import algebra.group_power import ring_theory.ideal_operations import ring_theory.subring import for_mathlib.rings import for_mathlib.equiv import valuation.linear_ordered_comm_group_with_zero /-! # The basics of valuation theory. The basic theory of valuations (non-archimedean norms) on a commutative ring, following T. Wedhorn's unpublished notes “Adic Spaces” ([Wedhorn]) The definition of a valuation we use here is Definition 1.22 of [Wedhorn]. `valuation R Γ₀` is the type of valuations R → Γ₀, with a coercion to the underlying function. If v is a valuation from R to Γ₀ then the induced group homomorphism units(R) → Γ₀ is called `unit_map v`. The equivalence "relation" `is_equiv v₁ v₂ : Prop` defined in [Wedhorn; 1.27] is not strictly speaking a relation, because v₁ : valuation R Γ₁ and v₂ : valuation R Γ₂ might not have the same type. This corresponds in ZFC to the set-theoretic difficulty that the class of all valuations (as Γ₀ varies) on a ring R is not a set. The "relation" is however reflexive, symmetric and transitive in the obvious sense. Note that we use 1.27(iii) as the definition of equivalence. The trivial valuation associated to a prime ideal P of R is `trivial P : valuation R Γ₀`. The support of a valuation v : valuation R Γ₀ is `supp v`. If J is an ideal of R with `h : J ⊆ supp v` then the induced valuation on R / J = `ideal.quotient J` is `on_quot v h`. -/ local attribute [instance] classical.prop_decidable noncomputable theory local attribute [instance, priority 0] classical.DLO open function ideal linear_ordered_structure universes u u₀ u₁ u₂ -- v is used for valuations variables {R : Type u₀} -- This will be a ring, assumed commutative in some sections variables {Γ₀ : Type u} [linear_ordered_comm_group_with_zero Γ₀] variables {Γ'₀ : Type u₁} [linear_ordered_comm_group_with_zero Γ'₀] variables {Γ''₀ : Type u₂} [linear_ordered_comm_group_with_zero Γ''₀] set_option old_structure_cmd true section variables (R) (Γ₀) [ring R] /-- The type of Γ₀-valued valuations on R. -/ structure valuation extends R →* Γ₀ := (map_zero' : to_fun 0 = 0) (map_add' : ∀ x y, to_fun (x + y) ≤ max (to_fun x) (to_fun y)) end namespace valuation section basic variables (R) (Γ₀) [ring R] /-- A valuation is coerced to the underlying function R → Γ₀. -/ instance : has_coe_to_fun (valuation R Γ₀) := { F := λ _, R → Γ₀, coe := valuation.to_fun } /-- A valuation is coerced to a monoid morphism R → Γ₀. -/ instance : has_coe (valuation R Γ₀) (R →* Γ₀) := ⟨valuation.to_monoid_hom⟩ variables {R} {Γ₀} (v : valuation R Γ₀) {x y z : R} @[squash_cast, simp] lemma coe_coe : ((v : R →* Γ₀) : R → Γ₀) = v := rfl @[simp] lemma map_zero : v 0 = 0 := v.map_zero' @[simp] lemma map_one : v 1 = 1 := v.map_one' @[simp] lemma map_mul : ∀ x y, v (x * y) = v x * v y := v.map_mul' @[simp] lemma map_add : ∀ x y, v (x + y) ≤ max (v x) (v y) := v.map_add' @[simp] lemma map_pow : ∀ x (n:ℕ), v (x^n) = (v x)^n := @is_monoid_hom.map_pow _ _ _ _ v (monoid_hom.is_monoid_hom v.to_monoid_hom) @[ext] lemma ext {v₁ v₂ : valuation R Γ₀} (h : ∀ r, v₁ r = v₂ r) : v₁ = v₂ := by { cases v₁, cases v₂, congr, funext r, exact h r } lemma ext_iff {v₁ v₂ : valuation R Γ₀} : v₁ = v₂ ↔ ∀ r, v₁ r = v₂ r := ⟨λ h r, congr_arg _ h, ext⟩ -- The following definition is not an instance, because we have more than one v on a given R. /-- A valuation gives a preorder on the underlying ring. -/ def to_preorder : preorder R := preorder.lift v (by apply_instance) /-- If v is a valuation on a division ring then v(x) = 0 iff x = 0. -/ lemma zero_iff {K : Type u₀} [division_ring K] (v : valuation K Γ₀) {x : K} : v x = 0 ↔ x = 0 := begin split ; intro h, { contrapose! h, exact group_with_zero.unit_ne_zero (units.map (v : K →* Γ₀) $ units.mk0 _ h) }, { exact h.symm ▸ v.map_zero }, end lemma ne_zero_iff {K : Type u₀} [division_ring K] (v : valuation K Γ₀) {x : K} : v x ≠ 0 ↔ x ≠ 0 := not_iff_not_of_iff v.zero_iff @[simp] lemma map_inv' {K : Type u₀} [division_ring K] (v : valuation K Γ₀) {x : K} (h : x ≠ 0) : v x⁻¹ = (v x)⁻¹ := begin apply eq_inv_of_mul_right_eq_one', rw [← v.map_mul, mul_inv_cancel h, v.map_one] end @[simp] lemma map_inv {K : Type u₀} [discrete_field K] (v : valuation K Γ₀) {x : K} : v x⁻¹ = (v x)⁻¹ := begin by_cases h : x = 0, { rw [h, inv_zero, map_zero, inv_zero'] }, { exact v.map_inv' h } end lemma map_units_inv (x : units R) : v (x⁻¹ : units R) = (v x)⁻¹ := eq_inv_of_mul_right_eq_one' _ _ $ by rw [← v.map_mul, units.mul_inv, v.map_one] @[simp] theorem unit_map_eq (u : units R) : (units.map (v : R →* Γ₀) u : Γ₀) = v u := rfl @[simp] theorem map_neg_one : v (-1) = 1 := begin show (units.map (v : R →* Γ₀) (-1 : units R) : Γ₀) = (1 : units Γ₀), rw ← units.ext_iff, apply linear_ordered_structure.eq_one_of_pow_eq_one (nat.succ_ne_zero _) (_ : _ ^ 2 = _), rw [pow_two, ← monoid_hom.map_mul, units.ext_iff], show v ((-1) * (-1)) = 1, rw [neg_one_mul, neg_neg, v.map_one] end @[simp] lemma map_neg (x : R) : v (-x) = v x := calc v (-x) = v (-1 * x) : by simp ... = v (-1) * v x : map_mul _ _ _ ... = v x : by simp lemma map_sub_swap (x y : R) : v (x - y) = v (y - x) := calc v (x - y) = v (-(y - x)) : by rw show x - y = -(y-x), by abel ... = _ : map_neg _ _ lemma map_sub_le_max (x y : R) : v (x - y) ≤ max (v x) (v y) := calc v (x-y) = v (x + -y) : by simp ... ≤ max (v x) (v $ -y) : v.map_add _ _ ... = max (v x) (v y) : by rw map_neg lemma map_add_of_distinct_val (h : v x ≠ v y) : v (x + y) = max (v x) (v y) := begin suffices : ¬v (x + y) < max (v x) (v y), from or_iff_not_imp_right.1 (le_iff_eq_or_lt.1 (v.map_add x y)) this, intro h', wlog vyx : v y < v x using x y, { apply lt_or_gt_of_ne h.symm }, { rw max_eq_left_of_lt vyx at h', apply lt_irrefl (v x), calc v x = v ((x+y) - y) : by simp ... ≤ max (v $ x + y) (v y) : map_sub_le_max _ _ _ ... < v x : max_lt h' vyx }, { apply this h.symm, rwa [add_comm, max_comm] at h' } end lemma map_eq_of_sub_lt (h : v (y - x) < v x) : v y = v x := begin have := valuation.map_add_of_distinct_val v (ne_of_gt h).symm, rw max_eq_right (le_of_lt h) at this, simpa