/- Copyright (c) 2019 Reid Barton. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel -/ import topology.constructions /-! # Neighborhoods and continuity relative to a subset This file defines relative versions * `nhds_within` of `nhds` * `continuous_on` of `continuous` * `continuous_within_at` of `continuous_at` and proves their basic properties, including the relationships between these restricted notions and the corresponding notions for the subtype equipped with the subspace topology. ## Notation * `𝓝 x`: the filter of neighborhoods of a point `x`; * `𝓟 s`: the principal filter of a set `s`; * `𝓝[s] x`: the filter `nhds_within x s` of neighborhoods of a point `x` within a set `s`. -/ open set filter function open_locale topological_space filter variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} variables [topological_space α] @[simp] lemma nhds_bind_nhds_within {a : α} {s : set α} : (𝓝 a).bind (λ x, 𝓝[s] x) = 𝓝[s] a := bind_inf_principal.trans $ congr_arg2 _ nhds_bind_nhds rfl @[simp] lemma eventually_nhds_nhds_within {a : α} {s : set α} {p : α → Prop} : (∀ᶠ y in 𝓝 a, ∀ᶠ x in 𝓝[s] y, p x) ↔ ∀ᶠ x in 𝓝[s] a, p x := filter.ext_iff.1 nhds_bind_nhds_within {x | p x} lemma eventually_nhds_within_iff {a : α} {s : set α} {p : α → Prop} : (∀ᶠ x in 𝓝[s] a, p x) ↔ ∀ᶠ x in 𝓝 a, x ∈ s → p x := eventually_inf_principal @[simp] lemma eventually_nhds_within_nhds_within {a : α} {s : set α} {p : α → Prop} : (∀ᶠ y in 𝓝[s] a, ∀ᶠ x in 𝓝[s] y, p x) ↔ ∀ᶠ x in 𝓝[s] a, p x := begin refine ⟨λ h, _, λ h, (eventually_nhds_nhds_within.2 h).filter_mono inf_le_left⟩, simp only [eventually_nhds_within_iff] at h ⊢, exact h.mono (λ x hx hxs, (hx hxs).self_of_nhds hxs) end theorem nhds_within_eq (a : α) (s : set α) : 𝓝[s] a = ⨅ t ∈ {t : set α | a ∈ t ∧ is_open t}, 𝓟 (t ∩ s) := ((nhds_basis_opens a).inf_principal s).eq_binfi theorem nhds_within_univ (a : α) : 𝓝[set.univ] a = 𝓝 a := by rw [nhds_within, principal_univ, inf_top_eq] lemma nhds_within_has_basis {p : β → Prop} {s : β → set α} {a : α} (h : (𝓝 a).has_basis p s) (t : set α) : (𝓝[t] a).has_basis p (λ i, s i ∩ t) := h.inf_principal t lemma nhds_within_basis_open (a : α) (t : set α) : (𝓝[t] a).has_basis (λ u, a ∈ u ∧ is_open u) (λ u, u ∩ t) := nhds_within_has_basis (nhds_basis_opens a) t theorem mem_nhds_within {t : set α} {a : α} {s : set α} : t ∈ 𝓝[s] a ↔ ∃ u, is_open u ∧ a ∈ u ∧ u ∩ s ⊆ t := by simpa only [exists_prop, and_assoc, and_comm] using (nhds_within_basis_open a s).mem_iff lemma mem_nhds_within_iff_exists_mem_nhds_inter {t : set α} {a : α} {s : set α} : t ∈ 𝓝[s] a ↔ ∃ u ∈ 𝓝 a, u ∩ s ⊆ t := (nhds_within_has_basis (𝓝 a).basis_sets s).mem_iff lemma diff_mem_nhds_within_compl {x : α} {s : set α} (hs : s ∈ 𝓝 x) (t : set α) : s \ t ∈ 𝓝[tᶜ] x := diff_mem_inf_principal_compl hs t lemma diff_mem_nhds_within_diff {x : α} {s t : set α} (hs : s ∈ 𝓝[t] x) (t' : set α) : s \ t' ∈ 𝓝[t \ t'] x := begin rw [nhds_within, diff_eq, diff_eq, ← inf_principal, ← inf_assoc], exact inter_mem_inf hs (mem_principal_self _) end lemma nhds_of_nhds_within_of_nhds {s t : set α} {a : α} (h1 : s ∈ 𝓝 a) (h2 : t ∈ 𝓝[s] a) : (t ∈ 𝓝 a) := begin rcases mem_nhds_within_iff_exists_mem_nhds_inter.mp h2 with ⟨_, Hw, hw⟩, exact (nhds a).sets_of_superset ((nhds a).inter_sets Hw h1) hw, end lemma mem_nhds_within_iff_eventually {s t : set α} {x : α} : t ∈ 𝓝[s] x ↔ ∀ᶠ y in 𝓝 x, y ∈ s → y ∈ t := begin rw [mem_nhds_within_iff_exists_mem_nhds_inter], split, { rintro ⟨u, hu, hut⟩, exact eventually_of_mem hu (λ x hxu hxs, hut ⟨hxu, hxs⟩) }, { refine λ h, ⟨_, h, λ y hy, hy.1 hy.2⟩ } end lemma mem_nhds_within_iff_eventually_eq {s t : set α} {x : α} : t ∈ 𝓝[s] x ↔ s =ᶠ[𝓝 x] (s ∩ t : set α) := by simp_rw [mem_nhds_within_iff_eventually, eventually_eq_set, mem_inter_iff, iff_self_and] lemma nhds_within_eq_iff_eventually_eq {s t : set α} {x : α} : 𝓝[s] x = 𝓝[t] x ↔ s =ᶠ[𝓝 x] t := begin simp_rw [filter.ext_iff, mem_nhds_within_iff_eventually, eventually_eq_set], split, { intro h, filter_upwards [(h t).mpr (eventually_of_forall $ λ x, id), (h s).mp (eventually_of_forall $ λ x, id)], exact λ x, iff.intro, }, { refine λ h u, eventually_congr (h.mono $ λ x h, _), rw [h] } end lemma nhds_within_le_iff {s t : set α} {x : α} : 𝓝[s] x ≤ 𝓝[t] x ↔ t ∈ 𝓝[s] x := begin simp_rw [filter.le_def, mem_nhds_within_iff_eventually], split, { exact λ h, (h t $ eventually_of_forall (λ x, id)).mono (λ x, id) }, { exact λ h u hu, (h.and hu).mono (λ x hx h, hx.2 $ hx.1 h) } end lemma preimage_nhds_within_coinduced' {π : α → β} {s : set β} {t : set α} {a : α} (h : a ∈ t) (ht : is_open t) (hs : s ∈ @nhds β (topological_space.coinduced (λ x : t, π x) subtype.topological_space) (π a)) : π ⁻¹' s ∈ 𝓝[t] a := begin letI := topological_space.coinduced (λ x : t, π x) subtype.topological_space, rcases mem_nhds_iff.mp hs with ⟨V, hVs, V_op, mem_V⟩, refine mem_nhds_within_iff_exists_mem_nhds_inter.mpr ⟨π ⁻¹' V, mem_nhds_iff.mpr ⟨t ∩ π ⁻¹' V, inter_subset_right t (π ⁻¹' V), _, mem_sep h mem_V⟩, subset.trans (inter_subset_left _ _) (preimage_mono hVs)⟩, obtain ⟨u, hu1, hu2⟩ := is_open_induced_iff.mp (is_open_coinduced.1 V_op), rw [preimage_comp] at hu2, rw [set.inter_comm, ←(subtype.preimage_coe_eq_preimage_coe_iff.mp hu2)], exact hu1.inter ht, end lemma mem_nhds_within_of_mem_nhds {s t : set α} {a : α} (h : s ∈ 𝓝 a) : s ∈ 𝓝[t] a := mem_inf_of_left h theorem self_mem_nhds_within {a : α} {s : set α} : s ∈ 𝓝[s] a := mem_inf_of_right (mem_principal_self s) theorem eventually_mem_nhds_within {a : α} {s : set α} : ∀ᶠ x in 𝓝[s] a, x ∈ s := self_mem_nhds_within theorem inter_mem_nhds_within (s : set α) {t : set α} {a : α} (h : t ∈ 𝓝 a) : s ∩ t ∈ 𝓝[s] a := inter_mem self_mem_nhds_within (mem_inf_of_left h) theorem nhds_within_mono (a : α) {s t : set α} (h : s ⊆ t) : 𝓝[s] a ≤ 𝓝[t] a := inf_le_inf_left _ (principal_mono.mpr h) lemma pure_le_nhds_within {a : α} {s : set α} (ha : a ∈ s) : pure a ≤ 𝓝[s] a := le_inf (pure_le_nhds a) (le_principal_iff.2 ha) lemma mem_of_mem_nhds_within {a : α} {s t : set α} (ha : a ∈ s) (ht : t ∈ 𝓝[s] a) : a ∈ t := pure_le_nhds_within ha ht lemma filter.eventually.self_of_nhds_within {p : α → Prop} {s : set α} {x : α} (h : ∀ᶠ y in 𝓝[s] x, p y) (hx : x ∈ s) : p x := mem_of_mem_nhds_within hx h lemma