import topology.algebra.ring import valuation_spectrum import valuation.valuation_field_completion import for_mathlib.nonarchimedean.basic /-! # Continuous valuations The general theory of valuations does not consider a topology on the ring. However, in practice many rings are naturally topological rings: for example ℝ, ℂ, ℤ_p and ℚ_p. Among all valuations one can single out a class of “continuous” valuations. This notions is constant on equivalence classes, and therefore defines a predicate on `Spv R`. In this file, we introduce this predicate. -/ universes u u₀ u₁ u₂ u₃ namespace valuation variables {R : Type u₀} [comm_ring R] [topological_space R] variables {Γ₀ : Type u} [linear_ordered_comm_group_with_zero Γ₀] variables {Γ'₀ : Type u₁} [linear_ordered_comm_group_with_zero Γ'₀] variables {Γ''₀ : Type u₂} [linear_ordered_comm_group_with_zero Γ''₀] variables {v₁ : valuation R Γ'₀} {v₂ : valuation R Γ''₀} /-- Continuity of a valuation [Wedhorn 7.7]. -/ def is_continuous (v : valuation R Γ₀) : Prop := ∀ g : value_monoid v, is_open {r : R | canonical_valuation v r < g} /-- Continuity of a valuation only depends on its equivalence class. -/ lemma is_equiv.is_continuous_iff (h : v₁.is_equiv v₂) : v₁.is_continuous ↔ v₂.is_continuous := begin unfold valuation.is_continuous, rw ← forall_iff_forall_surj (h.value_mul_equiv.to_equiv.bijective.2), apply forall_congr, intro g, convert iff.rfl, funext r, apply propext, rw ← h.with_zero_value_mul_equiv_mk_eq_mk, symmetry, rw (preorder_equiv.to_lt_equiv h.value_monoid_le_equiv).lt_map, exact iff.rfl end local attribute [instance] valued.subgroups_basis valued.uniform_space /- Mathematical warning: It is *not true* that v is continuous iff the map R -> Γ₀ is continuous where Γ₀ gets the usual topology where {γ} and {x < γ} are open, for γ ≠ 0. What is true is that the valuation is continuous iff the associated map from R to the valuation field is continuous. -/ variable [topological_ring R] /--If R is a topological ring with continuous valuation v, then the natural map from R to the valuation field of v is continuous.-/ theorem continuous_valuation_field_mk_of_continuous (v : valuation R Γ₀) (hv : is_continuous v) : continuous (valuation_field_mk v) := topological_add_group.continuous_of_continuous_at_zero (valuation_field_mk v) $ begin intros U HU, rw is_ring_hom.map_zero (valuation_field_mk v) at HU, rcases subgroups_basis.mem_nhds_zero.mp HU with ⟨_, ⟨γ, rfl⟩, Hγ⟩, show valuation_field_mk v ⁻¹' U ∈ (nhds (0 : R)), let V := {r : R | (canonical_valuation v) r < ↑γ}, have HV : is_open V := hv γ, have H0V : (0 : R) ∈ V, { show (canonical_valuation v) 0 < γ, rw (canonical_valuation v).map_zero, exact linear_ordered_structure.zero_lt_unit _ }, refine filter.mem_sets_of_superset (mem_nhds_sets HV H0V) _, intros u Hu, apply set.mem_of_mem_of_subset _ Hγ, exact Hu, -- the joys of definitional equality end variables {L : Type*} [discrete_field L] [topological_space L] [topological_ring L] /-- A valuation on a field is continuous if and only if the sets {y | v y < v x} are open, for all x. -/ lemma is_continuous_iff {v : valuation L Γ₀} : v.is_continuous ↔ ∀ x:L, is_open {y:L | v y < v x} := begin have help : ∀ x:L, value_monoid.to_Γ₀ v (v.canonical_valuation x) = v x, { intro x, show v x * (v 1)⁻¹ = v x, by simp }, split, { intros h x, specialize h (v.canonical_valuation x), simpa only [(value_monoid.to_Γ₀_strict_mono v).lt_iff_lt.symm, help] using h, }, { intros h x, rcases canonical_valuation.surjective v x with ⟨x, rfl⟩, simpa only [(value_monoid.to_Γ₀_strict_mono v).lt_iff_lt.symm, help] using h x, } end /-- The trivial valuation on a field is continuous if and only if the topology on the field is discrete. -/ lemma is_continuous_iff_discrete_of_is_trivial (v : valuation L Γ₀) (hv : v.is_trivial) : v.is_continuous ↔ discrete_topology L := begin split; intro h, { rw valuation.is_continuous_iff at h, suffices : is_open ({(0:L)} : set L), from topological_add_group.discrete_iff_open_zero.mpr this, specialize h 1, rw v.map_one at h, suffices : {y : L | v y < 1} = {0}, by rwa this at h, ext x, rw [set.mem_singleton_iff, ← v.zero_iff], show v x < 1 ↔ v x = 0, split; intro hx, { cases hv x with H H, {assumption}, { exfalso, rw H at hx, exact lt_irrefl _ hx }, }, { rw hx, apply lt_of_le_of_ne linear_ordered_structure.zero_le, exact zero_ne_one } }, { resetI, intro g, exact is_open_discrete _ } end end valuation namespace Spv variables {R : Type u₀} [comm_ring R] [topological_space R] /--An equivalence class of valuations is continuous if one representative is continuous.-/ def is_continuous : Spv R → Prop := lift (@valuation.is_continuous _ _ _) end Spv variables (R : Type u₁) [comm_ring R] [topological_space R] variables {Γ₀ : Type u} [linear_ordered_comm_group_with_zero Γ₀] /--The type of equivalence classes of continuous valuations.-/ def Cont := {v : Spv R | v.is_continuous} variable {R} /--A valuation v is continuous if and only if its equivalence class is continuous.-/ lemma mk_mem_Cont (v : valuation R Γ₀) : Spv.mk v ∈ Cont R ↔ v.is_continuous := begin show Spv.lift (by exactI (λ _ _, by exactI valuation.is_continuous)) (Spv.mk v) ↔ valuation.is_continuous v, refine (Spv.lift_eq' _ _ _ _), intros _ _ _ h, resetI, exact h.is_continuous_iff, end /-- The topology on the space of continuous valuations. -/ instance Cont.topological_space : topological_space (Cont R) := by apply_instance /- Wedhorn, p.59 contains the following typo: A valuation v on A is continuous if and only if for all γ ∈ Γ₀_v (the value group), the set A_{≤γ} := { a ∈ A ; v(a) ≥ γ } is open in A. This is a typo, it should be v(a) ≤ γ. -/