using this end /-- A ring homomorphism S → R induces a map valuation R Γ₀ → valuation S Γ₀ -/ def comap {S : Type u₁} [ring S] (f : S → R) [is_ring_hom f] (v : valuation R Γ₀) : valuation S Γ₀ := by refine_struct { to_fun := v ∘ f, .. }; intros; simp [is_ring_hom.map_zero f, is_ring_hom.map_one f, is_ring_hom.map_mul f, is_ring_hom.map_add f] @[simp] lemma comap_id : v.comap (id : R → R) = v := ext $ λ r, rfl lemma comap_comp {S₁ : Type u₁} [ring S₁] {S₂ : Type u₂} [ring S₂] (f : S₁ → S₂) [is_ring_hom f] (g : S₂ → R) [is_ring_hom g] : v.comap (g ∘ f) = (v.comap g).comap f := ext $ λ r, rfl /-- A ≤-preserving group homomorphism Γ₀ → Γ'₀ induces a map valuation R Γ₀ → valuation R Γ'₀. -/ def map (f : Γ₀ →* Γ'₀) (h₀ : f 0 = 0) (hf : monotone f) (v : valuation R Γ₀) : valuation R Γ'₀ := { to_fun := f ∘ v, map_zero' := show f (v 0) = 0, by rw [v.map_zero, h₀], map_add' := λ r s, calc f (v (r + s)) ≤ f (max (v r) (v s)) : hf (v.map_add r s) ... = max (f (v r)) (f (v s)) : hf.map_max, .. monoid_hom.comp f (v : R →* Γ₀) } /-- Two valuations on R are defined to be equivalent if they induce the same preorder on R. -/ def is_equiv (v₁ : valuation R Γ₀) (v₂ : valuation R Γ'₀) : Prop := ∀ r s, v₁ r ≤ v₁ s ↔ v₂ r ≤ v₂ s end basic -- end of section namespace is_equiv variables [ring R] variables {v : valuation R Γ₀} variables {v₁ : valuation R Γ₀} {v₂ : valuation R Γ'₀} {v₃ : valuation R Γ''₀} @[refl] lemma refl : v.is_equiv v := λ _ _, iff.refl _ @[symm] lemma symm (h : v₁.is_equiv v₂) : v₂.is_equiv v₁ := λ _ _, iff.symm (h _ _) @[trans] lemma trans (h₁₂ : v₁.is_equiv v₂) (h₂₃ : v₂.is_equiv v₃) : v₁.is_equiv v₃ := λ _ _, iff.trans (h₁₂ _ _) (h₂₃ _ _) lemma of_eq {v' : valuation R Γ₀} (h : v = v') : v.is_equiv v' := by subst h; refl lemma map {v' : valuation R Γ₀} (f : Γ₀ →* Γ'₀) (h₀ : f 0 = 0) (hf : monotone f) (inf : injective f) (h : v.is_equiv v') : (v.map f h₀ hf).is_equiv (v'.map f h₀ hf) := λ r s, calc f (v r) ≤ f (v s) ↔ v r ≤ v s : by rw linear_order_le_iff_of_monotone_injective inf hf ... ↔ v' r ≤ v' s : h r s ... ↔ f (v' r) ≤ f (v' s) : by rw linear_order_le_iff_of_monotone_injective inf hf /-- `comap` preserves equivalence. -/ lemma comap {S : Type u₂} [ring S] (f : S → R) [is_ring_hom f] (h : v₁.is_equiv v₂) : (v₁.comap f).is_equiv (v₂.comap f) := λ r s, h (f r) (f s) lemma val_eq (h : v₁.is_equiv v₂) {r s : R} : v₁ r = v₁ s ↔ v₂ r = v₂ s := ⟨λ H, le_antisymm ((h _ _).1 (le_of_eq H)) ((h _ _).1 (le_of_eq H.symm)), λ H, le_antisymm ((h.symm _ _).1 (le_of_eq H)) ((h.symm _ _).1 (le_of_eq H.symm)) ⟩ lemma ne_zero (h : v₁.is_equiv v₂) {r : R} : v₁ r ≠ 0 ↔ v₂ r ≠ 0 := begin have : v₁ r ≠ v₁ 0 ↔ v₂ r ≠ v₂ 0 := not_iff_not_of_iff h.val_eq, rwa [v₁.map_zero, v₂.map_zero] at this, end end is_equiv -- end of namespace lemma is_equiv_of_map_strict_mono [ring R] {v : valuation R Γ₀} (f : Γ₀ →* Γ'₀) (h₀ : f 0 = 0) (H : strict_mono f) : is_equiv (v.map f h₀ (H.monotone)) v := λ x y, ⟨H.le_iff_le.mp, λ h, H.monotone h⟩ lemma is_equiv_of_val_le_one {K : Type*} [division_ring K] (v : valuation K Γ₀) (v' : valuation K Γ'₀) (h : ∀ {x:K}, v x ≤ 1 ↔ v' x ≤ 1) : v.is_equiv v' := begin intros x y, by_cases hy : y = 0, { simp [hy, zero_iff], }, rw show y = 1 * y, by rw one_mul, rw show x = (x * y⁻¹) * y, { rw [mul_assoc, inv_mul_cancel hy, mul_one], }, iterate 2 {rw [v.map_mul _ y, v'.map_mul _ y]}, rw [v.map_one, v'.map_one], split; intro H, { apply actual_ordered_comm_monoid.mul_le_mul_right', replace hy := v.ne_zero_iff.mpr hy, replace H := linear_ordered_structure.le_of_le_mul_right hy H, rwa h at H, }, { apply actual_ordered_comm_monoid.mul_le_mul_right', replace hy := v'.ne_zero_iff.mpr hy, replace H := linear_ordered_structure.le_of_le_mul_right hy H, rwa h, }, end /-- A valuation is trivial if it maps everything to 0 or 1.-/ def is_trivial [ring R] (v : valuation R Γ₀) : Prop := ∀ r:R, v r = 0 ∨ v r = 1 section trivial -- the trivial valuation variable [comm_ring R] variables (I : ideal R) [prime : I.is_prime] /-- The trivial Γ₀-valued valuation associated to a prime ideal S of R. -/ def trivial : valuation R (with_zero punit) := { to_fun := λ x, if x ∈ I then 0 else 1, map_zero' := if_pos I.zero_mem, map_one' := if_neg (assume h, prime.1 (I.eq_top_iff_one.2 h)), map_mul' := λ x y, if hx : x ∈ I then by rw [if_pos hx, zero_mul, if_pos (I.mul_mem_right hx)] else if hy : y ∈ I then by rw [if_pos hy, mul_zero, if_pos (I.mul_mem_left hy)] else have hxy : x * y ∉ I, by { assume hxy, replace hxy := prime.mem_or_mem hxy, tauto }, by rw [if_neg hx, if_neg hy, if_neg hxy, mul_one], map_add' := λ x y, begin split_ifs with hxy hx hy _ hx hy; try {simp}; try {exact le_refl _}, { exact hxy (I.add_mem hx hy) } end } lemma trivial_is_trivial (I : ideal R) [hI : I.is_prime] : (trivial I).is_trivial := begin intro r, generalize : (trivial I) r = x, cases x; [left, {right, cases x}]; refl end lemma is_trivial_iff_val_le_one {K : Type*} [division_ring K] {v : valuation K Γ₀} : v.is_trivial ↔ ∀ x:K, v x ≤ 1 := begin split; intros h x, { cases h x; simp *, }, { contrapose! h, cases h with h₁ h₂, by_cases hx : v x ≤ 1, { refine ⟨x⁻¹, _⟩, rw [v.map_inv', ← linear_ordered_structure.inv_lt_inv _ _, inv_inv'', inv_one'], { exact lt_of_le_of_ne hx h₂ }, { exact inv_ne_zero' _ h₁ }, { exact one_ne_zero }, { rwa v.ne_zero_iff at h₁, } }, { push_neg at hx, exact ⟨_, hx⟩ } } end end trivial -- end of section section supp variables [comm_ring R] variables (v : valuation R Γ₀) /-- The support of a valuation v : R → Γ₀ is the ideal of R where v vanishes. -/ def supp : ideal R := { carrier := {x | v x = 0}, zero := map_zero v, add := λ x y hx hy, le_zero_iff.mp $ calc v (x + y) ≤ max (v x) (v y) : v.map_add x y ... ≤ 0 : max_le (le_zero_iff.mpr hx) (le_zero_iff.mpr hy), smul := λ c x hx, calc v (c * x) = v c * v x : map_mul v c x ... = v c * 0 : congr_arg _ hx ... = 0 : mul_zero _ } @[simp] lemma mem_supp_iff (x : R) : x ∈ supp v ↔ v x = 0 := iff.rfl -- @[simp] lemma mem_supp_iff' (x : R) : x ∈ (supp v : set R) ↔ v x = 0 := iff.rfl /-- The support of a valuation is a prime