tendsto_const_nhds_within {l : filter β} {s : set α} {a : α} (ha : a ∈ s) : tendsto (λ x : β, a) l (𝓝[s] a) := tendsto_const_pure.mono_right $ pure_le_nhds_within ha theorem nhds_within_restrict'' {a : α} (s : set α) {t : set α} (h : t ∈ 𝓝[s] a) : 𝓝[s] a = 𝓝[s ∩ t] a := le_antisymm (le_inf inf_le_left (le_principal_iff.mpr (inter_mem self_mem_nhds_within h))) (inf_le_inf_left _ (principal_mono.mpr (set.inter_subset_left _ _))) theorem nhds_within_restrict' {a : α} (s : set α) {t : set α} (h : t ∈ 𝓝 a) : 𝓝[s] a = 𝓝[s ∩ t] a := nhds_within_restrict'' s $ mem_inf_of_left h theorem nhds_within_restrict {a : α} (s : set α) {t : set α} (h₀ : a ∈ t) (h₁ : is_open t) : 𝓝[s] a = 𝓝[s ∩ t] a := nhds_within_restrict' s (is_open.mem_nhds h₁ h₀) theorem nhds_within_le_of_mem {a : α} {s t : set α} (h : s ∈ 𝓝[t] a) : 𝓝[t] a ≤ 𝓝[s] a := nhds_within_le_iff.mpr h theorem nhds_within_le_nhds {a : α} {s : set α} : 𝓝[s] a ≤ 𝓝 a := by { rw ← nhds_within_univ, apply nhds_within_le_of_mem, exact univ_mem } lemma nhds_within_eq_nhds_within' {a : α} {s t u : set α} (hs : s ∈ 𝓝 a) (h₂ : t ∩ s = u ∩ s) : 𝓝[t] a = 𝓝[u] a := by rw [nhds_within_restrict' t hs, nhds_within_restrict' u hs, h₂] theorem nhds_within_eq_nhds_within {a : α} {s t u : set α} (h₀ : a ∈ s) (h₁ : is_open s) (h₂ : t ∩ s = u ∩ s) : 𝓝[t] a = 𝓝[u] a := by rw [nhds_within_restrict t h₀ h₁, nhds_within_restrict u h₀ h₁, h₂] theorem is_open.nhds_within_eq {a : α} {s : set α} (h : is_open s) (ha : a ∈ s) : 𝓝[s] a = 𝓝 a := inf_eq_left.2 $ le_principal_iff.2 $ is_open.mem_nhds h ha lemma preimage_nhds_within_coinduced {π : α → β} {s : set β} {t : set α} {a : α} (h : a ∈ t) (ht : is_open t) (hs : s ∈ @nhds β (topological_space.coinduced (λ x : t, π x) subtype.topological_space) (π a)) : π ⁻¹' s ∈ 𝓝 a := by { rw ← ht.nhds_within_eq h, exact preimage_nhds_within_coinduced' h ht hs } @[simp] theorem nhds_within_empty (a : α) : 𝓝[∅] a = ⊥ := by rw [nhds_within, principal_empty, inf_bot_eq] theorem nhds_within_union (a : α) (s t : set α) : 𝓝[s ∪ t] a = 𝓝[s] a ⊔ 𝓝[t] a := by { delta nhds_within, rw [←inf_sup_left, sup_principal] } theorem nhds_within_inter (a : α) (s t : set α) : 𝓝[s ∩ t] a = 𝓝[s] a ⊓ 𝓝[t] a := by { delta nhds_within, rw [inf_left_comm, inf_assoc, inf_principal, ←inf_assoc, inf_idem] } theorem nhds_within_inter' (a : α) (s t : set α) : 𝓝[s ∩ t] a = (𝓝[s] a) ⊓ 𝓟 t := by { delta nhds_within, rw [←inf_principal, inf_assoc] } theorem nhds_within_inter_of_mem {a : α} {s t : set α} (h : s ∈ 𝓝[t] a) : 𝓝[s ∩ t] a = 𝓝[t] a := by { rw [nhds_within_inter, inf_eq_right], exact nhds_within_le_of_mem h } @[simp] theorem nhds_within_singleton (a : α) : 𝓝[{a}] a = pure a := by rw [nhds_within, principal_singleton, inf_eq_right.2 (pure_le_nhds a)] @[simp] theorem nhds_within_insert (a : α) (s : set α) : 𝓝[insert a s] a = pure a ⊔ 𝓝[s] a := by rw [← singleton_union, nhds_within_union, nhds_within_singleton] lemma mem_nhds_within_insert {a : α} {s t : set α} : t ∈ 𝓝[insert a s] a ↔ a ∈ t ∧ t ∈ 𝓝[s] a := by simp lemma insert_mem_nhds_within_insert {a : α} {s t : set α} (h : t ∈ 𝓝[s] a) : insert a t ∈ 𝓝[insert a s] a := by simp [mem_of_superset h] lemma insert_mem_nhds_iff {a : α} {s : set α} : insert a s ∈ 𝓝 a ↔ s ∈ 𝓝[≠] a := by simp only [nhds_within, mem_inf_principal, mem_compl_iff, mem_singleton_iff, or_iff_not_imp_left, insert_def] @[simp] theorem nhds_within_compl_singleton_sup_pure (a : α) : 𝓝[≠] a ⊔ pure a = 𝓝 a := by rw [← nhds_within_singleton, ← nhds_within_union, compl_union_self, nhds_within_univ] lemma nhds_within_prod_eq {α : Type*} [topological_space α] {β : Type*} [topological_space β] (a : α) (b : β) (s : set α) (t : set β) : 𝓝[s ×ˢ t] (a, b) = 𝓝[s] a ×ᶠ 𝓝[t] b := by { delta nhds_within, rw [nhds_prod_eq, ←filter.prod_inf_prod, filter.prod_principal_principal] } lemma nhds_within_prod {α : Type*} [topological_space α] {β : Type*} [topological_space β] {s u : set α} {t v : set β} {a : α} {b : β} (hu : u ∈ 𝓝[s] a) (hv : v ∈ 𝓝[t] b) : (u ×ˢ v) ∈ 𝓝[s ×ˢ t] (a, b) := by { rw nhds_within_prod_eq, exact prod_mem_prod hu hv, } lemma nhds_within_pi_eq' {ι : Type*} {α : ι → Type*} [Π i, topological_space (α i)] {I : set ι} (hI : I.finite) (s : Π i, set (α i)) (x : Π i, α i) : 𝓝[pi I s] x = ⨅ i, comap (λ x, x i) (𝓝 (x i) ⊓ ⨅ (hi : i ∈ I), 𝓟 (s i)) := by simp only [nhds_within, nhds_pi, filter.pi, comap_inf, comap_infi, pi_def, comap_principal, ← infi_principal_finite hI, ← infi_inf_eq] lemma nhds_within_pi_eq {ι : Type*} {α : ι → Type*} [Π i, topological_space (α i)] {I : set ι} (hI : I.finite) (s : Π i, set (α i)) (x : Π i, α i) : 𝓝[pi I s] x = (⨅ i ∈ I, comap (λ x, x i) (𝓝[s i] (x i))) ⊓ ⨅ (i ∉ I), comap (λ x, x i) (𝓝 (x i)) := begin simp only [nhds_within, nhds_pi, filter.pi, pi_def, ← infi_principal_finite hI, comap_inf, comap_principal, eval], rw [infi_split _ (λ i, i ∈ I), inf_right_comm], simp only [infi_inf_eq] end lemma nhds_within_pi_univ_eq {ι : Type*} {α : ι → Type*} [finite ι] [Π i, topological_space (α i)] (s : Π i, set (α i)) (x : Π i, α i) : 𝓝[pi univ s] x = ⨅ i, comap (λ x, x i) 𝓝[s i] (x i) := by simpa [nhds_within] using nhds_within_pi_eq finite_univ s x lemma nhds_within_pi_eq_bot {ι : Type*} {α : ι → Type*} [Π i, topological_space (α i)] {I : set ι} {s : Π i, set (α i)} {x : Π i, α i} : 𝓝[pi I s] x = ⊥ ↔ ∃ i ∈ I, 𝓝[s i] (x i) = ⊥ := by simp only [nhds_within, nhds_pi, pi_inf_principal_pi_eq_bot] lemma nhds_within_pi_ne_bot {ι : Type*} {α : ι → Type*} [Π i, topological_space (α i)] {I : set ι} {s : Π i, set (α i)} {x : Π i, α i} : (𝓝[pi I s] x).ne_bot ↔ ∀ i ∈ I, (𝓝[s i] (x i)).ne_bot := by simp [ne_bot_iff, nhds_within_pi_eq_bot] theorem filter.tendsto.piecewise_nhds_within {f g : α → β} {t : set α} [∀ x, decidable (x ∈ t)] {a : α} {s : set α} {l : filter β} (h₀ : tendsto f (𝓝[s ∩ t] a) l) (h₁ : tendsto g (𝓝[s ∩ tᶜ] a) l) : tendsto (piecewise t f g) (𝓝[s] a) l := by apply tendsto.piecewise; rwa ← nhds_within_inter' theorem filter.tendsto.if_nhds_within {f g : α → β} {p : α → Prop} [decidable_pred p] {a : α} {s : set α} {l : filter β} (h₀ : tendsto f (𝓝[s ∩ {x | p x}] a) l) (h₁ : tendsto g (𝓝[s ∩ {x | ¬ p x}] a) l) : tendsto (λ x, if p x then f x else g x) (𝓝[s] a) l := h₀.piecewise_nhds_within h₁ lemma map_nhds_within (f : α → β) (a : α) (s : set α) : map f (𝓝[s] a) = ⨅ t ∈ {t : set α | a ∈ t ∧ is_open t}, 𝓟 (f '' (t ∩ s)) := ((nhds_within_basis_open a s).map f).eq_binfi theorem tendsto_nhds_within_mono_left {f : α → β} {a : α} {s t : set α} {l : filter β} (hst : s ⊆ t) (h : tendsto f (𝓝[t] a) l) : tendsto f (𝓝[s] a) l := h.mono_left $ nhds_within_mono a hst theorem tendsto_nhds_within_mono_right {f : β → α} {l : filter β} {a : α} {s t : set α} (hst : s ⊆ t) (h : tendsto f l (𝓝[s] a)) : tendsto f l (𝓝[t] a) := h.mono_right (nhds_within_mono a hst) theorem tendsto_nhds_within_of_tendsto_nhds {f : α → β} {a : α} {s : set α} {l : filter β} (h : tendsto f (𝓝 a) l) : tendsto f (𝓝[s] a) l := h.mono_left inf_le_left theorem principal_subtype {α : Type*} (s : set α) (t : set {x // x ∈ s}) : 𝓟 t = comap coe (𝓟 ((coe : s → α) '' t)) := by rw [comap_principal, set.preimage_image_eq _ subtype.coe_injective] lemma nhds_within_ne_bot_of_mem {s : set α} {x : α} (hx : x ∈ s) : ne_bot (𝓝[s] x) := mem_closure_iff_nhds_within_ne_bot.1 $ subset_closure hx lemma is_closed.mem_of_nhds_within_ne_bot {s : set α} (hs : is_closed s) {x : α} (hx : ne_bot $ 𝓝[s] x) : x ∈ s := by simpa only [hs.closure_eq] using mem_closure_iff_nhds_within_ne_bot.2 hx lemma dense_range.nhds_within_ne_bot {ι : Type*} {f : ι → α} (h : dense_range f) (x : α) : ne_bot (𝓝[range f] x) := mem_closure_iff_cluster_pt.1 (h x) lemma mem_closure_pi {ι : Type*} {α : ι → Type*} [Π i, topological_space (α i)] {I : set ι} {s : Π i, set (α i)} {x : Π i, α i} : x ∈ closure (pi I s) ↔ ∀ i ∈ I, x i ∈ closure (s i) := by simp only [mem_closure_iff_nhds_within_ne_bot, nhds_within_pi_ne_bot] lemma closure_pi_set {ι : Type*} {α : ι → Type*} [Π i, topological_space (α i)] (I : set ι) (s : Π i, set (α i)) : closure (pi I s) = pi I (λ i, closure (s i)) := set.ext $ λ x, mem_closure_pi lemma dense_pi {ι : Type*} {α : ι → Type*} [Π i, topological_space (α i)] {s : Π i, set (α i)} (I : set ι) (hs : ∀ i ∈ I, dense (s i)) : dense (pi I s) := by simp only [dense_iff_closure_eq, closure_pi_set, pi_congr rfl (λ i hi, (hs i hi).closure_eq), pi_univ] lemma eventually_eq_nhds_within_iff {f g : α → β} {s : set α} {a : α} : (f =ᶠ[𝓝[s] a] g) ↔ ∀ᶠ x in 𝓝 a, x ∈ s → f x = g x := mem_inf_principal lemma eventually_eq_nhds_within_of_eq_on {f g : α → β} {s : set α} {a : α} (h : eq_on f g s) : f =ᶠ[𝓝[s] a] g := mem_inf_of_right h lemma set.eq_on.eventually_eq_nhds_within {f g : α → β} {s : set α} {a : α} (h : eq_on f g s) : f =ᶠ[𝓝[s] a] g := eventually_eq_nhds_within_of_eq_on h lemma tendsto_nhds_within_congr {f g : α → β} {s : set α} {a : α} {l : filter β} (hfg : ∀ x ∈ s, f x = g x) (hf : tendsto f (𝓝[s] a) l) : tendsto g (𝓝[s] a) l := (tendsto_congr' $ eventually_eq_nhds_within_of_eq_on hfg).1 hf lemma eventually_nhds_within_of_forall {s : set α} {a : α} {p : α → Prop} (h : ∀ x ∈ s, p x) : ∀ᶠ x in 𝓝[s] a, p x := mem_inf_of_right h lemma tendsto_nhds_within_of_tendsto_nhds_of_eventually_within {a : α} {l : filter β} {s : set α} (f : β → α) (h1 : tendsto f l (𝓝 a)) (h2 : ∀ᶠ x in l, f x ∈ s) : tendsto f l (𝓝[s] a) := tendsto_inf.2 ⟨h1, tendsto_principal.2 h2⟩ @[simp] lemma tendsto_nhds_within_range {a : α} {l : filter β} {f : β → α} : tendsto f l (𝓝[range f] a) ↔ tendsto f l (𝓝 a) := ⟨λ h, h.mono_right inf_le_left, λ h, tendsto_inf.2 ⟨h, tendsto_principal.2 $ eventually_of_forall mem_range_self⟩⟩ lemma filter.eventually_eq.eq_of_nhds_within {s : set α} {f g : α → β} {a : α} (h : f =ᶠ[𝓝[s] a] g) (hmem : a ∈ s) : f a = g a := h.self_of_nhds_within hmem lemma eventually_nhds_within_of_eventually_nhds {α : Type*} [topological_space α] {s : set α} {a : α} {p : α → Prop} (h : ∀ᶠ x in 𝓝 a, p x) : ∀ᶠ x in 𝓝[s] a, p x := mem_nhds_within_of_mem_nhds h /-! ### `nhds_within` and subtypes -/ theorem mem_nhds_within_subtype {s : set α} {a : {x // x ∈ s}} {t u : set {x // x ∈ s}} : t ∈ 𝓝[u] a ↔ t ∈ comap (coe : s → α) (𝓝[coe '' u] a) := by rw [nhds_within, nhds_subtype, principal_subtype, ←comap_inf, ←nhds_within] theorem nhds_within_subtype (s : set α) (a : {x // x ∈ s}) (t : set {x // x ∈ s}) : 𝓝[t] a = comap (coe : s → α) (𝓝[coe '' t] a) := filter.ext $ λ u, mem_nhds_within_subtype theorem nhds_within_eq_map_subtype_coe {s : set α} {a : α} (h : a ∈ s) : 𝓝[s] a = map (coe : s → α) (𝓝 ⟨a, h⟩) := by simpa only [subtype.range_coe] using (embedding_subtype_coe.map_nhds_eq ⟨a, h⟩).symm theorem mem_nhds_subtype_iff_nhds_within {s : set α} {a : s} {t : set s} : t ∈ 𝓝 a ↔ coe '' t ∈ 𝓝[s] (a : α) := by rw [nhds_within_eq_map_subtype_coe a.coe_prop, mem_map, preimage_image_eq _ subtype.coe_injective, subtype.coe_eta] theorem preimage_coe_mem_nhds_subtype {s t : set α} {a : s} : coe ⁻¹' t ∈ 𝓝 a ↔ t ∈ 𝓝[s] ↑a := by simp only [mem_nhds_subtype_iff_nhds_within, subtype.image_preimage_coe, inter_mem_iff, self_mem_nhds_within, and_true] theorem tendsto_nhds_within_iff_subtype {s : set α} {a : α} (h : a ∈ s) (f : α → β) (l : filter β) : tendsto f (𝓝[s] a) l ↔ tendsto (s.restrict f) (𝓝 ⟨a, h⟩) l := by simp only [tendsto, nhds_within_eq_map_subtype_coe h, filter.map_map, restrict] variables [topological_space β] [topological_space γ] [topological_space δ] /-- A function between topological spaces is continuous at a point `x₀` within a subset `s` if `f x` tends to `f x₀` when `x` tends to `x₀` while staying within `s`. -/ def continuous_within_at (f : α → β) (s : set α) (x : α) : Prop := tendsto f (𝓝[s] x) (𝓝 (f x)) /-- If a function is continuous within `s` at `x`, then it tends to `f x` within `s` by definition. We register this fact for use with the dot notation, especially to use `tendsto.comp` as `continuous_within_at.comp` will have a different meaning. -/ lemma continuous_within_at.tendsto {f : α → β} {s : set α} {x : α} (h : continuous_within_at f s x) : tendsto f (𝓝[s] x) (𝓝 (f x)) := h /-- A function between topological spaces is continuous on a subset `s` when it's continuous at every point of `s` within `s`. -/ def continuous_on (f : α → β) (s : set α) : Prop := ∀ x ∈ s, continuous_within_at f s x lemma continuous_on.continuous_within_at {f : α → β} {s : set α} {x : α} (hf : continuous_on f s) (hx : x ∈ s) : continuous_within_at f s x := hf x hx theorem continuous_within_at_univ (f : α → β) (x : α) : continuous_within_at f set.univ x ↔ continuous_at f x := by rw [continuous_at, continuous_within_at, nhds_within_univ] theorem continuous_within_at_iff_continuous_at_restrict (f : α → β) {x : α} {s : set α} (h : x ∈ s) : continuous_within_at f s x ↔ continuous_at (s.restrict f) ⟨x, h⟩ := tendsto_nhds_within_iff_subtype h f _ theorem continuous_within_at.tendsto_nhds_within {f : α → β} {x : α} {s : set α} {t : set β} (h : continuous_within_at f s x) (ht : maps_to f s t) : tendsto f (𝓝[s] x) (𝓝[t] (f x)) := tendsto_inf.2 ⟨h, tendsto_principal.2 $ mem_inf_of_right $ mem_principal.2 $ ht⟩ theorem continuous_within_at.tendsto_nhds_within_image {f : α → β} {x : α} {s : set α} (h : continuous_within_at f s x) : tendsto f (𝓝[s] x) (𝓝[f '' s] (f x)) := h.tendsto_nhds_within (maps_to_image _ _) lemma continuous_within_at.prod_map {f : α → γ} {g : β → δ} {s : set α} {t : set β} {x : α} {y : β} (hf : continuous_within_at f s x) (hg : continuous_within_at g t y) : continuous_within_at (prod.map f g) (s ×ˢ t) (x, y) := begin unfold continuous_within_at at *, rw [nhds_within_prod_eq, prod.map, nhds_prod_eq], exact hf.prod_map hg, end lemma continuous_within_at_pi {ι : Type*} {π : ι → Type*} [∀ i, topological_space (π i)] {f : α → Π i, π i} {s : set α} {x : α} : continuous_within_at f s x ↔ ∀ i, continuous_within_at (λ y, f y i) s x := tendsto_pi_nhds lemma continuous_on_pi {ι : Type*} {π : ι → Type*} [∀ i, topological_space (π i)] {f : α → Π i, π i} {s : set α} : continuous_on f s ↔ ∀ i, continuous_on (λ y, f y i) s := ⟨λ h i x hx, tendsto_pi_nhds.1 (h x hx) i, λ h x hx, tendsto_pi_nhds.2 (λ i, h i x hx)⟩ lemma continuous_within_at.fin_insert_nth {n} {π : fin (n + 1) → Type*} [Π i, topological_space (π i)] (i : fin (n + 1)) {f : α → π i} {a : α} {s : set α} (hf : continuous_within_at f s a) {g : α → Π j : fin n, π (i.succ_above j)} (hg : continuous_within_at g s a) : continuous_within_at (λ a, i.insert_nth (f a) (g a)) s a := hf.fin_insert_nth i hg lemma continuous_on.fin_insert_nth {n} {π : fin (n + 1) → Type*} [Π i, topological_space (π i)] (i : fin (n + 1)) {f : α → π i} {s : set α} (hf : continuous_on f s) {g : α → Π j : fin n, π (i.succ_above j)} (hg : continuous_on g s) : continuous_on (λ a, i.insert_nth (f a) (g a)) s := λ a ha, (hf a ha).fin_insert_nth i (hg a ha) theorem continuous_on_iff {f : α → β} {s : set α} : continuous_on f s ↔ ∀ x ∈ s, ∀ t : set β, is_open t → f x ∈ t → ∃ u, is_open u ∧ x ∈ u ∧ u ∩ s ⊆ f ⁻¹' t := by simp only [continuous_on, continuous_within_at, tendsto_nhds, mem_nhds_within] theorem continuous_on_iff_continuous_restrict {f : α → β} {s : set α} : continuous_on f s ↔ continuous (s.restrict f) := begin rw [continuous_on, continuous_iff_continuous_at], split, { rintros h ⟨x, xs⟩, exact (continuous_within_at_iff_continuous_at_restrict f xs).mp (h x xs) }, intros h x xs, exact (continuous_within_at_iff_continuous_at_restrict f xs).mpr (h ⟨x, xs⟩) end theorem continuous_on_iff' {f : α → β} {s : set α} : continuous_on f s ↔ ∀ t : set β, is_open t → ∃ u, is_open u ∧ f ⁻¹' t ∩ s = u ∩ s := have ∀ t, is_open (s.restrict f ⁻¹' t) ↔ ∃ (u : set α), is_open u ∧ f ⁻¹' t ∩ s = u ∩ s, begin intro t, rw [is_open_induced_iff, set.restrict_eq, set.preimage_comp], simp only [subtype.preimage_coe_eq_preimage_coe_iff], split; { rintros ⟨u, ou, useq⟩, exact ⟨u, ou, useq.symm⟩ } end, by rw [continuous_on_iff_continuous_restrict, continuous_def]; simp only [this] /-- If a function is continuous on a set for some topologies, then it is continuous on the same set with respect to any finer topology on the source space. -/ lemma continuous_on.mono_dom {α β : Type*} {t₁ t₂ : topological_space α} {t₃ : topological_space β} (h₁ : t₂ ≤ t₁) {s : set α} {f : α → β} (h₂ : @continuous_on α β t₁ t₃ f s) : @continuous_on α β t₂ t₃ f s := begin rw continuous_on_iff' at h₂ ⊢, assume t ht, rcases h₂ t ht with ⟨u, hu, h'u⟩, exact ⟨u, h₁ u hu, h'u⟩ end /-- If a function is continuous on a set for some topologies, then it is continuous on the same set with respect to any coarser topology on the target space. -/ lemma continuous_on.mono_rng {α β : Type*} {t₁ : topological_space α} {t₂ t₃ : topological_space β} (h₁ : t₂ ≤ t₃) {s : set α} {f : α → β} (h₂ : @continuous_on α β t₁ t₂ f s) : @continuous_on α β t₁ t₃ f s := begin rw continuous_on_iff' at h₂ ⊢, assume t ht, exact h₂ t (h₁ t ht) end theorem continuous_on_iff_is_closed {f : α → β} {s : set α} : continuous_on f s ↔ ∀ t : set β, is_closed t → ∃ u, is_closed u ∧ f ⁻¹' t ∩ s = u ∩ s := have ∀ t, is_closed (s.restrict f ⁻¹' t) ↔ ∃ (u : set α), is_closed u ∧ f ⁻¹' t ∩ s = u ∩ s, begin intro t, rw [is_closed_induced_iff, set.restrict_eq, set.preimage_comp], simp only [subtype.preimage_coe_eq_preimage_coe_iff, eq_comm] end, by rw [continuous_on_iff_continuous_restrict, continuous_iff_is_closed]; simp only [this] lemma continuous_on.prod_map {f : α → γ} {g : β → δ} {s : set α} {t : set β} (hf : continuous_on f s) (hg : continuous_on g t) : continuous_on (prod.map f g) (s ×ˢ t) := λ ⟨x, y⟩ ⟨hx, hy⟩, continuous_within_at.prod_map (hf x hx) (hg y hy) lemma continuous_on_empty (f : α → β) : continuous_on f ∅ := λ x, false.elim lemma continuous_on_singleton (f : α → β) (a : α) : continuous_on f {a} := forall_eq.2 $ by simpa only [continuous_within_at, nhds_within_singleton, tendsto_pure_left] using λ s, mem_of_mem_nhds lemma set.subsingleton.continuous_on {s : set α} (hs : s.subsingleton) (f : α → β) : continuous_on f s := hs.induction_on (continuous_on_empty f) (continuous_on_singleton f) theorem nhds_within_le_comap {x : α} {s : set α} {f : α → β} (ctsf : continuous_within_at f s x) : 𝓝[s] x ≤ comap f (𝓝[f '' s] (f x)) := ctsf.tendsto_nhds_within_image.le_comap @[simp] lemma comap_nhds_within_range {α} (f : α → β) (y : β) : comap f (𝓝[range f] y) = comap f (𝓝 y) := comap_inf_principal_range theorem continuous_within_at_iff_ptendsto_res (f : α → β) {x : α} {s : set α} : continuous_within_at f s x ↔ ptendsto (pfun.res f s) (𝓝 x) (𝓝 (f x)) := tendsto_iff_ptendsto _ _ _ _ lemma continuous_iff_continuous_on_univ {f : α → β} : continuous f ↔ continuous_on f univ := by simp [continuous_iff_continuous_at, continuous_on, continuous_at, continuous_within_at, nhds_within_univ] lemma