/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro, Jeremy Avigad -/ import order.filter.ultrafilter import order.filter.partial import order.filter.small_sets import algebra.support /-! # Basic theory of topological spaces. The main definition is the type class `topological space α` which endows a type `α` with a topology. Then `set α` gets predicates `is_open`, `is_closed` and functions `interior`, `closure` and `frontier`. Each point `x` of `α` gets a neighborhood filter `𝓝 x`. A filter `F` on `α` has `x` as a cluster point if `cluster_pt x F : 𝓝 x ⊓ F ≠ ⊥`. A map `f : ι → α` clusters at `x` along `F : filter ι` if `map_cluster_pt x F f : cluster_pt x (map f F)`. In particular the notion of cluster point of a sequence `u` is `map_cluster_pt x at_top u`. For topological spaces `α` and `β`, a function `f : α → β` and a point `a : α`, `continuous_at f a` means `f` is continuous at `a`, and global continuity is `continuous f`. There is also a version of continuity `pcontinuous` for partially defined functions. ## Notation * `𝓝 x`: the filter `nhds x` of neighborhoods of a point `x`; * `𝓟 s`: the principal filter of a set `s`; * `𝓝[s] x`: the filter `nhds_within x s` of neighborhoods of a point `x` within a set `s`; * `𝓝[≤] x`: the filter `nhds_within x (set.Iic x)` of left-neighborhoods of `x`; * `𝓝[≥] x`: the filter `nhds_within x (set.Ici x)` of right-neighborhoods of `x`; * `𝓝[<] x`: the filter `nhds_within x (set.Iio x)` of punctured left-neighborhoods of `x`; * `𝓝[>] x`: the filter `nhds_within x (set.Ioi x)` of punctured right-neighborhoods of `x`; * `𝓝[≠] x`: the filter `nhds_within x {x}ᶜ` of punctured neighborhoods of `x`. ## Implementation notes Topology in mathlib heavily uses filters (even more than in Bourbaki). See explanations in . ## References * [N. Bourbaki, *General Topology*][bourbaki1966] * [I. M. James, *Topologies and Uniformities*][james1999] ## Tags topological space, interior, closure, frontier, neighborhood, continuity, continuous function -/ noncomputable theory open set filter classical open_locale classical filter universes u v w /-! ### Topological spaces -/ /-- A topology on `α`. -/ @[protect_proj] structure topological_space (α : Type u) := (is_open : set α → Prop) (is_open_univ : is_open univ) (is_open_inter : ∀s t, is_open s → is_open t → is_open (s ∩ t)) (is_open_sUnion : ∀s, (∀t∈s, is_open t) → is_open (⋃₀ s)) attribute [class] topological_space /-- A constructor for topologies by specifying the closed sets, and showing that they satisfy the appropriate conditions. -/ def topological_space.of_closed {α : Type u} (T : set (set α)) (empty_mem : ∅ ∈ T) (sInter_mem : ∀ A ⊆ T, ⋂₀ A ∈ T) (union_mem : ∀ A B ∈ T, A ∪ B ∈ T) : topological_space α := { is_open := λ X, Xᶜ ∈ T, is_open_univ := by simp [empty_mem], is_open_inter := λ s t hs ht, by simpa only [compl_inter] using union_mem sᶜ hs tᶜ ht, is_open_sUnion := λ s hs, by rw set.compl_sUnion; exact sInter_mem (compl '' s) (λ z ⟨y, hy, hz⟩, by simpa [hz.symm] using hs y hy) } section topological_space variables {α : Type u} {β : Type v} {ι : Sort w} {a : α} {s s₁ s₂ t : set α} {p p₁ p₂ : α → Prop} @[ext] lemma topological_space_eq : ∀ {f g : topological_space α}, f.is_open = g.is_open → f = g | ⟨a, _, _, _⟩ ⟨b, _, _, _⟩ rfl := rfl section variables [topological_space α] /-- `is_open s` means that `s` is open in the ambient topological space on `α` -/ def is_open (s : set α) : Prop := topological_space.is_open ‹_› s @[simp] lemma is_open_univ : is_open (univ : set α) := topological_space.is_open_univ _ lemma is_open.inter (h₁ : is_open s₁) (h₂ : is_open s₂) : is_open (s₁ ∩ s₂) := topological_space.is_open_inter _ s₁ s₂ h₁ h₂ lemma is_open_sUnion {s : set (set α)} (h : ∀t ∈ s, is_open t) : is_open (⋃₀ s) := topological_space.is_open_sUnion _ s h end lemma topological_space_eq_iff {t t' : topological_space α} : t = t' ↔ ∀ s, @is_open α t s ↔ @is_open α t' s := ⟨λ h s, h ▸ iff.rfl, λ h, by { ext, exact h _ }⟩ lemma is_open_fold {s : set α} {t : topological_space α} : t.is_open s = @is_open α t s := rfl variables [topological_space α] lemma is_open_Union {f : ι → set α} (h : ∀i, is_open (f i)) : is_open (⋃i, f i) := is_open_sUnion $ by rintro _ ⟨i, rfl⟩; exact h i lemma is_open_bUnion {s : set β} {f : β → set α} (h : ∀i∈s, is_open (f i)) : is_open (⋃i∈s, f i) := is_open_Union $ assume i, is_open_Union $ assume hi, h i hi lemma is_open.union (h₁ : is_open s₁) (h₂ : is_open s₂) : is_open (s₁ ∪ s₂) := by rw union_eq_Union; exact is_open_Union (bool.forall_bool.2 ⟨h₂, h₁⟩) @[simp] lemma is_open_empty : is_open (∅ : set α) := by rw ← sUnion_empty; exact is_open_sUnion (assume a, false.elim) lemma is_open_sInter {s : set (set α)} (hs : s.finite) : (∀t ∈ s, is_open t) → is_open (⋂₀ s) := finite.induction_on hs (λ _, by rw sInter_empty; exact is_open_univ) $ λ a s has hs ih h, by rw sInter_insert; exact is_open.inter (h _ $ mem_insert _ _) (ih $ λ t, h t ∘ mem_insert_of_mem _) lemma is_open_bInter {s : set β} {f : β → set α} (hs : s.finite) : (∀i∈s, is_open (f i)) → is_open (⋂i∈s, f i) := finite.induction_on hs (λ _, by rw bInter_empty; exact is_open_univ) (λ a s has hs ih h, by rw bInter_insert; exact is_open.inter (h a (mem_insert _ _)) (ih (λ i hi, h i (mem_insert_of_mem _ hi)))) lemma is_open_Inter [finite β] {s : β → set α} (h : ∀ i, is_open (s i)) : is_open (⋂ i, s i) := suffices is_open (⋂ (i : β) (hi : i ∈ @univ β), s i), by simpa, is_open_bInter finite_univ (λ i _, h i) lemma is_open_Inter_prop {p : Prop} {s : p → set α} (h : ∀ h : p, is_open (s h)) : is_open (Inter s) := by by_cases p; simp * lemma is_open_const {p : Prop} : is_open {a : α | p} := by_cases (assume : p, begin simp only [this]; exact is_open_univ end) (assume : ¬ p, begin simp only [this]; exact is_open_empty end) lemma is_open.and : is_open {a | p₁ a} → is_open {a | p₂ a} → is_open {a | p₁ a ∧ p₂ a} := is_open.inter /-- A set is closed if its complement is open -/ class is_closed (s : set α) : Prop := (is_open_compl : is_open sᶜ) @[simp] lemma is_open_compl_iff {s : set α} : is_open sᶜ ↔ is_closed s := ⟨λ h, ⟨h⟩, λ h, h.is_open_compl⟩ @[simp] lemma is_closed_empty : is_closed (∅ : set α) := by { rw [← is_open_compl_iff, compl_empty], exact is_open_univ } @[simp] lemma is_closed_univ : is_closed (univ : set α) := by { rw [← is_open_compl_iff, compl_univ], exact is_open_empty } lemma is_closed.union : is_closed s₁ → is_closed s₂ → is_closed (s₁ ∪ s₂) := λ h₁ h₂, by { rw [← is_open_compl_iff] at *, rw compl_union, exact is_open.inter h₁ h₂ } lemma is_closed_sInter {s : set (set α)} : (∀t ∈ s, is_closed t) → is_closed (⋂₀ s) := by simpa only [← is_open_compl_iff, compl_sInter, sUnion_image] using is_open_bUnion lemma is_closed_Inter {f : ι → set α} (h : ∀i, is_closed (f i)) : is_closed (⋂i, f i ) := is_closed_sInter $ assume t ⟨i, (heq : f i = t)⟩, heq ▸ h i lemma is_closed_bInter {s : set β} {f : β → set α} (h : ∀ i ∈ s, is_closed (f i)) : is_closed (⋂ i ∈ s, f i) := is_closed_Inter $ λ i, is_closed_Inter $ h i @[simp] lemma is_closed_compl_iff {s : set α} : is_closed sᶜ ↔ is_open s := by rw [←is_open_compl_iff, compl_compl] lemma is_open.is_closed_compl {s : set α} (hs : is_open s) : is_closed sᶜ := is_closed_compl_iff.2 hs lemma is_open.sdiff {s t : set α} (h₁ : is_open s) (h₂ : is_closed t) : is_open (s \ t) := is_open.inter h₁ $ is_open_compl_iff.mpr h₂ lemma is_closed.inter (h₁ : is_closed s₁) (h₂ : is_closed s₂) : is_closed (s₁ ∩ s₂) := by { rw [← is_open_compl_iff] at *, rw compl_inter, exact is_open.union h₁ h₂ } lemma is_closed.sdiff {s t : set α} (h₁ : is_closed s) (h₂ : is_open t) : is_closed (s \ t) := is_closed.inter h₁ (is_closed_compl_iff.mpr h₂) lemma is_closed_bUnion {s : set β} {f : β → set α} (hs : s.finite) : (∀i∈s, is_closed (f i)) → is_closed (⋃i∈s, f i) := finite.induction_on hs (λ _, by rw bUnion_empty; exact is_closed_empty) (λ a s has hs ih h, by rw bUnion_insert; exact is_closed.union (h a (mem_insert _ _)) (ih (λ i hi, h i (mem_insert_of_mem _ hi)))) lemma is_closed_Union [finite β] {s : β → set α} (h : ∀ i, is_closed (s i)) : is_closed (⋃ i, s i) := suffices is_closed (⋃ (i : β) (hi : i ∈ @univ β), s i), by convert this; simp [set.ext_iff], is_closed_bUnion