/- Copyright (c) 2018 Reid Barton. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Reid Barton -/ import topology.bases import topology.dense_embedding /-! # Stone-Čech compactification Construction of the Stone-Čech compactification using ultrafilters. Parts of the formalization are based on "Ultrafilters and Topology" by Marius Stekelenburg, particularly section 5. -/ noncomputable theory open filter set open_locale topological_space universes u v section ultrafilter /- The set of ultrafilters on α carries a natural topology which makes it the Stone-Čech compactification of α (viewed as a discrete space). -/ /-- Basis for the topology on `ultrafilter α`. -/ def ultrafilter_basis (α : Type u) : set (set (ultrafilter α)) := range $ λ s : set α, {u | s ∈ u} variables {α : Type u} instance : topological_space (ultrafilter α) := topological_space.generate_from (ultrafilter_basis α) lemma ultrafilter_basis_is_basis : topological_space.is_topological_basis (ultrafilter_basis α) := ⟨begin rintros _ ⟨a, rfl⟩ _ ⟨b, rfl⟩ u ⟨ua, ub⟩, refine ⟨_, ⟨a ∩ b, rfl⟩, inter_mem ua ub, assume v hv, ⟨_, _⟩⟩; apply mem_of_superset hv; simp [inter_subset_right a b] end, eq_univ_of_univ_subset $ subset_sUnion_of_mem $ ⟨univ, eq_univ_of_forall (λ u, univ_mem)⟩, rfl⟩ /-- The basic open sets for the topology on ultrafilters are open. -/ lemma ultrafilter_is_open_basic (s : set α) : is_open {u : ultrafilter α | s ∈ u} := ultrafilter_basis_is_basis.is_open ⟨s, rfl⟩ /-- The basic open sets for the topology on ultrafilters are also closed. -/ lemma ultrafilter_is_closed_basic (s : set α) : is_closed {u : ultrafilter α | s ∈ u} := begin rw ← is_open_compl_iff, convert ultrafilter_is_open_basic sᶜ, ext u, exact ultrafilter.compl_mem_iff_not_mem.symm end /-- Every ultrafilter `u` on `ultrafilter α` converges to a unique point of `ultrafilter α`, namely `mjoin u`. -/ lemma ultrafilter_converges_iff {u : ultrafilter (ultrafilter α)} {x : ultrafilter α} : ↑u ≤ 𝓝 x ↔ x = mjoin u := begin rw [eq_comm, ← ultrafilter.coe_le_coe], change ↑u ≤ 𝓝 x ↔ ∀ s ∈ x, {v : ultrafilter α | s ∈ v} ∈ u, simp only [topological_space.nhds_generate_from, le_infi_iff, ultrafilter_basis, le_principal_iff, mem_set_of_eq], split, { intros h a ha, exact h _ ⟨ha, a, rfl⟩ }, { rintros h a ⟨xi, a, rfl⟩, exact h _ xi } end instance ultrafilter_compact : compact_space (ultrafilter α) := ⟨is_compact_iff_ultrafilter_le_nhds.mpr $ assume f _, ⟨mjoin f, trivial, ultrafilter_converges_iff.mpr rfl⟩⟩ instance ultrafilter.t2_space : t2_space (ultrafilter α) := t2_iff_ultrafilter.mpr $ assume x y f fx fy, have hx : x = mjoin f, from ultrafilter_converges_iff.mp fx, have hy : y = mjoin f, from ultrafilter_converges_iff.mp fy, hx.trans hy.symm instance : totally_disconnected_space (ultrafilter α) := begin rw totally_disconnected_space_iff_connected_component_singleton, intro A, simp only [set.eq_singleton_iff_unique_mem, mem_connected_component, true_and], intros B hB, rw ← ultrafilter.coe_le_coe, intros s hs, rw [connected_component_eq_Inter_clopen, set.mem_Inter] at hB, let Z := { F : ultrafilter α | s ∈ F }, have hZ : is_clopen Z := ⟨ultrafilter_is_open_basic s, ultrafilter_is_closed_basic s⟩, exact hB ⟨Z, hZ, hs⟩, end lemma ultrafilter_comap_pure_nhds (b : ultrafilter α) : comap pure (𝓝 b) ≤ b := begin rw topological_space.nhds_generate_from, simp only [comap_infi, comap_principal], intros s hs, rw ←le_principal_iff, refine infi_le_of_le {u | s ∈ u} _, refine infi_le_of_le ⟨hs, ⟨s, rfl⟩⟩ _, exact principal_mono.2 (λ a, id) end section embedding lemma ultrafilter_pure_injective : function.injective (pure : α → ultrafilter α) := begin intros x y h, have : {x} ∈ (pure x : ultrafilter α) := singleton_mem_pure, rw h