continuous_within_at.mono {f : α → β} {s t : set α} {x : α} (h : continuous_within_at f t x) (hs : s ⊆ t) : continuous_within_at f s x := h.mono_left (nhds_within_mono x hs) lemma continuous_within_at.mono_of_mem {f : α → β} {s t : set α} {x : α} (h : continuous_within_at f t x) (hs : t ∈ 𝓝[s] x) : continuous_within_at f s x := h.mono_left (nhds_within_le_of_mem hs) lemma continuous_within_at_inter' {f : α → β} {s t : set α} {x : α} (h : t ∈ 𝓝[s] x) : continuous_within_at f (s ∩ t) x ↔ continuous_within_at f s x := by simp [continuous_within_at, nhds_within_restrict'' s h] lemma continuous_within_at_inter {f : α → β} {s t : set α} {x : α} (h : t ∈ 𝓝 x) : continuous_within_at f (s ∩ t) x ↔ continuous_within_at f s x := by simp [continuous_within_at, nhds_within_restrict' s h] lemma continuous_within_at_union {f : α → β} {s t : set α} {x : α} : continuous_within_at f (s ∪ t) x ↔ continuous_within_at f s x ∧ continuous_within_at f t x := by simp only [continuous_within_at, nhds_within_union, tendsto_sup] lemma continuous_within_at.union {f : α → β} {s t : set α} {x : α} (hs : continuous_within_at f s x) (ht : continuous_within_at f t x) : continuous_within_at f (s ∪ t) x := continuous_within_at_union.2 ⟨hs, ht⟩ lemma continuous_within_at.mem_closure_image {f : α → β} {s : set α} {x : α} (h : continuous_within_at f s x) (hx : x ∈ closure s) : f x ∈ closure (f '' s) := by haveI := (mem_closure_iff_nhds_within_ne_bot.1 hx); exact (mem_closure_of_tendsto h $ mem_of_superset self_mem_nhds_within (subset_preimage_image f s)) lemma continuous_within_at.mem_closure {f : α → β} {s : set α} {x : α} {A : set β} (h : continuous_within_at f s x) (hx : x ∈ closure s) (hA : maps_to f s A) : f x ∈ closure A := closure_mono (image_subset_iff.2 hA) (h.mem_closure_image hx) lemma set.maps_to.closure_of_continuous_within_at {f : α → β} {s : set α} {t : set β} (h : maps_to f s t) (hc : ∀ x ∈ closure s, continuous_within_at f s x) : maps_to f (closure s) (closure t) := λ x hx, (hc x hx).mem_closure hx h lemma set.maps_to.closure_of_continuous_on {f : α → β} {s : set α} {t : set β} (h : maps_to f s t) (hc : continuous_on f (closure s)) : maps_to f (closure s) (closure t) := h.closure_of_continuous_within_at $ λ x hx, (hc x hx).mono subset_closure lemma continuous_within_at.image_closure {f : α → β} {s : set α} (hf : ∀ x ∈ closure s, continuous_within_at f s x) : f '' (closure s) ⊆ closure (f '' s) := maps_to'.1 $ (maps_to_image f s).closure_of_continuous_within_at hf lemma continuous_on.image_closure {f : α → β} {s : set α} (hf : continuous_on f (closure s)) : f '' (closure s) ⊆ closure (f '' s) := continuous_within_at.image_closure $ λ x hx, (hf x hx).mono subset_closure @[simp] lemma continuous_within_at_singleton {f : α → β} {x : α} : continuous_within_at f {x} x := by simp only [continuous_within_at, nhds_within_singleton, tendsto_pure_nhds] @[simp] lemma continuous_within_at_insert_self {f : α → β} {x : α} {s : set α} : continuous_within_at f (insert x s) x ↔ continuous_within_at f s x := by simp only [← singleton_union, continuous_within_at_union, continuous_within_at_singleton, true_and] alias continuous_within_at_insert_self ↔ _ continuous_within_at.insert_self lemma continuous_within_at.diff_iff {f : α → β} {s t : set α} {x : α} (ht : continuous_within_at f t x) : continuous_within_at f (s \ t) x ↔ continuous_within_at f s x := ⟨λ h, (h.union ht).mono $ by simp only [diff_union_self, subset_union_left], λ h, h.mono (diff_subset _ _)⟩ @[simp] lemma continuous_within_at_diff_self {f : α → β} {s : set α} {x : α} : continuous_within_at f (s \ {x}) x ↔ continuous_within_at f s x := continuous_within_at_singleton.diff_iff @[simp] lemma continuous_within_at_compl_self {f : α → β} {a : α} : continuous_within_at f {a}ᶜ a ↔ continuous_at f a := by rw [compl_eq_univ_diff, continuous_within_at_diff_self, continuous_within_at_univ] @[simp] lemma continuous_within_at_update_same [decidable_eq α] {f : α → β} {s : set α} {x : α} {y : β} : continuous_within_at (update f x y) s x ↔ tendsto f (𝓝[s \ {x}] x) (𝓝 y) := calc continuous_within_at (update f x y) s x ↔ tendsto (update f x y) (𝓝[s \ {x}] x) (𝓝 y) : by rw [← continuous_within_at_diff_self, continuous_within_at, function.update_same] ... ↔ tendsto f (𝓝[s \ {x}] x) (𝓝 y) : tendsto_congr' $ eventually_nhds_within_iff.2 $ eventually_of_forall $ λ z hz, update_noteq hz.2 _ _ @[simp] lemma continuous_at_update_same [decidable_eq α] {f : α → β} {x : α} {y : β} : continuous_at (function.update f x y) x ↔ tendsto f (𝓝[≠] x) (𝓝 y) := by rw [← continuous_within_at_univ, continuous_within_at_update_same, compl_eq_univ_diff] theorem is_open_map.continuous_on_image_of_left_inv_on {f : α → β} {s : set α} (h : is_open_map (s.restrict f)) {finv : β → α} (hleft : left_inv_on finv f s) : continuous_on finv (f '' s) := begin refine continuous_on_iff'.2 (λ t ht, ⟨f '' (t ∩ s), _, _⟩), { rw ← image_restrict, exact h _ (ht.preimage continuous_subtype_coe) }, { rw [inter_eq_self_of_subset_left (image_subset f (inter_subset_right t s)), hleft.image_inter'] }, end theorem is_open_map.continuous_on_range_of_left_inverse {f : α → β} (hf : is_open_map f) {finv : β → α} (hleft : function.left_inverse finv f) : continuous_on finv (range f) := begin rw [← image_univ], exact (hf.restrict is_open_univ).continuous_on_image_of_left_inv_on (λ x _, hleft x) end lemma continuous_on.congr_mono {f g : α → β} {s s₁ : set α} (h : continuous_on f s) (h' : eq_on g f s₁) (h₁ : s₁ ⊆ s) : continuous_on g s₁ := begin assume x hx, unfold continuous_within_at, have A := (h x (h₁ hx)).mono h₁, unfold continuous_within_at at A, rw ← h' hx at A, exact A.congr' h'.eventually_eq_nhds_within.symm end lemma continuous_on.congr {f g : α → β} {s : set α} (h : continuous_on f s) (h' : eq_on g f s) : continuous_on g s := h.congr_mono h' (subset.refl _) lemma continuous_on_congr {f g : α → β} {s : set α} (h' : eq_on g f s) : continuous_on g s ↔ continuous_on f s := ⟨λ h, continuous_on.congr h h'.symm, λ h, h.congr h'⟩ lemma continuous_at.continuous_within_at {f : α → β} {s : set α} {x : α} (h : continuous_at f x) : continuous_within_at f s x := continuous_within_at.mono ((continuous_within_at_univ f x).2 h) (subset_univ _) lemma continuous_within_at_iff_continuous_at {f : α → β} {s : set α} {x : α} (h : s ∈ 𝓝 x) : continuous_within_at f s x ↔ continuous_at f x := by rw [← univ_inter s, continuous_within_at_inter h, continuous_within_at_univ] lemma continuous_within_at.continuous_at {f : α → β} {s : set α} {x : α} (h : continuous_within_at f s x) (hs : s ∈ 𝓝 x) : continuous_at f x := (continuous_within_at_iff_continuous_at hs).mp h lemma continuous_on.continuous_at {f : α → β} {s : set α} {x : α} (h : continuous_on f s) (hx : s ∈ 𝓝 x) : continuous_at f x := (h x (mem_of_mem_nhds hx)).continuous_at hx lemma continuous_at.continuous_on {f : α → β} {s : set α} (hcont : ∀ x ∈ s, continuous_at f x) : continuous_on f s := λ x hx, (hcont x hx).continuous_within_at lemma continuous_within_at.comp {g : β → γ} {f : α → β} {s : set α} {t : set β} {x : α} (hg : continuous_within_at g t (f x)) (hf : continuous_within_at f s x) (h : maps_to f s t) : continuous_within_at (g ∘ f) s x := hg.tendsto.comp (hf.tendsto_nhds_within h) lemma continuous_within_at.comp' {g : β → γ} {f : α → β} {s : set α} {t : set β} {x : α} (hg : continuous_within_at g t (f x)) (hf : continuous_within_at f s x) : continuous_within_at (g ∘ f) (s ∩ f⁻¹' t) x := hg.comp (hf.mono (inter_subset_left _ _)) (inter_subset_right _ _) lemma continuous_at.comp_continuous_within_at {g : β → γ} {f : α → β} {s : set α} {x : α} (hg : continuous_at g (f x)) (hf : continuous_within_at f s x) : continuous_within_at (g ∘ f) s x := hg.continuous_within_at.comp hf (maps_to_univ _ _) lemma continuous_on.comp {g : β → γ} {f : α → β} {s : set α} {t : set β} (hg : continuous_on g t) (hf : continuous_on f s) (h : maps_to f s t) : continuous_on (g ∘ f) s := λx hx, continuous_within_at.comp (hg _ (h hx)) (hf x hx) h lemma continuous_on.mono {f : α → β} {s t : set α} (hf : continuous_on f s) (h : t ⊆ s) : continuous_on f t := λx hx, (hf x (h hx)).mono_left (nhds_within_mono _ h) lemma antitone_continuous_on {f : α → β} : antitone (continuous_on f) := λ s t hst hf, hf.mono hst lemma continuous_on.comp' {g : β → γ} {f : α → β} {s : set α} {t : set β} (hg : continuous_on g t) (hf : continuous_on f s) : continuous_on (g ∘ f) (s ∩ f⁻¹' t) := hg.comp (hf.mono (inter_subset_left _ _)) (inter_subset_right _ _) lemma continuous.continuous_on {f : α → β} {s : set α} (h : continuous f) : continuous_on f s := begin rw continuous_iff_continuous_on_univ at h, exact h.mono (subset_univ _) end lemma continuous.continuous_within_at {f : α → β} {s : set α} {x : α} (h : continuous f) : continuous_within_at f s x := h.continuous_at.continuous_within_at lemma continuous.comp_continuous_on {g : β → γ} {f : α → β} {s : set α} (hg : continuous g) (hf : continuous_on f s) : continuous_on (g ∘ f) s := hg.continuous_on.comp hf (maps_to_univ _ _) lemma continuous_on.comp_continuous {g : β → γ} {f : α → β} {s : set β} (hg : continuous_on g s) (hf : continuous f) (hs : ∀ x, f x ∈ s) : continuous (g ∘ f) := begin rw continuous_iff_continuous_on_univ at *, exact hg.comp hf (λ x _, hs x), end lemma continuous_within_at.preimage_mem_nhds_within {f : α → β} {x : α} {s : set α} {t : set β} (h : continuous_within_at f s x) (ht : t ∈ 𝓝 (f x)) : f ⁻¹' t ∈ 𝓝[s] x := h ht lemma set.left_inv_on.map_nhds_within_eq {f : α → β} {g : β → α} {x : β} {s : set β} (h : left_inv_on f g s) (hx : f (g x) = x) (hf : continuous_within_at f (g '' s) (g x)) (hg : continuous_within_at g s x) : map g (𝓝[s] x) = 𝓝[g '' s] (g x) := begin apply le_antisymm, { exact hg.tendsto_nhds_within (maps_to_image _ _) }, { have A : g ∘ f =ᶠ[𝓝[g '' s] (g x)] id, from h.right_inv_on_image.eq_on.eventually_eq_of_mem self_mem_nhds_within, refine le_map_of_right_inverse A _, simpa only [hx] using hf.tendsto_nhds_within (h.maps_to (surj_on_image _ _)) } end lemma function.left_inverse.map_nhds_eq {f : α → β} {g : β → α} {x : β} (h : function.left_inverse f g) (hf : continuous_within_at f (range g) (g x)) (hg : continuous_at g x) : map g (𝓝 x) = 𝓝[range g] (g x) := by simpa only [nhds_within_univ, image_univ] using (h.left_inv_on univ).map_nhds_within_eq (h x) (by rwa image_univ) hg.continuous_within_at lemma continuous_within_at.preimage_mem_nhds_within' {f : α → β} {x : α} {s : set α} {t : set β} (h : continuous_within_at f s x) (ht : t ∈ 𝓝[f '' s] (f x)) : f ⁻¹' t ∈ 𝓝[s] x := h.tendsto_nhds_within (maps_to_image _ _) ht lemma filter.eventually_eq.congr_continuous_within_at {f g : α → β} {s : set α} {x : α} (h : f =ᶠ[𝓝[s] x] g) (hx : f x = g x) : continuous_within_at f s x ↔ continuous_within_at g s x := by rw [continuous_within_at, hx, tendsto_congr' h, continuous_within_at] lemma continuous_within_at.congr_of_eventually_eq {f f₁ : α → β} {s : set α} {x : α} (h : continuous_within_at f s x) (h₁ : f₁ =ᶠ[𝓝[s] x] f) (hx : f₁ x = f x) : continuous_within_at f₁ s x := (h₁.congr_continuous_within_at hx).2 h lemma continuous_within_at.congr {f f₁ : α → β} {s : set α} {x : α} (h : continuous_within_at f s x) (h₁ : ∀y∈s, f₁ y = f y) (hx : f₁ x = f x) : continuous_within_at f₁ s x := h.congr_of_eventually_eq (mem_of_superset self_mem_nhds_within h₁) hx lemma continuous_within_at.congr_mono {f g : α → β} {s s₁ : set α} {x : α} (h : continuous_within_at f s x) (h' : eq_on g f s₁) (h₁ : s₁ ⊆ s) (hx : g x = f x): continuous_within_at g s₁ x := (h.mono h₁).congr h' hx lemma continuous_on_const {s : set α} {c : β} : continuous_on (λx, c) s := continuous_const.continuous_on lemma continuous_within_at_const {b : β} {s : set α} {x : α} : continuous_within_at (λ _:α, b) s x := continuous_const.continuous_within_at lemma continuous_on_id {s : set α} : continuous_on id s := continuous_id.continuous_on lemma continuous_within_at_id {s : set α} {x : α} : continuous_within_at id s x := continuous_id.continuous_within_at lemma continuous_on_open_iff {f : α → β} {s : set α} (hs : is_open s) : continuous_on f s ↔ (∀t, is_open t → is_open (s ∩ f⁻¹' t)) := begin rw continuous_on_iff', split, { assume h t ht, rcases h t ht with ⟨u, u_open, hu⟩, rw [inter_comm, hu], apply is_open.inter u_open hs }, { assume h t ht, refine ⟨s ∩ f ⁻¹' t, h t ht, _⟩, rw [@inter_comm _ s (f ⁻¹' t), inter_assoc, inter_self] } end lemma