import for_mathlib.integral_closure import power_bounded Huber_ring.basic /-! # Huber pairs This short file defines Huber pairs. A Huber pair consists of a Huber ring and a so-call ring of integral elements: an integrally closed, power bounded, open subring. A typical example is ℤ_p ⊆ ℚ_p. (However, this example is hard to use as is, because our fomalisation uses subrings and Lean's version of ℤ_p is not a subring of ℚ_p. This could be fixed by using injective ring homomorphisms instead of subrings.) -/ universes u v open_locale classical open power_bounded -- Notation for the power bounded subring local postfix `ᵒ` : 66 := power_bounded_subring set_option old_structure_cmd true /- An subring of a Huber ring is called a “ring of integral elements” if it is open, integrally closed, and power bounded. See [Wedhorn, Def 7.14].-/ structure is_ring_of_integral_elements (Rplus : Type u) (R : Type u) [comm_ring Rplus] [topological_space Rplus] [Huber_ring R] [algebra Rplus R] extends is_integrally_closed Rplus R, open_embedding (algebra_map R : Rplus → R) : Prop := (is_power_bounded : set.range (algebra_map R : Rplus → R) ≤ Rᵒ) namespace is_ring_of_integral_elements variables (Rplus : Type u) (R : Type u) variables [comm_ring Rplus] [topological_space Rplus] [Huber_ring R] [algebra Rplus R] lemma plus_is_topological_ring (h : is_ring_of_integral_elements Rplus R) : topological_ring Rplus := { continuous_add := begin rw h.to_open_embedding.to_embedding.to_inducing.continuous_iff, simp only [function.comp, algebra.map_add], apply continuous.add, all_goals { apply h.to_open_embedding.continuous.comp }, { exact continuous_fst }, { exact continuous_snd }, end, continuous_mul := begin rw h.to_open_embedding.to_embedding.to_inducing.continuous_iff, simp only [function.comp, algebra.map_mul], apply continuous.mul, all_goals { apply h.to_open_embedding.continuous.comp }, { exact continuous_fst }, { exact continuous_snd }, end, continuous_neg := begin rw h.to_open_embedding.to_embedding.to_inducing.continuous_iff, simp only [function.comp, algebra.map_neg], exact h.to_open_embedding.continuous.neg, end } end is_ring_of_integral_elements /-- A Huber pair consists of a Huber ring and a so-call ring of integral elements: an integrally closed, power bounded, open subring. (The name “Huber pair” was introduced by Scholze. Before that, they were called “affinoid rings”.) See [Wedhorn, Def 7.14].-/ structure Huber_pair := (plus : Type) -- change this to (Type u) to enable universes (carrier : Type) [ring : comm_ring plus] [top : topological_space plus] [Huber : Huber_ring carrier] [alg : algebra plus carrier] (intel : is_ring_of_integral_elements plus carrier) namespace Huber_pair variable (A : Huber_pair) /-- The coercion of a Huber pair to a type (the ambient ring).-/ instance : has_coe_to_sort Huber_pair := { S := Type, coe := Huber_pair.carrier } -- The following notation is very common in the literature. local postfix `⁺` : 66 := λ A : Huber_pair, A.plus /-- The Huber ring structure on a Huber pair. -/ instance : Huber_ring A := A.Huber /-- The ring structure on the ring of integral elements. -/ instance : comm_ring (A⁺) := A.ring /-- The algebra structure of a Huber pair. -/ instance : algebra (A⁺) A := A.alg /-- The topology on the ring of integral elements. -/ instance : topological_space (A⁺) := A.top /-- The ring of integral elements is a topological ring.-/ instance : topological_ring (A⁺) := is_ring_of_integral_elements.plus_is_topological_ring _ A A.intel end Huber_pair