/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import topology.order /-! # Specific classes of maps between topological spaces This file introduces the following properties of a map `f : X → Y` between topological spaces: * `is_open_map f` means the image of an open set under `f` is open. * `is_closed_map f` means the image of a closed set under `f` is closed. (Open and closed maps need not be continuous.) * `inducing f` means the topology on `X` is the one induced via `f` from the topology on `Y`. These behave like embeddings except they need not be injective. Instead, points of `X` which are identified by `f` are also inseparable in the topology on `X`. * `embedding f` means `f` is inducing and also injective. Equivalently, `f` identifies `X` with a subspace of `Y`. * `open_embedding f` means `f` is an embedding with open image, so it identifies `X` with an open subspace of `Y`. Equivalently, `f` is an embedding and an open map. * `closed_embedding f` similarly means `f` is an embedding with closed image, so it identifies `X` with a closed subspace of `Y`. Equivalently, `f` is an embedding and a closed map. * `quotient_map f` is the dual condition to `embedding f`: `f` is surjective and the topology on `Y` is the one coinduced via `f` from the topology on `X`. Equivalently, `f` identifies `Y` with a quotient of `X`. Quotient maps are also sometimes known as identification maps. ## References * * * ## Tags open map, closed map, embedding, quotient map, identification map -/ open set filter function open_locale topological_space filter variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} section inducing /-- A function `f : α → β` between topological spaces is inducing if the topology on `α` is induced by the topology on `β` through `f`, meaning that a set `s : set α` is open iff it is the preimage under `f` of some open set `t : set β`. -/ @[mk_iff] structure inducing [tα : topological_space α] [tβ : topological_space β] (f : α → β) : Prop := (induced : tα = tβ.induced f) variables [topological_space α] [topological_space β] [topological_space γ] [topological_space δ] lemma inducing_id : inducing (@id α) := ⟨induced_id.symm⟩ protected lemma inducing.comp {g : β → γ} {f : α → β} (hg : inducing g) (hf : inducing f) : inducing (g ∘ f) := ⟨by rw [hf.induced, hg.induced, induced_compose]⟩ lemma inducing_of_inducing_compose {f : α → β} {g : β → γ} (hf : continuous f) (hg : continuous g) (hgf : inducing (g ∘ f)) : inducing f := ⟨le_antisymm (by rwa ← continuous_iff_le_induced) (by { rw [hgf.induced, ← continuous_iff_le_induced], apply hg.comp continuous_induced_dom })⟩ lemma inducing_iff_nhds {f : α → β} : inducing f ↔ ∀ a, 𝓝 a = comap f (𝓝 (f a)) := (inducing_iff _).trans (induced_iff_nhds_eq f) lemma inducing.nhds_eq_comap {f : α → β} (hf : inducing f) : ∀ (a : α), 𝓝 a = comap f (𝓝 $ f a) := inducing_iff_nhds.1 hf lemma inducing.map_nhds_eq {f : α → β} (hf : inducing f) (a : α) : (𝓝 a).map f = 𝓝[range f] (f a) := hf.induced.symm ▸ map_nhds_induced_eq a lemma inducing.map_nhds_of_mem {f : α → β} (hf : inducing f) (a : α) (h : range f ∈ 𝓝 (f a)) : (𝓝 a).map f = 𝓝 (f a) := hf.induced.symm ▸ map_nhds_induced_of_mem h lemma inducing.image_mem_nhds_within {f : α → β} (hf : inducing f) {a : α} {s : set α} (hs : s ∈ 𝓝 a) : f '' s ∈ 𝓝[range f] (f a) := hf.map_nhds_eq a ▸ image_mem_map hs lemma inducing.tendsto_nhds_iff {ι : Type*} {f : ι → β} {g : β → γ} {a : filter ι} {b : β} (hg : inducing g) : tendsto f a (𝓝 b) ↔ tendsto (g ∘ f) a (𝓝 (g b)) := by rw [hg.nhds_eq_comap, tendsto_comap_iff] lemma inducing.continuous_at_iff {f : α → β} {g : β → γ} (hg : inducing g) {x : α} : continuous_at f x ↔ continuous_at (g ∘ f) x := by simp_rw [continuous_at, inducing.tendsto_nhds_iff hg] lemma inducing.continuous_iff {f : α → β} {g : β → γ} (hg : inducing g) : continuous f ↔ continuous (g ∘ f) := by simp_rw [continuous_iff_continuous_at, hg.continuous_at_iff] lemma inducing.continuous_at_iff' {f : α → β} {g : β → γ} (hf : inducing f) {x : α} (h : range f ∈ 𝓝 (f x)) : continuous_at (g ∘ f) x ↔ continuous_at g (f x) := by { simp_rw [continuous_at, filter.tendsto, ← hf.map_nhds_of_mem _ h, filter.map_map] } protected lemma inducing.continuous {f : α → β} (hf : inducing f) : continuous f := hf.continuous_iff.mp continuous_id protected lemma inducing.inducing_iff {f : α → β} {g : β → γ} (hg : inducing g) : inducing f ↔ inducing (g ∘ f) := begin refine ⟨λ h, hg.comp h, λ hgf, inducing_of_inducing_compose _ hg.continuous hgf⟩, rw hg.continuous_iff, exact hgf.continuous end lemma inducing.closure_eq_preimage_closure_image {f : α → β} (hf : inducing f) (s : set α) : closure s = f ⁻¹' closure (f '' s) := by { ext x, rw [set.mem_preimage, ← closure_induced, hf.induced] } lemma inducing.is_closed_iff {f : α → β} (hf : inducing f) {s : set α} : is_closed s ↔ ∃ t, is_closed t ∧ f ⁻¹' t = s := by rw [hf.induced, is_closed_induced_iff] lemma inducing.is_closed_iff' {f : α → β} (hf : inducing f) {s : set α} : is_closed s ↔ ∀ x, f x ∈ closure (f '' s) → x ∈ s := by rw [hf.induced, is_closed_induced_iff'] lemma inducing.is_closed_preimage {f : α → β} (h : inducing f) (s : set β) (hs : is_closed s) : is_closed (f ⁻¹' s) := (inducing.is_closed_iff h).mpr ⟨s, hs, rfl⟩ lemma inducing.is_open_iff {f : α → β} (hf : inducing f) {s : set α} : is_open s ↔ ∃ t, is_open t ∧ f ⁻¹' t = s := by rw [hf.induced, is_open_induced_iff] lemma inducing.dense_iff {f : α → β} (hf : inducing f) {s : set α} : dense s ↔ ∀ x, f x ∈ closure (f '' s) := by simp only [dense, hf.closure_eq_preimage_closure_image, mem_preimage] end inducing section embedding /-- A function between topological spaces is an embedding if it is injective, and for all `s : set α`, `s` is open iff it is the preimage of an open set. -/ @[mk_iff] structure embedding [tα : topological_space α] [tβ : topological_space β] (f : α → β) extends inducing f : Prop := (inj : injective f) lemma function.injective.embedding_induced [t : topological_space β] {f : α → β} (hf : injective f) : @_root_.embedding α β (t.induced f) t f := { induced := rfl, inj := hf } variables [topological_space α] [topological_space β] [topological_space γ] lemma embedding.mk' (f : α → β) (inj : injective f) (induced : ∀ a, comap f (𝓝 (f a)) = 𝓝 a) : embedding f := ⟨inducing_iff_nhds.2 (λ a, (induced a).symm), inj⟩ lemma embedding_id : embedding (@id α) := ⟨inducing_id, assume a₁ a₂ h, h⟩ lemma embedding.comp {g : β → γ} {f : α → β} (hg : embedding g) (hf : embedding f) : embedding (g ∘ f) := { inj:= assume