continuous_on.preimage_open_of_open {f : α → β} {s : set α} {t : set β} (hf : continuous_on f s) (hs : is_open s) (ht : is_open t) : is_open (s ∩ f⁻¹' t) := (continuous_on_open_iff hs).1 hf t ht lemma continuous_on.is_open_preimage {f : α → β} {s : set α} {t : set β} (h : continuous_on f s) (hs : is_open s) (hp : f ⁻¹' t ⊆ s) (ht : is_open t) : is_open (f ⁻¹' t) := begin convert (continuous_on_open_iff hs).mp h t ht, rw [inter_comm, inter_eq_self_of_subset_left hp], end lemma continuous_on.preimage_closed_of_closed {f : α → β} {s : set α} {t : set β} (hf : continuous_on f s) (hs : is_closed s) (ht : is_closed t) : is_closed (s ∩ f⁻¹' t) := begin rcases continuous_on_iff_is_closed.1 hf t ht with ⟨u, hu⟩, rw [inter_comm, hu.2], apply is_closed.inter hu.1 hs end lemma continuous_on.preimage_interior_subset_interior_preimage {f : α → β} {s : set α} {t : set β} (hf : continuous_on f s) (hs : is_open s) : s ∩ f⁻¹' (interior t) ⊆ s ∩ interior (f⁻¹' t) := calc s ∩ f ⁻¹' (interior t) ⊆ interior (s ∩ f ⁻¹' t) : interior_maximal (inter_subset_inter (subset.refl _) (preimage_mono interior_subset)) (hf.preimage_open_of_open hs is_open_interior) ... = s ∩ interior (f ⁻¹' t) : by rw [interior_inter, hs.interior_eq] lemma continuous_on_of_locally_continuous_on {f : α → β} {s : set α} (h : ∀x∈s, ∃t, is_open t ∧ x ∈ t ∧ continuous_on f (s ∩ t)) : continuous_on f s := begin assume x xs, rcases h x xs with ⟨t, open_t, xt, ct⟩, have := ct x ⟨xs, xt⟩, rwa [continuous_within_at, ← nhds_within_restrict _ xt open_t] at this end lemma continuous_on_open_of_generate_from {β : Type*} {s : set α} {T : set (set β)} {f : α → β} (hs : is_open s) (h : ∀t ∈ T, is_open (s ∩ f⁻¹' t)) : @continuous_on α β _ (topological_space.generate_from T) f s := begin rw continuous_on_open_iff, assume t ht, induction ht with u hu u v Tu Tv hu hv U hU hU', { exact h u hu }, { simp only [preimage_univ, inter_univ], exact hs }, { have : s ∩ f ⁻¹' (u ∩ v) = (s ∩ f ⁻¹' u) ∩ (s ∩ f ⁻¹' v), by rw [preimage_inter, inter_assoc, inter_left_comm _ s, ← inter_assoc s s, inter_self], rw this, exact hu.inter hv }, { rw [preimage_sUnion, inter_Union₂], exact is_open_bUnion hU' }, { exact hs } end lemma continuous_within_at.prod {f : α → β} {g : α → γ} {s : set α} {x : α} (hf : continuous_within_at f s x) (hg : continuous_within_at g s x) : continuous_within_at (λx, (f x, g x)) s x := hf.prod_mk_nhds hg lemma continuous_on.prod {f : α → β} {g : α → γ} {s : set α} (hf : continuous_on f s) (hg : continuous_on g s) : continuous_on (λx, (f x, g x)) s := λx hx, continuous_within_at.prod (hf x hx) (hg x hx) lemma inducing.continuous_within_at_iff {f : α → β} {g : β → γ} (hg : inducing g) {s : set α} {x : α} : continuous_within_at f s x ↔ continuous_within_at (g ∘ f) s x := by simp_rw [continuous_within_at, inducing.tendsto_nhds_iff hg] lemma inducing.continuous_on_iff {f : α → β} {g : β → γ} (hg : inducing g) {s : set α} : continuous_on f s ↔ continuous_on (g ∘ f) s := by simp_rw [continuous_on, hg.continuous_within_at_iff] lemma embedding.continuous_on_iff {f : α → β} {g : β → γ} (hg : embedding g) {s : set α} : continuous_on f s ↔ continuous_on (g ∘ f) s := inducing.continuous_on_iff hg.1 lemma embedding.map_nhds_within_eq {f : α → β} (hf : embedding f) (s : set α) (x : α) : map f (𝓝[s] x) = 𝓝[f '' s] (f x) := by rw [nhds_within, map_inf hf.inj, hf.map_nhds_eq, map_principal, ← nhds_within_inter', inter_eq_self_of_subset_right (image_subset_range _ _)] lemma open_embedding.map_nhds_within_preimage_eq {f : α → β} (hf : open_embedding f) (s : set β) (x : α) : map f (𝓝[f ⁻¹' s] x) = 𝓝[s] (f x) := begin rw [hf.to_embedding.map_nhds_within_eq, image_preimage_eq_inter_range], apply nhds_within_eq_nhds_within (mem_range_self _) hf.open_range, rw [inter_assoc, inter_self] end lemma continuous_within_at_of_not_mem_closure {f : α → β} {s : set α} {x : α} : x ∉ closure s → continuous_within_at f s x := begin intros hx, rw [mem_closure_iff_nhds_within_ne_bot, ne_bot_iff, not_not] at hx, rw [continuous_within_at, hx], exact tendsto_bot, end lemma continuous_on.piecewise' {s t : set α} {f g : α → β} [∀ a, decidable (a ∈ t)] (hpf : ∀ a ∈ s ∩ frontier t, tendsto f (𝓝[s ∩ t] a) (𝓝 (piecewise t f g a))) (hpg : ∀ a ∈ s ∩ frontier t, tendsto g (𝓝[s ∩ tᶜ] a) (𝓝 (piecewise t f g a))) (hf : continuous_on f $ s ∩ t) (hg : continuous_on g $ s ∩ tᶜ) : continuous_on (piecewise t f g) s := begin intros x hx, by_cases hx' : x ∈ frontier t, { exact (hpf x ⟨hx, hx'⟩).piecewise_nhds_within (hpg x ⟨hx, hx'⟩) }, { rw [← inter_univ s, ← union_compl_self t, inter_union_distrib_left] at hx ⊢, cases hx, { apply continuous_within_at.union, { exact (hf x hx).congr (λ y hy, piecewise_eq_of_mem _ _ _ hy.2) (piecewise_eq_of_mem _ _ _ hx.2) }, { have : x ∉ closure tᶜ, from λ h, hx' ⟨subset_closure hx.2, by rwa closure_compl at h⟩, exact continuous_within_at_of_not_mem_closure (λ h, this (closure_inter_subset_inter_closure _ _ h).2) } }, { apply continuous_within_at.union, { have : x ∉ closure t, from (λ h, hx' ⟨h, (λ (h' : x ∈ interior t), hx.2 (interior_subset h'))⟩), exact continuous_within_at_of_not_mem_closure (λ h, this (closure_inter_subset_inter_closure _ _ h).2) }, { exact (hg x hx).congr (λ y hy, piecewise_eq_of_not_mem _ _ _ hy.2) (piecewise_eq_of_not_mem _ _ _ hx.2) } } } end lemma continuous_on.if' {s : set α} {p : α → Prop} {f g : α → β} [∀ a, decidable (p a)] (hpf : ∀ a ∈ s ∩ frontier {a | p a}, tendsto f (𝓝[s ∩ {a | p a}] a) (𝓝 $ if p a then f a else g a)) (hpg : ∀ a ∈ s ∩ frontier {a | p a}, tendsto g (𝓝[s ∩ {a | ¬p a}] a) (𝓝 $ if p a then f a else g a)) (hf : continuous_on f $ s ∩ {a | p a}) (hg : continuous_on g $ s ∩ {a | ¬p a}) : continuous_on (λ a, if p a then f a else g a) s := hf.piecewise' hpf hpg hg lemma continuous_on.if {α β : Type*} [topological_space α] [topological_space β] {p : α → Prop} [∀ a, decidable (p a)] {s : set α} {f g : α → β} (hp : ∀ a ∈ s ∩ frontier {a | p a}, f a = g a) (hf : continuous_on f $ s ∩ closure {a | p a}) (hg : continuous_on g $ s ∩ closure {a | ¬ p a}) : continuous_on (λa, if p a then f a else g a) s := begin apply continuous_on.if', { rintros a ha, simp only [← hp a ha, if_t_t], apply tendsto_nhds_within_mono_left (inter_subset_inter_right s