finite_univ (λ i _, h i) lemma is_closed_Union_prop {p : Prop} {s : p → set α} (h : ∀ h : p, is_closed (s h)) : is_closed (Union s) := by by_cases p; simp * lemma is_closed_imp {p q : α → Prop} (hp : is_open {x | p x}) (hq : is_closed {x | q x}) : is_closed {x | p x → q x} := have {x | p x → q x} = {x | p x}ᶜ ∪ {x | q x}, from set.ext $ λ x, imp_iff_not_or, by rw [this]; exact is_closed.union (is_closed_compl_iff.mpr hp) hq lemma is_closed.not : is_closed {a | p a} → is_open {a | ¬ p a} := is_open_compl_iff.mpr /-! ### Interior of a set -/ /-- The interior of a set `s` is the largest open subset of `s`. -/ def interior (s : set α) : set α := ⋃₀ {t | is_open t ∧ t ⊆ s} lemma mem_interior {s : set α} {x : α} : x ∈ interior s ↔ ∃ t ⊆ s, is_open t ∧ x ∈ t := by simp only [interior, mem_sUnion, mem_set_of_eq, exists_prop, and_assoc, and.left_comm] @[simp] lemma is_open_interior {s : set α} : is_open (interior s) := is_open_sUnion $ assume t ⟨h₁, h₂⟩, h₁ lemma interior_subset {s : set α} : interior s ⊆ s := sUnion_subset $ assume t ⟨h₁, h₂⟩, h₂ lemma interior_maximal {s t : set α} (h₁ : t ⊆ s) (h₂ : is_open t) : t ⊆ interior s := subset_sUnion_of_mem ⟨h₂, h₁⟩ lemma is_open.interior_eq {s : set α} (h : is_open s) : interior s = s := subset.antisymm interior_subset (interior_maximal (subset.refl s) h) lemma interior_eq_iff_open {s : set α} : interior s = s ↔ is_open s := ⟨assume h, h ▸ is_open_interior, is_open.interior_eq⟩ lemma subset_interior_iff_open {s : set α} : s ⊆ interior s ↔ is_open s := by simp only [interior_eq_iff_open.symm, subset.antisymm_iff, interior_subset, true_and] lemma subset_interior_iff_subset_of_open {s t : set α} (h₁ : is_open s) : s ⊆ interior t ↔ s ⊆ t := ⟨assume h, subset.trans h interior_subset, assume h₂, interior_maximal h₂ h₁⟩ lemma subset_interior_iff {s t : set α} : t ⊆ interior s ↔ ∃ U, is_open U ∧ t ⊆ U ∧ U ⊆ s := ⟨λ h, ⟨interior s, is_open_interior, h, interior_subset⟩, λ ⟨U, hU, htU, hUs⟩, htU.trans (interior_maximal hUs hU)⟩ @[mono] lemma interior_mono {s t : set α} (h : s ⊆ t) : interior s ⊆ interior t := interior_maximal (subset.trans interior_subset h) is_open_interior @[simp] lemma interior_empty : interior (∅ : set α) = ∅ := is_open_empty.interior_eq @[simp] lemma interior_univ : interior (univ : set α) = univ := is_open_univ.interior_eq @[simp] lemma interior_eq_univ {s : set α} : interior s = univ ↔ s = univ := ⟨λ h, univ_subset_iff.mp $ h.symm.trans_le interior_subset, λ h, h.symm ▸ interior_univ⟩ @[simp] lemma interior_interior {s : set α} : interior (interior s) = interior s := is_open_interior.interior_eq @[simp] lemma interior_inter {s t : set α} : interior (s ∩ t) = interior s ∩ interior t := subset.antisymm (subset_inter (interior_mono $ inter_subset_left s t) (interior_mono $ inter_subset_right s t)) (interior_maximal (inter_subset_inter interior_subset interior_subset) $ is_open.inter is_open_interior is_open_interior) @[simp] lemma finset.interior_Inter {ι : Type*} (s : finset ι) (f : ι → set α) : interior (⋂ i ∈ s, f i) = ⋂ i ∈ s, interior (f i) := begin classical, refine s.induction_on (by simp) _, intros i s h₁ h₂, simp [h₂], end @[simp] lemma interior_Inter {ι : Type*} [finite ι] (f : ι → set α) : interior (⋂ i, f i) = ⋂ i, interior (f i) := by { casesI nonempty_fintype ι, convert finset.univ.interior_Inter f; simp } lemma interior_union_is_closed_of_interior_empty {s t : set α} (h₁ : is_closed s) (h₂ : interior t = ∅) : interior (s ∪ t) = interior s := have interior (s ∪ t) ⊆ s, from assume x ⟨u, ⟨(hu₁ : is_open u), (hu₂ : u ⊆ s ∪ t)⟩, (hx₁ : x ∈ u)⟩, classical.by_contradiction $ assume hx₂ : x ∉ s, have u \ s ⊆ t, from assume x ⟨h₁, h₂⟩, or.resolve_left (hu₂ h₁) h₂, have u \ s ⊆ interior t, by rwa subset_interior_iff_subset_of_open (is_open.sdiff hu₁ h₁), have u \ s ⊆ ∅, by rwa h₂ at this, this ⟨hx₁, hx₂⟩, subset.antisymm (interior_maximal this is_open_interior) (interior_mono $ subset_union_left _ _) lemma is_open_iff_forall_mem_open : is_open s ↔ ∀ x ∈ s, ∃ t ⊆ s, is_open t ∧ x ∈ t := by rw ← subset_interior_iff_open; simp only [subset_def, mem_interior] lemma interior_Inter_subset (s : ι → set α) : interior (⋂ i, s i) ⊆ ⋂ i, interior (s i) := subset_Inter $ λ i, interior_mono $ Inter_subset _ _ lemma interior_Inter₂_subset (p : ι → Sort*) (s : Π i, p i → set α) : interior (⋂ i j, s i j) ⊆ ⋂ i j, interior (s i j) := (interior_Inter_subset _).trans $ Inter_mono $ λ i, interior_Inter_subset _ lemma interior_sInter_subset (S : set (set α)) : interior (⋂₀ S) ⊆ ⋂ s ∈ S, interior s := calc interior (⋂₀ S) = interior (⋂ s ∈ S, s) : by rw sInter_eq_bInter ... ⊆ ⋂ s ∈ S, interior s : interior_Inter₂_subset _ _ /-! ### Closure of a set -/ /-- The closure of `s` is the smallest closed set containing `s`. -/ def closure (s : set α) : set α := ⋂₀ {t | is_closed t ∧ s ⊆ t} @[simp] lemma is_closed_closure {s : set α} : is_closed (closure s) := is_closed_sInter $ assume t ⟨h₁, h₂⟩, h₁ lemma subset_closure {s : set α} : s ⊆ closure s := subset_sInter $ assume t ⟨h₁, h₂⟩, h₂ lemma not_mem_of_not_mem_closure {s : set α} {P : α} (hP : P ∉ closure s) : P ∉ s := λ h, hP (subset_closure h) lemma closure_minimal {s t : set α} (h₁ : s ⊆ t) (h₂ : is_closed t) : closure s ⊆ t := sInter_subset_of_mem ⟨h₂, h₁⟩ lemma disjoint.closure_left {s t : set α} (hd : disjoint s t) (ht : is_open t) : disjoint (closure s) t := disjoint_compl_left.mono_left $ closure_minimal hd.subset_compl_right ht.is_closed_compl lemma disjoint.closure_right {s t : set α} (hd : disjoint s t) (hs : is_open s) : disjoint s (closure t) := (hd.symm.closure_left hs).symm lemma is_closed.closure_eq {s : set α} (h : is_closed s) : closure s = s := subset.antisymm (closure_minimal (subset.refl s) h) subset_closure lemma is_closed.closure_subset {s : set α} (hs : is_closed s) : closure s ⊆ s := closure_minimal (subset.refl _) hs lemma is_closed.closure_subset_iff {s t : set α} (h₁ : is_closed t) : closure s ⊆ t ↔ s ⊆ t := ⟨subset.trans subset_closure, assume h, closure_minimal h h₁⟩ lemma is_closed.mem_iff_closure_subset {α : Type*} [topological_space α] {U : set α} (hU : is_closed U) {x : α} : x ∈ U ↔ closure ({x} : set α) ⊆ U := (hU.closure_subset_iff.trans set.singleton_subset_iff).symm @[mono] lemma closure_mono {s t : set α} (h : s ⊆ t) : closure s ⊆ closure t := closure_minimal (subset.trans h subset_closure) is_closed_closure lemma monotone_closure (α : Type*) [topological_space α] : monotone (@closure α _) := λ _ _, closure_mono lemma diff_subset_closure_iff {s t : set α} : s \ t ⊆ closure t ↔ s ⊆ closure t := by rw [diff_subset_iff, union_eq_self_of_subset_left subset_closure] lemma closure_inter_subset_inter_closure (s t : set α) : closure (s ∩ t) ⊆ closure s ∩ closure t := (monotone_closure α).map_inf_le s t lemma is_closed_of_closure_subset {s : set α} (h : closure s ⊆ s) : is_closed s := by rw subset.antisymm subset_closure h; exact is_closed_closure lemma closure_eq_iff_is_closed {s : set α} : closure s = s ↔ is_closed s := ⟨assume h, h ▸ is_closed_closure, is_closed.closure_eq⟩ lemma closure_subset_iff_is_closed {s : set α} : closure s ⊆ s ↔ is_closed s := ⟨is_closed_of_closure_subset, is_closed.closure_subset⟩ @[simp] lemma closure_empty : closure (∅ : set α) = ∅ := is_closed_empty.closure_eq @[simp] lemma closure_empty_iff (s : set α) : closure s = ∅ ↔ s = ∅ := ⟨subset_eq_empty subset_closure, λ h, h.symm ▸ closure_empty⟩ @[simp] lemma closure_nonempty_iff {s : set α} : (closure s).nonempty ↔ s.nonempty := by simp only [← ne_empty_iff_nonempty, ne.def, closure_empty_iff] alias closure_nonempty_iff ↔ set.nonempty.of_closure set.nonempty.closure @[simp] lemma closure_univ : closure (univ : set α) = univ := is_closed_univ.closure_eq @[simp] lemma closure_closure {s : set α} : closure (closure s) = closure s := is_closed_closure.closure_eq @[simp] lemma closure_union {s t : set α} : closure (s ∪ t) = closure s ∪ closure t := subset.antisymm (closure_minimal (union_subset_union subset_closure subset_closure) $ is_closed.union is_closed_closure is_closed_closure) ((monotone_closure α).le_map_sup s t) @[simp] lemma finset.closure_bUnion {ι : Type*} (s : finset ι) (f : ι → set α) : closure (⋃ i ∈ s, f i) = ⋃ i ∈ s, closure (f i) := begin classical, refine s.induction_on (by simp) _, intros i s h₁ h₂, simp [h₂], end @[simp] lemma closure_Union {ι : Type*} [finite ι] (f : ι → set α) : closure (⋃ i, f i) = ⋃ i, closure (f i) := by { casesI nonempty_fintype ι, convert finset.univ.closure_bUnion f; simp } lemma interior_subset_closure {s : set α} : interior s ⊆ closure s := subset.trans interior_subset subset_closure lemma closure_eq_compl_interior_compl {s : set α} : closure s = (interior sᶜ)ᶜ := begin rw [interior, closure, compl_sUnion, compl_image_set_of], simp only [compl_subset_compl, is_open_compl_iff], end @[simp] lemma interior_compl {s : set α} : interior sᶜ = (closure s)ᶜ := by simp [closure_eq_compl_interior_compl] @[simp] lemma closure_compl {s : set α} : closure sᶜ = (interior s)ᶜ := by simp [closure_eq_compl_interior_compl] theorem mem_closure_iff {s : set α} {a : α} : a ∈ closure s ↔ ∀ o, is_open o → a ∈ o → (o ∩ s).nonempty := ⟨λ h o oo ao, classical.by_contradiction $ λ os, have s ⊆ oᶜ, from λ x xs xo, os ⟨x, xo, xs⟩, closure_minimal this (is_closed_compl_iff.2 oo) h ao, λ H c ⟨h₁, h₂⟩, classical.by_contradiction $ λ nc, let ⟨x, hc, hs⟩ := (H _ h₁.is_open_compl nc) in hc (h₂ hs)⟩ lemma filter.le_lift'_closure (l : filter α) : l ≤ l.lift' closure := le_infi₂ $ λ s hs, le_principal_iff.2 $ mem_of_superset hs subset_closure lemma filter.has_basis.lift'_closure {l : filter α} {p : ι → Prop} {s : ι → set α} (h : l.has_basis p s) : (l.lift' closure).has_basis p (λ i, closure (s i)) := h.lift' (monotone_closure α) lemma filter.has_basis.lift'_closure_eq_self {l : filter α} {p : ι → Prop} {s : ι → set α} (h : l.has_basis p s) (hc : ∀ i, p i → is_closed (s i)) : l.lift' closure = l := le_antisymm (h.ge_iff.2 $ λ i hi, (hc i hi).closure_eq ▸ mem_lift' (h.mem_of_mem hi)) l.le_lift'_closure /-- A set is dense in a topological space if every point belongs to its closure. -/ def dense (s : set α) : Prop := ∀ x, x ∈ closure s lemma dense_iff_closure_eq {s : set α} : dense s ↔ closure s = univ := eq_univ_iff_forall.symm lemma dense.closure_eq {s : set α} (h : dense s) : closure s = univ := dense_iff_closure_eq.mp h lemma interior_eq_empty_iff_dense_compl {s : set α} : interior s = ∅ ↔ dense sᶜ := by rw [dense_iff_closure_eq, closure_compl, compl_univ_iff] lemma dense.interior_compl {s : set α} (h : dense s) : interior sᶜ = ∅ := interior_eq_empty_iff_dense_compl.2 $ by rwa compl_compl /-- The closure of a set `s` is dense if and only if `s` is dense. -/ @[simp] lemma dense_closure {s : set α} : dense (closure s) ↔ dense s := by rw [dense, dense, closure_closure] alias dense_closure ↔ dense.of_closure dense.closure @[simp] lemma dense_univ : dense (univ : set α) := λ x, subset_closure trivial /-- A set is dense if and only if it has a nonempty intersection with each nonempty open set. -/ lemma dense_iff_inter_open {s : set α} : dense s ↔ ∀ U, is_open U → U.nonempty → (U ∩ s).nonempty := begin split ; intro h, { rintros U U_op ⟨x, x_in⟩, exact mem_closure_iff.1 (by simp only [h.closure_eq]) U U_op x_in }, { intro x, rw mem_closure_iff, intros U U_op x_in, exact h U U_op ⟨_, x_in⟩ }, end alias dense_iff_inter_open ↔ dense.inter_open_nonempty _ lemma dense.exists_mem_open {s : set α} (hs : dense s) {U : set α} (ho : is_open U) (hne : U.nonempty) : ∃ x ∈ s, x ∈ U := let ⟨x, hx⟩ := hs.inter_open_nonempty U ho hne in ⟨x, hx.2, hx.1⟩ lemma dense.nonempty_iff {s : set α} (hs : dense s) : s.nonempty ↔ nonempty α := ⟨λ ⟨x, hx⟩, ⟨x⟩, λ ⟨x⟩, let ⟨y, hy⟩ := hs.inter_open_nonempty _ is_open_univ ⟨x, trivial⟩ in ⟨y, hy.2⟩⟩ lemma dense.nonempty [h : nonempty α] {s : set α} (hs : dense s) : s.nonempty := hs.nonempty_iff.2 h @[mono] lemma dense.mono {s₁ s₂ : set α} (h : s₁ ⊆ s₂) (hd : dense s₁) : dense s₂ := λ x, closure_mono h (hd x) /-- Complement to a singleton is dense if and only if the singleton is not an open set. -/ lemma dense_compl_singleton_iff_not_open {x : α} : dense ({x}ᶜ : set α) ↔ ¬is_open ({x} : set α) := begin fsplit, { intros hd ho, exact (hd.inter_open_nonempty _ ho (singleton_nonempty _)).ne_empty (inter_compl_self _) }, { refine λ ho, dense_iff_inter_open.2 (λ U hU hne, inter_compl_nonempty_iff.2 $ λ hUx, _), obtain rfl : U = {x}, from eq_singleton_iff_nonempty_unique_mem.2 ⟨hne, hUx⟩, exact ho hU } end /-! ### Frontier of a set -/ /-- The frontier of a set is the set of points between the closure and interior. -/ def frontier (s : set α) : set α := closure s \ interior s @[simp] lemma closure_diff_interior (s : set α) : closure s \ interior s = frontier s := rfl @[simp] lemma closure_diff_frontier (s : set α) : closure s \ frontier s = interior s := by rw [frontier, diff_diff_right_self, inter_eq_self_of_subset_right interior_subset_closure] @[simp] lemma self_diff_frontier (s : set α) : s \ frontier s = interior s := by rw [frontier, diff_diff_right, diff_eq_empty.2 subset_closure, inter_eq_self_of_subset_right interior_subset, empty_union] lemma frontier_eq_closure_inter_closure {s : set α} : frontier s = closure s ∩ closure sᶜ := by rw [closure_compl, frontier, diff_eq] lemma frontier_subset_closure {s : set α} : frontier s ⊆ closure s := diff_subset _ _ lemma is_closed.frontier_subset (hs : is_closed s) : frontier s ⊆ s := frontier_subset_closure.trans hs.closure_eq.subset lemma frontier_closure_subset {s : set α} : frontier (closure s) ⊆ frontier s := diff_subset_diff closure_closure.subset $ interior_mono subset_closure lemma frontier_interior_subset {s : set α} : frontier (interior s) ⊆ frontier s := diff_subset_diff (closure_mono interior_subset) interior_interior.symm.subset /-- The complement of a set has the same frontier as the original set. -/ @[simp] lemma frontier_compl (s : set α) : frontier sᶜ = frontier s := by simp only [frontier_eq_closure_inter_closure, compl_compl, inter_comm] @[simp] lemma frontier_univ : frontier (univ : set α) = ∅ := by simp [frontier] @[simp] lemma frontier_empty : frontier (∅ : set α) = ∅ := by simp [frontier] lemma frontier_inter_subset (s t : set α) : frontier (s ∩ t) ⊆ (frontier s ∩ closure t) ∪ (closure s ∩ frontier t) := begin simp only [frontier_eq_closure_inter_closure, compl_inter, closure_union], convert inter_subset_inter_left _ (closure_inter_subset_inter_closure s t), simp only [inter_distrib_left, inter_distrib_right, inter_assoc], congr' 2, apply inter_comm end lemma frontier_union_subset (s t : set α) : frontier (s ∪ t) ⊆ (frontier s ∩ closure tᶜ) ∪ (closure sᶜ ∩ frontier t) := by simpa only [frontier_compl, ← compl_union] using frontier_inter_subset sᶜ tᶜ lemma is_closed.frontier_eq {s : set α} (hs : is_closed s) : frontier s = s \ interior s := by rw [frontier, hs.closure_eq] lemma is_open.frontier_eq {s : set α} (hs : is_open s) : frontier s = closure s \ s := by rw [frontier, hs.interior_eq] lemma is_open.inter_frontier_eq {s : set α} (hs : is_open s) : s ∩ frontier s = ∅ := by rw [hs.frontier_eq, inter_diff_self] /-- The frontier of a set is closed. -/ lemma is_closed_frontier {s : set α} : is_closed (frontier s) := by rw frontier_eq_closure_inter_closure; exact is_closed.inter is_closed_closure is_closed_closure /-- The frontier of a closed set has no interior point. -/ lemma interior_frontier {s : set α} (h : is_closed s) : interior (frontier s) = ∅ := begin have A : frontier s = s \ interior s, from h.frontier_eq, have B : interior (frontier s) ⊆ interior s, by rw A; exact interior_mono (diff_subset _ _), have C : interior (frontier s) ⊆ frontier s := interior_subset, have : interior (frontier s) ⊆ (interior s) ∩ (s \ interior s) := subset_inter B (by simpa [A] using C), rwa [inter_diff_self, subset_empty_iff] at this, end lemma closure_eq_interior_union_frontier (s : set α) : closure s = interior s ∪ frontier s := (union_diff_cancel interior_subset_closure).symm lemma closure_eq_self_union_frontier (s : set α) : closure s = s ∪ frontier s := (union_diff_cancel' interior_subset subset_closure).symm lemma disjoint.frontier_left (ht : is_open t) (hd : disjoint s t) : disjoint (frontier s) t := subset_compl_iff_disjoint_right.1 $ frontier_subset_closure.trans $ closure_minimal (disjoint_left.1 hd) $ is_closed_compl_iff.2 ht lemma disjoint.frontier_right (hs : is_open s) (hd : disjoint s t) : disjoint s (frontier t) := (hd.symm.frontier_left hs).symm lemma frontier_eq_inter_compl_interior {s : set α} : frontier s = (interior s)ᶜ ∩ (interior (sᶜ))ᶜ := by { rw [←frontier_compl, ←closure_compl], refl } lemma compl_frontier_eq_union_interior {s : set α} : (frontier s)ᶜ = interior s ∪ interior sᶜ := begin rw frontier_eq_inter_compl_interior, simp only [compl_inter, compl_compl], end /-! ### Neighborhoods -/ /-- A set is called a neighborhood of `a` if it contains an open set around `a`. The set of all neighborhoods of `a` forms a filter, the neighborhood filter at `a`, is here defined as the infimum over the principal filters of all open sets containing `a`. -/ @[irreducible] def nhds (a : α) : filter α := (⨅ s ∈ {s : set α | a ∈ s ∧ is_open s}, 𝓟 s) localized "notation `𝓝` := nhds" in topological_space /-- The "neighborhood within" filter. Elements of `𝓝[s] a` are sets containing the intersection of `s` and a neighborhood of `a`. -/ def nhds_within (a : α) (s : set α) : filter α := 𝓝 a ⊓ 𝓟 s localized "notation `𝓝[` s `] ` x:100 := nhds_within x s" in topological_space localized "notation `𝓝[≠] ` x:100 := nhds_within x {x}ᶜ" in topological_space localized "notation `𝓝[≥] ` x:100 := nhds_within x (set.Ici x)" in topological_space localized "notation `𝓝[≤] ` x:100 := nhds_within x (set.Iic x)" in topological_space localized "notation `𝓝[>] ` x:100 := nhds_within x (set.Ioi x)" in topological_space localized "notation `𝓝[<] ` x:100 := nhds_within x (set.Iio x)" in topological_space lemma nhds_def (a : α) : 𝓝 a = (⨅ s ∈ {s : set α | a ∈ s ∧ is_open s}, 𝓟 s) := by rw nhds lemma nhds_def' (a : α) : 𝓝 a = ⨅ (s : set α) (hs : is_open s) (ha : a ∈ s), 𝓟 s := by simp only [nhds_def, mem_set_of_eq, and_comm (a ∈ _), infi_and] /-- The open sets containing `a` are a basis for the neighborhood filter. See `nhds_basis_opens'` for a variant using open neighborhoods instead. -/ lemma nhds_basis_opens (a : α) : (𝓝 a).has_basis (λ s : set α, a ∈ s ∧ is_open s) (λ s, s) := begin rw nhds_def, exact has_basis_binfi_principal (λ s ⟨has, hs⟩ t ⟨hat, ht⟩, ⟨s ∩ t, ⟨⟨has, hat⟩, is_open.inter hs ht⟩, ⟨inter_subset_left _ _, inter_subset_right _ _⟩⟩) ⟨univ, ⟨mem_univ a, is_open_univ⟩⟩ end lemma nhds_basis_closeds (a : α) : (𝓝 a).has_basis (λ s : set α, a ∉ s ∧ is_closed s) compl := ⟨λ t, (nhds_basis_opens a).mem_iff.trans $ compl_surjective.exists.trans $ by simp only [is_open_compl_iff, mem_compl_iff]⟩ /-- A filter lies below the neighborhood filter at `a` iff it contains every open set around `a`. -/ lemma le_nhds_iff {f a} : f ≤ 𝓝 a ↔ ∀ s : set α, a ∈ s → is_open s → s ∈ f := by simp [nhds_def] /-- To show a filter is above the neighborhood filter at `a`, it suffices to show that it is above the principal filter of some open set `s` containing `a`. -/ lemma nhds_le_of_le {f a} {s : set α} (h : a ∈ s) (o : is_open s) (sf : 𝓟 s ≤ f) : 𝓝 a ≤ f := by rw nhds_def; exact infi_le_of_le s (infi_le_of_le ⟨h, o⟩ sf) lemma mem_nhds_iff {a : α} {s : set α} : s ∈ 𝓝 a ↔ ∃ t ⊆ s, is_open t ∧ a ∈ t := (nhds_basis_opens a).mem_iff.trans ⟨λ ⟨t, ⟨hat, ht⟩, hts⟩, ⟨t, hts, ht, hat⟩, λ ⟨t, hts, ht, hat⟩, ⟨t, ⟨hat, ht⟩, hts⟩⟩ /-- A predicate is true in a neighborhood of `a` iff it is true for all the points in an open set containing `a`. -/ lemma eventually_nhds_iff {a : α} {p : α → Prop} : (∀ᶠ x in 𝓝 a, p x) ↔ ∃ (t : set α), (∀ x ∈ t, p x) ∧ is_open t ∧ a ∈ t := mem_nhds_iff.trans $ by simp only [subset_def, exists_prop, mem_set_of_eq] lemma map_nhds {a : α} {f : α → β} : map f (𝓝 a) = (⨅ s ∈ {s : set α | a ∈ s ∧ is_open s}, 𝓟 (image f s)) := ((nhds_basis_opens a).map f).eq_binfi lemma mem_of_mem_nhds {a : α} {s : set α} : s ∈ 𝓝 a → a ∈ s := λ H, let ⟨t, ht, _, hs⟩ := mem_nhds_iff.1 H in ht hs /-- If a predicate is true in a neighborhood of `a`, then it is true for `a`. -/ lemma filter.eventually.self_of_nhds {p : α → Prop} {a : α} (h : ∀ᶠ y in 𝓝 a, p y) : p a := mem_of_mem_nhds h lemma is_open.mem_nhds {a : α} {s : set α} (hs : is_open s) (ha : a ∈ s) : s ∈ 𝓝 a := mem_nhds_iff.2 ⟨s, subset.refl _, hs, ha⟩ lemma is_open.mem_nhds_iff {a : α} {s : set α} (hs : is_open s) : s ∈ 𝓝 a ↔ a ∈ s := ⟨mem_of_mem_nhds, λ ha, mem_nhds_iff.2 ⟨s, subset.refl _, hs, ha⟩⟩ lemma is_closed.compl_mem_nhds {a : α} {s : set α} (hs : is_closed s) (ha : a ∉ s) : sᶜ ∈ 𝓝 a := hs.is_open_compl.mem_nhds (mem_compl ha) lemma is_open.eventually_mem {a : α} {s : set α} (hs : is_open s) (ha : a ∈ s) : ∀ᶠ x in 𝓝 a, x ∈ s := is_open.mem_nhds hs ha /-- The open neighborhoods of `a` are a basis for the neighborhood filter. See `nhds_basis_opens` for a variant using open sets around `a` instead. -/ lemma nhds_basis_opens' (a : α) : (𝓝 a).has_basis (λ s : set α, s ∈ 𝓝 a ∧ is_open s) (λ x, x) := begin convert nhds_basis_opens a, ext s, exact and.congr_left_iff.2 is_open.mem_nhds_iff end /-- If `U` is a neighborhood of each point of a set `s` then it is a neighborhood of `s`: it contains an open set containing `s`. -/ lemma exists_open_set_nhds {s U : set α} (h : ∀ x ∈ s, U ∈ 𝓝 x) : ∃ V : set α, s ⊆ V ∧ is_open V ∧ V ⊆ U := begin have := λ x hx, (nhds_basis_opens x).mem_iff.1 (h x hx), choose! Z hZ hZU using this, choose hZmem hZo using hZ, exact ⟨⋃ x ∈ s, Z x, λ x hx, mem_bUnion hx (hZmem x hx), is_open_bUnion hZo, Union₂_subset hZU⟩ end /-- If `U` is a neighborhood of each point of a set `s` then it is a neighborhood of s: it contains an open set containing `s`. -/ lemma exists_open_set_nhds' {s U : set α} (h : U ∈ ⨆ x ∈ s, 𝓝 x) : ∃ V : set α, s ⊆ V ∧ is_open V ∧ V ⊆ U := exists_open_set_nhds (by simpa using h) /-- If a predicate is true in a neighbourhood of `a`, then for `y` sufficiently close to `a` this predicate is true in a neighbourhood of `y`. -/ lemma filter.eventually.eventually_nhds {p : α → Prop} {a : α} (h : ∀ᶠ y in 𝓝 a, p y) : ∀ᶠ y in 𝓝 a, ∀ᶠ x in 𝓝 y, p x := let ⟨t, htp, hto, ha⟩ := eventually_nhds_iff.1 h in eventually_nhds_iff.2 ⟨t, λ x hx, eventually_nhds_iff.2 ⟨t, htp, hto, hx⟩, hto, ha⟩ @[simp] lemma eventually_eventually_nhds {p : α → Prop} {a : α} : (∀ᶠ y in 𝓝 a, ∀ᶠ x in 𝓝 y, p x) ↔ ∀ᶠ x in 𝓝 a, p x := ⟨λ h, h.self_of_nhds, λ h, h.eventually_nhds⟩ @[simp] lemma eventually_mem_nhds {s : set α} {a : α} : (∀ᶠ x in 𝓝 a, s ∈ 𝓝 x) ↔ s ∈ 𝓝 a := eventually_eventually_nhds @[simp] lemma nhds_bind_nhds : (𝓝 a).bind 𝓝 = 𝓝 a := filter.ext $ λ s, eventually_eventually_nhds @[simp] lemma eventually_eventually_eq_nhds {f g : α → β} {a : α} : (∀ᶠ y in 𝓝 a, f =ᶠ[𝓝 y] g) ↔ f =ᶠ[𝓝 a] g := eventually_eventually_nhds lemma filter.eventually_eq.eq_of_nhds {f g : α → β} {a : α} (h : f =ᶠ[𝓝 a] g) : f a = g a := h.self_of_nhds @[simp] lemma eventually_eventually_le_nhds [has_le β] {f g : α → β} {a : α} : (∀ᶠ y in 𝓝 a, f ≤ᶠ[𝓝 y] g) ↔ f ≤ᶠ[𝓝 a] g := eventually_eventually_nhds /-- If two functions are equal in a neighbourhood of `a`, then for `y` sufficiently close to `a` these functions are equal in a neighbourhood of `y`. -/ lemma filter.eventually_eq.eventually_eq_nhds {f g : α → β} {a : α} (h : f =ᶠ[𝓝 a] g) : ∀ᶠ y in 𝓝 a, f =ᶠ[𝓝 y] g := h.eventually_nhds /-- If `f x ≤ g x` in a neighbourhood of `a`, then for `y` sufficiently close to `a` we have `f x ≤ g x` in a neighbourhood of `y`. -/ lemma filter.eventually_le.eventually_le_nhds [has_le β] {f g : α → β} {a : α} (h : f ≤ᶠ[𝓝 a] g) : ∀ᶠ y in 𝓝 a, f ≤ᶠ[𝓝 y] g := h.eventually_nhds theorem all_mem_nhds (x : α) (P : set α → Prop) (hP : ∀ s t, s ⊆ t → P s → P t) : (∀ s ∈ 𝓝 x, P s) ↔ (∀ s, is_open s → x ∈ s → P s) := ((nhds_basis_opens x).forall_iff hP).trans $ by simp only [and_comm (x ∈ _), and_imp] theorem all_mem_nhds_filter (x : α) (f : set α → set β) (hf : ∀ s t, s ⊆ t → f s ⊆ f t) (l : filter β) : (∀ s ∈ 𝓝 x, f s ∈ l) ↔ (∀ s, is_open s → x ∈ s → f s ∈ l) := all_mem_nhds _ _ (λ s t ssubt h, mem_of_superset h (hf s t ssubt)) theorem rtendsto_nhds {r : rel β α} {l : filter β} {a : α} : rtendsto r l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → r.core s ∈ l) := all_mem_nhds_filter _ _ (λ s t, id) _ theorem rtendsto'_nhds {r : rel β α} {l : filter β} {a : α} : rtendsto' r l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → r.preimage s ∈ l) := by { rw [rtendsto'_def], apply all_mem_nhds_filter, apply rel.preimage_mono } theorem