/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import topology.category.Top import category_theory.glue_data import category_theory.concrete_category.elementwise /-! # Gluing Topological spaces Given a family of gluing data (see `category_theory/glue_data`), we can then glue them together. The construction should be "sealed" and considered as a black box, while only using the API provided. ## Main definitions * `Top.glue_data`: A structure containing the family of gluing data. * `category_theory.glue_data.glued`: The glued topological space. This is defined as the multicoequalizer of `∐ V i j ⇉ ∐ U i`, so that the general colimit API can be used. * `category_theory.glue_data.ι`: The immersion `ι i : U i ⟶ glued` for each `i : ι`. * `Top.glue_data.rel`: A relation on `Σ i, D.U i` defined by `⟨i, x⟩ ~ ⟨j, y⟩` iff `⟨i, x⟩ = ⟨j, y⟩` or `t i j x = y`. See `Top.glue_data.ι_eq_iff_rel`. * `Top.glue_data.mk`: A constructor of `glue_data` whose conditions are stated in terms of elements rather than subobjects and pullbacks. * `Top.glue_data.of_open_subsets`: Given a family of open sets, we may glue them into a new topological space. This new space embeds into the original space, and is homeomorphic to it if the given family is an open cover (`Top.glue_data.open_cover_glue_homeo`). ## Main results * `Top.glue_data.is_open_iff`: A set in `glued` is open iff its preimage along each `ι i` is open. * `Top.glue_data.ι_jointly_surjective`: The `ι i`s are jointly surjective. * `Top.glue_data.rel_equiv`: `rel` is an equivalence relation. * `Top.glue_data.ι_eq_iff_rel`: `ι i x = ι j y ↔ ⟨i, x⟩ ~ ⟨j, y⟩`. * `Top.glue_data.image_inter`: The intersection of the images of `U i` and `U j` in `glued` is `V i j`. * `Top.glue_data.preimage_range`: The preimage of the image of `U i` in `U j` is `V i j`. * `Top.glue_data.preimage_image_eq_preimage_f`: The preimage of the image of some `U ⊆ U i` is given by the preimage along `f j i`. * `Top.glue_data.ι_open_embedding`: Each of the `ι i`s are open embeddings. -/ noncomputable theory open topological_space category_theory universes v u open category_theory.limits namespace Top /-- A family of gluing data consists of 1. An index type `J` 2. An object `U i` for each `i : J`. 3. An object `V i j` for each `i j : J`. (Note that this is `J × J → Top` rather than `J → J → Top` to connect to the limits library easier.) 4. An open embedding `f i j : V i j ⟶ U i` for each `i j : ι`. 5. A transition map `t i j : V i j ⟶ V j i` for each `i j : ι`. such that 6. `f i i` is an isomorphism. 7. `t i i` is the identity. 8. `V i j ×[U i] V i k ⟶ V i j ⟶ V j i` factors through `V j k ×[U j] V j i ⟶ V j i` via some `t' : V i j ×[U i] V i k ⟶ V j k ×[U j] V j i`. (This merely means that `V i j ∩ V i k ⊆ t i j ⁻¹' (V j i ∩ V j k)`.) 