at this, exact (mem_singleton_iff.mp (mem_pure.mp this)).symm end open topological_space /-- The range of `pure : α → ultrafilter α` is dense in `ultrafilter α`. -/ lemma dense_range_pure : dense_range (pure : α → ultrafilter α) := λ x, mem_closure_iff_ultrafilter.mpr ⟨x.map pure, range_mem_map, ultrafilter_converges_iff.mpr (bind_pure x).symm⟩ /-- The map `pure : α → ultra_filter α` induces on `α` the discrete topology. -/ lemma induced_topology_pure : topological_space.induced (pure : α → ultrafilter α) ultrafilter.topological_space = ⊥ := begin apply eq_bot_of_singletons_open, intros x, use [{u : ultrafilter α | {x} ∈ u}, ultrafilter_is_open_basic _], simp, end /-- `pure : α → ultrafilter α` defines a dense inducing of `α` in `ultrafilter α`. -/ lemma dense_inducing_pure : @dense_inducing _ _ ⊥ _ (pure : α → ultrafilter α) := by letI : topological_space α := ⊥; exact ⟨⟨induced_topology_pure.symm⟩, dense_range_pure⟩ -- The following refined version will never be used /-- `pure : α → ultrafilter α` defines a dense embedding of `α` in `ultrafilter α`. -/ lemma dense_embedding_pure : @dense_embedding _ _ ⊥ _ (pure : α → ultrafilter α) := by letI : topological_space α := ⊥ ; exact { inj := ultrafilter_pure_injective, ..dense_inducing_pure } end embedding section extension /- Goal: Any function `α → γ` to a compact Hausdorff space `γ` has a unique extension to a continuous function `ultrafilter α → γ`. We already know it must be unique because `α → ultrafilter α` is a dense embedding and `γ` is Hausdorff. For existence, we will invoke `dense_embedding.continuous_extend`. -/ variables {γ : Type*} [topological_space γ] /-- The extension of a function `α → γ` to a function `ultrafilter α → γ`. When `γ` is a compact Hausdorff space it will be continuous. -/ def ultrafilter.extend (f : α → γ) : ultrafilter α → γ := by letI : topological_space α := ⊥; exact dense_inducing_pure.extend f variables [t2_space γ] lemma ultrafilter_extend_extends (f : α → γ) : ultrafilter.extend f ∘ pure = f := begin letI : topological_space α := ⊥, haveI : discrete_topology α := ⟨rfl⟩, exact funext (dense_inducing_pure.extend_eq continuous_of_discrete_topology) end variables [compact_space γ] lemma continuous_ultrafilter_extend (f : α → γ) : continuous (ultrafilter.extend f) := have ∀ (b : ultrafilter α), ∃ c, tendsto f (comap pure (𝓝 b)) (𝓝 c) := assume b, -- b.map f is an ultrafilter on γ, which is compact, so it converges to some c in γ. let ⟨c, _, h⟩ := compact_univ.ultrafilter_le_nhds (b.map f) (by rw [le_principal_iff]; exact univ_mem) in ⟨c, le_trans (map_mono (ultrafilter_comap_pure_nhds _)) h⟩, begin letI : topological_space α := ⊥, haveI : normal_space γ := normal_of_compact_t2, exact dense_inducing_pure.continuous_extend this end /-- The value of `ultrafilter.extend f` on an ultrafilter `b` is the unique limit of the ultrafilter `b.map f` in `γ`. -/ lemma ultrafilter_extend_eq_iff {f : α → γ} {b : ultrafilter α} {c : γ} : ultrafilter.extend f b = c ↔ ↑(b.map f) ≤ 𝓝 c := ⟨assume h, begin -- Write b as an ultrafilter limit of pure ultrafilters, and use -- the facts that ultrafilter.extend is a continuous extension of f. let b' : ultrafilter (ultrafilter α) := b.map pure, have t : ↑b' ≤ 𝓝 b, from ultrafilter_converges_iff.mpr (bind_pure _).symm, rw ←h, have := (continuous_ultrafilter_extend f).tendsto b, refine le_trans _ (le_trans (map_mono t) this), change _ ≤ map (ultrafilter.extend f ∘ pure) ↑b, rw ultrafilter_extend_extends, exact le_rfl end, assume h, by letI : topological_space α := ⊥; exact dense_inducing_pure.extend_eq_of_tendsto (le_trans (map_mono (ultrafilter_comap_pure_nhds _)) h)⟩ end extension end ultrafilter section stone_cech /- Now, we start with