a₁ a₂ h, hf.inj $ hg.inj h, ..hg.to_inducing.comp hf.to_inducing } lemma embedding_of_embedding_compose {f : α → β} {g : β → γ} (hf : continuous f) (hg : continuous g) (hgf : embedding (g ∘ f)) : embedding f := { induced := (inducing_of_inducing_compose hf hg hgf.to_inducing).induced, inj := assume a₁ a₂ h, hgf.inj $ by simp [h, (∘)] } protected lemma function.left_inverse.embedding {f : α → β} {g : β → α} (h : left_inverse f g) (hf : continuous f) (hg : continuous g) : embedding g := embedding_of_embedding_compose hg hf $ h.comp_eq_id.symm ▸ embedding_id lemma embedding.map_nhds_eq {f : α → β} (hf : embedding f) (a : α) : (𝓝 a).map f = 𝓝[range f] (f a) := hf.1.map_nhds_eq a lemma embedding.map_nhds_of_mem {f : α → β} (hf : embedding f) (a : α) (h : range f ∈ 𝓝 (f a)) : (𝓝 a).map f = 𝓝 (f a) := hf.1.map_nhds_of_mem a h lemma embedding.tendsto_nhds_iff {ι : Type*} {f : ι → β} {g : β → γ} {a : filter ι} {b : β} (hg : embedding g) : tendsto f a (𝓝 b) ↔ tendsto (g ∘ f) a (𝓝 (g b)) := hg.to_inducing.tendsto_nhds_iff lemma embedding.continuous_iff {f : α → β} {g : β → γ} (hg : embedding g) : continuous f ↔ continuous (g ∘ f) := inducing.continuous_iff hg.1 lemma embedding.continuous {f : α → β} (hf : embedding f) : continuous f := inducing.continuous hf.1 lemma embedding.closure_eq_preimage_closure_image {e : α → β} (he : embedding e) (s : set α) : closure s = e ⁻¹' closure (e '' s) := he.1.closure_eq_preimage_closure_image s end embedding /-- A function between topological spaces is a quotient map if it is surjective, and for all `s : set β`, `s` is open iff its preimage is an open set. -/ def quotient_map {α : Type*} {β : Type*} [tα : topological_space α] [tβ : topological_space β] (f : α → β) : Prop := surjective f ∧ tβ = tα.coinduced f lemma quotient_map_iff {α β : Type*} [topological_space α] [topological_space β] {f : α → β} : quotient_map f ↔ surjective f ∧ ∀ s : set β, is_open s ↔ is_open (f ⁻¹' s) := and_congr iff.rfl topological_space_eq_iff namespace quotient_map variables [topological_space α] [topological_space β] [topological_space γ] [topological_space δ] {g : β → γ} {f : α → β} protected lemma id : quotient_map (@id α) := ⟨assume a, ⟨a, rfl⟩, coinduced_id.symm⟩ protected lemma comp (hg : quotient_map g) (hf : quotient_map f) : quotient_map (g ∘ f) := ⟨hg.left.comp hf.left, by rw [hg.right, hf.right, coinduced_compose]⟩ protected lemma of_quotient_map_compose (hf : continuous f) (hg : continuous g) (hgf : quotient_map (g ∘ f)) : quotient_map g := ⟨hgf.1.of_comp, le_antisymm (by { rw [hgf.right, ← continuous_iff_coinduced_le], apply continuous_coinduced_rng.comp hf }) (by rwa ← continuous_iff_coinduced_le)⟩ lemma of_inverse {g : β → α} (hf : continuous f) (hg : continuous g) (h : left_inverse g f) : quotient_map g := quotient_map.of_quotient_map_compose hf hg $ h.comp_eq_id.symm ▸ quotient_map.id protected lemma continuous_iff (hf : quotient_map f) : continuous g ↔ continuous (g ∘ f) := by rw [continuous_iff_coinduced_le, continuous_iff_coinduced_le, hf.right, coinduced_compose] protected lemma continuous (hf : quotient_map f) : continuous f := hf.continuous_iff.mp continuous_id protected lemma surjective (hf : quotient_map f) : surjective f := hf.1 protected lemma is_open_preimage (hf : quotient_map f) {s : set β} : is_open (f ⁻¹' s) ↔ is_open s := ((quotient_map_iff.1 hf).2 s).symm protected lemma is_closed_preimage (hf : quotient_map f) {s : set β} : is_closed (f ⁻¹' s) ↔ is_closed s := by simp only [← is_open_compl_iff, ← preimage_compl, hf.is_open_preimage] end quotient_map /-- A map `f : α → β` is said to be an *open map*, if the image of any open `U : set α` is open in `β`. -/ def is_open_map [topological_space α] [topological_space β] (f : α → β) := ∀ U : set α, is_open U → is_open (f '' U) namespace is_open_map variables [topological_space α] [topological_space β] [topological_space γ] {f : α → β} protected lemma id : is_open_map (@id α) := assume s hs, by rwa [image_id] protected lemma comp {g : β → γ} {f : α → β} (hg : is_open_map g) (hf : is_open_map f) : is_open_map (g ∘ f) := by intros s hs; rw [image_comp]; exact hg _ (hf _ hs) lemma is_open_range (hf : is_open_map f) : is_open (range f) := by { rw ← image_univ, exact hf _ is_open_univ } lemma image_mem_nhds (hf : is_open_map f) {x : α} {s : set α} (hx : s ∈ 𝓝 x) : f '' s ∈ 𝓝 (f x) := let ⟨t, hts, ht, hxt⟩ := mem_nhds_iff.1 hx in mem_of_superset (is_open.mem_nhds (hf t ht) (mem_image_of_mem _ hxt)) (image_subset _ hts) lemma range_mem_nhds (hf : is_open_map f) (x : α) : range f ∈ 𝓝 (f x) := hf.is_open_range.mem_nhds $ mem_range_self _ lemma maps_to_interior (hf : is_open_map f) {s : set α} {t : set β} (h : maps_to f s t) : maps_to f (interior s) (interior t) := maps_to'.2 $ interior_maximal (h.mono interior_subset subset.rfl).image_subset (hf _ is_open_interior) lemma image_interior_subset (hf : is_open_map f) (s : set α) : f '' interior s ⊆ interior (f '' s) := (hf.maps_to_interior (maps_to_image f s)).image_subset lemma nhds_le (hf : is_open_map f) (a : α) : 𝓝 (f a) ≤ (𝓝 a).map f := le_map $ λ s, hf.image_mem_nhds lemma of_nhds_le (hf : ∀ a, 𝓝 (f a) ≤ map f (𝓝 a)) : is_open_map f := λ s hs, is_open_iff_mem_nhds.2 $ λ b ⟨a, has, hab⟩, hab ▸ hf _ (image_mem_map $ is_open.mem_nhds hs has) lemma of_sections {f : α → β} (h : ∀ x, ∃ g : β → α, continuous_at g (f x) ∧ g (f x) = x ∧ right_inverse g f) : is_open_map f := of_nhds_le $ λ x, let ⟨g, hgc, hgx, hgf⟩ := h x in calc 𝓝 (f x) = map f (map g (𝓝 (f x))) : by rw [map_map, hgf.comp_eq_id, map_id] ... ≤ map f (𝓝 (g (f x))) : map_mono hgc ... = map f (𝓝 x) : by rw hgx lemma of_inverse {f : α → β} {f' : β → α} (h : continuous f') (l_inv : left_inverse f f') (r_inv : right_inverse f f') : is_open_map f := of_sections $ λ x, ⟨f', h.continuous_at, r_inv _, l_inv⟩ /-- A continuous surjective open map is a quotient map. -/ lemma to_quotient_map {f : α → β} (open_map : is_open_map f) (cont : continuous f) (surj : surjective f) : quotient_map f := quotient_map_iff.2 ⟨surj, λ s, ⟨λ h, h.preimage cont, λ h, surj.image_preimage s ▸ open_map _ h⟩⟩ lemma interior_preimage_subset_preimage_interior (hf : is_open_map f) {s : set β} : interior (f⁻¹' s) ⊆ f⁻¹' (interior s) := hf.maps_to_interior (maps_to_preimage _ _) lemma preimage_interior_eq_interior_preimage (hf₁ : is_open_map f) (hf₂ : continuous f) (s : set β) : f⁻¹' (interior s) = interior (f⁻¹' s) := subset.antisymm (preimage_interior_subset_interior_preimage hf₂) (interior_preimage_subset_preimage_interior hf₁) lemma