/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import order.hom.basic /-! # Turning a preorder into a partial order This file allows to make a preorder into a partial order by quotienting out the elements `a`, `b` such that `a ≤ b` and `b ≤ a`. `antisymmetrization` is a functor from `Preorder` to `PartialOrder`. See `Preorder_to_PartialOrder`. ## Main declarations * `antisymm_rel`: The antisymmetrization relation. `antisymm_rel r a b` means that `a` and `b` are related both ways by `r`. * `antisymmetrization α r`: The quotient of `α` by `antisymm_rel r`. Even when `r` is just a preorder, `antisymmetrization α` is a partial order. -/ open function order_dual variables {α β : Type*} section relation variables (r : α → α → Prop) /-- The antisymmetrization relation. -/ def antisymm_rel (a b : α) : Prop := r a b ∧ r b a lemma antisymm_rel_swap : antisymm_rel (swap r) = antisymm_rel r := funext $ λ _, funext $ λ _, propext and.comm @[refl] lemma antisymm_rel_refl [is_refl α r] (a : α) : antisymm_rel r a a := ⟨refl _, refl _⟩ variables {r} @[symm] lemma antisymm_rel.symm {a b : α} : antisymm_rel r a b → antisymm_rel r b a := and.symm @[trans] lemma antisymm_rel.trans [is_trans α r] {a b c : α} (hab : antisymm_rel r a b) (hbc : antisymm_rel r b c) : antisymm_rel r a c := ⟨trans hab.1 hbc.1, trans hbc.2 hab.2⟩ instance antisymm_rel.decidable_rel [decidable_rel r] : decidable_rel (antisymm_rel r) := λ _ _, and.decidable @[simp] lemma antisymm_rel_iff_eq [is_refl α r] [is_antisymm α r] {a b : α} : antisymm_rel r a b ↔ a = b := antisymm_iff alias antisymm_rel_iff_eq ↔ antisymm_rel.eq _ end relation section is_preorder variables (α) (r : α → α → Prop) [is_preorder α r] /-- The antisymmetrization relation as an equivalence relation. -/ @[simps] def antisymm_rel.setoid : setoid α := ⟨antisymm_rel r, antisymm_rel_refl _, λ _ _, antisymm_rel.symm, λ _ _ _, antisymm_rel.trans⟩ /-- The partial order derived from a preorder by making pairwise comparable elements equal. This is the quotient by `λ a b, a ≤ b ∧ b ≤ a`. -/ def antisymmetrization : Type* := quotient $ antisymm_rel.setoid α r variables {α} /-- Turn an element into its antisymmetrization. -/ def to_antisymmetrization : α → antisymmetrization α r := quotient.mk' /-- Get a representative from the antisymmetrization. -/ noncomputable def of_antisymmetrization : antisymmetrization α r → α := quotient.out' instance [inhabited α] : inhabited (antisymmetrization α r) := quotient.inhabited _ @[elab_as_eliminator] protected lemma antisymmetrization.ind {p : antisymmetrization α r → Prop} : (∀ a, p $ to_antisymmetrization r a) → ∀ q, p q := quot.ind @[elab_as_eliminator] protected lemma antisymmetrization.induction_on {p : antisymmetrization α r → Prop} (a : antisymmetrization α r) (h : ∀ a, p $ to_antisymmetrization r a) : p a := quotient.induction_on' a h @[simp] lemma to_antisymmetrization_of_antisymmetrization (a : antisymmetrization α r) : to_antisymmetrization r (of_antisymmetrization r a) = a := quotient.out_eq' _ end is_preorder section preorder variables {α} [preorder α] [preorder β] {a b : α} lemma antisymm_rel.image {a b : α} (h : antisymm_rel (≤) a b) {f : α → β} (hf : monotone f) : antisymm_rel (≤) (f a) (f b) := ⟨hf h.1, hf h.2⟩ instance : partial_order (antisymmetrization α (≤)) := { le := λ a b, quotient.lift_on₂' a b (≤) $ λ (a₁ a₂ b₁ b₂ : α) h₁ h₂, propext ⟨λ h, h₁.2.trans $ h.trans h₂.1, λ h, h₁.1.trans $ h.trans h₂.2⟩, lt := λ a b, quotient.lift_on₂' a b (<) $ λ (a₁ a₂ b₁ b₂ : α) h₁ h₂, propext ⟨λ h, h₁.2.trans_lt $ h.trans_le h₂.1, λ h, h₁.1.trans_lt $ h.trans_le h₂.2⟩, le_refl := λ a, quotient.induction_on' a $ le_refl, le_trans := λ a b c, quotient.induction_on₃' a b c $ λ a b c, le_trans, lt_iff_le_not_le := λ a b, quotient.induction_on₂' a b $ λ a b, lt_iff_le_not_le, le_antisymm := λ a b, quotient.induction_on₂' a b $ λ a b hab