a (not necessarily discrete) topological space α and we want to construct its Stone-Čech compactification. We can build it as a quotient of `ultrafilter α` by the relation which identifies two points if the extension of every continuous function α → γ to a compact Hausdorff space sends the two points to the same point of γ. -/ variables (α : Type u) [topological_space α] instance stone_cech_setoid : setoid (ultrafilter α) := { r := λ x y, ∀ (γ : Type u) [topological_space γ], by exactI ∀ [t2_space γ] [compact_space γ] (f : α → γ) (hf : continuous f), ultrafilter.extend f x = ultrafilter.extend f y, iseqv := ⟨assume x γ tγ h₁ h₂ f hf, rfl, assume x y xy γ tγ h₁ h₂ f hf, by exactI (xy γ f hf).symm, assume x y z xy yz γ tγ h₁ h₂ f hf, by exactI (xy γ f hf).trans (yz γ f hf)⟩ } /-- The Stone-Čech compactification of a topological space. -/ def stone_cech : Type u := quotient (stone_cech_setoid α) variables {α} instance : topological_space (stone_cech α) := by unfold stone_cech; apply_instance instance [inhabited α] : inhabited (stone_cech α) := by unfold stone_cech; apply_instance /-- The natural map from α to its Stone-Čech compactification. -/ def stone_cech_unit (x : α) : stone_cech α := ⟦pure x⟧ /-- The image of stone_cech_unit is dense. (But stone_cech_unit need not be an embedding, for example if α is not Hausdorff.) -/ lemma dense_range_stone_cech_unit : dense_range (stone_cech_unit : α → stone_cech α) := dense_range_pure.quotient section extension variables {γ : Type u} [topological_space γ] [t2_space γ] [compact_space γ] variables {γ' : Type u} [topological_space γ'] [t2_space γ'] variables {f : α → γ} (hf : continuous f) local attribute [elab_with_expected_type] quotient.lift /-- The extension of a continuous function from α to a compact Hausdorff space γ to the Stone-Čech compactification of α. -/ def stone_cech_extend : stone_cech α → γ := quotient.lift (ultrafilter.extend f) (λ x y xy, xy γ f hf) lemma stone_cech_extend_extends : stone_cech_extend hf ∘ stone_cech_unit = f := ultrafilter_extend_extends f lemma continuous_stone_cech_extend : continuous (stone_cech_extend hf) := continuous_quot_lift _ (continuous_ultrafilter_extend f) lemma stone_cech_hom_ext {g₁ g₂ : stone_cech α → γ'} (h₁ : continuous g₁) (h₂ : continuous g₂) (h : g₁ ∘ stone_cech_unit = g₂ ∘ stone_cech_unit) : g₁ = g₂ := begin apply continuous.ext_on dense_range_stone_cech_unit h₁ h₂, rintros x ⟨x, rfl⟩, apply (congr_fun h x) end end extension lemma convergent_eqv_pure {u : ultrafilter α} {x : α} (ux : ↑u ≤ 𝓝 x) : u ≈ pure x := assume γ tγ h₁ h₂ f hf, begin resetI, transitivity f x, swap, symmetry, all_goals { refine ultrafilter_extend_eq_iff.mpr (le_trans (map_mono _) (hf.tendsto _)) }, { apply pure_le_nhds }, { exact ux } end lemma continuous_stone_cech_unit : continuous (stone_cech_unit : α → stone_cech α) := continuous_iff_ultrafilter.mpr $ λ x g gx, have ↑(g.map pure) ≤ 𝓝 g, by rw ultrafilter_converges_iff; exact (bind_pure _).symm, have (g.map stone_cech_unit : filter (stone_cech α)) ≤ 𝓝 ⟦g⟧, from continuous_at_iff_ultrafilter.mp (continuous_quotient_mk.tendsto g) _ this, by rwa (show ⟦g⟧ = ⟦pure x⟧, from quotient.sound $ convergent_eqv_pure gx) at this instance stone_cech.t2_space : t2_space (stone_cech α) := begin rw t2_iff_ultrafilter, rintros ⟨x⟩ ⟨y⟩ g gx gy, apply quotient.sound, intros γ tγ h₁ h₂ f hf, resetI, let ff := stone_cech_extend hf, change ff ⟦x⟧ = ff ⟦y⟧, have lim := λ (z : ultrafilter α) (gz : (g : filter (stone_cech α)) ≤ 𝓝 ⟦z⟧), ((continuous_stone_cech_extend hf).tendsto _).mono_left gz, exact tendsto_nhds_unique (lim x gx) (lim y gy) end instance stone_cech.compact_space : compact_space (stone_cech α) := quotient.compact_space end stone_cech