ptendsto_nhds {f : β →. α} {l : filter β} {a : α} : ptendsto f l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → f.core s ∈ l) := rtendsto_nhds theorem ptendsto'_nhds {f : β →. α} {l : filter β} {a : α} : ptendsto' f l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → f.preimage s ∈ l) := rtendsto'_nhds theorem tendsto_nhds {f : β → α} {l : filter β} {a : α} : tendsto f l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → f ⁻¹' s ∈ l) := all_mem_nhds_filter _ _ (λ s t h, preimage_mono h) _ lemma tendsto_at_top_nhds [nonempty β] [semilattice_sup β] {f : β → α} {a : α} : (tendsto f at_top (𝓝 a)) ↔ ∀ U : set α, a ∈ U → is_open U → ∃ N, ∀ n, N ≤ n → f n ∈ U := (at_top_basis.tendsto_iff (nhds_basis_opens a)).trans $ by simp only [and_imp, exists_prop, true_and, mem_Ici, ge_iff_le] lemma tendsto_const_nhds {a : α} {f : filter β} : tendsto (λb:β, a) f (𝓝 a) := tendsto_nhds.mpr $ assume s hs ha, univ_mem' $ assume _, ha lemma tendsto_at_top_of_eventually_const {ι : Type*} [semilattice_sup ι] [nonempty ι] {x : α} {u : ι → α} {i₀ : ι} (h : ∀ i ≥ i₀, u i = x) : tendsto u at_top (𝓝 x) := tendsto.congr' (eventually_eq.symm (eventually_at_top.mpr ⟨i₀, h⟩)) tendsto_const_nhds lemma tendsto_at_bot_of_eventually_const {ι : Type*} [semilattice_inf ι] [nonempty ι] {x : α} {u : ι → α} {i₀ : ι} (h : ∀ i ≤ i₀, u i = x) : tendsto u at_bot (𝓝 x) := tendsto.congr' (eventually_eq.symm (eventually_at_bot.mpr ⟨i₀, h⟩)) tendsto_const_nhds lemma pure_le_nhds : pure ≤ (𝓝 : α → filter α) := assume a s hs, mem_pure.2 $ mem_of_mem_nhds hs lemma tendsto_pure_nhds {α : Type*} [topological_space β] (f : α → β) (a : α) : tendsto f (pure a) (𝓝 (f a)) := (tendsto_pure_pure f a).mono_right (pure_le_nhds _) lemma order_top.tendsto_at_top_nhds {α : Type*} [partial_order α] [order_top α] [topological_space β] (f : α → β) : tendsto f at_top (𝓝 $ f ⊤) := (tendsto_at_top_pure f).mono_right (pure_le_nhds _) @[simp] instance nhds_ne_bot {a : α} : ne_bot (𝓝 a) := ne_bot_of_le (pure_le_nhds a) /-! ### Cluster points In this section we define [cluster points](https://en.wikipedia.org/wiki/Limit_point) (also known as limit points and accumulation points) of a filter and of a sequence. -/ /-- A point `x` is a cluster point of a filter `F` if 𝓝 x ⊓ F ≠ ⊥. Also known as an accumulation point or a limit point. -/ def cluster_pt (x : α) (F : filter α) : Prop := ne_bot (𝓝 x ⊓ F) lemma cluster_pt.ne_bot {x : α} {F : filter α} (h : cluster_pt x F) : ne_bot (𝓝 x ⊓ F) := h lemma filter.has_basis.cluster_pt_iff {ιa ιF} {pa : ιa → Prop} {sa : ιa → set α} {pF : ιF → Prop} {sF : ιF → set α} {F : filter α} (ha : (𝓝 a).has_basis pa sa) (hF : F.has_basis pF sF) : cluster_pt a F ↔ ∀ ⦃i⦄ (hi : pa i) ⦃j⦄ (hj : pF j), (sa i ∩ sF j).nonempty := ha.inf_basis_ne_bot_iff hF lemma cluster_pt_iff {x : α} {F : filter α} : cluster_pt x F ↔ ∀ ⦃U : set α⦄ (hU : U ∈ 𝓝 x) ⦃V⦄ (hV : V ∈ F), (U ∩ V).nonempty := inf_ne_bot_iff /-- `x` is a cluster point of a set `s` if every neighbourhood of `x` meets `s` on a nonempty set. -/ lemma cluster_pt_principal_iff {x : α} {s : set α} : cluster_pt x (𝓟 s) ↔ ∀ U ∈ 𝓝 x, (U ∩ s).nonempty := inf_principal_ne_bot_iff lemma cluster_pt_principal_iff_frequently {x : α} {s : set α} : cluster_pt x (𝓟 s) ↔ ∃ᶠ y in 𝓝 x, y ∈ s := by simp only [cluster_pt_principal_iff, frequently_iff, set.nonempty, exists_prop, mem_inter_iff] lemma cluster_pt.of_le_nhds {x : α} {f : filter α} (H : f ≤ 𝓝 x) [ne_bot f] : cluster_pt x f := by rwa [cluster_pt, inf_eq_right.mpr H] lemma cluster_pt.of_le_nhds' {x : α} {f : filter α} (H : f ≤ 𝓝 x) (hf : ne_bot f) : cluster_pt x f := cluster_pt.of_le_nhds H lemma cluster_pt.of_nhds_le {x : α} {f : filter α} (H : 𝓝 x ≤ f) : cluster_pt x f := by simp only [cluster_pt, inf_eq_left.mpr H, nhds_ne_bot] lemma cluster_pt.mono {x : α} {f g : filter α} (H : cluster_pt x f) (h : f ≤ g) : cluster_pt x g := ⟨ne_bot_of_le_ne_bot H.ne $ inf_le_inf_left _ h⟩ lemma cluster_pt.of_inf_left {x : α} {f g : filter α} (H : cluster_pt x $ f ⊓ g) : cluster_pt x f := H.mono inf_le_left lemma cluster_pt.of_inf_right {x : α} {f g : filter α} (H : cluster_pt x $ f ⊓ g) : cluster_pt x g := H.mono inf_le_right lemma ultrafilter.cluster_pt_iff {x : α} {f : ultrafilter α} : cluster_pt x f ↔ ↑f ≤ 𝓝 x := ⟨f.le_of_inf_ne_bot', λ h, cluster_pt.of_le_nhds h⟩ /-- A point `x` is a cluster point of a sequence `u` along a filter `F` if it is a cluster point of `map u F`. -/ def map_cluster_pt {ι :Type*} (x : α) (F : filter ι) (u : ι → α) : Prop := cluster_pt x (map u F) lemma map_cluster_pt_iff {ι :Type*} (x : α) (F : filter ι) (u : ι → α) : map_cluster_pt x F u ↔ ∀ s ∈ 𝓝 x, ∃ᶠ a in F, u a ∈ s := by { simp_rw [map_cluster_pt, cluster_pt, inf_ne_bot_iff_frequently_left, frequently_map], refl } lemma map_cluster_pt_of_comp {ι δ :Type*} {F : filter ι} {φ : δ → ι} {p : filter δ} {x : α} {u : ι → α} [ne_bot p] (h : tendsto φ p F) (H : tendsto (u ∘ φ) p (𝓝 x)) : map_cluster_pt x F u := begin have := calc map (u ∘ φ) p = map u (map φ p) : map_map ... ≤ map u F : map_mono h, have : map (u ∘ φ) p ≤ 𝓝 x ⊓ map u F, from le_inf H this, exact ne_bot_of_le this end /-! ### Interior, closure and frontier in terms of neighborhoods -/ lemma interior_eq_nhds' {s : set α} : interior s = {a | s ∈ 𝓝 a} := set.ext $ λ x, by simp only [mem_interior, mem_nhds_iff, mem_set_of_eq] lemma interior_eq_nhds {s : set α} : interior s = {a | 𝓝 a ≤ 𝓟 s} := interior_eq_nhds'.trans $ by simp only [le_principal_iff] lemma mem_interior_iff_mem_nhds {s : set α} {a : α} : a ∈ interior s ↔ s ∈ 𝓝 a := by rw [interior_eq_nhds', mem_set_of_eq] @[simp] lemma interior_mem_nhds {s : set α} {a : α} : interior s ∈ 𝓝 a ↔ s ∈ 𝓝 a := ⟨λ h, mem_of_superset h interior_subset, λ h, is_open.mem_nhds is_open_interior (mem_interior_iff_mem_nhds.2 h)⟩ lemma interior_set_of_eq {p : α → Prop} : interior {x | p x} = {x | ∀ᶠ y in 𝓝 x, p y} := interior_eq_nhds' lemma is_open_set_of_eventually_nhds {p : α → Prop} : is_open {x | ∀ᶠ y in 𝓝 x, p y} := by simp only [← interior_set_of_eq, is_open_interior] lemma subset_interior_iff_nhds {s V : set α} : s ⊆ interior V ↔ ∀ x ∈ s, V ∈ 𝓝 x := show (∀ x, x ∈ s → x ∈ _) ↔ _, by simp_rw mem_interior_iff_mem_nhds lemma is_open_iff_nhds {s : set α} : is_open s ↔ ∀a∈s, 𝓝 a ≤ 𝓟 s := calc is_open s ↔ s ⊆ interior s : subset_interior_iff_open.symm ... ↔ (∀a∈s, 𝓝 a ≤ 𝓟 s) : by rw [interior_eq_nhds]; refl lemma is_open_iff_mem_nhds {s : set α} : is_open s ↔ ∀a∈s, s ∈ 𝓝 a := is_open_iff_nhds.trans $ forall_congr $ λ _, imp_congr_right $ λ _, le_principal_iff theorem is_open_iff_ultrafilter {s : set α} : is_open s ↔ (∀ (x ∈ s) (l : ultrafilter α), ↑l ≤ 𝓝 x → s ∈ l) := by simp_rw [is_open_iff_mem_nhds, ← mem_iff_ultrafilter] lemma is_open_singleton_iff_nhds_eq_pure {α : Type*} [topological_space α] (a : α) : is_open ({a} : set α) ↔ 𝓝 a = pure a := begin split, { intros h, apply le_antisymm _ (pure_le_nhds a), rw le_pure_iff, exact h.mem_nhds (mem_singleton a) }, { intros h, simp [is_open_iff_nhds, h] } end lemma mem_closure_iff_frequently {s : set α} {a : α} : a ∈ closure s ↔ ∃ᶠ x in 𝓝 a, x ∈ s := by rw [filter.frequently, filter.eventually, ← mem_interior_iff_mem_nhds, closure_eq_compl_interior_compl]; refl alias mem_closure_iff_frequently ↔ _ filter.frequently.mem_closure /-- The set of cluster points of a filter is closed. In particular, the set of limit points of a sequence is closed. -/ lemma is_closed_set_of_cluster_pt {f : filter α} : is_closed {x | cluster_pt x f} := begin simp only [cluster_pt, inf_ne_bot_iff_frequently_left, set_of_forall, imp_iff_not_or], refine is_closed_Inter (λ p, is_closed.union _ _); apply is_closed_compl_iff.2, exacts [is_open_set_of_eventually_nhds, is_open_const] end theorem mem_closure_iff_cluster_pt {s : set α} {a : α} : a ∈ closure s ↔ cluster_pt a (𝓟 s) := mem_closure_iff_frequently.trans cluster_pt_principal_iff_frequently.symm lemma mem_closure_iff_nhds_ne_bot {s : set α} : a ∈ closure s ↔ 𝓝 a ⊓ 𝓟 s ≠ ⊥ := mem_closure_iff_cluster_pt.trans ne_bot_iff lemma mem_closure_iff_nhds_within_ne_bot {s : set α} {x : α} : x ∈ closure s ↔ ne_bot (𝓝[s] x) := mem_closure_iff_cluster_pt /-- If `x` is not an isolated point of a topological space, then `{x}ᶜ` is dense in the whole space. -/ lemma