/- Copyright (c) 2020 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Yaël Dillies -/ import topology.sets.closeds /-! # Compact sets We define a few types of compact sets in a topological space. ## Main Definitions For a topological space `α`, * `compacts α`: The type of compact sets. * `nonempty_compacts α`: The type of non-empty compact sets. * `positive_compacts α`: The type of compact sets with non-empty interior. * `compact_opens α`: The type of compact open sets. This is a central object in the study of spectral spaces. -/ open set variables {α β : Type*} [topological_space α] [topological_space β] namespace topological_space /-! ### Compact sets -/ /-- The type of compact sets of a topological space. -/ structure compacts (α : Type*) [topological_space α] := (carrier : set α) (compact' : is_compact carrier) namespace compacts variables {α} instance : set_like (compacts α) α := { coe := compacts.carrier, coe_injective' := λ s t h, by { cases s, cases t, congr' } } lemma compact (s : compacts α) : is_compact (s : set α) := s.compact' instance (K : compacts α) : compact_space K := is_compact_iff_compact_space.1 K.compact instance : can_lift (set α) (compacts α) := { coe := coe, cond := is_compact, prf := λ K hK, ⟨⟨K, hK⟩, rfl⟩ } @[ext] protected lemma ext {s t : compacts α} (h : (s : set α) = t) : s = t := set_like.ext' h @[simp] lemma coe_mk (s : set α) (h) : (mk s h : set α) = s := rfl @[simp] lemma carrier_eq_coe (s : compacts α) : s.carrier = s := rfl instance : has_sup (compacts α) := ⟨λ s t, ⟨s ∪ t, s.compact.union t.compact⟩⟩ instance [t2_space α] : has_inf (compacts α) := ⟨λ s t, ⟨s ∩ t, s.compact.inter t.compact⟩⟩ instance [compact_space α] : has_top (compacts α) := ⟨⟨univ, compact_univ⟩⟩ instance : has_bot (compacts α) := ⟨⟨∅, is_compact_empty⟩⟩ instance : semilattice_sup (compacts α) := set_like.coe_injective.semilattice_sup _ (λ _ _, rfl) instance [t2_space α] : distrib_lattice (compacts α) := set_like.coe_injective.distrib_lattice _ (λ _ _, rfl) (λ _ _, rfl) instance : order_bot (compacts α) := order_bot.lift (coe : _ → set α) (λ _ _, id) rfl instance [compact_space α] : bounded_order (compacts α) := bounded_order.lift (coe : _ → set α) (λ _ _, id) rfl rfl /-- The type of compact sets is inhabited, with default element the empty set. -/ instance : inhabited (compacts α) := ⟨⊥⟩ @[simp] lemma coe_sup (s t : compacts α) : (↑(s ⊔ t) : set α) = s ∪ t := rfl @[simp] lemma coe_inf [t2_space α] (s t : compacts α) : (↑(s ⊓ t) : set α) = s ∩ t := rfl @[simp] lemma coe_top [compact_space α] : (↑(⊤ : compacts α) : set α) = univ := rfl @[simp] lemma coe_bot : (↑(⊥ : compacts α) : set α) = ∅ := rfl @[simp] lemma coe_finset_sup {ι : Type*} {s : finset ι} {f : ι → compacts α} : (↑(s.sup f) : set α) = s.sup (λ i, f i) := begin classical, refine finset.induction_on s rfl (λ a s _ h, _), simp_rw [finset.sup_insert, coe_sup, sup_eq_union], congr', end /-- The image of a compact set under a continuous function. -/ protected def map (f : α → β) (hf : continuous f) (K : compacts α) : compacts β := ⟨f '' K.1, K.2.image hf⟩ @[simp] lemma coe_map {f : α → β} (hf : continuous f) (s : compacts α) : (s.map f hf : set β) = f '' s := rfl /-- A homeomorphism induces an equivalence on compact sets, by taking the image. -/ @[simp] protected def equiv (f : α ≃ₜ β) : compacts α ≃ compacts β := { to_fun := compacts.map f