preimage_closure_subset_closure_preimage (hf : is_open_map f) {s : set β} : f ⁻¹' (closure s) ⊆ closure (f ⁻¹' s) := begin rw ← compl_subset_compl, simp only [← interior_compl, ← preimage_compl, hf.interior_preimage_subset_preimage_interior] end lemma preimage_closure_eq_closure_preimage (hf : is_open_map f) (hfc : continuous f) (s : set β) : f ⁻¹' (closure s) = closure (f ⁻¹' s) := hf.preimage_closure_subset_closure_preimage.antisymm (hfc.closure_preimage_subset s) lemma preimage_frontier_subset_frontier_preimage (hf : is_open_map f) {s : set β} : f ⁻¹' (frontier s) ⊆ frontier (f ⁻¹' s) := by simpa only [frontier_eq_closure_inter_closure, preimage_inter] using inter_subset_inter hf.preimage_closure_subset_closure_preimage hf.preimage_closure_subset_closure_preimage lemma preimage_frontier_eq_frontier_preimage (hf : is_open_map f) (hfc : continuous f) (s : set β) : f ⁻¹' (frontier s) = frontier (f ⁻¹' s) := by simp only [frontier_eq_closure_inter_closure, preimage_inter, preimage_compl, hf.preimage_closure_eq_closure_preimage hfc] end is_open_map lemma is_open_map_iff_nhds_le [topological_space α] [topological_space β] {f : α → β} : is_open_map f ↔ ∀(a:α), 𝓝 (f a) ≤ (𝓝 a).map f := ⟨λ hf, hf.nhds_le, is_open_map.of_nhds_le⟩ lemma is_open_map_iff_interior [topological_space α] [topological_space β] {f : α → β} : is_open_map f ↔ ∀ s, f '' (interior s) ⊆ interior (f '' s) := ⟨is_open_map.image_interior_subset, λ hs u hu, subset_interior_iff_open.mp $ calc f '' u = f '' (interior u) : by rw hu.interior_eq ... ⊆ interior (f '' u) : hs u⟩ /-- An inducing map with an open range is an open map. -/ protected lemma inducing.is_open_map [topological_space α] [topological_space β] {f : α → β} (hi : inducing f) (ho : is_open (range f)) : is_open_map f := is_open_map.of_nhds_le $ λ x, (hi.map_nhds_of_mem _ $ is_open.mem_nhds ho $ mem_range_self _).ge section is_closed_map variables [topological_space α] [topological_space β] /-- A map `f : α → β` is said to be a *closed map*, if the image of any closed `U : set α` is closed in `β`. -/ def is_closed_map (f : α → β) := ∀ U : set α, is_closed U → is_closed (f '' U) end is_closed_map namespace is_closed_map variables [topological_space α] [topological_space β] [topological_space γ] open function protected lemma id : is_closed_map (@id α) := assume s hs, by rwa image_id protected lemma comp {g : β → γ} {f : α → β} (hg : is_closed_map g) (hf : is_closed_map f) : is_closed_map (g ∘ f) := by { intros s hs, rw image_comp, exact hg _ (hf _ hs) } lemma closure_image_subset {f : α → β} (hf : is_closed_map f) (s : set α) : closure (f '' s) ⊆ f '' closure s := closure_minimal (image_subset _ subset_closure) (hf _ is_closed_closure) lemma of_inverse {f : α → β} {f' : β → α} (h : continuous f') (l_inv : left_inverse f f') (r_inv : right_inverse f f') : is_closed_map f := assume s hs, have f' ⁻¹' s = f '' s, by ext x; simp [mem_image_iff_of_inverse r_inv l_inv], this ▸ hs.preimage h lemma of_nonempty {f : α → β} (h : ∀ s, is_closed s → s.nonempty → is_closed (f '' s)) : is_closed_map f := begin intros s hs, cases eq_empty_or_nonempty s with h2s h2s, { simp_rw [h2s, image_empty, is_closed_empty] }, { exact h s hs h2s } end lemma closed_range {f : α → β} (hf : is_closed_map