dense_compl_singleton (x : α) [ne_bot (𝓝[≠] x)] : dense ({x}ᶜ : set α) := begin intro y, unfreezingI { rcases eq_or_ne y x with rfl|hne }, { rwa mem_closure_iff_nhds_within_ne_bot }, { exact subset_closure hne } end /-- If `x` is not an isolated point of a topological space, then the closure of `{x}ᶜ` is the whole space. -/ @[simp] lemma closure_compl_singleton (x : α) [ne_bot (𝓝[≠] x)] : closure {x}ᶜ = (univ : set α) := (dense_compl_singleton x).closure_eq /-- If `x` is not an isolated point of a topological space, then the interior of `{x}` is empty. -/ @[simp] lemma interior_singleton (x : α) [ne_bot (𝓝[≠] x)] : interior {x} = (∅ : set α) := interior_eq_empty_iff_dense_compl.2 (dense_compl_singleton x) lemma closure_eq_cluster_pts {s : set α} : closure s = {a | cluster_pt a (𝓟 s)} := set.ext $ λ x, mem_closure_iff_cluster_pt theorem mem_closure_iff_nhds {s : set α} {a : α} : a ∈ closure s ↔ ∀ t ∈ 𝓝 a, (t ∩ s).nonempty := mem_closure_iff_cluster_pt.trans cluster_pt_principal_iff theorem mem_closure_iff_nhds' {s : set α} {a : α} : a ∈ closure s ↔ ∀ t ∈ 𝓝 a, ∃ y : s, ↑y ∈ t := by simp only [mem_closure_iff_nhds, set.nonempty_inter_iff_exists_right] theorem mem_closure_iff_comap_ne_bot {A : set α} {x : α} : x ∈ closure A ↔ ne_bot (comap (coe : A → α) (𝓝 x)) := by simp_rw [mem_closure_iff_nhds, comap_ne_bot_iff, set.nonempty_inter_iff_exists_right] theorem mem_closure_iff_nhds_basis' {a : α} {p : ι → Prop} {s : ι → set α} (h : (𝓝 a).has_basis p s) {t : set α} : a ∈ closure t ↔ ∀ i, p i → (s i ∩ t).nonempty := mem_closure_iff_cluster_pt.trans $ (h.cluster_pt_iff (has_basis_principal _)).trans $ by simp only [exists_prop, forall_const] theorem mem_closure_iff_nhds_basis {a : α} {p : ι → Prop} {s : ι → set α} (h : (𝓝 a).has_basis p s) {t : set α} : a ∈ closure t ↔ ∀ i, p i → ∃ y ∈ t, y ∈ s i := (mem_closure_iff_nhds_basis' h).trans $ by simp only [set.nonempty, mem_inter_eq, exists_prop, and_comm] /-- `x` belongs to the closure of `s` if and only if some ultrafilter supported on `s` converges to `x`. -/ lemma mem_closure_iff_ultrafilter {s : set α} {x : α} : x ∈ closure s ↔ ∃ (u : ultrafilter α), s ∈ u ∧ ↑u ≤ 𝓝 x := by simp [closure_eq_cluster_pts, cluster_pt, ← exists_ultrafilter_iff, and.comm] lemma is_closed_iff_cluster_pt {s : set α} : is_closed s ↔ ∀a, cluster_pt a (𝓟 s) → a ∈ s := calc is_closed s ↔ closure s ⊆ s : closure_subset_iff_is_closed.symm ... ↔ (∀a, cluster_pt a (𝓟 s) → a ∈ s) : by simp only [subset_def, mem_closure_iff_cluster_pt] lemma is_closed_iff_nhds {s : set α} : is_closed s ↔ ∀ x, (∀ U ∈ 𝓝 x, (U ∩ s).nonempty) → x ∈ s := by simp_rw [is_closed_iff_cluster_pt, cluster_pt, inf_principal_ne_bot_iff] lemma closure_inter_open {s t : set α} (h : is_open s) : s ∩ closure t ⊆ closure (s ∩ t) := begin rintro a ⟨hs, ht⟩, have : s ∈ 𝓝 a := is_open.mem_nhds h hs, rw mem_closure_iff_nhds_ne_bot at ht ⊢, rwa [← inf_principal, ← inf_assoc, inf_eq_left.2 (le_principal_iff.2 this)], end lemma closure_inter_open' {s t : set α} (h : is_open t) : closure s ∩ t ⊆ closure (s ∩ t) := by simpa only [inter_comm] using closure_inter_open h lemma dense.open_subset_closure_inter {s t : set α} (hs : dense s) (ht : is_open t) : t ⊆ closure (t ∩ s) := calc t = t ∩ closure s : by rw [hs.closure_eq, inter_univ] ... ⊆ closure (t ∩ s) : closure_inter_open ht lemma mem_closure_of_mem_closure_union {s₁ s₂ : set α} {x : α} (h : x ∈ closure (s₁ ∪ s₂)) (h₁ : s₁ᶜ ∈ 𝓝 x) : x ∈ closure s₂ := begin rw mem_closure_iff_nhds_ne_bot at *, rwa ← calc 𝓝 x ⊓ principal (s₁ ∪ s₂) = 𝓝 x ⊓ (principal s₁ ⊔ principal s₂) : by rw sup_principal ... = (𝓝 x ⊓ principal s₁) ⊔ (𝓝 x ⊓ principal s₂) : inf_sup_left ... = ⊥ ⊔ 𝓝 x ⊓ principal s₂ : by rw inf_principal_eq_bot.mpr h₁ ... = 𝓝 x ⊓ principal s₂ : bot_sup_eq end /-- The intersection of an open dense set with a dense set is a dense set. -/ lemma dense.inter_of_open_left {s t : set α} (hs : dense s) (ht : dense t) (hso : is_open s) : dense (s ∩ t) := λ x, (closure_minimal (closure_inter_open hso) is_closed_closure) $ by simp [hs.closure_eq, ht.closure_eq] /-- The intersection of a dense set with an open dense set is a dense set. -/ lemma dense.inter_of_open_right {s t : set α} (hs : dense s) (ht : dense t) (hto : is_open t) : dense (s ∩ t) := inter_comm t s ▸ ht.inter_of_open_left hs hto lemma dense.inter_nhds_nonempty {s t : set α} (hs : dense s) {x : α} (ht : t ∈ 𝓝 x) : (s ∩ t).nonempty := let ⟨U, hsub, ho, hx⟩ := mem_nhds_iff.1 ht in (hs.inter_open_nonempty U ho ⟨x, hx⟩).mono $ λ y hy, ⟨hy.2, hsub hy.1⟩ lemma closure_diff {s t : set α} : closure s \ closure t ⊆ closure (s \ t) := calc closure s \ closure t = (closure t)ᶜ ∩ closure s : by simp only [diff_eq, inter_comm] ... ⊆ closure ((closure t)ᶜ ∩ s) : closure_inter_open $ is_open_compl_iff.mpr $ is_closed_closure ... = closure (s \ closure t) : by simp only [diff_eq, inter_comm] ... ⊆ closure (s \ t) : closure_mono $ diff_subset_diff (subset.refl s) subset_closure lemma filter.frequently.mem_of_closed {a : α} {s : set α} (h : ∃ᶠ x in 𝓝 a, x ∈ s) (hs : is_closed s) : a ∈ s := hs.closure_subset h.mem_closure lemma is_closed.mem_of_frequently_of_tendsto {f : β → α} {b : filter β} {a : α} {s : set α} (hs : is_closed s) (h : ∃ᶠ x in b, f x ∈ s) (hf : tendsto f b (𝓝 a)) : a ∈ s := (hf.frequently $ show ∃ᶠ x in b, (λ y, y ∈ s) (f x), from h).mem_of_closed hs lemma is_closed.mem_of_tendsto {f : β → α} {b : filter β} {a : α} {s : set α} [ne_bot b] (hs : is_closed s) (hf : tendsto f b (𝓝 a)) (h : ∀ᶠ x in b, f x ∈ s) : a ∈ s := hs.mem_of_frequently_of_tendsto h.frequently hf lemma mem_closure_of_frequently_of_tendsto {f : β → α} {b : filter β} {a : α} {s : set α} (h : ∃ᶠ x in b, f x ∈ s) (hf : tendsto f b (𝓝 a)) : a ∈ closure s := filter.frequently.mem_closure $ hf.frequently h lemma mem_closure_of_tendsto {f : β → α} {b : filter β} {a : α} {s : set α} [ne_bot b] (hf : tendsto f b (𝓝 a)) (h : ∀ᶠ x in b, f x ∈ s) : a ∈ closure s := mem_closure_of_frequently_of_tendsto h.frequently hf /-- Suppose that `f` sends the complement to `s` to a single point `a`, and `l` is some filter. Then `f` tends to `a` along `l` restricted to `s` if and only if it tends to `a` along `l`. -/ lemma tendsto_inf_principal_nhds_iff_of_forall_eq {f : β → α} {l : filter β} {s : set β} {a : α} (h : ∀ x ∉ s, f x = a) : tendsto f (l ⊓ 𝓟 s) (𝓝 a) ↔ tendsto f l (𝓝 a) := begin rw [tendsto_iff_comap, tendsto_iff_comap], replace h : 𝓟 sᶜ ≤ comap f (𝓝 a), { rintros U ⟨t, ht, htU⟩ x hx, have : f x ∈ t, from (h x hx).symm ▸ mem_of_mem_nhds ht, exact htU this }, refine ⟨λ h', _, le_trans inf_le_left⟩, have := sup_le h' h, rw [sup_inf_right, sup_principal, union_compl_self, principal_univ, inf_top_eq, sup_le_iff] at this, exact this.1 end /-! ### Limits of filters in topological spaces -/ section lim /-- If `f` is a filter, then `Lim f` is a limit of the filter, if it exists. -/ noncomputable def Lim [nonempty α] (f : filter α) : α := epsilon $ λa, f ≤ 𝓝 a /-- If `f` is a filter satisfying `ne_bot f`, then `Lim' f` is a limit of the filter, if it exists. -/ def Lim' (f : filter α) [ne_bot f] : α := @Lim _ _ (nonempty_of_ne_bot f) f /-- If `F` is an ultrafilter, then `filter.ultrafilter.Lim F` is a limit of the filter, if it exists. Note that dot notation `F.Lim` can be used for `F : ultrafilter α`. -/ def ultrafilter.Lim : ultrafilter α → α := λ F, Lim' F /-- If `f` is a filter in `β` and `g : β → α` is a function, then `lim f` is a limit of `g` at `f`, if it exists. -/ noncomputable def lim [nonempty α] (f : filter β) (g : β → α) : α := Lim (f.map g) /-- If a filter `f` is majorated by some `𝓝 a`, then it is majorated by `𝓝 (Lim f)`. We formulate this lemma with a `[nonempty α]` argument of `Lim` derived from `h` to make it useful for types without a `[nonempty α]` instance. Because of the built-in proof irrelevance, Lean will unify this instance with any other instance. -/ lemma le_nhds_Lim {f : filter α} (h : ∃a, f ≤ 𝓝 a) : f ≤ 𝓝 (@Lim _ _ (nonempty_of_exists h) f) := epsilon_spec h /-- If `g` tends to some `𝓝 a` along `f`, then it tends to `𝓝 (lim f g)`. We formulate this lemma with a `[nonempty α]` argument of `lim` derived from `h` to make it useful for types without a `[nonempty α]` instance. Because of the