import data.padics.padic_numbers import for_mathlib.punit_instances import perfectoid_space /-! # An example of a perfectoid space In this file we show that the empty space is perfectoid. Every nonempty example requires a non-trivial amount of mathematical effort. -/ /-- The structure presheaf on the empty space. -/ def CLVRS.empty_presheaf : presheaf_of_topological_rings empty := { F := λ _, unit, res := λ _ _ _ _, (), Hid := λ U, by {funext x, cases x, refl}, Hcomp := λ U V W _ _, rfl, Fring := λ x, punit.comm_ring, res_is_ring_hom := λ U V _, { map_one := rfl, map_mul := λ _ _, rfl, map_add := λ _ _, rfl }, Ftop := λ U, by apply_instance, Ftop_ring := λ U, by apply_instance, res_continuous := λ U V _, continuous_of_discrete_topology } /-- The structure sheaf on the empty space. -/ def CLVRS.empty_sheaf : sheaf_of_topological_rings empty := { F := CLVRS.empty_presheaf, locality := by {rintro _ _ ⟨s⟩ ⟨t⟩ _, refl}, gluing := by {intros _ _ c _, use (), intro i, cases c i, refl}, homeo := begin rintros ⟨U, HU⟩ ⟨γ, Uis, _⟩ c d, dsimp at *, change set unit at c, rcases subset_subsingleton c with rfl|rfl, { convert is_open_empty, exact set.image_empty _ }, { convert is_open_univ, apply set.image_univ_of_surjective, rintro ⟨s, hs⟩, use (), apply subtype.eq, funext i, show () = s i, apply subsingleton.elim, }, end } /--The empty CLVRS-/ def CLVRS.empty : CLVRS := { space := empty, sheaf' := CLVRS.empty_sheaf, complete := λ U, { complete := λ f hf, begin use (), rintro V HV, convert f.univ_sets, funext x, cases x, show _ = true, rw eq_true, exact mem_of_nhds HV, end }, valuation := by rintro ⟨⟩, local_stalks := by rintro ⟨⟩, supp_maximal := by rintro ⟨⟩ } example : PerfectoidSpace ⟨37, by norm_num⟩ := ⟨CLVRS.empty, by rintro ⟨⟩⟩