9. `t' i j k ≫ t' j k i ≫ t' k i j = 𝟙 _`. We can then glue the topological spaces `U i` together by identifying `V i j` with `V j i`, such that the `U i`'s are open subspaces of the glued space. Most of the times it would be easier to use the constructor `Top.glue_data.mk'` where the conditions are stated in a less categorical way. -/ @[nolint has_nonempty_instance] structure glue_data extends glue_data Top := (f_open : ∀ i j, open_embedding (f i j)) (f_mono := λ i j, (Top.mono_iff_injective _).mpr (f_open i j).to_embedding.inj) namespace glue_data variable (D : glue_data.{u}) local notation `𝖣` := D.to_glue_data lemma π_surjective : function.surjective 𝖣 .π := (Top.epi_iff_surjective 𝖣 .π).mp infer_instance lemma is_open_iff (U : set 𝖣 .glued) : is_open U ↔ ∀ i, is_open (𝖣 .ι i ⁻¹' U) := begin delta category_theory.glue_data.ι, simp_rw ← multicoequalizer.ι_sigma_π 𝖣 .diagram, rw ← (homeo_of_iso (multicoequalizer.iso_coequalizer 𝖣 .diagram).symm).is_open_preimage, rw [coequalizer_is_open_iff, colimit_is_open_iff.{u}], split, { intros h j, exact h ⟨j⟩, }, { intros h j, cases j, exact h j, }, end lemma ι_jointly_surjective (x : 𝖣 .glued) : ∃ i (y : D.U i), 𝖣 .ι i y = x := 𝖣 .ι_jointly_surjective (forget Top) x /-- An equivalence relation on `Σ i, D.U i` that holds iff `𝖣 .ι i x = 𝖣 .ι j y`. See `Top.glue_data.ι_eq_iff_rel`. -/ def rel (a b : Σ i, ((D.U i : Top) : Type*)) : Prop := a = b ∨ ∃ (x : D.V (a.1, b.1)) , D.f _ _ x = a.2 ∧ D.f _ _ (D.t _ _ x) = b.2 lemma rel_equiv : equivalence D.rel := ⟨ λ x, or.inl (refl x), begin rintros a b (⟨⟨⟩⟩|⟨x,e₁,e₂⟩), exacts [or.inl rfl, or.inr ⟨D.t _ _ x, by simp [e₁, e₂]⟩] end, begin rintros ⟨i,a⟩ ⟨j,b⟩ ⟨k,c⟩ (⟨⟨⟩⟩|⟨x,e₁,e₂⟩), exact id, rintro (⟨⟨⟩⟩|⟨y,e₃,e₄⟩), exact or.inr ⟨x,e₁,e₂⟩, let z := (pullback_iso_prod_subtype (D.f j i) (D.f j k)).inv ⟨⟨_,_⟩, e₂.trans e₃.symm⟩, have eq₁ : (D.t j i) ((pullback.fst : _ ⟶ D.V _) z) = x := by simp, have eq₂ : (pullback.snd : _ ⟶ D.V _) z = y := pullback_iso_prod_subtype_inv_snd_apply _ _ _, clear_value z, right, use (pullback.fst : _ ⟶ D.V (i, k)) (D.t' _ _ _ z), dsimp only at *, substs e₁ e₃ e₄ eq₁ eq₂, have h₁ : D.t' j i k ≫ pullback.fst ≫ D.f i k = pullback.fst ≫ D.t j i ≫ D.f i j, { rw ← 𝖣 .t_fac_assoc, congr' 1, exact pullback.condition }, have h₂ : D.t' j i k ≫ pullback.fst ≫ D.t i k ≫ D.f k i = pullback.snd ≫ D.t j k ≫ D.f k j, { rw ← 𝖣 .t_fac_assoc, apply @epi.left_cancellation _ _ _ _ (D.t' k j i), rw [𝖣 .cocycle_assoc, 𝖣 .t_fac_assoc, 𝖣 .t_inv_assoc], exact pullback.condition.symm }, exact ⟨continuous_map.congr_fun h₁ z, continuous_map.congr_fun h₂ z⟩ end⟩ open category_theory.limits.walking_parallel_pair lemma eqv_gen_of_π_eq {x y : ∐ D.U} (h : 𝖣 .π x = 𝖣 .π y) : eqv_gen (types.coequalizer_rel 𝖣 .diagram.fst_sigma_map 𝖣 .diagram.snd_sigma_map) x y := begin delta glue_data.