is equivalent to v. A technical advantage that this valuation has from the point of view of Lean's type theory is that if R is in universe u₁ and Γ₀ in universe u₂, then v : valuation R Γ₀ will be in universe `max u₁ u₂` but the canonical valuation will just be in universe u₁. In particular, if v and v' are equivalent then their associated canonical valuations are isomorphic and furthermore in the same universe. ## Implementation details All of the below names are in the `valuation` namespace. The canonical valuation takes values in `value_monoid v`. Technically this is not defined exactly in the way explained above. So `value_monoid v` is not defined as `with_zero (K^* / A^*)`. Instead, we take the equivalence relation on K^* given by A^*, and extend it in the obvious way to K. The resulting quotient is naturally a monoid, with an order and a zero element. Indeed, it is a linear_ordered_comm_group_with_zero. Its unit group is canonically isomorphic to K^*/A^*. (Note that it is also isomorphic to the subgroup of Γ₀ which Wedhorn calls the value group in [Wedhorn; 1.22]). `value_monoid.to_Γ₀` is the monoid homomorphism to Γ₀. `canonical_valuation v` is the canonical valuation. `canonical_valuation.to_Γ₀ v` is the lemma that says that we can recover v from `canonical_valuation v` using the monoid homomorphism from (value_monoid v) to Γ₀. -- TODO -- rewrite this when I've remembered what we proved. We then prove some of Proposition-and-Definition 1.27 of Wedhorn, where we note that we used (iii) for the definition, and we're now using a different definition to Wedhorn for the value group (because it's isomorphic so no mathematician will care, and it's easier for us because it's in a smaller universe). -/ local attribute [instance] classical.prop_decidable local attribute [instance, priority 0] classical.DLO noncomputable theory universes u u₀ u₁ u₂ u₃ open linear_ordered_structure variables {R : Type u₀} [comm_ring R] /- TODO(jmc): Refactor this file to use valued_field, instead of working explicitly with v.valuation_field. -/ namespace valuation variables {Γ₀ : Type u} [linear_ordered_comm_group_with_zero Γ₀] variables (v : valuation R Γ₀) /-- The elements of `units (valuation_field v)` with norm 1. -/ definition valuation_field_norm_one := is_group_hom.ker (units.map (v.on_valuation_field : v.valuation_field →* Γ₀)) /-- `valuation_field_norm_one v is a normal subgroup of `units (valuation_field v)`. -/ instance (v : valuation R Γ₀) : normal_subgroup (valuation_field_norm_one v) := by unfold valuation_field_norm_one; apply_instance namespace value_monoid /-- The relation on a valuation field induced by the valuation: a ≈ b if and only if there is a unit c of valuation 1 such that a * c = b.-/ def quotient_rel (a b : v.valuation_field) : Prop := ∃ c : units v.valuation_field, c ∈ v.valuation_field_norm_one ∧ a * c = b namespace quotient_rel lemma refl (a : v.valuation_field) : quotient_rel v a a := ⟨1, is_submonoid.one_mem _, mul_one a⟩ lemma symm (a b : v.valuation_field) : quotient_rel v a b → quotient_rel v b a := by { rintro ⟨c, hc, rfl⟩, exact ⟨c⁻¹, is_subgroup.inv_mem hc, c.mul_inv_cancel_right a⟩ } lemma trans (a b c : v.valuation_field) : quotient_rel v a b → quotient_rel v b c → quotient_rel v a c := begin rintro ⟨c, hc, rfl⟩ ⟨c', hc', rfl⟩, exact ⟨c * c', is_submonoid.mul_mem hc hc', (mul_assoc _ _ _).symm⟩ end end quotient_rel /-- The setoid on a valuation field induced by the valuation: a ≈ b if and only if there is a unit c of valuation 1 such that a * c = b.