built-in proof irrelevance, Lean will unify this instance with any other instance. -/ lemma tendsto_nhds_lim {f : filter β} {g : β → α} (h : ∃ a, tendsto g f (𝓝 a)) : tendsto g f (𝓝 $ @lim _ _ _ (nonempty_of_exists h) f g) := le_nhds_Lim h end lim end topological_space /-! ### Continuity -/ section continuous variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} variables [topological_space α] [topological_space β] [topological_space γ] open_locale topological_space /-- A function between topological spaces is continuous if the preimage of every open set is open. Registered as a structure to make sure it is not unfolded by Lean. -/ structure continuous (f : α → β) : Prop := (is_open_preimage : ∀s, is_open s → is_open (f ⁻¹' s)) lemma continuous_def {f : α → β} : continuous f ↔ (∀s, is_open s → is_open (f ⁻¹' s)) := ⟨λ hf s hs, hf.is_open_preimage s hs, λ h, ⟨h⟩⟩ lemma is_open.preimage {f : α → β} (hf : continuous f) {s : set β} (h : is_open s) : is_open (f ⁻¹' s) := hf.is_open_preimage s h lemma continuous.congr {f g : α → β} (h : continuous f) (h' : ∀ x, f x = g x) : continuous g := by { convert h, ext, rw h' } /-- A function between topological spaces is continuous at a point `x₀` if `f x` tends to `f x₀` when `x` tends to `x₀`. -/ def continuous_at (f : α → β) (x : α) := tendsto f (𝓝 x) (𝓝 (f x)) lemma continuous_at.tendsto {f : α → β} {x : α} (h : continuous_at f x) : tendsto f (𝓝 x) (𝓝 (f x)) := h lemma continuous_at_def {f : α → β} {x : α} : continuous_at f x ↔ ∀ A ∈ 𝓝 (f x), f ⁻¹' A ∈ 𝓝 x := iff.rfl lemma continuous_at_congr {f g : α → β} {x : α} (h : f =ᶠ[𝓝 x] g) : continuous_at f x ↔ continuous_at g x := by simp only [continuous_at, tendsto_congr' h, h.eq_of_nhds] lemma continuous_at.congr {f g : α → β} {x : α} (hf : continuous_at f x) (h : f =ᶠ[𝓝 x] g) : continuous_at g x := (continuous_at_congr h).1 hf lemma continuous_at.preimage_mem_nhds {f : α → β} {x : α} {t : set β} (h : continuous_at f x) (ht : t ∈ 𝓝 (f x)) : f ⁻¹' t ∈ 𝓝 x := h ht lemma eventually_eq_zero_nhds {M₀} [has_zero M₀] {a : α} {f : α → M₀} : f =ᶠ[𝓝 a] 0 ↔ a ∉ closure (function.support f) := by rw [← mem_compl_eq, ← interior_compl, mem_interior_iff_mem_nhds, function.compl_support]; refl lemma cluster_pt.map {x : α} {la : filter α} {lb : filter β} (H : cluster_pt x la) {f : α → β} (hfc : continuous_at f x) (hf : tendsto f la lb) : cluster_pt (f x) lb := ⟨ne_bot_of_le_ne_bot ((map_ne_bot_iff f).2 H).ne $ hfc.tendsto.inf hf⟩ /-- See also `interior_preimage_subset_preimage_interior`. -/ lemma preimage_interior_subset_interior_preimage {f : α → β} {s : set β} (hf : continuous f) : f⁻¹' (interior s) ⊆ interior (f⁻¹' s) := interior_maximal (preimage_mono interior_subset) (is_open_interior.preimage hf) lemma continuous_id : continuous (id : α → α) := continuous_def.2 $ assume s h, h lemma continuous.comp {g : β → γ} {f : α → β} (hg : continuous g) (hf : continuous f) : continuous (g ∘ f) := continuous_def.2 $ assume s h, (h.preimage hg).preimage hf lemma continuous.iterate {f : α → α} (h : continuous f) (n : ℕ) : continuous (f^[n]) := nat.rec_on n continuous_id (λ n ihn, ihn.comp h) lemma continuous_at.comp {g : β → γ} {f : α → β} {x : α} (hg : continuous_at g (f x)) (hf : continuous_at f x) : continuous_at (g ∘ f) x := hg.comp hf lemma continuous.tendsto {f : α → β} (hf : continuous f) (x) : tendsto f (𝓝 x) (𝓝 (f x)) := ((nhds_basis_opens x).tendsto_iff $ nhds_basis_opens $ f x).2 $ λ t ⟨hxt, ht⟩, ⟨f ⁻¹' t, ⟨hxt, ht.preimage hf⟩, subset.refl _⟩ /-- A version of `continuous.tendsto` that allows one to specify a simpler form of the limit. E.g., one can write `continuous_exp.tendsto' 0 1 exp_zero`. -/ lemma continuous.tendsto' {f : α → β} (hf : continuous f) (x : α) (y : β) (h : f x = y) : tendsto f (𝓝 x) (𝓝 y) := h ▸ hf.tendsto x lemma continuous.continuous_at {f : α → β} {x : α} (h : continuous f) : continuous_at f x := h.tendsto x lemma continuous_iff_continuous_at {f : α → β} : continuous f ↔ ∀ x, continuous_at f x := ⟨continuous.tendsto, assume hf : ∀x, tendsto f (𝓝 x) (𝓝 (f x)), continuous_def.2 $ assume s, assume hs : is_open s, have ∀a, f a ∈ s → s ∈ 𝓝 (f a), from λ a ha, is_open.mem_nhds hs ha, show is_open (f ⁻¹' s), from is_open_iff_nhds.2 $ λ a ha, le_principal_iff.2 $ hf _ (this a ha)⟩ lemma continuous_at_const {x : α} {b : β} : continuous_at (λ a:α, b) x := tendsto_const_nhds lemma continuous_const {b : β} : continuous (λa:α, b) := continuous_iff_continuous_at.mpr $ assume a, continuous_at_const lemma filter.eventually_eq.continuous_at {x : α} {f : α → β} {y : β} (h : f =ᶠ[𝓝 x] (λ _, y)) : continuous_at f x := (continuous_at_congr h).2 tendsto_const_nhds lemma continuous_of_const {f : α → β} (h : ∀ x y, f x = f y) : continuous f := continuous_iff_continuous_at.mpr $ λ x, filter.eventually_eq.continuous_at $ eventually_of_forall (λ y, h y x) lemma continuous_at_id {x : α} : continuous_at id x := continuous_id.continuous_at lemma continuous_at.iterate {f : α → α} {x : α} (hf : continuous_at f x) (hx : f x = x) (n : ℕ) : continuous_at (f^[n]) x := nat.rec_on n continuous_at_id $ λ n ihn, show continuous_at (f^[n] ∘ f) x, from continuous_at.comp (hx.symm ▸ ihn) hf lemma continuous_iff_is_closed {f : α → β} : continuous f ↔ (∀s, is_closed s → is_closed (f ⁻¹' s)) := ⟨assume hf s hs, by simpa using (continuous_def.1 hf sᶜ hs.is_open_compl).is_closed_compl, assume hf, continuous_def.2 $ assume s, by rw [←is_closed_compl_iff, ←is_closed_compl_iff]; exact hf _⟩ lemma is_closed.preimage {f : α → β} (hf : continuous f) {s : set β} (h : is_closed s) : is_closed (f ⁻¹' s) := continuous_iff_is_closed.mp hf s h lemma mem_closure_image {f : α → β} {x : α} {s : set α} (hf : continuous_at f x) (hx : x ∈ closure s) : f x ∈ closure (f '' s) := mem_closure_of_frequently_of_tendsto ((mem_closure_iff_frequently.1 hx).mono (λ x, mem_image_of_mem _)) hf lemma continuous_at_iff_ultrafilter {f : α → β} {x} : continuous_at f x ↔ ∀ g : ultrafilter α, ↑g ≤ 𝓝 x → tendsto f g (𝓝 (f x)) := tendsto_iff_ultrafilter f (𝓝 x) (𝓝 (f x)) lemma continuous_iff_ultrafilter {f : α → β} : continuous f ↔ ∀ x (g : ultrafilter α), ↑g ≤ 𝓝 x → tendsto f g (𝓝 (f x)) := by simp only [continuous_iff_continuous_at, continuous_at_iff_ultrafilter] lemma continuous.closure_preimage_subset {f : α → β} (hf : continuous f) (t : set β) : closure (f ⁻¹' t) ⊆ f ⁻¹' (closure t) := begin rw ← (is_closed_closure.preimage hf).closure_eq, exact closure_mono (preimage_mono subset_closure), end lemma continuous.frontier_preimage_subset {f : α → β} (hf : continuous f) (t : set β) : frontier (f ⁻¹' t) ⊆ f ⁻¹' (frontier t) := diff_subset_diff (hf.closure_preimage_subset t) (preimage_interior_subset_interior_preimage hf) /-! ### Continuity and partial functions -/ /-- Continuity of a partial function -/ def pcontinuous (f : α →. β) := ∀ s, is_open s → is_open (f.preimage s) lemma open_dom_of_pcontinuous {f : α →. β} (h : pcontinuous f) : is_open f.dom := by rw [←pfun.preimage_univ]; exact h _ is_open_univ lemma pcontinuous_iff' {f : α →. β} : pcontinuous f ↔ ∀ {x y} (h : y ∈ f x), ptendsto' f (𝓝 x) (𝓝 y) := begin split, { intros h x y h', simp only [ptendsto'_def, mem_nhds_iff], rintros s ⟨t, tsubs, opent, yt⟩, exact ⟨f.preimage t, pfun.preimage_mono _ tsubs, h _ opent, ⟨y, yt, h'⟩⟩ }, intros hf s os, rw is_open_iff_nhds, rintros x ⟨y, ys, fxy⟩ t, rw [mem_principal], assume h : f.preimage s ⊆ t, change t ∈ 𝓝 x, apply mem_of_superset _ h, have h' : ∀ s ∈ 𝓝 y, f.preimage s ∈ 𝓝 x, { intros s hs, have : ptendsto' f (𝓝 x) (𝓝 y) := hf fxy, rw ptendsto'_def at this, exact this s hs }, show f.preimage s ∈ 𝓝 x, apply h', rw mem_nhds_iff, exact ⟨s, set.subset.refl _, os, ys⟩ end /-- If a continuous map `f` maps `s` to `t`, then it maps `closure s` to `closure t`. -/ lemma set.maps_to.closure {s : set α} {t : set β} {f : α → β} (h : maps_to f s t) (hc : continuous f) : maps_to f (closure s) (closure t) := begin simp only [maps_to, mem_closure_iff_cluster_pt], exact λ x hx, hx.map hc.continuous_at (tendsto_principal_principal.2 h) end lemma image_closure_subset_closure_image {f : α → β} {s : set α} (h : continuous f) : f '' closure s ⊆ closure (f '' s) := ((maps_to_image f s).closure h).image_subset lemma closure_subset_preimage_closure_image {f : α → β} {s : set α} (h : continuous f) : closure s ⊆ f ⁻¹' (closure (f '' s)) := by { rw ← set.image_subset_iff, exact image_closure_subset_closure_image h } lemma map_mem_closure {s : set α} {t : set β} {f : α → β} {a : α} (hf : continuous f) (ha : a ∈ closure s) (ht : ∀a∈s, f a ∈ t) : f a ∈ closure t := set.maps_to.closure ht hf ha /-! ### Function with dense range -/ section dense_range variables {κ ι : Type*} (f : κ → β) (g : β → γ) /-- `f : ι → β` has dense range if its range (image) is a dense subset of β. -/ def dense_range := dense (range f) variables {f} /-- A surjective map has dense range. -/ lemma function.surjective.dense_range (hf : function.surjective f) : dense_range f := λ x, by simp [hf.range_eq] lemma dense_range_iff_closure_range : dense_range f ↔ closure (range f) = univ := dense_iff_closure_eq lemma dense_range.closure_range (h : dense_range f) : closure (range f) = univ := h.closure_eq lemma dense.dense_range_coe {s : set α} (h : dense s) : dense_range (coe : s → α) := by simpa only [dense_range, subtype.range_coe_subtype] lemma continuous.range_subset_closure_image_dense {f : α → β} (hf : continuous f) {s : set α} (hs : dense s) : range f ⊆ closure (f '' s) := by { rw [← image_univ, ← hs.closure_eq], exact image_closure_subset_closure_image hf } /-- The image of a dense set under a continuous map with dense range is a dense set. -/ lemma dense_range.dense_image {f : α → β} (hf' : dense_range f) (hf : continuous f) {s : set α} (hs : dense s) : dense (f '' s) := (hf'.mono $ hf.range_subset_closure_image_dense hs).of_closure /-- If `f` has dense range and `s` is an open set in the codomain of `f`, then the image of the preimage of `s` under `f` is dense in `s`. -/ lemma dense_range.subset_closure_image_preimage_of_is_open (hf : dense_range f) {s : set β} (hs : is_open s) : s ⊆ closure (f '' (f ⁻¹' s)) := by { rw image_preimage_eq_inter_range, exact hf.open_subset_closure_inter hs } /-- If a continuous map with dense range maps a dense set to a subset of `t`, then `t` is a dense set. -/ lemma dense_range.dense_of_maps_to {f : α → β} (hf' : dense_range f) (hf : continuous f) {s : set α} (hs : dense s) {t : set β} (ht : maps_to f s t) : dense t := (hf'.dense_image hf hs).mono ht.image_subset /-- Composition of a continuous map with dense range and a function with dense range has dense range. -/ lemma dense_range.comp {g : β → γ} {f : κ → β} (hg : dense_range g) (hf : dense_range f) (cg : continuous g) : dense_range (g ∘ f) := by { rw [dense_range, range_comp], exact hg.dense_image cg hf } lemma dense_range.nonempty_iff (hf : dense_range f) : nonempty κ ↔ nonempty β := range_nonempty_iff_nonempty.symm.trans hf.nonempty_iff lemma dense_range.nonempty [h : nonempty β] (hf : dense_range f) : nonempty κ := hf.nonempty_iff.mpr h /-- Given a function `f : α → β` with dense range and `b : β`, returns some `a : α`. -/ def dense_range.some (hf : dense_range f) (b : β) : κ := classical.choice $ hf.nonempty_iff.mpr ⟨b⟩ lemma dense_range.exists_mem_open (hf : dense_range f) {s : set β} (ho : is_open s) (hs : s.nonempty) : ∃ a, f a ∈ s := exists_range_iff.1 $ hf.exists_mem_open ho hs lemma dense_range.mem_nhds {f : κ → β} (h : dense_range f) {b : β} {U : set β} (U_in : U ∈ 𝓝 b) : ∃ a, f a ∈ U := let ⟨a, ha⟩ := h.exists_mem_open is_open_interior ⟨b, mem_interior_iff_mem_nhds.2 U_in⟩ in ⟨a, interior_subset ha⟩ end dense_range end continuous /-- The library contains many lemmas stating that functions/operations are continuous. There are many ways to formulate the continuity of operations. Some are more convenient than others. Note: for the most part this note also applies to other properties (`measurable`, `differentiable`, `continuous_on`, ...). ### The traditional way As an example, let's look at addition `(+) : M → M → M`. We can state that this is continuous in different definitionally equal ways (omitting some typing information) * `continuous (λ p, p.1 + p.2)`; * `continuous (function.uncurry (+))`; * `continuous ↿(+)`. (`↿` is notation for recursively uncurrying a function) However, lemmas with this conclusion are not nice to use in practice because 1. They confuse the elaborator. The following two examples fail, because of limitations in the elaboration process. ``` variables {M : Type*} [has_add M] [topological_space M] [has_continuous_add M] example : continuous (λ x : M, x + x) := continuous_add.comp _ example : continuous (λ x : M, x + x) := continuous_add.comp (continuous_id.prod_mk continuous_id) ``` The second is a valid proof, which is accepted if you write it as `continuous_add.comp (continuous_id.prod_mk continuous_id : _)` 2. If the operation has more than 2 arguments, they are impractical to use, because in your application the arguments in the domain might be in a different order or associated differently. ### The convenient way A much more convenient way to write continuity lemmas is like `continuous.add`: ``` continuous.add {f g : X → M} (hf : continuous f) (hg : continuous g) : continuous (λ x, f x + g x) ``` The conclusion can be `continuous (f + g)`, which is definitionally equal. This has the following advantages * It supports projection notation, so is shorter to write. * `continuous.add _ _` is recognized correctly by the elaborator and gives useful new goals. * It works generally, since the domain is a variable. As an example for an unary operation, we have `continuous.neg`. ``` continuous.neg {f : α → G} (hf : continuous f) : continuous (λ x, -f x) ``` For unary functions, the elaborator is not confused when applying the traditional lemma (like `continuous_neg`), but it's still convenient to have the short version available (compare `hf.neg.neg.neg` with `continuous_neg.comp $ continuous_neg.comp $ continuous_neg.comp hf`). As a harder example, consider an operation of the following type: ``` def strans {x : F} (γ γ' : path x x) (t₀ : I) : path x x ``` The precise definition is not important, only its type. The correct continuity principle for this operation is something like this: ``` {f : X → F} {γ γ' : ∀ x, path (f x) (f x)} {t₀ s : X → I} (hγ : continuous ↿γ) (hγ' : continuous ↿γ') (ht : continuous t₀) (hs : continuous s) : continuous (λ x, strans (γ x) (γ' x) (t x) (s x)) ``` Note that *all* arguments of `strans` are indexed over `X`, even the basepoint `x`, and the last argument `s` that arises since `path x x` has a coercion to `I → F`. The paths `γ` and `γ'` (which are unary functions from `I`) become binary functions in the continuity lemma. ### Summary * Make sure that your continuity lemmas are stated in the most general way, and in a convenient form. That means that: - The conclusion has a variable `X` as domain (not something like `Y × Z`); - Wherever possible, all point arguments `c : Y` are replaced by functions `c : X → Y`; - All `n`-ary function arguments are replaced by `n+1`-ary functions (`f : Y → Z` becomes `f : X → Y → Z`); - All (relevant) arguments have continuity assumptions, and perhaps there are additional assumptions needed to make the operation continuous; - The function in the conclusion is fully applied. * These remarks are mostly about the format of the *conclusion* of a continuity lemma. In assumptions it's fine to state that a function with more than 1 argument is continuous using `↿` or `function.uncurry`. ### Functions with discontinuities In some cases, you want to work with discontinuous functions, and in certain expressions they are still continuous. For example, consider the fractional part of a number, `fract : ℝ → ℝ`. In this case, you want to add conditions to when a function involving `fract` is continuous, so you get something like this: (assumption `hf` could be weakened, but the important thing is the shape of the conclusion) ``` lemma continuous_on.comp_fract {X Y : Type*} [topological_space X] [topological_space Y] {f : X → ℝ → Y} {g : X → ℝ} (hf : continuous ↿f) (hg : continuous g) (h : ∀ s, f s 0 = f s 1) : continuous (λ x, f x (fract (g x))) ``` With `continuous_at` you can be even more precise about what to prove in case of discontinuities, see e.g. `continuous_at.comp_div_cases`. -/ library_note "continuity lemma statement"