π multicoequalizer.sigma_π at h, simp_rw comp_app at h, replace h := (Top.mono_iff_injective (multicoequalizer.iso_coequalizer 𝖣 .diagram).inv).mp _ h, let diagram := parallel_pair 𝖣 .diagram.fst_sigma_map 𝖣 .diagram.snd_sigma_map ⋙ forget _, have : colimit.ι diagram one x = colimit.ι diagram one y, { rw ←ι_preserves_colimits_iso_hom, simp [h] }, have : (colimit.ι diagram _ ≫ colim.map _ ≫ (colimit.iso_colimit_cocone _).hom) _ = (colimit.ι diagram _ ≫ colim.map _ ≫ (colimit.iso_colimit_cocone _).hom) _ := (congr_arg (colim.map (diagram_iso_parallel_pair diagram).hom ≫ (colimit.iso_colimit_cocone (types.coequalizer_colimit _ _)).hom) this : _), simp only [eq_to_hom_refl, types_comp_apply, colimit.ι_map_assoc, diagram_iso_parallel_pair_hom_app, colimit.iso_colimit_cocone_ι_hom, types_id_apply] at this, exact quot.eq.1 this, apply_instance end lemma ι_eq_iff_rel (i j : D.J) (x : D.U i) (y : D.U j) : 𝖣 .ι i x = 𝖣 .ι j y ↔ D.rel ⟨i, x⟩ ⟨j, y⟩ := begin split, { delta glue_data.ι, simp_rw ← multicoequalizer.ι_sigma_π, intro h, rw ← (show _ = sigma.mk i x, from concrete_category.congr_hom (sigma_iso_sigma.{u} D.U).inv_hom_id _), rw ← (show _ = sigma.mk j y, from concrete_category.congr_hom (sigma_iso_sigma.{u} D.U).inv_hom_id _), change inv_image D.rel (sigma_iso_sigma.{u} D.U).hom _ _, simp only [Top.sigma_iso_sigma_inv_apply], rw ← (inv_image.equivalence _ _ D.rel_equiv).eqv_gen_iff, refine eqv_gen.mono _ (D.eqv_gen_of_π_eq h : _), rintros _ _ ⟨x⟩, rw ← (show (sigma_iso_sigma.{u} _).inv _ = x, from concrete_category.congr_hom (sigma_iso_sigma.{u} _).hom_inv_id x), generalize : (sigma_iso_sigma.{u} D.V).hom x = x', obtain ⟨⟨i,j⟩,y⟩ := x', unfold inv_image multispan_index.fst_sigma_map multispan_index.snd_sigma_map, simp only [opens.inclusion_apply, Top.comp_app, sigma_iso_sigma_inv_apply, category_theory.limits.colimit.ι_desc_apply, cofan.mk_ι_app, sigma_iso_sigma_hom_ι_apply, continuous_map.to_fun_eq_coe], erw [sigma_iso_sigma_hom_ι_apply, sigma_iso_sigma_hom_ι_apply], exact or.inr ⟨y, by { dsimp [glue_data.diagram], simp }⟩ }, { rintro (⟨⟨⟩⟩|⟨z,e₁,e₂⟩), refl, dsimp only at *, subst e₁, subst e₂, simp } end lemma ι_injective (i : D.J) : function.injective (𝖣 .ι i) := begin intros x y h, rcases (D.ι_eq_iff_rel _ _ _ _).mp h with (⟨⟨⟩⟩|⟨_,e₁,e₂⟩), { refl }, { dsimp only at *, cases e₁, cases e₂, simp } end instance ι_mono (i : D.J) : mono (𝖣 .ι i) := (Top.mono_iff_injective _).mpr (D.ι_injective _) lemma image_inter (i j : D.J) : set.range (𝖣 .ι i) ∩ set.range (𝖣 .ι j) = set.range (D.f i j ≫ 𝖣 .ι _) := begin ext x, split, { rintro ⟨⟨x₁, eq₁⟩, ⟨x₂, eq₂⟩⟩, obtain (⟨⟨⟩⟩|⟨y,e₁,e₂⟩) := (D.ι_eq_iff_rel _ _ _ _).mp (eq₁.trans eq₂.symm), { exact ⟨inv (D.f i i) x₁, by simp [eq₁]⟩ }, { dsimp only at *, substs e₁ eq₁, exact ⟨y, by simp⟩ } }, { rintro ⟨x, hx⟩, exact ⟨⟨D.f i j x, hx⟩, ⟨D.f j i (D.t _ _ x), by simp [← hx]⟩⟩ } end lemma preimage_range (i j : D.J) : 𝖣 .