f.continuous, inv_fun := compacts.map _ f.symm.continuous, left_inv := λ s, by { ext1, simp only [coe_map, ← image_comp, f.symm_comp_self, image_id] }, right_inv := λ s, by { ext1, simp only [coe_map, ← image_comp, f.self_comp_symm, image_id] } } /-- The image of a compact set under a homeomorphism can also be expressed as a preimage. -/ lemma equiv_to_fun_val (f : α ≃ₜ β) (K : compacts α) : (compacts.equiv f K).1 = f.symm ⁻¹' K.1 := congr_fun (image_eq_preimage_of_inverse f.left_inv f.right_inv) K.1 /-- The product of two `compacts`, as a `compacts` in the product space. -/ protected def prod (K : compacts α) (L : compacts β) : compacts (α × β) := { carrier := K ×ˢ L, compact' := is_compact.prod K.2 L.2 } @[simp] lemma coe_prod (K : compacts α) (L : compacts β) : (K.prod L : set (α × β)) = K ×ˢ L := rfl end compacts /-! ### Nonempty compact sets -/ /-- The type of nonempty compact sets of a topological space. -/ structure nonempty_compacts (α : Type*) [topological_space α] extends compacts α := (nonempty' : carrier.nonempty) namespace nonempty_compacts instance : set_like (nonempty_compacts α) α := { coe := λ s, s.carrier, coe_injective' := λ s t h, by { obtain ⟨⟨_, _⟩, _⟩ := s, obtain ⟨⟨_, _⟩, _⟩ := t, congr' } } lemma compact (s : nonempty_compacts α) : is_compact (s : set α) := s.compact' protected lemma nonempty (s : nonempty_compacts α) : (s : set α).nonempty := s.nonempty' /-- Reinterpret a nonempty compact as a closed set. -/ def to_closeds [t2_space α] (s : nonempty_compacts α) : closeds α := ⟨s, s.compact.is_closed⟩ @[ext] protected lemma ext {s t : nonempty_compacts α} (h : (s : set α) = t) : s = t := set_like.ext' h @[simp] lemma coe_mk (s : compacts α) (h) : (mk s h : set α) = s := rfl @[simp] lemma carrier_eq_coe (s : nonempty_compacts α) : s.carrier = s := rfl instance : has_sup (nonempty_compacts α) := ⟨λ s t, ⟨s.to_compacts ⊔ t.to_compacts, s.nonempty.mono $ subset_union_left _ _⟩⟩ instance [compact_space α] [nonempty α] : has_top (nonempty_compacts α) := ⟨⟨⊤, univ_nonempty⟩⟩ instance : semilattice_sup (nonempty_compacts α) := set_like.coe_injective.semilattice_sup _ (λ _ _, rfl) instance [compact_space α] [nonempty α] : order_top (nonempty_compacts α) := order_top.lift (coe : _ → set α) (λ _ _, id) rfl @[simp] lemma coe_sup (s t : nonempty_compacts α) : (↑(s ⊔ t) : set α) = s ∪ t := rfl @[simp] lemma coe_top [compact_space α] [nonempty α] : (↑(⊤ : nonempty_compacts α) : set α) = univ := rfl /-- In an inhabited space, the type of nonempty compact subsets is also inhabited, with default element the singleton set containing the default element. -/ instance [inhabited α] : inhabited (nonempty_compacts α) := ⟨{ carrier := {default}, compact' := is_compact_singleton, nonempty' := singleton_nonempty _ }⟩ instance to_compact_space {s : nonempty_compacts α} : compact_space s := is_compact_iff_compact_space.1 s.compact instance to_nonempty {s : nonempty_compacts α} : nonempty s := s.nonempty.to_subtype /-- The product of two `nonempty_compacts`, as a `nonempty_compacts` in the product space. -/ protected def prod (K : nonempty_compacts α) (L : nonempty_compacts β) : nonempty_compacts (α × β) := { nonempty' := K.nonempty.prod L.nonempty, .. K.to_compacts.prod L.to_compacts } @[simp] lemma coe_prod (K : nonempty_compacts α) (L : nonempty_compacts β) : (K.prod L : set (α × β)) = K ×ˢ L := rfl end