subset_closure), exact hf a ⟨ha.1, ha.2.1⟩ }, { rintros a ha, simp only [hp a ha, if_t_t], apply tendsto_nhds_within_mono_left (inter_subset_inter_right s subset_closure), rcases ha with ⟨has, ⟨_, ha⟩⟩, rw [← mem_compl_iff, ← closure_compl] at ha, apply hg a ⟨has, ha⟩ }, { exact hf.mono (inter_subset_inter_right s subset_closure) }, { exact hg.mono (inter_subset_inter_right s subset_closure) } end lemma continuous_on.piecewise {s t : set α} {f g : α → β} [∀ a, decidable (a ∈ t)] (ht : ∀ a ∈ s ∩ frontier t, f a = g a) (hf : continuous_on f $ s ∩ closure t) (hg : continuous_on g $ s ∩ closure tᶜ) : continuous_on (piecewise t f g) s := hf.if ht hg lemma continuous_if' {p : α → Prop} {f g : α → β} [∀ a, decidable (p a)] (hpf : ∀ a ∈ frontier {x | p x}, tendsto f (𝓝[{x | p x}] a) (𝓝 $ ite (p a) (f a) (g a))) (hpg : ∀ a ∈ frontier {x | p x}, tendsto g (𝓝[{x | ¬p x}] a) (𝓝 $ ite (p a) (f a) (g a))) (hf : continuous_on f {x | p x}) (hg : continuous_on g {x | ¬p x}) : continuous (λ a, ite (p a) (f a) (g a)) := begin rw continuous_iff_continuous_on_univ, apply continuous_on.if'; simp *; assumption end lemma continuous_if {p : α → Prop} {f g : α → β} [∀ a, decidable (p a)] (hp : ∀ a ∈ frontier {x | p x}, f a = g a) (hf : continuous_on f (closure {x | p x})) (hg : continuous_on g (closure {x | ¬p x})) : continuous (λ a, if p a then f a else g a) := begin rw continuous_iff_continuous_on_univ, apply continuous_on.if; simp; assumption end lemma continuous.if {p : α → Prop} {f g : α → β} [∀ a, decidable (p a)] (hp : ∀ a ∈ frontier {x | p x}, f a = g a) (hf : continuous f) (hg : continuous g) : continuous (λ a, if p a then f a else g a) := continuous_if hp hf.continuous_on hg.continuous_on lemma continuous_if_const (p : Prop) {f g : α → β} [decidable p] (hf : p → continuous f) (hg : ¬ p → continuous g) : continuous (λ a, if p then f a else g a) := by { split_ifs, exact hf h, exact hg h } lemma continuous.if_const (p : Prop) {f g : α → β} [decidable p] (hf : continuous f) (hg : continuous g) : continuous (λ a, if p then f a else g a) := continuous_if_const p (λ _, hf) (λ _, hg) lemma continuous_piecewise {s : set α} {f g : α → β} [∀ a, decidable (a ∈ s)] (hs : ∀ a ∈ frontier s, f a = g a) (hf : continuous_on f (closure s)) (hg : continuous_on g (closure sᶜ)) : continuous (piecewise s f g) := continuous_if hs hf hg lemma continuous.piecewise {s : set α} {f g : α → β} [∀ a, decidable (a ∈ s)] (hs : ∀ a ∈ frontier s, f a = g a) (hf : continuous f) (hg : continuous g) : continuous (piecewise s f g) := hf.if hs hg lemma is_open.ite' {s s' t : set α} (hs : is_open s) (hs' : is_open s') (ht : ∀ x ∈ frontier t, x ∈ s ↔ x ∈ s') : is_open (t.ite s s') := begin classical, simp only [is_open_iff_continuous_mem, set.ite] at *, convert continuous_piecewise (λ x hx, propext (ht x hx)) hs.continuous_on hs'.continuous_on, ext x, by_cases hx : x ∈ t; simp [hx] end lemma is_open.ite {s s' t : set α} (hs : is_open s) (hs' : is_open s') (ht : s ∩ frontier t = s' ∩ frontier t) : is_open (t.ite s s') := hs.ite' hs' $ λ x hx, by simpa [hx] using ext_iff.1 ht x lemma ite_inter_closure_eq_of_inter_frontier_eq {s s' t : set α} (ht : s ∩ frontier t = s' ∩ frontier t) : t.ite s s' ∩ closure t = s ∩ closure t := by rw [closure_eq_self_union_frontier, inter_union_distrib_left, inter_union_distrib_left, ite_inter_self, ite_inter_of_inter_eq _ ht] lemma ite_inter_closure_compl_eq_of_inter_frontier_eq {s s' t : set α} (ht : s ∩ frontier t = s' ∩ frontier t) : t.ite s s' ∩ closure tᶜ = s' ∩ closure tᶜ := by { rw [← ite_compl, ite_inter_closure_eq_of_inter_frontier_eq], rwa [frontier_compl, eq_comm] } lemma continuous_on_piecewise_ite' {s s' t : set α} {f f' : α → β} [∀ x, decidable (x ∈ t)] (h : continuous_on f (s ∩ closure t)) (h' : continuous_on f' (s' ∩ closure tᶜ)) (H : s ∩ frontier t = s' ∩ frontier t) (Heq : eq_on f f' (s ∩ frontier t)) : continuous_on (t.piecewise f f') (t.ite s s') := begin apply continuous_on.piecewise, { rwa ite_inter_of_inter_eq _ H }, { rwa ite_inter_closure_eq_of_inter_frontier_eq H }, { rwa ite_inter_closure_compl_eq_of_inter_frontier_eq H } end lemma continuous_on_piecewise_ite {s s' t : set α} {f f' : α → β} [∀ x, decidable (x ∈ t)] (h : continuous_on f s) (h' : continuous_on f' s') (H : s ∩ frontier t = s' ∩ frontier t) (Heq : eq_on f f' (s ∩ frontier t)) : continuous_on (t.piecewise f f') (t.ite s s') := continuous_on_piecewise_ite' (h.mono (inter_subset_left _ _)) (h'.mono (inter_subset_left _ _)) H Heq lemma frontier_inter_open_inter {s t : set α} (ht : is_open t) : frontier (s ∩ t) ∩ t = frontier s ∩ t := by simp only [← subtype.preimage_coe_eq_preimage_coe_iff, ht.is_open_map_subtype_coe.preimage_frontier_eq_frontier_preimage continuous_subtype_coe, subtype.preimage_coe_inter_self] lemma continuous_on_fst {s : set (α × β)} : continuous_on prod.fst s := continuous_fst.continuous_on lemma continuous_within_at_fst {s : set (α × β)} {p : α × β} : continuous_within_at prod.fst s p := continuous_fst.continuous_within_at lemma continuous_on.fst {f : α → β × γ} {s : set α} (hf : continuous_on f s) : continuous_on (λ x, (f x).1) s := continuous_fst.comp_continuous_on hf lemma continuous_within_at.fst {f : α → β × γ} {s : set α} {a : α} (h : continuous_within_at f s a) : continuous_within_at (λ x, (f x).fst) s a := continuous_at_fst.comp_continuous_within_at h lemma continuous_on_snd {s : set (α × β)} : continuous_on prod.snd s := continuous_snd.continuous_on lemma continuous_within_at_snd {s : set (α × β)} {p : α × β} : continuous_within_at prod.snd s p := continuous_snd.continuous_within_at lemma continuous_on.snd {f : α → β × γ} {s : set α} (hf : continuous_on f s) : continuous_on (λ x, (f x).2) s := continuous_snd.comp_continuous_on hf lemma continuous_within_at.snd {f : α → β × γ} {s : set α} {a : α} (h : continuous_within_at f s a) : continuous_within_at (λ x, (f x).snd) s a := continuous_at_snd.comp_continuous_within_at h lemma continuous_within_at_prod_iff {f : α → β × γ} {s : set α} {x : α} : continuous_within_at f s x ↔ continuous_within_at (prod.fst ∘ f) s x ∧ continuous_within_at (prod.snd ∘ f) s x := ⟨λ h, ⟨h.fst, h.snd⟩, by { rintro ⟨h1, h2⟩, convert h1.prod h2, ext, refl, refl }⟩