/- Copyright (c) 2022 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import topology.basic /-! ### Locally finite families of sets We say that a family of sets in a topological space is *locally finite* if at every point `x : X`, there is a neighborhood of `x` which meets only finitely many sets in the family. In this file we give the definition and prove basic properties of locally finite families of sets. -/ /- locally finite family [General Topology (Bourbaki, 1995)] -/ open set function filter open_locale topological_space filter variables {ι ι' α X Y : Type*} [topological_space X] [topological_space Y] {f g : ι → set X} /-- A family of sets in `set X` is locally finite if at every point `x : X`, there is a neighborhood of `x` which meets only finitely many sets in the family. -/ def locally_finite (f : ι → set X) := ∀ x : X, ∃t ∈ 𝓝 x, {i | (f i ∩ t).nonempty}.finite lemma locally_finite_of_finite [finite ι] (f : ι → set X) : locally_finite f := assume x, ⟨univ, univ_mem, to_finite _⟩ namespace locally_finite lemma point_finite (hf : locally_finite f) (x : X) : {b | x ∈ f b}.finite := let ⟨t, hxt, ht⟩ := hf x in ht.subset $ λ b hb, ⟨x, hb, mem_of_mem_nhds hxt⟩ protected lemma subset (hf : locally_finite f) (hg : ∀ i, g i ⊆ f i) : locally_finite g := assume a, let ⟨t, ht₁, ht₂⟩ := hf a in ⟨t, ht₁, ht₂.subset $ assume i hi, hi.mono $ inter_subset_inter (hg i) subset.rfl⟩ lemma comp_inj_on {g : ι' → ι} (hf : locally_finite f) (hg : inj_on g {i | (f (g i)).nonempty}) : locally_finite (f ∘ g) := λ x, let ⟨t, htx, htf⟩ := hf x in ⟨t, htx, htf.preimage $ hg.mono $ λ i hi, hi.out.mono $ inter_subset_left _ _⟩ lemma comp_injective {g : ι' → ι} (hf : locally_finite f) (hg : function.injective g) : locally_finite (f ∘ g) := hf.comp_inj_on (hg.inj_on _) lemma eventually_finite (hf : locally_finite f) (x : X) : ∀ᶠ s in (𝓝 x).small_sets, {i | (f i ∩ s).nonempty}.finite := eventually_small_sets.2 $ let ⟨s, hsx, hs⟩ := hf x in ⟨s, hsx, λ t hts, hs.subset $ λ i hi, hi.out.mono $ inter_subset_inter_right _ hts⟩ lemma exists_mem_basis {ι' : Sort*} (hf : locally_finite f) {p : ι' → Prop} {s : ι' → set X} {x : X} (hb : (𝓝 x).has_basis p s) : ∃ i (hi : p i), {j | (f j ∩ s i).nonempty}.finite := let ⟨i, hpi, hi⟩ := hb.small_sets.eventually_iff.mp (hf.eventually_finite x) in ⟨i, hpi, hi subset.rfl⟩ lemma sum_elim {g : ι' → set X} (hf : locally_finite f) (hg : locally_finite g) : locally_finite (sum.elim f g) := begin intro x, obtain ⟨s, hsx, hsf, hsg⟩ : ∃ s, s ∈ 𝓝 x ∧ {i | (f i ∩ s).nonempty}.finite ∧ {j | (g j ∩ s).nonempty}.finite, from ((𝓝 x).frequently_small_sets_mem.and_eventually ((hf.eventually_finite x).and (hg.eventually_finite x))).exists, refine ⟨s, hsx, _⟩, convert (hsf.image sum.inl).union (hsg.image sum.inr) using 1, ext (i|j); simp end protected lemma closure (hf : locally_finite f) : locally_finite (λ i, closure (f i)) := begin intro x, rcases hf x with ⟨s, hsx, hsf⟩, refine ⟨interior s, interior_mem_nhds.2 hsx, hsf.subset $ λ i hi, _⟩, exact (hi.mono (closure_inter_open' is_open_interior)).of_closure.mono (inter_subset_inter_right _ interior_subset) end lemma is_closed_Union (hf : locally_finite f) (hc : ∀i, is_closed (f i)) : is_closed (⋃i, f i) := begin simp only [← is_open_compl_iff, compl_Union, is_open_iff_mem_nhds, mem_Inter], intros a ha, replace ha : ∀ i, (f i)ᶜ ∈ 𝓝 a := λ i, (hc i).is_open_compl.mem_nhds (ha i), rcases hf a with ⟨t, h_nhds, h_fin⟩, have : t ∩ (⋂ i ∈ {i | (f i ∩ t).nonempty}, (f i)ᶜ) ∈ 𝓝 a, from inter_mem h_nhds ((bInter_mem h_fin).2 (λ i _, ha i)), filter_upwards [this], simp only [mem_inter_eq, mem_Inter], rintros b ⟨hbt, hn⟩ i hfb, exact hn i ⟨b, hfb, hbt⟩ hfb, end lemma closure_Union (h : locally_finite f) : closure (⋃ i, f i) = ⋃ i, closure (f i) := subset.antisymm (closure_minimal (Union_mono $ λ _, subset_closure) $ h.closure.is_closed_Union $ λ _, is_closed_closure) (Union_subset $ λ i, closure_mono $ subset_Union _ _) /-- If `f : β → set α` is a locally finite family of closed sets, then for any `x : α`, the intersection of the complements to `f i`, `x ∉ f i`, is a neighbourhood of `x`. -/ lemma Inter_compl_mem_nhds (hf : locally_finite f) (hc : ∀ i, is_closed (f i)) (x : X) : (⋂ i (hi : x ∉ f i), (f i)ᶜ) ∈ 𝓝 x := begin refine is_open.mem_nhds _ (mem_Inter₂.2 $ λ i, id), suffices : is_closed (⋃ i : {i // x ∉ f i}, f i), by rwa [← is_open_compl_iff, compl_Union, Inter_subtype] at this, exact (hf.comp_injective subtype.coe_injective).is_closed_Union (λ i, hc _) end /-- Let `f : ℕ → Π a, β a` be a sequence of (dependent) functions on a topological space. Suppose that the family of sets `s n = {x | f (n + 1) x ≠ f n x}` is locally finite. Then there exists a function `F : Π a, β a` such that for any `x`, we have `f n x = F x` on the product of an infinite interval `[N, +∞)` and a neighbourhood of `x`. We formulate the conclusion in terms of the product of filter `filter.at_top` and `𝓝 x`. -/ lemma exists_forall_eventually_eq_prod {π : X → Sort*} {f : ℕ → Π x : X, π x} (hf : locally_finite (λ n, {x | f (n + 1) x ≠ f n x})) : ∃ F : Π x : X, π x, ∀ x, ∀ᶠ p : ℕ × X in at_top ×ᶠ 𝓝 x, f p.1 p.2 = F p.2 := begin choose U hUx hU using hf, choose N hN using λ x, (hU x).bdd_above, replace hN : ∀ x (n > N x) (y ∈ U x), f (n + 1) y = f n y, from λ x n hn y hy, by_contra (λ hne, hn.lt.not_le $ hN x ⟨y, hne, hy⟩), replace hN : ∀ x (n ≥ N x + 1) (y ∈ U x), f n y = f (N x + 1) y, from λ x n hn y hy, nat.le_induction rfl (λ k hle, (hN x _ hle _ hy).trans) n hn, refine ⟨λ x, f (N x + 1) x, λ x, _⟩, filter_upwards [filter.prod_mem_prod (eventually_gt_at_top (N x)) (hUx x)], rintro ⟨n, y⟩ ⟨hn : N x < n, hy : y ∈ U x⟩, calc f n y = f (N x + 1) y : hN _ _ hn _ hy ... = f (max (N x + 1) (N y + 1)) y : (hN _ _ (le_max_left _ _) _ hy).symm ... = f (N y + 1) y : hN _ _ (le_max_right _ _) _ (mem_of_mem_nhds $ hUx y) end /-- Let `f : ℕ → Π a, β a` be a sequence of (dependent) functions on a topological space. Suppose that the family of sets `s n = {x | f (n + 1) x ≠ f n x}` is locally finite. Then there exists a function `F : Π a, β a` such that for any `x`, for sufficiently large values of `n`, we have `f n y = F y` in a neighbourhood of `x`. -/ lemma exists_forall_eventually_at_top_eventually_eq' {π : X → Sort*} {f : ℕ → Π x : X, π x} (hf : locally_finite (λ n, {x | f (n + 1) x ≠ f n x})) : ∃ F : Π x : X, π x, ∀ x, ∀ᶠ n : ℕ in at_top, ∀ᶠ y : X in 𝓝 x, f n y = F y := hf.exists_forall_eventually_eq_prod.imp $ λ F hF x, (hF x).curry /-- Let `f : ℕ → α → β` be a sequence of functions on a topological space. Suppose that the family of sets `s n = {x | f (n + 1) x ≠ f n x}` is locally finite. Then there exists a function `F : α → β` such that for any `x`, for sufficiently large values of `n`, we have `f n =ᶠ[𝓝 x] F`. -/ lemma exists_forall_eventually_at_top_eventually_eq {f : ℕ → X → α} (hf : locally_finite (λ n, {x | f (n + 1) x ≠ f n x})) : ∃ F : X → α, ∀ x, ∀ᶠ n : ℕ in at_top, f n =ᶠ[𝓝 x] F := hf.exists_forall_eventually_at_top_eventually_eq' lemma preimage_continuous {g : Y → X} (hf : locally_finite f) (hg : continuous g) : locally_finite (λ i, g ⁻¹' (f i)) := λ x, let ⟨s, hsx, hs⟩ := hf (g x) in ⟨g ⁻¹' s, hg.continuous_at hsx, hs.subset $ λ i ⟨y, hy⟩, ⟨g y, hy⟩⟩ end locally_finite