-/ def setoid : setoid (v.valuation_field) := { r := quotient_rel v, iseqv := ⟨quotient_rel.refl v, quotient_rel.symm v, quotient_rel.trans v⟩ } end value_monoid /-- The value group of the canonical valuation.-/ def value_monoid (v : valuation R Γ₀) : Type u₀ := @quotient v.valuation_field (value_monoid.setoid v) namespace value_monoid open function /-- The natural map from the canonical value monoid to Γ₀, for a valuation with values in Γ₀. -/ def to_Γ₀ : v.value_monoid → Γ₀ := λ x, quotient.lift_on' x v.on_valuation_field $ begin rintros a b ⟨c, hc, rfl⟩, replace hc : v.on_valuation_field c = 1 := units.ext_iff.mp (is_subgroup.mem_trivial.mp hc), rw [v.on_valuation_field.map_mul, hc, mul_one], end lemma to_Γ₀_inj : injective (to_Γ₀ v) := begin rintros ⟨a⟩ ⟨b⟩ h, change v.on_valuation_field a = v.on_valuation_field b at h, by_cases ha : a = 0, { subst a, rw [valuation.map_zero, eq_comm, valuation.zero_iff] at h, rw h }, { have hb : b ≠ 0, { rintro rfl, rw [valuation.map_zero, valuation.zero_iff] at h, exact ha h }, refine quotient.sound' ⟨(units.mk0 a ha)⁻¹ * (units.mk0 b hb), is_subgroup.mem_trivial.mpr _, (units.mk0 a ha).mul_inv_cancel_left _⟩, rw ← v.on_valuation_field.ne_zero_iff at hb, simp [units.ext_iff, h, hb] } end /--The linear order on the canonical value monoid associated with a valuation.-/ instance : linear_order (v.value_monoid) := linear_order.lift (to_Γ₀ v) (to_Γ₀_inj v) infer_instance lemma to_Γ₀_strict_mono : strict_mono (to_Γ₀ v) := λ a b, id @[simp] lemma triangle (a : v.valuation_field) : to_Γ₀ v (quotient.mk' a) = v.on_valuation_field a := rfl /--The zero element of the canonical value monoid associated with a valuation.-/ instance : has_zero (v.value_monoid) := ⟨quotient.mk' 0⟩ /--The unit element of the canonical value monoid associated with a valuation.-/ instance : has_one (v.value_monoid) := ⟨quotient.mk' 1⟩ /--The inversion function of the canonical value monoid associated with a valuation.-/ instance : has_inv (v.value_monoid) := ⟨λ x, quotient.lift_on' x (λ a, quotient.mk' a⁻¹) begin rintros a b ⟨c, hc, rfl⟩, replace hc : v.on_valuation_field c = 1 := units.ext_iff.mp (is_subgroup.mem_trivial.mp hc), apply to_Γ₀_inj, simp [hc], end⟩ /--The multiplication on the canonical value monoid associated with a valuation.-/ instance : has_mul (v.value_monoid) := ⟨λ x y, quotient.lift_on₂' x y (λ a b, quotient.mk' (a*b)) begin rintros a₁ b₁ a₂ b₂ ⟨c₁, hc₁, rfl⟩ ⟨c₂, hc₂, rfl⟩, replace hc₁ : v.on_valuation_field c₁ = 1 := units.ext_iff.mp (is_subgroup.mem_trivial.mp hc₁), replace hc₂ : v.on_valuation_field c₂ = 1 := units.ext_iff.mp (is_subgroup.mem_trivial.mp hc₂), apply to_Γ₀_inj, simp [hc₁, hc₂], end⟩ @[simp] lemma to_Γ₀_zero : to_Γ₀ v 0 = 0 := v.on_valuation_field.map_zero @[simp] lemma to_Γ₀_one : to_Γ₀ v 1 = 1 := v.on_valuation_field.map_one @[simp] lemma to_Γ₀_inv (a) : to_Γ₀ v a⁻¹ = (to_Γ₀ v a)⁻¹ := quotient.induction_on' a $ λ x, v.on_valuation_field.map_inv @[simp] lemma to_Γ₀_mul (a b) : to_Γ₀ v (a*b) = (to_Γ₀ v a) * (to_Γ₀ v b) := quotient.induction_on₂' a b $ λ x y, v.on_valuation_field.map_mul x y /--The canonical value monoid associated with a valuation is a group with zero.-/ instance : group_with_zero (v.value_monoid) := begin refine_struct { .. value_monoid.has_zero v, .. value_monoid.has_one v, .. value_monoid.has_inv v, .. value_monoid.has_mul v, }, show decidable_eq (value_monoid v), { apply_instance }, show (0 : v.value_monoid) ≠ 1, { assume this, replace := congr_arg (to_Γ₀ v) this, simpa using this, }, all_goals { intros, apply to_Γ₀_inj, simp }, { exact mul_assoc _ _ _ }, { apply mul_inv_cancel', intro this, apply_assumption, apply to_Γ₀_inj, simpa } end /--The canonical value monoid associated with a valuation is a linearly ordered commutative group with zero.