ι j ⁻¹' (set.range (𝖣 .ι i)) = set.range (D.f j i) := by rw [← set.preimage_image_eq (set.range (D.f j i)) (D.ι_injective j), ← set.image_univ, ← set.image_univ, ←set.image_comp, ←coe_comp, set.image_univ,set.image_univ, ← image_inter, set.preimage_range_inter] lemma preimage_image_eq_image (i j : D.J) (U : set (𝖣 .U i)) : 𝖣 .ι j ⁻¹' (𝖣 .ι i '' U) = D.f _ _ '' ((D.t j i ≫ D.f _ _) ⁻¹' U) := begin have : D.f _ _ ⁻¹' (𝖣 .ι j ⁻¹' (𝖣 .ι i '' U)) = (D.t j i ≫ D.f _ _) ⁻¹' U, { ext x, conv_rhs { rw ← set.preimage_image_eq U (D.ι_injective _) }, generalize : 𝖣 .ι i '' U = U', simp }, rw [← this, set.image_preimage_eq_inter_range], symmetry, apply set.inter_eq_self_of_subset_left, rw ← D.preimage_range i j, exact set.preimage_mono (set.image_subset_range _ _), end lemma preimage_image_eq_image' (i j : D.J) (U : set (𝖣 .U i)) : 𝖣 .ι j ⁻¹' (𝖣 .ι i '' U) = (D.t i j ≫ D.f _ _) '' ((D.f _ _) ⁻¹' U) := begin convert D.preimage_image_eq_image i j U using 1, rw [coe_comp, coe_comp, ← set.image_image], congr' 1, rw [← set.eq_preimage_iff_image_eq, set.preimage_preimage], change _ = (D.t i j ≫ D.t j i ≫ _) ⁻¹' _, rw 𝖣 .t_inv_assoc, rw ← is_iso_iff_bijective, apply (forget Top).map_is_iso end lemma open_image_open (i : D.J) (U : opens (𝖣 .U i)) : is_open (𝖣 .ι i '' U) := begin rw is_open_iff, intro j, rw preimage_image_eq_image, apply (D.f_open _ _).is_open_map, apply (D.t j i ≫ D.f i j).continuous_to_fun.is_open_preimage, exact U.property end lemma ι_open_embedding (i : D.J) : open_embedding (𝖣 .ι i) := open_embedding_of_continuous_injective_open (𝖣 .ι i).continuous_to_fun (D.ι_injective i) (λ U h, D.open_image_open i ⟨U, h⟩) /-- A family of gluing data consists of 1. An index type `J` 2. A bundled topological space `U i` for each `i : J`. 3. An open set `V i j ⊆ U i` for each `i j : J`. 4. A transition map `t i j : V i j ⟶ V j i` for each `i j : ι`. such that 6. `V i i = U i`. 7. `t i i` is the identity. 8. For each `x ∈ V i j ∩ V i k`, `t i j x ∈ V j k`. 9. `t j k (t i j x) = t i k x`. We can then glue the topological spaces `U i` together by identifying `V i j` with `V j i`. -/ @[nolint has_nonempty_instance] structure mk_core := {J : Type u} (U : J → Top.{u}) (V : Π i, J → opens (U i)) (t : Π i j, (opens.to_Top _).obj (V i j) ⟶ (opens.to_Top _).obj (V j i)) (V_id : ∀ i, V i i = ⊤) (t_id : ∀ i, ⇑(t i i) = id) (t_inter : ∀ ⦃i j⦄ k (x : V i j), ↑x ∈ V i k → @coe (V j i) (U j) _ (t i j x) ∈ V j k) (cocycle : ∀ i j k (x : V i j) (h : ↑x ∈ V i k), @coe (V k j) (U k) _ (t j k ⟨↑(t i j x), t_inter k x h⟩) = @coe (V k i) (U k) _ (t i k ⟨x, h⟩)) lemma mk_core.t_inv (h : mk_core) (i j : h.J) (x : h.V j i) : h.t i j ((h.t j i) x) = x := begin have := h.cocycle j i j x _, rw h.t_id at this, convert subtype.eq this, { ext, refl }, all_goals { rw h.V_id, trivial } end instance (h : mk_core.