/- Copyright (c) 2019 Reid Barton. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import topology.separation import topology.bases /-! # Dense embeddings This file defines three properties of functions: * `dense_range f` means `f` has dense image; * `dense_inducing i` means `i` is also `inducing`; * `dense_embedding e` means `e` is also an `embedding`. The main theorem `continuous_extend` gives a criterion for a function `f : X → Z` to a T₃ space Z to extend along a dense embedding `i : X → Y` to a continuous function `g : Y → Z`. Actually `i` only has to be `dense_inducing` (not necessarily injective). -/ noncomputable theory open set filter open_locale classical topological_space filter variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} /-- `i : α → β` is "dense inducing" if it has dense range and the topology on `α` is the one induced by `i` from the topology on `β`. -/ @[protect_proj] structure dense_inducing [topological_space α] [topological_space β] (i : α → β) extends inducing i : Prop := (dense : dense_range i) namespace dense_inducing variables [topological_space α] [topological_space β] variables {i : α → β} (di : dense_inducing i) lemma nhds_eq_comap (di : dense_inducing i) : ∀ a : α, 𝓝 a = comap i (𝓝 $ i a) := di.to_inducing.nhds_eq_comap protected lemma continuous (di : dense_inducing i) : continuous i := di.to_inducing.continuous lemma closure_range : closure (range i) = univ := di.dense.closure_range protected lemma preconnected_space [preconnected_space α] (di : dense_inducing i) : preconnected_space β := di.dense.preconnected_space di.continuous lemma closure_image_mem_nhds {s : set α} {a : α} (di : dense_inducing i) (hs : s ∈ 𝓝 a) : closure (i '' s) ∈ 𝓝 (i a) := begin rw [di.nhds_eq_comap a, ((nhds_basis_opens _).comap _).mem_iff] at hs, rcases hs with ⟨U, ⟨haU, hUo⟩, sub : i ⁻¹' U ⊆ s⟩, refine mem_of_superset (hUo.mem_nhds haU) _, calc U ⊆ closure (i '' (i ⁻¹' U)) : di.dense.subset_closure_image_preimage_of_is_open hUo ... ⊆ closure (i '' s) : closure_mono (image_subset i sub) end lemma dense_image (di : dense_inducing i) {s : set α} : dense (i '' s) ↔ dense s := begin refine ⟨λ H x, _, di.dense.dense_image di.continuous⟩, rw [di.to_inducing.closure_eq_preimage_closure_image, H.closure_eq, preimage_univ], trivial end /-- If `i : α → β` is a dense embedding with dense complement of the range, then any compact set in `α` has empty interior. -/ lemma interior_compact_eq_empty [t2_space β] (di : dense_inducing i) (hd : dense (range i)ᶜ) {s : set α} (hs : is_compact s) : interior s = ∅ := begin refine eq_empty_iff_forall_not_mem.2 (λ x hx, _), rw [mem_interior_iff_mem_nhds] at hx, have := di.closure_image_mem_nhds hx, rw (hs.image di.continuous).is_closed.closure_eq at this, rcases hd.inter_nhds_nonempty this with ⟨y, hyi, hys⟩, exact hyi (image_subset_range _ _ hys) end /-- The product of two dense inducings is a dense inducing -/ protected lemma prod [topological_space γ] [topological_space δ] {e₁ : α → β} {e₂ : γ → δ} (de₁ : dense_inducing e₁) (de₂ : dense_inducing e₂) : dense_inducing (λ(p : α × γ), (e₁ p.1, e₂ p.2)) := { induced := (de₁.to_inducing.prod_mk de₂.to_inducing).induced, dense := de₁.dense.prod_map de₂.dense } open topological_space /-- If the domain of a `dense_inducing` map is a separable space, then so is the codomain. -/ protected lemma separable_space [separable_space α] : separable_space β := di.dense.separable_space di.continuous variables [topological_space δ] {f : γ → α} {g : γ → δ} {h : δ → β} /-- ``` γ -f→ α g↓ ↓e δ -h→ β ``` -/ lemma tendsto_comap_nhds_nhds {d : δ} {a : α} (di : dense_inducing i) (H : tendsto h (𝓝 d) (𝓝 (i a))) (comm : h ∘ g = i ∘ f) : tendsto f (comap g (𝓝 d)) (𝓝 a) := begin have lim1 : map g (comap g (𝓝 d)) ≤ 𝓝 d := map_comap_le, replace lim1 : map h (map g (comap g (𝓝 d))) ≤ map h (𝓝 d) := map_mono lim1, rw [filter.map_map, comm, ← filter.map_map, map_le_iff_le_comap] at lim1, have lim2 : comap i (map h (𝓝 d)) ≤ comap i (𝓝 (i a)) := comap_mono H, rw ← di.nhds_eq_comap at lim2, exact le_trans lim1 lim2, end protected lemma nhds_within_ne_bot (di : dense_inducing i) (b : β) : ne_bot (𝓝[range i] b) := di.dense.nhds_within_ne_bot b lemma comap_nhds_ne_bot (di : dense_inducing i) (b : β) : ne_bot (comap i (𝓝 b)) := comap_ne_bot $ λ s hs, let ⟨_, ⟨ha, a, rfl⟩⟩ := mem_closure_iff_nhds.1 (di.dense b) s hs in ⟨a, ha⟩ variables [topological_space γ] /-- If `i : α → β` is a dense inducing, then any function `f : α → γ` "extends" to a function `g = extend di f : β → γ`. If `γ` is Hausdorff and `f` has a continuous extension, then `g` is the unique such extension. In general, `g` might not be continuous or even extend `f`. -/ def extend (di : dense_inducing i) (f : α → γ) (b : β) : γ := @@lim _ ⟨f (di.dense.some b)⟩ (comap i (𝓝 b)) f lemma extend_eq_of_tendsto [t2_space γ] {b : β} {c : γ} {f : α → γ} (hf : tendsto f (comap i (𝓝 b)) (𝓝 c)) : di.extend f b = c := by haveI := di.comap_nhds_ne_bot; exact hf.lim_eq lemma extend_eq_at [t2_space γ] {f : α → γ} {a : α} (hf : continuous_at f a) : di.extend f (i a) = f a := extend_eq_of_tendsto _ $ di.nhds_eq_comap a ▸ hf lemma extend_eq_at' [t2_space γ] {f : α → γ} {a : α} (c : γ) (hf : tendsto f (𝓝 a) (𝓝 c)) : di.extend f (i a) = f a := di.extend_eq_at (continuous_at_of_tendsto_nhds hf) lemma extend_eq [t2_space γ] {f : α → γ} (hf : continuous f) (a : α) : di.extend f (i a) = f a := di.extend_eq_at hf.continuous_at /-- Variation of `extend_eq` where we ask that `f` has a limit along `comap i (𝓝 b)` for each `b : β`. This is a strictly stronger assumption than continuity of `f`, but in a lot of cases you'd have to prove it anyway to use `continuous_extend`, so this avoids doing the work twice. -/ lemma extend_eq' [t2_space γ] {f : α → γ} (di : dense_inducing i) (hf : ∀ b, ∃ c, tendsto f (comap i (𝓝 b)) (𝓝 c)) (a : α) : di.extend f (i a) = f a := begin rcases hf (i a) with ⟨b, hb⟩, refine di.extend_eq_at' b _, rwa ← di.to_inducing.nhds_eq_comap at hb, end lemma extend_unique_at [t2_space γ] {b : β} {f : α → γ} {g : β → γ} (di : dense_inducing i) (hf : ∀ᶠ x in comap i (𝓝 b), g (i x) = f x) (hg : continuous_at g b) : di.extend f b = g b := begin refine di.extend_eq_of_tendsto (λ s hs, mem_map.2 _), suffices : ∀ᶠ (x : α) in comap i (𝓝 b), g (i x) ∈ s, from hf.mp (this.mono $ λ x hgx hfx, hfx ▸ hgx), clear hf f, refine eventually_comap.2 ((hg.eventually hs).mono _), rintros _ hxs x rfl, exact hxs end lemma extend_unique [t2_space γ] {f : α → γ} {g : β → γ} (di : dense_inducing i) (hf : ∀ x, g (i x) = f x) (hg : continuous g) : di.extend f = g := funext $ λ b, extend_unique_at di (eventually_of_forall hf) hg.continuous_at lemma continuous_at_extend [t3_space γ] {b : β} {f : α → γ} (di : dense_inducing i) (hf : ∀ᶠ x in 𝓝 b, ∃c, tendsto f (comap i $ 𝓝 x) (𝓝 c)) : continuous_at (di.extend f) b := begin set