-/ instance : linear_ordered_comm_group_with_zero (v.value_monoid) := { mul_comm := λ a b, to_Γ₀_inj v $ by simpa using mul_comm _ _, mul_le_mul_left := λ a b h c, begin rw ← (to_Γ₀_strict_mono v).le_iff_le at h ⊢, simpa using linear_ordered_structure.mul_le_mul_left h _ end, zero_le' := λ a, by { rw ← (to_Γ₀_strict_mono v).le_iff_le, simp }, .. value_monoid.group_with_zero v, .. value_monoid.linear_order v } /-- The natural quotient map from `units (valuation_field v)` to `value_monoid v`. -/ def mk (v : valuation R Γ₀) : valuation_field v →* value_monoid v := { to_fun := quotient.mk', map_one' := rfl, map_mul' := λ a b, rfl, } end value_monoid /-- The canonical valuation on Frac(R/supp(v)), taking values in `value_monoid v`. -/ def valuation_field.canonical_valuation : valuation (valuation_field v) (value_monoid v) := { map_zero' := rfl, map_add' := λ a b, begin rw ← (value_monoid.to_Γ₀_strict_mono v).le_iff_le, rw (value_monoid.to_Γ₀_strict_mono v).monotone.map_max, exact v.on_valuation_field.map_add a b end, .. value_monoid.mk v } -- ⟨valuation_field.canonical_valuation_v v, valuation_field.canonical_valuation_v.is_valuation v⟩ /-- The canonical valuation on R/supp(v), taking values in `value_monoid v`. -/ definition quotient.canonical_valuation : valuation (ideal.quotient (supp v)) (value_monoid v) := @comap _ _ _ _ _ _ (localization.of) (by apply_instance) (valuation_field.canonical_valuation v) /-- The canonical valuation on R, taking values in `value_monoid v`. -/ definition canonical_valuation : valuation R (value_monoid v) := (quotient.canonical_valuation v).comap (ideal.quotient.mk (supp v)) /-- The relation between `v.canonical_valuation r` and `v r`. -/ lemma canonical_valuation_eq (r : R) : v.canonical_valuation r = value_monoid.mk v (v.valuation_field_mk r) := rfl namespace canonical_valuation -- This looks handy to know but we never actually use it. /-- Every element of `value_monoid v` is a ratio of things in the image of `canonical_valuation v`.-/ lemma value_monoid.is_ratio (v : valuation R Γ₀) (g : value_monoid v) : ∃ r s : R, s ∉ v.supp ∧ v.canonical_valuation s * g = v.canonical_valuation r := begin apply quotient.induction_on' g, clear g, rintros ⟨⟨r⟩, ⟨s⟩, h⟩, change ideal.quotient.mk _ s ∈ _ at h, use [r, s], split, { show s ∉ supp v, assume mem_supp, erw [localization.fraction_ring.mem_non_zero_divisors_iff_ne_zero, (ideal.quotient.eq_zero_iff_mem).2 mem_supp] at h, contradiction }, show value_monoid.mk v _ * value_monoid.mk v _ = value_monoid.mk v _, rw ← monoid_hom.map_mul, refine congr_arg _ _, let rq := ideal.quotient.mk (supp v) r, let sq := ideal.quotient.mk (supp v) s, show (localization.of sq : valuation_field v) * (localization.mk rq ⟨sq, h⟩) = localization.of rq, erw [localization.mk_eq, mul_comm, mul_assoc, units.inv_val _, mul_one], refl end /-- v can be reconstructed from `canonical_valuation v` by pushing forward along the map `value_monoid v → Γ₀`. -/ lemma to_Γ₀ : (canonical_valuation v).map (monoid_hom.mk (value_monoid.to_Γ₀ v) (value_monoid.to_Γ₀_one v) (value_monoid.to_Γ₀_mul v)) (value_monoid.to_Γ₀_zero v) (value_monoid.to_Γ₀_strict_mono v).monotone = v := ext $ λ r, show v r * (v 1)⁻¹ = v r, by simp end canonical_valuation -- end of namespace end valuation -- end of namespace namespace valuation variables {Γ₀ : Type u} [linear_ordered_comm_group_with_zero Γ₀] variables {Γ'₀ : Type u₁} [linear_ordered_comm_group_with_zero Γ'₀] variables {Γ''₀ : Type u₂} [linear_ordered_comm_group_with_zero Γ''₀] variables {Γ₀₃ : Type u₃} [linear_ordered_comm_group_with_zero Γ₀₃] /-- A valuation is equivalent