{u}) (i j : h.J) : is_iso (h.t i j) := by { use h.t j i, split; ext1, exacts [h.t_inv _ _ _, h.t_inv _ _ _] } /-- (Implementation) the restricted transition map to be fed into `glue_data`. -/ def mk_core.t' (h : mk_core.{u}) (i j k : h.J) : pullback (h.V i j).inclusion (h.V i k).inclusion ⟶ pullback (h.V j k).inclusion (h.V j i).inclusion := begin refine (pullback_iso_prod_subtype _ _).hom ≫ ⟨_, _⟩ ≫ (pullback_iso_prod_subtype _ _).inv, { intro x, refine ⟨⟨⟨(h.t i j x.1.1).1, _⟩, h.t i j x.1.1⟩, rfl⟩, rcases x with ⟨⟨⟨x, hx⟩, ⟨x', hx'⟩⟩, (rfl : x = x')⟩, exact h.t_inter _ ⟨x, hx⟩ hx' }, continuity, end /-- This is a constructor of `Top.glue_data` whose arguments are in terms of elements and intersections rather than subobjects and pullbacks. Please refer to `Top.glue_data.mk_core` for details. -/ def mk' (h : mk_core.{u}) : Top.glue_data := { J := h.J, U := h.U, V := λ i, (opens.to_Top _).obj (h.V i.1 i.2), f := λ i j, (h.V i j).inclusion , f_id := λ i, (h.V_id i).symm ▸ is_iso.of_iso (opens.inclusion_top_iso (h.U i)), f_open := λ (i j : h.J), (h.V i j).open_embedding, t := h.t, t_id := λ i, by { ext, rw h.t_id, refl }, t' := h.t', t_fac := λ i j k, begin delta mk_core.t', rw [category.assoc, category.assoc, pullback_iso_prod_subtype_inv_snd, ← iso.eq_inv_comp, pullback_iso_prod_subtype_inv_fst_assoc], ext ⟨⟨⟨x, hx⟩, ⟨x', hx'⟩⟩, (rfl : x = x')⟩, refl, end, cocycle := λ i j k, begin delta mk_core.t', simp_rw ← category.assoc, rw iso.comp_inv_eq, simp only [iso.inv_hom_id_assoc, category.assoc, category.id_comp], rw [← iso.eq_inv_comp, iso.inv_hom_id], ext1 ⟨⟨⟨x, hx⟩, ⟨x', hx'⟩⟩, (rfl : x = x')⟩, simp only [Top.comp_app, continuous_map.coe_mk, prod.mk.inj_iff, Top.id_app, subtype.mk_eq_mk, subtype.coe_mk], rw [← subtype.coe_injective.eq_iff, subtype.val_eq_coe, subtype.coe_mk, and_self], convert congr_arg coe (h.t_inv k i ⟨x, hx'⟩) using 3, ext, exact h.cocycle i j k ⟨x, hx⟩ hx', end } . variables {α : Type u} [topological_space α] {J : Type u} (U : J → opens α) include U /-- We may construct a glue data from a family of open sets. -/ @[simps to_glue_data_J to_glue_data_U to_glue_data_V to_glue_data_t to_glue_data_f] def of_open_subsets : Top.glue_data.{u} := mk'.{u} { J := J, U := λ i, (opens.to_Top $ Top.of α).obj (U i), V := λ i j, (opens.map $ opens.inclusion _).obj (U j), t := λ i j, ⟨λ x, ⟨⟨x.1.1, x.2⟩, x.1.2⟩, by continuity⟩, V_id := λ i, by { ext, cases U i, simp }, t_id := λ i, by { ext, refl }, t_inter := λ i j k x hx, hx, cocycle := λ i j k x h, rfl } /-- The canonical map from the glue of a family of open subsets `α` into `α`. This map is an open embedding (`from_open_subsets_glue_open_embedding`), and its range is `⋃ i, (U i : set α)` (`range_from_open_subsets_glue`). -/ def from_open_subsets_glue : (of_open_subsets U).to_glue_data.glued ⟶ Top.of α := multicoequalizer.desc _ _ (λ x, opens.inclusion _) (by { rintro ⟨i, j⟩, ext x, refl }) @[simp, elementwise] lemma ι_from_open_subsets_glue (i : J) : (of_open_subsets U).to_glue_data.