φ := di.extend f, haveI := di.comap_nhds_ne_bot, suffices : ∀ V' ∈ 𝓝 (φ b), is_closed V' → φ ⁻¹' V' ∈ 𝓝 b, by simpa [continuous_at, (closed_nhds_basis _).tendsto_right_iff], intros V' V'_in V'_closed, set V₁ := {x | tendsto f (comap i $ 𝓝 x) (𝓝 $ φ x)}, have V₁_in : V₁ ∈ 𝓝 b, { filter_upwards [hf], rintros x ⟨c, hc⟩, dsimp [V₁, φ], rwa di.extend_eq_of_tendsto hc }, obtain ⟨V₂, V₂_in, V₂_op, hV₂⟩ : ∃ V₂ ∈ 𝓝 b, is_open V₂ ∧ ∀ x ∈ i ⁻¹' V₂, f x ∈ V', { simpa [and_assoc] using ((nhds_basis_opens' b).comap i).tendsto_left_iff.mp (mem_of_mem_nhds V₁_in : b ∈ V₁) V' V'_in }, suffices : ∀ x ∈ V₁ ∩ V₂, φ x ∈ V', { filter_upwards [inter_mem V₁_in V₂_in] using this, }, rintros x ⟨x_in₁, x_in₂⟩, have hV₂x : V₂ ∈ 𝓝 x := is_open.mem_nhds V₂_op x_in₂, apply V'_closed.mem_of_tendsto x_in₁, use V₂, tauto, end lemma continuous_extend [t3_space γ] {f : α → γ} (di : dense_inducing i) (hf : ∀b, ∃c, tendsto f (comap i (𝓝 b)) (𝓝 c)) : continuous (di.extend f) := continuous_iff_continuous_at.mpr $ assume b, di.continuous_at_extend $ univ_mem' hf lemma mk' (i : α → β) (c : continuous i) (dense : ∀x, x ∈ closure (range i)) (H : ∀ (a:α) s ∈ 𝓝 a, ∃t ∈ 𝓝 (i a), ∀ b, i b ∈ t → b ∈ s) : dense_inducing i := { induced := (induced_iff_nhds_eq i).2 $ λ a, le_antisymm (tendsto_iff_comap.1 $ c.tendsto _) (by simpa [filter.le_def] using H a), dense := dense } end dense_inducing /-- A dense embedding is an embedding with dense image. -/ structure dense_embedding [topological_space α] [topological_space β] (e : α → β) extends dense_inducing e : Prop := (inj : function.injective e) theorem dense_embedding.mk' [topological_space α] [topological_space β] (e : α → β) (c : continuous e) (dense : dense_range e) (inj : function.injective e) (H : ∀ (a:α) s ∈ 𝓝 a, ∃t ∈ 𝓝 (e a), ∀ b, e b ∈ t → b ∈ s) : dense_embedding e := { inj := inj, ..dense_inducing.mk' e c dense H} namespace dense_embedding open topological_space variables [topological_space α] [topological_space β] [topological_space γ] [topological_space δ] variables {e : α → β} (de : dense_embedding e) lemma inj_iff {x y} : e x = e y ↔ x = y := de.inj.eq_iff lemma to_embedding : embedding e := { induced := de.induced, inj := de.inj } /-- If the domain of a `dense_embedding` is a separable space, then so is its codomain. -/ protected lemma separable_space [separable_space α] : separable_space β := de.to_dense_inducing.separable_space /-- The product of two dense embeddings is a dense embedding. -/ protected lemma prod {e₁ : α → β} {e₂ : γ → δ} (de₁ : dense_embedding e₁) (de₂ : dense_embedding e₂) : dense_embedding (λ(p : α × γ), (e₁ p.1, e₂ p.2)) := { inj := assume ⟨x₁, x₂⟩ ⟨y₁, y₂⟩, by simp; exact assume h₁ h₂, ⟨de₁.inj h₁, de₂.inj h₂⟩, ..dense_inducing.prod de₁.to_dense_inducing de₂.to_dense_inducing } /-- The dense embedding of a subtype inside its closure. -/ @[simps] def subtype_emb {α : Type*} (p : α → Prop) (e : α → β) (x : {x // p x}) : {x // x ∈ closure (e '' {x | p x})} := ⟨e x, subset_closure $ mem_image_of_mem e x.prop⟩ protected lemma subtype (p : α → Prop) : dense_embedding (subtype_emb p e) := { dense := dense_iff_closure_eq.2 $ begin ext ⟨x, hx⟩, rw image_eq_range at hx, simpa [closure_subtype, ← range_comp, (∘)], end, inj := (de.inj.comp subtype.coe_injective).cod_restrict _, induced := (induced_iff_nhds_eq _).2 (assume ⟨x, hx⟩, by simp [subtype_emb, nhds_subtype_eq_comap, de.to_inducing.nhds_eq_comap, comap_comap, (∘)]) } lemma