to its canonical valuation -/ lemma canonical_valuation_is_equiv (v : valuation R Γ₀) : v.canonical_valuation.is_equiv v := begin have h := is_equiv.of_eq (canonical_valuation.to_Γ₀ v), symmetry, refine h.symm.trans _, exact is_equiv_of_map_strict_mono _ _ _, end namespace is_equiv -- Various lemmas about valuations being equivalent. variables {v : valuation R Γ₀} {v₁ : valuation R Γ'₀} {v₂ : valuation R Γ''₀} {v₃ : valuation R Γ₀₃} /-- If J ⊆ supp(v) then pulling back the induced valuation on R / J back to R gives a valuation equivalent to v. -/ lemma on_quot_comap_self {J : ideal R} (hJ : J ≤ supp v) : is_equiv ((v.on_quot hJ).comap (ideal.quotient.mk J)) v := of_eq (on_quot_comap_eq _ _) /-- Two valuations on R/J are equivalent iff their pullbacks to R are equivalent. -/ lemma comap_on_quot (J : ideal R) (v₁ : valuation J.quotient Γ'₀) (v₂ : valuation J.quotient Γ''₀) : (v₁.comap (ideal.quotient.mk J)).is_equiv (v₂.comap (ideal.quotient.mk J)) ↔ v₁.is_equiv v₂ := { mp := begin rintros h ⟨x⟩ ⟨y⟩, exact h x y end, mpr := λ h, comap _ h } open localization /-- If supp(v)=0 then v is equivalent to the pullback of the extension of v to Frac(R). -/ lemma on_frac_comap_self {R : Type u₀} [integral_domain R] (v : valuation R Γ₀) (hv : supp v = 0) : is_equiv ((v.on_frac hv).comap of) v := of_eq (on_frac_comap_eq v hv) /-- If R is an ID then two valuations on R are equivalent iff their extensions to Frac(R) are equivalent. -/ lemma comap_on_frac {R : Type u₀} [integral_domain R] (v₁ : valuation (fraction_ring R) Γ'₀) (v₂ : valuation (fraction_ring R) Γ''₀) : (v₁.comap of).is_equiv (v₂.comap of) ↔ is_equiv v₁ v₂ := { mp := begin rintros h ⟨x⟩ ⟨y⟩, erw [← comap_on_frac_eq v₁, ← comap_on_frac_eq v₂], show _ * _ ≤ _ * _ ↔ _ * _ ≤ _ * _, erw div_le_div', erw div_le_div', { repeat {erw ← valuation.map_mul}, exact h _ _ }, all_goals { intro H, erw [← mem_supp_iff, comap_supp, (supp _).eq_bot_of_prime] at H, simp at H, replace H := fraction_ring.eq_zero_of _ H, refine fraction_ring.mem_non_zero_divisors_iff_ne_zero.mp _ H, apply subtype.val_prop _, apply_instance }, end, mpr := λ h, h.comap _ } /-- [Wed 1.27] (iii) -> first part of (ii). -/ lemma supp_eq (h : v₁.is_equiv v₂) : supp v₁ = supp v₂ := ideal.ext $ λ r, calc r ∈ supp v₁ ↔ v₁ r = 0 : iff.rfl ... ↔ v₁ r ≤ v₁ 0 : by simp ... ↔ v₂ r ≤ v₂ 0 : h r 0 ... ↔ v₂ r = 0 : by simp ... ↔ r ∈ supp v₂ : iff.rfl /-- If v₁ and v₂ are equivalent then v₁(r)=1 → v₂(r)=1. -/ lemma v_eq_one_of_v_eq_one (h : v₁.is_equiv v₂) {r : R} : v₁ r = 1 → v₂ r = 1 := begin rw [←v₁.map_one, ←v₂.map_one], intro hr, exact le_antisymm ((h r 1).1 (le_of_eq hr)) ((h 1 r).1 (le_of_eq hr.symm)), end /-- If v₁ and v₂ are equivalent then v₁(r)=1 ↔ v₂(r)=1. -/ lemma v_eq_one (h : v₁.is_equiv v₂) (r : R) : v₁ r = 1 ↔ v₂ r = 1 := ⟨v_eq_one_of_v_eq_one h,v_eq_one_of_v_eq_one h.symm⟩ /-- If v₁ and v₂ are equivalent then their canonical valuations are too. -/ lemma canonical_equiv_of_is_equiv (h : v₁.is_equiv v₂) : (canonical_valuation v₁).is_equiv (canonical_valuation v₂) := begin refine is_equiv.trans v₁.canonical_valuation_is_equiv _, refine is_equiv.trans h _, apply is_equiv.symm, exact v₂.canonical_valuation_is_equiv end end is_equiv -- end of namespace /-- The supports of v and v.canonical_valuation are equal. -/ lemma canonical_valuation_supp (v : valuation R Γ₀) : supp (v.canonical_valuation) = supp v := (canonical_valuation_is_equiv v).supp_eq /-- The canonical valuation of a valuation on a field is surjective. -/ lemma canonical_valuation.surjective {K : Type*} [discrete_field K] (v : valuation K Γ₀) : function.surjective (v.canonical_valuation) := begin rintro ⟨⟨⟨r⟩,⟨⟨s⟩,h⟩⟩⟩, refine ⟨s⁻¹ * r, _⟩, apply quotient.sound, refine ⟨1, is_submonoid.one_mem _, _⟩, rw [units.coe_one, mul_one], apply quotient.sound, refine ⟨_, h, _⟩, dsimp only [-sub_eq_add_neg], convert zero_mul _, rw [sub_eq_zero], dsimp, rw ← mul_assoc, congr, symmetry, show ideal.quotient.mk (supp v) _ * ideal.quotient.mk (supp v) _ = 1, rw ← is_ring_hom.map_mul (ideal.quotient.mk (supp v)), convert is_ring_hom.map_one (ideal.quotient.mk (supp v)), apply mul_inv_cancel, contrapose! h, subst s, refine (not_iff_not_of_iff localization.fraction_ring.mem_non_zero_divisors_iff_ne_zero).mpr _, exact not_not.mpr rfl end section Wedhorn1_27_equivalences variables {v : valuation R Γ₀} {v₁ : valuation R Γ'₀} {v₂ : valuation R Γ''₀} {v₃ : valuation R Γ₀₃} open is_group_hom quotient_group function -- We now start on the equivalences of Wedhorn 1.27. The first one is easy. /-- Wedhorn 1.27 (i) → (iii) : An ordered isomorphism of value groups which commutes with canonical valuations implies that valuations are equivalent. -/ lemma of_inj_value_monoid (f : v₁.value_monoid →* v₂.value_monoid) (h₀ : f 0 = 0) (hf : strict_mono f) (H : v₂.canonical_valuation = v₁.canonical_valuation.map f h₀ (hf.monotone)) : v₁.is_equiv v₂ := begin refine (v₁.canonical_valuation_is_equiv.symm).trans _, refine (is_equiv.trans _ (v₂.canonical_valuation_is_equiv)), rw H, symmetry, exact is_equiv_of_map_strict_mono _ _ _ end -- These lemmas look slightly ridiculous to a mathematician but they are avoiding equality of -- types and instead defining and reasoning about maps which mathematicians would call -- "the identiy map". /-- Natural map R/supp(v₁) → R/supp(v₂) induced by equality supp(v₁)=supp(v₂). -/ def quot_of_quot_of_eq_supp (h : supp v₁ = supp v₂) : valuation_ID v₁ → valuation_ID v₂ := ideal.quotient.lift _ (ideal.quotient.mk _) (λ r hr, ideal.quotient.eq_zero_iff_mem.2 $ h ▸ hr) lemma quot_of_quot_of_eq_supp.id (r : valuation_ID v) : quot_of_quot_of_eq_supp (rfl) r = r := by rcases r;refl lemma quot_of_quot_of_eq_supp.comp (h12 : supp v₁ = supp v₂) (h23 : supp v₂ = supp v₃) (r : valuation_ID v₁) : quot_of_quot_of_eq_supp h23 (quot_of_quot_of_eq_supp h12 r) = quot_of_quot_of_eq_supp (h23 ▸ h12 : supp v₁ = supp v₃) r := by rcases r;refl /-- If supp(v₁)=supp(v₂) then R/supp(v₁) is isomorphic to R/supp(v₂). -/ def valuation_ID.equiv (h : supp v₁ = supp v₂) : valuation_ID v₁ ≃ valuation_ID v₂ := { to_fun := quot_of_quot_of_eq_supp h, inv_fun := quot_of_quot_of_eq_supp (h.symm), left_inv := λ r, by rw quot_of_quot_of_eq_supp.comp h h.symm; exact quot_of_quot_of_eq_supp.id r, right_inv := λ r, by rw quot_of_quot_of_eq_supp.comp h.symm h; exact quot_of_quot_of_eq_supp.id r } @[simp] lemma quot_of_quot_of_eq_supp_quotient_mk (h : supp v₁ = supp v₂) : quot_of_quot_of_eq_supp h ∘ ideal.quotient.mk _ = ideal.quotient.mk _ := funext $ λ x, ideal.quotient.lift_mk lemma quot_of_quot_of_eq_supp_quotient_mk' (h : supp v₁ = supp v₂) (r : R) : quot_of_quot_of_eq_supp h (ideal.quotient.mk _ r) = ideal.quotient.mk _ r := by rw ←quot_of_quot_of_eq_supp_quotient_mk h /-- If supp(v₁)=supp(v₂) then the identity map R/supp(v₁) → R/supp(v₂) is a ring homomorphism. -/ instance quot_of_quot_of_eq_supp.is_ring_hom (h : supp v₁ = supp v₂) : is_ring_hom (quot_of_quot_of_eq_supp h) := by delta quot_of_quot_of_eq_supp; apply_instance /-- If supp(v₁)=supp(v₂) then R/supp(v₁) and R/supp(v₂) are isomorphic rings. -/ def quot_equiv_quot_of_eq_supp (h : supp v₁ = supp v₂) : valuation_ID v₁ ≃+* valuation_ID v₂ := { .. ring_hom.of (quot_of_quot_of_eq_supp h), .. valuation_ID.equiv h } /-- If supp(v₁)=supp(v₂) then the triangle R → R/supp(v₁) → R/supp(v₂) commutes. -/ lemma quot_equiv_quot_mk_eq_mk (h : supp v₁ = supp v₂) (r : R) : (quot_equiv_quot_of_eq_supp h).to_equiv (ideal.quotient.mk _ r) = ideal.quotient.mk _ r := quot_of_quot_of_eq_supp_quotient_mk' h r lemma quot_of_quot_of_eq_supp_inj (h : supp v₁ = supp v₂) : injective (quot_of_quot_of_eq_supp h) := injective_of_left_inverse (quot_equiv_quot_of_eq_supp h).left_inv lemma valuation_ID_le_of_le_of_equiv (h : v₁.is_equiv v₂) (a b : valuation_ID v₁) : (a ≤ b) ↔ quot_of_quot_of_eq_supp (is_equiv.supp_eq h) a ≤ quot_of_quot_of_eq_supp (is_equiv.supp_eq h) b := by rcases a; rcases b; exact (h a b) /-- If v₁ and v₂ are equivalent, then the associated preorders on R/supp(v₁)=R/supp(v₂) are equivalent. -/ def valuation_ID.preorder_equiv (h : v₁.is_equiv v₂) : preorder_equiv (valuation_ID v₁) (valuation_ID v₂) := { le_map := valuation_ID_le_of_le_of_equiv h, ..valuation_ID.equiv h.supp_eq } section valuation_field open localization /-- The natural map Frac(R/supp(v₁)) → Frac(R/supp(v₂)) if supp(v₁) = supp(v₂). -/ def valfield_of_valfield_of_eq_supp (h : supp v₁ = supp v₂) : valuation_field v₁ → valuation_field v₂ := fraction_ring.map (quot_of_quot_of_eq_supp h) (quot_of_quot_of_eq_supp_inj h) /-- The triangle R → Frac(R/supp(v₁)) → Frac(R/supp(v₂)) commutes if supp(v₁)=supp(v₂). -/ lemma valfield_of_valfield_of_eq_supp_quotient_mk (h : supp v₁ = supp v₂) (r : R) : valfield_of_valfield_of_eq_supp h (of $ ideal.quotient.mk _ r) = of (ideal.quotient.mk _ r) := begin unfold valfield_of_valfield_of_eq_supp, rw fraction_ring.map_of, rw quot_of_quot_of_eq_supp_quotient_mk', end /-- If supp(v₁)=supp(v₂) then the natural map Frac(R/supp(v₁)) → Frac(R/supp(v₂)) is a homomorphism of fields. -/ instance is_ring_hom_of_supp (h : supp v₁ = supp v₂) : is_ring_hom (valfield_of_valfield_of_eq_supp h) := by delta valfield_of_valfield_of_eq_supp; apply_instance -- This should be possible using type class inference but there are max class -- instance issues. /-- If supp(v₁)=supp(v₂) then the natural map Frac(R/supp(v₁)) → Frac(R/supp(v₂)) is a homomorphism of monoids. -/ instance (h : supp v₁ = supp v₂) : is_monoid_hom (valfield_of_valfield_of_eq_supp h) := is_semiring_hom.is_monoid_hom (valfield_of_valfield_of_eq_supp h) /-- If supp(v₁)=supp(v₂) then the natural map Frac(R/supp(v₁)) → Frac(R/supp(v₂)) is an isomorphism of rings. -/ def valfield_equiv_valfield_of_eq_supp (h : supp v₁ = supp v₂) : valuation_field v₁ ≃+* valuation_field v₂ := fraction_ring.equiv_of_equiv (quot_equiv_quot_of_eq_supp h) lemma valfield_equiv_eq_valfield_of_valfield (h : supp v₁ = supp v₂) (q : valuation_field v₁) : (valfield_equiv_valfield_of_eq_supp h).to_equiv q = valfield_of_valfield_of_eq_supp h q := rfl lemma valfield_equiv_valfield_mk_eq_mk (h : supp v₁ = supp v₂) (r : R) : (valfield_equiv_valfield_of_eq_supp h).to_equiv (of $ ideal.quotient.mk _ r) = of (ideal.quotient.mk _ r) := valfield_of_valfield_of_eq_supp_quotient_mk h r /-- If v₁ and v₂ are equivalent then the induced valuations on R/supp(v₁) and R/supp(v₂) (pulled back to R/supp(v₁) are equivalent. -/ lemma is_equiv.comap_quot_of_quot (h : v₁.is_equiv v₂) : (v₁.on_quot (set.subset.refl _)).is_equiv ((v₂.on_quot (set.subset.refl _)).comap (quot_of_quot_of_eq_supp h.supp_eq)) := begin rw [← is_equiv.comap_on_quot, ← comap_comp], simp [h], end /-- If v₁ and v₂ are equivalent then the induced valuations on Frac(R/supp(v₁)) and Frac(R/supp(v₂)) [pulled back] are equivalent. -/ lemma is_equiv.on_valuation_field_is_equiv (h : v₁.is_equiv v₂) : v₁.on_valuation_field.is_equiv (v₂.on_valuation_field.comap (valfield_of_valfield_of_eq_supp