f) : is_closed (range f) := @image_univ _ _ f ▸ hf _ is_closed_univ end is_closed_map lemma inducing.is_closed_map [topological_space α] [topological_space β] {f : α → β} (hf : inducing f) (h : is_closed (range f)) : is_closed_map f := begin intros s hs, rcases hf.is_closed_iff.1 hs with ⟨t, ht, rfl⟩, rw image_preimage_eq_inter_range, exact ht.inter h end lemma is_closed_map_iff_closure_image [topological_space α] [topological_space β] {f : α → β} : is_closed_map f ↔ ∀ s, closure (f '' s) ⊆ f '' closure s := ⟨is_closed_map.closure_image_subset, λ hs c hc, is_closed_of_closure_subset $ calc closure (f '' c) ⊆ f '' (closure c) : hs c ... = f '' c : by rw hc.closure_eq⟩ section open_embedding variables [topological_space α] [topological_space β] [topological_space γ] /-- An open embedding is an embedding with open image. -/ @[mk_iff] structure open_embedding (f : α → β) extends _root_.embedding f : Prop := (open_range : is_open $ range f) lemma open_embedding.is_open_map {f : α → β} (hf : open_embedding f) : is_open_map f := hf.to_embedding.to_inducing.is_open_map hf.open_range lemma open_embedding.map_nhds_eq {f : α → β} (hf : open_embedding f) (a : α) : map f (𝓝 a) = 𝓝 (f a) := hf.to_embedding.map_nhds_of_mem _ $ hf.open_range.mem_nhds $ mem_range_self _ lemma open_embedding.open_iff_image_open {f : α → β} (hf : open_embedding f) {s : set α} : is_open s ↔ is_open (f '' s) := ⟨hf.is_open_map s, λ h, begin convert ← h.preimage hf.to_embedding.continuous, apply preimage_image_eq _ hf.inj end⟩ lemma open_embedding.tendsto_nhds_iff {ι : Type*} {f : ι → β} {g : β → γ} {a : filter ι} {b : β} (hg : open_embedding g) : tendsto f a (𝓝 b) ↔ tendsto (g ∘ f) a (𝓝 (g b)) := hg.to_embedding.tendsto_nhds_iff lemma open_embedding.continuous {f : α → β} (hf : open_embedding f) : continuous f := hf.to_embedding.continuous lemma open_embedding.open_iff_preimage_open {f : α → β} (hf : open_embedding f) {s : set β} (hs : s ⊆ range f) : is_open s ↔ is_open (f ⁻¹' s) := begin convert ←hf.open_iff_image_open.symm, rwa [image_preimage_eq_inter_range, inter_eq_self_of_subset_left] end lemma open_embedding_of_embedding_open {f : α → β} (h₁ : embedding f) (h₂ : is_open_map f) : open_embedding f := ⟨h₁, h₂.is_open_range⟩ lemma open_embedding_iff_embedding_open {f : α → β} : open_embedding f ↔ embedding f ∧ is_open_map f := ⟨λ h, ⟨h.1, h.is_open_map⟩, λ h, open_embedding_of_embedding_open h.1 h.2⟩ lemma open_embedding_of_continuous_injective_open {f : α → β} (h₁ : continuous f) (h₂ : injective f) (h₃ : is_open_map f) : open_embedding f := begin simp only [open_embedding_iff_embedding_open, embedding_iff, inducing_iff_nhds, *, and_true], exact λ a, le_antisymm (h₁.tendsto _).le_comap (@comap_map _ _ (𝓝 a) _ h₂ ▸ comap_mono (h₃.nhds_le _)) end lemma open_embedding_iff_continuous_injective_open {f : α → β} : open_embedding f ↔ continuous f ∧ injective f ∧ is_open_map f := ⟨λ h, ⟨h.continuous, h.inj, h.is_open_map⟩, λ h, open_embedding_of_continuous_injective_open h.1 h.2.1 h.2.2⟩ lemma open_embedding_id : open_embedding (@id α) := ⟨embedding_id, is_open_map.id.is_open_range⟩ lemma open_embedding.comp {g : β → γ} {f : α → β} (hg : open_embedding g) (hf : open_embedding f) : open_embedding (g ∘ f) := ⟨hg.1.comp hf.1, (hg.is_open_map.comp