ideal. -/ instance : ideal.is_prime (supp v) := ⟨λ (h : v.supp = ⊤), one_ne_zero $ show (1 : Γ₀) = 0, from calc 1 = v 1 : v.map_one.symm ... = 0 : show (1:R) ∈ supp v, by rw h; trivial, λ x y hxy, begin show v x = 0 ∨ v y = 0, change v (x * y) = 0 at hxy, rw [v.map_mul x y] at hxy, exact group_with_zero.mul_eq_zero _ _ hxy end⟩ /-- v(a)=v(a+s) if s ∈ supp(v). -/ lemma val_add_supp (a s : R) (h : s ∈ supp v) : v (a + s) = v a := begin have aux : ∀ a s, v s = 0 → v (a + s) ≤ v a, { intros a' s' h', refine le_trans (v.map_add a' s') (max_le (le_refl _) _), simp [h'], }, apply le_antisymm (aux a s h), calc v a = v (a + s + -s) : by simp ... ≤ v (a + s) : aux (a + s) (-s) (by rwa ←ideal.neg_mem_iff at h) end /-- If `hJ : J ⊆ supp v` then `on_quot_val hJ` is the induced function on R/J as a function. Note: it's just the function; the valuation is `on_quot hJ`. -/ definition on_quot_val {J : ideal R} (hJ : J ≤ supp v) : J.quotient → Γ₀ := λ q, quotient.lift_on' q v $ λ a b h, calc v a = v (b + (a - b)) : by simp ... = v b : v.val_add_supp b (a - b) (hJ h) /-- The extension of valuation v on R to valuation on R/J if J ⊆ supp v -/ definition on_quot {J : ideal R} (hJ : J ≤ supp v) : valuation J.quotient Γ₀ := { to_fun := v.on_quot_val hJ, map_zero' := v.map_zero, map_one' := v.map_one, map_mul' := λ xbar ybar, quotient.ind₂' v.map_mul xbar ybar, map_add' := λ xbar ybar, quotient.ind₂' v.map_add xbar ybar } @[simp] lemma on_quot_comap_eq {J : ideal R} (hJ : J ≤ supp v) : (v.on_quot hJ).comap (ideal.quotient.mk J) = v := ext $ λ r, begin refine @quotient.lift_on_beta _ _ (J.quotient_rel) v (λ a b h, _) _, calc v a = v (b + (a - b)) : by simp ... = v b : v.val_add_supp b (a - b) (hJ h) end end supp -- end of section section supp_comm variable [comm_ring R] variables (v : valuation R Γ₀) lemma comap_supp {S : Type u₁} [comm_ring S] (f : S → R) [is_ring_hom f] : supp (v.comap f) = ideal.comap f v.supp := ideal.ext $ λ x, begin rw [mem_supp_iff, ideal.mem_comap, mem_supp_iff], refl, end lemma self_le_supp_comap (J : ideal R) (v : valuation (quotient J) Γ₀) : J ≤ (v.comap (ideal.quotient.mk J)).supp := by rw [comap_supp, ← ideal.map_le_iff_le_comap]; simp @[simp] lemma comap_on_quot_eq (J : ideal R) (v : valuation J.quotient Γ₀) : (v.comap (ideal.quotient.mk J)).on_quot (v.self_le_supp_comap J) = v := ext $ by { rintro ⟨x⟩, refl } /-- The quotient valuation on R/J has support supp(v)/J if J ⊆ supp v. -/ lemma supp_quot {J : ideal R} (hJ : J ≤ supp v) : supp (v.on_quot hJ) = (supp v).map (ideal.quotient.mk J) := begin apply le_antisymm, { rintro ⟨x⟩ hx, apply ideal.subset_span, exact ⟨x, hx, rfl⟩ }, { rw ideal.map_le_iff_le_comap, intros x hx, exact hx } end lemma supp_quot_supp : supp (v.on_quot (le_refl _)) = 0 := by rw supp_quot; exact ideal.map_quotient_self _ lemma quot_preorder_comap {J : ideal R} (hJ : J ≤ supp v) : preorder.lift (ideal.quotient.mk J) (v.on_quot hJ).to_preorder = v.to_preorder := preorder.ext $ λ x y, iff.rfl end supp_comm -- end of section end valuation