h.supp_eq)) := begin delta valfield_of_valfield_of_eq_supp, delta on_valuation_field, erw [← is_equiv.comap_on_frac, ← comap_comp, on_frac_comap_eq], simp [comap_comp, h.comap_quot_of_quot], end /-- The valuation rings of two equivalent valuations are isomorphic (as types). -/ def val_ring_equiv_of_is_equiv_aux (h : v₁.is_equiv v₂) : v₁.valuation_ring ≃ v₂.valuation_ring := equiv.subtype_congr (valfield_equiv_valfield_of_eq_supp h.supp_eq).to_equiv $ begin intro x, show _ ≤ _ ↔ _ ≤ _, erw [← v₁.on_valuation_field.map_one, h.on_valuation_field_is_equiv], convert iff.refl _, symmetry, exact valuation.map_one _, end /-- The valuation rings of two equivalent valuations are isomorphic as rings. -/ def val_ring_equiv_of_is_equiv (h : v₁.is_equiv v₂) : v₁.valuation_ring ≃+* v₂.valuation_ring := { map_add' := λ x y, subtype.val_injective $ (valfield_equiv_valfield_of_eq_supp h.supp_eq).map_add x y, map_mul' := λ x y, subtype.val_injective $ (valfield_equiv_valfield_of_eq_supp h.supp_eq).map_mul x y, .. val_ring_equiv_of_is_equiv_aux h, } -- we omit the proof that the diagram {r | v₁ r ≤ 1} → v₁.valuation_ring → v₂.valuation_ring -- commutes. lemma valfield_le_of_le_of_equiv (h : v₁.is_equiv v₂) (a b : valuation_field v₁) : (a ≤ b) ↔ valfield_of_valfield_of_eq_supp (h.supp_eq) a ≤ valfield_of_valfield_of_eq_supp (h.supp_eq) b := calc a ≤ b ↔ v₁.on_valuation_field a ≤ v₁.on_valuation_field b : iff.rfl ... ↔ _ : h.on_valuation_field_is_equiv a b def valfield.preorder_equiv (h : v₁.is_equiv v₂) : preorder_equiv (valuation_field v₁) (valuation_field v₂) := { le_map := valfield_le_of_le_of_equiv h, ..(valfield_equiv_valfield_of_eq_supp h.supp_eq).to_equiv } -- units /-- The induced map between the unit groups of the valuation fields of two valuations with the same support.-/ def valfield_units_of_valfield_units_of_eq_supp (h : supp v₁ = supp v₂) : units (valuation_field v₁) → units (valuation_field v₂) := units.map' $ valfield_of_valfield_of_eq_supp h /-- The induced map between the unit groups of the valuation fields of two valuations with the same support is a group homomorphism.-/ instance valfield_units.is_group_hom (h : supp v₁ = supp v₂) : is_group_hom (valfield_units_of_valfield_units_of_eq_supp h) := by unfold valfield_units_of_valfield_units_of_eq_supp; apply_instance lemma units_valfield_of_units_valfield_of_eq_supp_mk (h : supp v₁ = supp v₂) (r : R) (hr : r ∉ supp v₁) : valfield_units_of_valfield_units_of_eq_supp h (units_valfield_mk v₁ r hr) = units_valfield_mk v₂ r (h ▸ hr) := units.ext $ valfield_equiv_valfield_mk_eq_mk h r def valfield_units_equiv_units_of_eq_supp (h : supp v₁ = supp v₂) : (units (valuation_field v₁)) ≃* (units (valuation_field v₂)) := units.map_equiv { .. valfield_equiv_valfield_of_eq_supp h } end valuation_field -- section lemma valfield_units_equiv_units_mk_eq_mk (h : supp v₁ = supp v₂) (r : R) (hr : r ∉ supp v₁): (valfield_units_equiv_units_of_eq_supp h).to_equiv (units_valfield_mk v₁ r hr) = units_valfield_mk v₂ r (h ▸ hr) := units_valfield_of_units_valfield_of_eq_supp_mk h r hr def valfield_units_preorder_equiv (h : v₁.is_equiv v₂) : preorder_equiv (units (valuation_field v₁)) (units (valuation_field v₂)) := { le_map := λ u v, @le_equiv.le_map _ _ _ _ (valfield.preorder_equiv h) u.val v.val, ..valfield_units_equiv_units_of_eq_supp (h.supp_eq) } lemma val_one_iff_unit_val_one (x : units (valuation_field v)) : x ∈ valuation_field_norm_one v ↔ v.on_valuation_field x = 1 := calc x ∈ valuation_field_norm_one v ↔ (units.map (v.on_valuation_field : v.valuation_field →* Γ₀) x = 1) : is_subgroup.mem_trivial ... ↔ v.on_valuation_field x = 1 : units.ext_iff lemma is_equiv.norm_one_eq_norm_one (h : is_equiv v₁ v₂) : valfield_units_of_valfield_units_of_eq_supp (is_equiv.supp_eq h) ⁻¹' valuation_field_norm_one v₂ = valuation_field_norm_one v₁ := begin ext x, rw [set.mem_preimage, val_one_iff_unit_val_one x, is_equiv.v_eq_one (is_equiv.on_valuation_field_is_equiv h) x, val_one_iff_unit_val_one], refl, end /-- Two equivalent valuations have isomorphic canonical value monoids. This is part of the statement of [Wedhorn, 1.27 (iii) -> (i)]. -/ def is_equiv.value_mul_equiv (h : is_equiv v₁ v₂) : (value_monoid v₁) ≃* (value_monoid v₂) := { to_fun := λ x, quotient.lift_on' x ((valuation_field.canonical_valuation v₂).comap (valfield_of_valfield_of_eq_supp h.supp_eq)) begin rintros a b ⟨c, hc, rfl⟩, rw valuation.map_mul, convert (mul_one _).symm, rw val_one_iff_unit_val_one at hc, rw h.on_valuation_field_is_equiv.v_eq_one c at hc, suffices : v₂.on_valuation_field.is_equiv (valuation_field.canonical_valuation v₂), { have tmp := (this.comap (valfield_of_valfield_of_eq_supp _)), rwa tmp.v_eq_one at hc, }, intros a b, exact iff.rfl end, inv_fun := λ x, quotient.lift_on' x ((valuation_field.canonical_valuation v₁).comap (valfield_of_valfield_of_eq_supp h.symm.supp_eq)) begin rintros a b ⟨c, hc, rfl⟩, rw valuation.map_mul, convert (mul_one _).symm, rw val_one_iff_unit_val_one at hc, rw h.symm.on_valuation_field_is_equiv.v_eq_one c at hc, suffices : v₁.on_valuation_field.is_equiv (valuation_field.canonical_valuation v₁), { have tmp := (this.comap (valfield_of_valfield_of_eq_supp _)), rwa tmp.v_eq_one at hc, }, intros a b, exact iff.rfl end, left_inv := by { rintro ⟨a⟩, apply quotient.sound', refine ⟨1, is_submonoid.one_mem _, _⟩, rw [units.coe_one, mul_one], exact (valfield_equiv_valfield_of_eq_supp h.supp_eq).to_equiv.left_inv a }, right_inv := by { rintro ⟨a⟩, apply quotient.sound', refine ⟨1, is_submonoid.one_mem _, _⟩, rw [units.coe_one, mul_one], exact (valfield_equiv_valfield_of_eq_supp h.symm.supp_eq).to_equiv.left_inv a }, map_mul' := begin rintro ⟨a⟩ ⟨b⟩, apply quotient.sound', refine ⟨1, is_submonoid.one_mem _, _⟩, rw [units.coe_one, mul_one], exact is_ring_hom.map_mul _, end } -- ordering part of 1.27 (iii) -> (i) lemma is_equiv.value_monoid_order_equiv_aux (h : is_equiv v₁ v₂) (x y : value_monoid v₁) (h2 : x ≤ y) : h.value_mul_equiv x ≤ h.value_mul_equiv y := begin induction x with x, induction y, swap, refl, swap, refl, exact (is_equiv.on_valuation_field_is_equiv h x y).1 h2, end /-- The canonical value monoids of two equivalent valuations are order equivalent.-/ def is_equiv.value_monoid_le_equiv (h : is_equiv v₁ v₂) : (value_monoid v₁) ≃≤ (value_monoid v₂) := { le_map := λ x y, linear_order_le_iff_of_monotone_injective (h.value_mul_equiv.to_equiv.bijective.1) (is_equiv.value_monoid_order_equiv_aux h) x y ..h.value_mul_equiv} lemma is_equiv.value_mul_equiv_monotone (h : is_equiv v₁ v₂) : monotone (h.value_mul_equiv) := λ x y, (@@le_equiv.le_map _ _ (is_equiv.value_monoid_le_equiv h)).1 lemma is_equiv.value_mul_equiv_map_zero (h : is_equiv v₁ v₂) : h.value_mul_equiv 0 = 0 := begin apply quotient.sound', refine ⟨1, is_submonoid.one_mem _, _⟩, rw [units.coe_one, mul_one], exact is_ring_hom.map_zero _, end lemma is_equiv.with_zero_value_mul_equiv_mk_eq_mk (h : v₁.is_equiv v₂) : (canonical_valuation v₁).map h.value_mul_equiv.to_monoid_hom h.value_mul_equiv_map_zero h.value_mul_equiv_monotone = canonical_valuation v₂ := begin ext r, apply quotient.sound', refine ⟨1, is_submonoid.one_mem _, _⟩, rw [units.coe_one, mul_one], apply valfield_of_valfield_of_eq_supp_quotient_mk, end end Wedhorn1_27_equivalences -- section end valuation