/- Copyright (c) 2020 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import deprecated.group /-! # Unbundled semiring and ring homomorphisms (deprecated) This file is deprecated, and is no longer imported by anything in mathlib other than other deprecated files, and test files. You should not need to import it. This file defines predicates for unbundled semiring and ring homomorphisms. Instead of using this file, please use `ring_hom`, defined in `algebra.hom.ring`, with notation `→+*`, for morphisms between semirings or rings. For example use `φ : A →+* B` to represent a ring homomorphism. ## Main Definitions `is_semiring_hom` (deprecated), `is_ring_hom` (deprecated) ## Tags is_semiring_hom, is_ring_hom -/ universes u v w variable {α : Type u} /-- Predicate for semiring homomorphisms (deprecated -- use the bundled `ring_hom` version). -/ structure is_semiring_hom {α : Type u} {β : Type v} [semiring α] [semiring β] (f : α → β) : Prop := (map_zero [] : f 0 = 0) (map_one [] : f 1 = 1) (map_add [] : ∀ {x y}, f (x + y) = f x + f y) (map_mul [] : ∀ {x y}, f (x * y) = f x * f y) namespace is_semiring_hom variables {β : Type v} [semiring α] [semiring β] variables {f : α → β} (hf : is_semiring_hom f) {x y : α} /-- The identity map is a semiring homomorphism. -/ lemma id : is_semiring_hom (@id α) := by refine {..}; intros; refl /-- The composition of two semiring homomorphisms is a semiring homomorphism. -/ lemma comp (hf : is_semiring_hom f) {γ} [semiring γ] {g : β → γ} (hg : is_semiring_hom g) : is_semiring_hom (g ∘ f) := { map_zero := by simpa [map_zero hf] using map_zero hg, map_one := by simpa [map_one hf] using map_one hg, map_add := λ x y, by simp [map_add hf, map_add hg], map_mul := λ x y, by simp [map_mul hf, map_mul hg] } /-- A semiring homomorphism is an additive monoid homomorphism. -/ lemma to_is_add_monoid_hom (hf : is_semiring_hom f) : is_add_monoid_hom f := { ..‹is_semiring_hom f› } /-- A semiring homomorphism is a monoid homomorphism. -/ lemma to_is_monoid_hom (hf : is_semiring_hom f) : is_monoid_hom f := { ..‹is_semiring_hom f› } end is_semiring_hom /-- Predicate for ring homomorphisms (deprecated -- use the bundled `ring_hom` version). -/ structure is_ring_hom {α : Type u} {β : Type v} [ring α] [ring β] (f : α → β) : Prop := (map_one [] : f 1 = 1) (map_mul [] : ∀ {x y}, f (x * y) = f x * f y) (map_add [] : ∀ {x y}, f (x + y) = f x + f y) namespace is_ring_hom variables {β : Type v} [ring α] [ring β] /-- A map of rings that is a semiring homomorphism is also a ring homomorphism. -/ lemma of_semiring {f : α → β} (H : is_semiring_hom f) : is_ring_hom f := {..H} variables {f : α → β} (hf : is_ring_hom f) {x y : α} /-- Ring homomorphisms map zero to zero. -/ lemma map_zero (hf : is_ring_hom f) : f 0 = 0 := calc f 0 = f (0 + 0) - f 0 : by rw [hf.map_add]; simp ... = 0 : by simp /-- Ring homomorphisms preserve additive inverses. -/ lemma map_neg (hf : is_ring_hom f) : f (-x) = -f x := calc f (-x) = f (-x + x) - f x : by rw [hf.map_add]; simp ... = -f x : by simp [hf.map_zero] /-- Ring homomorphisms preserve subtraction. -/ lemma map_sub (hf : is_ring_hom f) : f (x - y) = f x - f y := by simp [sub_eq_add_neg, hf.map_add, hf.map_neg] /-- The identity map is a ring homomorphism. -/ lemma id : is_ring_hom (@id α) := by refine {..}; intros; refl /-- The composition of two ring homomorphisms is a ring homomorphism. -/ -- see Note [no instance on morphisms] lemma comp (hf : is_ring_hom f) {γ} [ring γ] {g : β → γ} (hg : is_ring_hom g) : is_ring_hom (g ∘ f) := { map_add := λ x y, by simp [map_add hf]; rw map_add hg; refl, map_mul := λ x y, by simp [map_mul hf]; rw map_mul hg; refl, map_one := by simp [map_one hf]; exact map_one hg } /-- A ring homomorphism is also a semiring homomorphism. -/ lemma to_is_semiring_hom (hf : is_ring_hom f) : is_semiring_hom f := { map_zero := map_zero hf, ..‹is_ring_hom f› } lemma to_is_add_group_hom (hf : is_ring_hom f) : is_add_group_hom f := { map_add := hf.map_add } end is_ring_hom variables {β : Type v} {γ : Type w} [rα : semiring α] [rβ : semiring β] namespace ring_hom section include rα rβ /-- Interpret `f : α → β` with `is_semiring_hom f` as a ring homomorphism. -/ def of {f : α → β} (hf : is_semiring_hom f) : α →+* β := { to_fun := f, .. monoid_hom.of hf.to_is_monoid_hom, .. add_monoid_hom.of hf.to_is_add_monoid_hom } @[simp] lemma coe_of {f : α → β} (hf : is_semiring_hom f) : ⇑(of hf) = f := rfl lemma to_is_semiring_hom (f : α →+* β) : is_semiring_hom f := { map_zero := f.map_zero, map_one := f.map_one, map_add := f.map_add, map_mul := f.map_mul } end lemma to_is_ring_hom {α γ} [ring α] [ring γ] (g : α →+* γ) : is_ring_hom g := is_ring_hom.of_semiring g.to_is_semiring_hom end ring_hom