nonempty_compacts /-! ### Positive compact sets -/ /-- The type of compact sets with nonempty interior of a topological space. See also `compacts` and `nonempty_compacts`. -/ structure positive_compacts (α : Type*) [topological_space α] extends compacts α := (interior_nonempty' : (interior carrier).nonempty) namespace positive_compacts instance : set_like (positive_compacts α) α := { coe := λ s, s.carrier, coe_injective' := λ s t h, by { obtain ⟨⟨_, _⟩, _⟩ := s, obtain ⟨⟨_, _⟩, _⟩ := t, congr' } } lemma compact (s : positive_compacts α) : is_compact (s : set α) := s.compact' lemma interior_nonempty (s : positive_compacts α) : (interior (s : set α)).nonempty := s.interior_nonempty' protected lemma nonempty (s : positive_compacts α) : (s : set α).nonempty := s.interior_nonempty.mono interior_subset /-- Reinterpret a positive compact as a nonempty compact. -/ def to_nonempty_compacts (s : positive_compacts α) : nonempty_compacts α := ⟨s.to_compacts, s.nonempty⟩ @[ext] protected lemma ext {s t : positive_compacts α} (h : (s : set α) = t) : s = t := set_like.ext' h @[simp] lemma coe_mk (s : compacts α) (h) : (mk s h : set α) = s := rfl @[simp] lemma carrier_eq_coe (s : positive_compacts α) : s.carrier = s := rfl instance : has_sup (positive_compacts α) := ⟨λ s t, ⟨s.to_compacts ⊔ t.to_compacts, s.interior_nonempty.mono $ interior_mono $ subset_union_left _ _⟩⟩ instance [compact_space α] [nonempty α] : has_top (positive_compacts α) := ⟨⟨⊤, interior_univ.symm.subst univ_nonempty⟩⟩ instance : semilattice_sup (positive_compacts α) := set_like.coe_injective.semilattice_sup _ (λ _ _, rfl) instance [compact_space α] [nonempty α] : order_top (positive_compacts α) := order_top.lift (coe : _ → set α) (λ _ _, id) rfl @[simp] lemma coe_sup (s t : positive_compacts α) : (↑(s ⊔ t) : set α) = s ∪ t := rfl @[simp] lemma coe_top [compact_space α] [nonempty α] : (↑(⊤ : positive_compacts α) : set α) = univ := rfl lemma _root_.exists_positive_compacts_subset [locally_compact_space α] {U : set α} (ho : is_open U) (hn : U.nonempty) : ∃ K : positive_compacts α, ↑K ⊆ U := let ⟨x, hx⟩ := hn, ⟨K, hKc, hxK, hKU⟩ := exists_compact_subset ho hx in ⟨⟨⟨K, hKc⟩, ⟨x, hxK⟩⟩, hKU⟩ instance [compact_space α] [nonempty α] : inhabited (positive_compacts α) := ⟨⊤⟩ /-- In a nonempty locally compact space, there exists a compact set with nonempty interior. -/ instance nonempty' [locally_compact_space α] [nonempty α] : nonempty (positive_compacts α) := nonempty_of_exists $ exists_positive_compacts_subset is_open_univ univ_nonempty /-- The product of two `positive_compacts`, as a `positive_compacts` in the product space. -/ protected def prod (K : positive_compacts α) (L : positive_compacts β) : positive_compacts (α × β) := { interior_nonempty' := begin simp only [compacts.carrier_eq_coe, compacts.coe_prod, interior_prod_eq], exact K.interior_nonempty.prod L.interior_nonempty, end, .. K.to_compacts.prod L.to_compacts } @[simp] lemma coe_prod (K : positive_compacts α) (L : positive_compacts β) : (K.prod L : set (α × β)) = K ×ˢ L := rfl end positive_compacts /-! ### Compact open sets -/ /-- The type of compact open sets of a topological space. This is useful in non Hausdorff contexts, in particular spectral spaces. -/ structure compact_opens (α : Type*) [topological_space α] extends compacts α := (open' : is_open carrier) namespace compact_opens instance : set_like (compact_opens α) α := { coe := λ s, s.carrier, coe_injective' := λ s t h, by { obtain ⟨⟨_, _⟩, _⟩ := s, obtain ⟨⟨_, _⟩, _⟩ := t, congr' } } lemma compact (s : compact_opens α) : is_compact (s : set α) := s.compact' lemma «open» (s : compact_opens α) : is_open (s : set α) := s.open' /-- Reinterpret a compact open as an open. -/ @[simps] def to_opens (s : compact_opens α) : opens α := ⟨s, s.open⟩ /-- Reinterpret a compact open as a clopen. -/ @[simps] def to_clopens [t2_space α] (s : compact_opens α) : clopens α := ⟨s, s.open, s.compact.is_closed⟩ @[ext] protected lemma ext {s t : compact_opens α} (h : (s : set α) = t) : s = t := set_like.ext' h @[simp] lemma coe_mk (s : compacts α) (h) : (mk s h : set α) = s := rfl instance : has_sup (compact_opens α) := ⟨λ s t, ⟨s.to_compacts ⊔ t.to_compacts, s.open.union t.open⟩⟩ instance [t2_space α] : has_inf (compact_opens α) := ⟨λ s t, ⟨s.to_compacts ⊓ t.to_compacts, s.open.inter t.open⟩⟩ instance [compact_space α] : has_top (compact_opens α) := ⟨⟨⊤, is_open_univ⟩⟩ instance : has_bot (compact_opens α) := ⟨⟨⊥, is_open_empty⟩⟩ instance [t2_space α] : has_sdiff (compact_opens α) := ⟨λ s t, ⟨⟨s \ t, s.compact.diff t.open⟩, s.open.sdiff t.compact.is_closed⟩⟩ instance [t2_space α] [compact_space α] : has_compl (compact_opens α) := ⟨λ s, ⟨⟨sᶜ, s.open.is_closed_compl.is_compact⟩, s.compact.is_closed.is_open_compl⟩⟩ instance : semilattice_sup (compact_opens α) := set_like.coe_injective.semilattice_sup _ (λ _ _, rfl) instance : order_bot (compact_opens α) := order_bot.lift (coe : _ → set α) (λ _ _, id) rfl instance [t2_space α] : generalized_boolean_algebra (compact_opens α) := set_like.coe_injective.generalized_boolean_algebra _ (λ _ _, rfl) (λ _ _, rfl) rfl (λ _ _, rfl) instance [compact_space α] : bounded_order (compact_opens α) := bounded_order.lift (coe : _ → set α) (λ _ _, id) rfl rfl instance [t2_space α] [compact_space α] : boolean_algebra (compact_opens α) := set_like.coe_injective.boolean_algebra _ (λ _ _, rfl) (λ _ _, rfl) rfl rfl (λ _, rfl) (λ _ _, rfl) @[simp] lemma coe_sup (s t : compact_opens α) : (↑(s ⊔ t) : set α) = s ∪ t := rfl @[simp] lemma coe_inf [t2_space α] (s t : compact_opens α) : (↑(s ⊓ t) : set α) = s ∩ t := rfl @[simp] lemma coe_top [compact_space α] : (↑(⊤ : compact_opens α) : set α) = univ := rfl @[simp] lemma coe_bot : (↑(⊥ : compact_opens α) : set α) = ∅ := rfl @[simp] lemma coe_sdiff [t2_space α] (s t : compact_opens α) : (↑(s \ t) : set α) = s \ t := rfl @[simp] lemma coe_compl [t2_space α] [compact_space α] (s : compact_opens α) : (↑sᶜ : set α) = sᶜ := rfl instance : inhabited (compact_opens α) := ⟨⊥⟩ /-- The image of a compact open under a continuous open map. -/ @[simps] def map (f : α → β) (hf : continuous f) (hf' : is_open_map f) (s : compact_opens α) : compact_opens β := ⟨s.to_compacts.map f hf, hf' _ s.open⟩ @[simp] lemma coe_map {f : α → β} (hf : continuous f) (hf' : is_open_map f) (s : compact_opens α) : (s.map f hf hf' : set β) = f '' s := rfl /-- The product of two `compact_opens`, as a `compact_opens` in the product space. -/ protected def prod (K : compact_opens α) (L : compact_opens β) : compact_opens (α × β) := { open' := K.open.prod L.open, .. K.to_compacts.prod L.to_compacts } @[simp] lemma coe_prod (K : compact_opens α) (L : compact_opens β) : (K.prod L : set (α × β)) = K ×ˢ L := rfl end compact_opens end topological_space