ι i ≫ from_open_subsets_glue U = opens.inclusion _ := multicoequalizer.π_desc _ _ _ _ _ lemma from_open_subsets_glue_injective : function.injective (from_open_subsets_glue U) := begin intros x y e, obtain ⟨i, ⟨x, hx⟩, rfl⟩ := (of_open_subsets U).ι_jointly_surjective x, obtain ⟨j, ⟨y, hy⟩, rfl⟩ := (of_open_subsets U).ι_jointly_surjective y, rw [ι_from_open_subsets_glue_apply, ι_from_open_subsets_glue_apply] at e, change x = y at e, subst e, rw (of_open_subsets U).ι_eq_iff_rel, right, exact ⟨⟨⟨x, hx⟩, hy⟩, rfl, rfl⟩, end lemma from_open_subsets_glue_is_open_map : is_open_map (from_open_subsets_glue U) := begin intros s hs, rw (of_open_subsets U).is_open_iff at hs, rw is_open_iff_forall_mem_open, rintros _ ⟨x, hx, rfl⟩, obtain ⟨i, ⟨x, hx'⟩, rfl⟩ := (of_open_subsets U).ι_jointly_surjective x, use from_open_subsets_glue U '' s ∩ set.range (@opens.inclusion (Top.of α) (U i)), use set.inter_subset_left _ _, split, { erw ← set.image_preimage_eq_inter_range, apply (@opens.open_embedding (Top.of α) (U i)).is_open_map, convert hs i using 1, rw [← ι_from_open_subsets_glue, coe_comp, set.preimage_comp], congr' 1, refine set.preimage_image_eq _ (from_open_subsets_glue_injective U) }, { refine ⟨set.mem_image_of_mem _ hx, _⟩, rw ι_from_open_subsets_glue_apply, exact set.mem_range_self _ }, end lemma from_open_subsets_glue_open_embedding : open_embedding (from_open_subsets_glue U) := open_embedding_of_continuous_injective_open (continuous_map.continuous_to_fun _) (from_open_subsets_glue_injective U) (from_open_subsets_glue_is_open_map U) lemma range_from_open_subsets_glue : set.range (from_open_subsets_glue U) = ⋃ i, (U i : set α) := begin ext, split, { rintro ⟨x, rfl⟩, obtain ⟨i, ⟨x, hx'⟩, rfl⟩ := (of_open_subsets U).ι_jointly_surjective x, rw ι_from_open_subsets_glue_apply, exact set.subset_Union _ i hx' }, { rintro ⟨_, ⟨i, rfl⟩, hx⟩, refine ⟨(of_open_subsets U).to_glue_data.ι i ⟨x, hx⟩, ι_from_open_subsets_glue_apply _ _ _⟩ } end /-- The gluing of an open cover is homeomomorphic to the original space. -/ def open_cover_glue_homeo (h : (⋃ i, (U i : set α)) = set.univ) : (of_open_subsets U).to_glue_data.glued ≃ₜ α := homeomorph.homeomorph_of_continuous_open (equiv.of_bijective (from_open_subsets_glue U) ⟨from_open_subsets_glue_injective U, set.range_iff_surjective.mp ((range_from_open_subsets_glue U).symm ▸ h)⟩) (from_open_subsets_glue U).2 (from_open_subsets_glue_is_open_map U) end glue_data end Top