hba, quotient.sound' ⟨hab, hba⟩ } instance [@decidable_rel α (≤)] [@decidable_rel α (<)] [is_total α (≤)] : linear_order (antisymmetrization α (≤)) := { le_total := λ a b, quotient.induction_on₂' a b $ total_of (≤), decidable_eq := @quotient.decidable_eq _ (antisymm_rel.setoid _ (≤)) antisymm_rel.decidable_rel, decidable_le := λ _ _, quotient.lift_on₂'.decidable _ _ _ _, decidable_lt := λ _ _, quotient.lift_on₂'.decidable _ _ _ _, ..antisymmetrization.partial_order } @[simp] lemma to_antisymmetrization_le_to_antisymmetrization_iff : to_antisymmetrization (≤) a ≤ to_antisymmetrization (≤) b ↔ a ≤ b := iff.rfl @[simp] lemma to_antisymmetrization_lt_to_antisymmetrization_iff : to_antisymmetrization (≤) a < to_antisymmetrization (≤) b ↔ a < b := iff.rfl @[simp] lemma of_antisymmetrization_le_of_antisymmetrization_iff {a b : antisymmetrization α (≤)} : of_antisymmetrization (≤) a ≤ of_antisymmetrization (≤) b ↔ a ≤ b := by convert to_antisymmetrization_le_to_antisymmetrization_iff.symm; exact (to_antisymmetrization_of_antisymmetrization _ _).symm @[simp] lemma of_antisymmetrization_lt_of_antisymmetrization_iff {a b : antisymmetrization α (≤)} : of_antisymmetrization (≤) a < of_antisymmetrization (≤) b ↔ a < b := by convert to_antisymmetrization_lt_to_antisymmetrization_iff.symm; exact (to_antisymmetrization_of_antisymmetrization _ _).symm @[mono] lemma to_antisymmetrization_mono : monotone (@to_antisymmetrization α (≤) _) := λ a b, id /-- `to_antisymmetrization` as an order homomorphism. -/ @[simps] def order_hom.to_antisymmetrization : α →o antisymmetrization α (≤) := ⟨to_antisymmetrization (≤), λ a b, id⟩ private lemma lift_fun_antisymm_rel (f : α →o β) : ((antisymm_rel.setoid α (≤)).r ⇒ (antisymm_rel.setoid β (≤)).r) f f := λ a b h, ⟨f.mono h.1, f.mono h.2⟩ /-- Turns an order homomorphism from `α` to `β` into one from `antisymmetrization α` to `antisymmetrization β`. `antisymmetrization` is actually a functor. See `Preorder_to_PartialOrder`. -/ protected def order_hom.antisymmetrization (f : α →o β) : antisymmetrization α (≤) →o antisymmetrization β (≤) := ⟨quotient.map' f $ lift_fun_antisymm_rel f, λ a b, quotient.induction_on₂' a b $ f.mono⟩ @[simp] lemma order_hom.coe_antisymmetrization (f : α →o β) : ⇑f.antisymmetrization = quotient.map' f (lift_fun_antisymm_rel f) := rfl @[simp] lemma order_hom.antisymmetrization_apply (f : α →o β) (a : antisymmetrization α (≤)) : f.antisymmetrization a = quotient.map' f (lift_fun_antisymm_rel f) a := rfl @[simp] lemma order_hom.antisymmetrization_apply_mk (f : α →o β) (a : α) : f.antisymmetrization (to_antisymmetrization _ a) = (to_antisymmetrization _ (f a)) := quotient.map'_mk' f (lift_fun_antisymm_rel f) _ variables (α) /-- `of_antisymmetrization` as an order embedding. -/ @[simps] noncomputable def order_embedding.of_antisymmetrization : antisymmetrization α (≤) ↪o α := { to_fun := of_antisymmetrization _, inj' := λ _ _, quotient.out_inj.1, map_rel_iff' := λ a b, of_antisymmetrization_le_of_antisymmetrization_iff } /-- `antisymmetrization` and `order_dual` commute. -/ def order_iso.dual_antisymmetrization : (antisymmetrization α (≤))ᵒᵈ ≃o antisymmetrization αᵒᵈ (≤) := { to_fun := quotient.map' id $ λ _ _, and.symm, inv_fun := quotient.map' id $ λ _ _, and.symm, left_inv := λ a, quotient.induction_on' a $ λ a, by simp_rw [quotient.map'_mk', id], right_inv := λ a, quotient.induction_on' a $ λ a, by simp_rw [quotient.map'_mk', id], map_rel_iff' := λ a b, quotient.induction_on₂' a b $ λ a b, iff.rfl } @[simp] lemma order_iso.dual_antisymmetrization_apply (a : α) : order_iso.dual_antisymmetrization _ (to_dual $ to_antisymmetrization _ a) = to_antisymmetrization _ (to_dual a) := rfl @[simp] lemma order_iso.dual_antisymmetrization_symm_apply (a : α) : (order_iso.dual_antisymmetrization _).symm (to_antisymmetrization _ $ to_dual a) = to_dual (to_antisymmetrization _ a) := rfl end preorder