dense_image {s : set α} : dense (e '' s) ↔ dense s := de.to_dense_inducing.dense_image end dense_embedding lemma dense.dense_embedding_coe [topological_space α] {s : set α} (hs : dense s) : dense_embedding (coe : s → α) := { dense := hs.dense_range_coe, .. embedding_subtype_coe } lemma is_closed_property [topological_space β] {e : α → β} {p : β → Prop} (he : dense_range e) (hp : is_closed {x | p x}) (h : ∀a, p (e a)) : ∀b, p b := have univ ⊆ {b | p b}, from calc univ = closure (range e) : he.closure_range.symm ... ⊆ closure {b | p b} : closure_mono $ range_subset_iff.mpr h ... = _ : hp.closure_eq, assume b, this trivial lemma is_closed_property2 [topological_space β] {e : α → β} {p : β → β → Prop} (he : dense_range e) (hp : is_closed {q:β×β | p q.1 q.2}) (h : ∀a₁ a₂, p (e a₁) (e a₂)) : ∀b₁ b₂, p b₁ b₂ := have ∀q:β×β, p q.1 q.2, from is_closed_property (he.prod_map he) hp $ λ _, h _ _, assume b₁ b₂, this ⟨b₁, b₂⟩ lemma is_closed_property3 [topological_space β] {e : α → β} {p : β → β → β → Prop} (he : dense_range e) (hp : is_closed {q:β×β×β | p q.1 q.2.1 q.2.2}) (h : ∀a₁ a₂ a₃, p (e a₁) (e a₂) (e a₃)) : ∀b₁ b₂ b₃, p b₁ b₂ b₃ := have ∀q:β×β×β, p q.1 q.2.1 q.2.2, from is_closed_property (he.prod_map $ he.prod_map he) hp $ λ _, h _ _ _, assume b₁ b₂ b₃, this ⟨b₁, b₂, b₃⟩ @[elab_as_eliminator] lemma dense_range.induction_on [topological_space β] {e : α → β} (he : dense_range e) {p : β → Prop} (b₀ : β) (hp : is_closed {b | p b}) (ih : ∀a:α, p $ e a) : p b₀ := is_closed_property he hp ih b₀ @[elab_as_eliminator] lemma dense_range.induction_on₂ [topological_space β] {e : α → β} {p : β → β → Prop} (he : dense_range e) (hp : is_closed {q:β×β | p q.1 q.2}) (h : ∀a₁ a₂, p (e a₁) (e a₂)) (b₁ b₂ : β) : p b₁ b₂ := is_closed_property2 he hp h _ _ @[elab_as_eliminator] lemma dense_range.induction_on₃ [topological_space β] {e : α → β} {p : β → β → β → Prop} (he : dense_range e) (hp : is_closed {q:β×β×β | p q.1 q.2.1 q.2.2}) (h : ∀a₁ a₂ a₃, p (e a₁) (e a₂) (e a₃)) (b₁ b₂ b₃ : β) : p b₁ b₂ b₃ := is_closed_property3 he hp h _ _ _ section variables [topological_space β] [topological_space γ] [t2_space γ] variables {f : α → β} /-- Two continuous functions to a t2-space that agree on the dense range of a function are equal. -/ lemma dense_range.equalizer (hfd : dense_range f) {g h : β → γ} (hg : continuous g) (hh : continuous h) (H : g ∘ f = h ∘ f) : g = h := funext $ λ y, hfd.induction_on y (is_closed_eq hg hh) $ congr_fun H end -- Bourbaki GT III §3 no.4 Proposition 7 (generalised to any dense-inducing map to a T₃ space) lemma filter.has_basis.has_basis_of_dense_inducing [topological_space α] [topological_space β] [t3_space β] {ι : Type*} {s : ι → set α} {p : ι → Prop} {x : α} (h : (𝓝 x).has_basis p s) {f : α → β} (hf : dense_inducing f) : (𝓝 (f x)).has_basis p $ λ i, closure $ f '' (s i) := begin rw filter.has_basis_iff at h ⊢, intros T, refine ⟨λ hT, _, λ hT, _⟩, { obtain ⟨T', hT₁, hT₂, hT₃⟩ := nhds_is_closed hT, have hT₄ : f⁻¹' T' ∈ 𝓝 x, { rw hf.to_inducing.nhds_eq_comap x, exact ⟨T', hT₁, subset.rfl⟩, }, obtain ⟨i, hi, hi'⟩ := (h _).mp hT₄, exact ⟨i, hi, (closure_mono (image_subset f hi')).trans (subset.trans (closure_minimal (image_subset_iff.mpr subset.rfl) hT₃) hT₂)⟩, }, { obtain ⟨i, hi, hi'⟩ := hT, suffices : closure (f '' s i) ∈ 𝓝 (f x), { filter_upwards [this] using hi', }, replace h := (h (s i)).mpr ⟨i, hi, subset.rfl⟩, exact hf.closure_image_mem_nhds h, }, end