hf.is_open_map).is_open_range⟩ lemma open_embedding.is_open_map_iff {g : β → γ} {f : α → β} (hg : open_embedding g) : is_open_map f ↔ is_open_map (g ∘ f) := by simp only [is_open_map_iff_nhds_le, ← @map_map _ _ _ _ f g, ← hg.map_nhds_eq, map_le_map_iff hg.inj] lemma open_embedding.of_comp_iff (f : α → β) {g : β → γ} (hg : open_embedding g) : open_embedding (g ∘ f) ↔ open_embedding f := by simp only [open_embedding_iff_continuous_injective_open, ← hg.is_open_map_iff, ← hg.1.continuous_iff, hg.inj.of_comp_iff] lemma open_embedding.of_comp (f : α → β) {g : β → γ} (hg : open_embedding g) (h : open_embedding (g ∘ f)) : open_embedding f := (open_embedding.of_comp_iff f hg).1 h end open_embedding section closed_embedding variables [topological_space α] [topological_space β] [topological_space γ] /-- A closed embedding is an embedding with closed image. -/ @[mk_iff] structure closed_embedding (f : α → β) extends _root_.embedding f : Prop := (closed_range : is_closed $ range f) variables {f : α → β} lemma closed_embedding.tendsto_nhds_iff {ι : Type*} {g : ι → α} {a : filter ι} {b : α} (hf : closed_embedding f) : tendsto g a (𝓝 b) ↔ tendsto (f ∘ g) a (𝓝 (f b)) := hf.to_embedding.tendsto_nhds_iff lemma closed_embedding.continuous (hf : closed_embedding f) : continuous f := hf.to_embedding.continuous lemma closed_embedding.is_closed_map (hf : closed_embedding f) : is_closed_map f := hf.to_embedding.to_inducing.is_closed_map hf.closed_range lemma closed_embedding.closed_iff_image_closed (hf : closed_embedding f) {s : set α} : is_closed s ↔ is_closed (f '' s) := ⟨hf.is_closed_map s, λ h, begin convert ←continuous_iff_is_closed.mp hf.continuous _ h, apply preimage_image_eq _ hf.inj end⟩ lemma closed_embedding.closed_iff_preimage_closed (hf : closed_embedding f) {s : set β} (hs : s ⊆ range f) : is_closed s ↔ is_closed (f ⁻¹' s) := begin convert ←hf.closed_iff_image_closed.symm, rwa [image_preimage_eq_inter_range, inter_eq_self_of_subset_left] end lemma closed_embedding_of_embedding_closed (h₁ : embedding f) (h₂ : is_closed_map f) : closed_embedding f := ⟨h₁, by convert h₂ univ is_closed_univ; simp⟩ lemma closed_embedding_of_continuous_injective_closed (h₁ : continuous f) (h₂ : injective f) (h₃ : is_closed_map f) : closed_embedding f := begin refine closed_embedding_of_embedding_closed ⟨⟨_⟩, h₂⟩ h₃, apply le_antisymm (continuous_iff_le_induced.mp h₁) _, intro s', change is_open _ ≤ is_open _, rw [←is_closed_compl_iff, ←is_closed_compl_iff], generalize : s'ᶜ = s, rw is_closed_induced_iff, refine λ hs, ⟨f '' s, h₃ s hs, _⟩, rw preimage_image_eq _ h₂ end lemma closed_embedding_id : closed_embedding (@id α) := ⟨embedding_id, by convert is_closed_univ; apply range_id⟩ lemma closed_embedding.comp {g : β → γ} {f : α → β} (hg : closed_embedding g) (hf : closed_embedding f) : closed_embedding (g ∘ f) := ⟨hg.to_embedding.comp hf.to_embedding, show is_closed (range (g ∘ f)), by rw [range_comp, ←hg.closed_iff_image_closed]; exact hf.closed_range⟩ lemma closed_embedding.closure_image_eq {f : α → β} (hf : closed_embedding f) (s : set α) : closure (f '' s) = f '' closure s := le_antisymm (is_closed_map_iff_closure_image.mp hf.is_closed_map _) (image_closure_subset_closure_image hf.continuous) end closed_embedding