/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import algebra.ring.ulift import algebra.module.equiv /-! # `ulift` instances for module and multiplicative actions This file defines instances for module, mul_action and related structures on `ulift` types. (Recall `ulift α` is just a "copy" of a type `α` in a higher universe.) We also provide `ulift.module_equiv : ulift M ≃ₗ[R] M`. -/ namespace ulift universes u v w variable {R : Type u} variable {M : Type v} variable {N : Type w} @[to_additive] instance has_smul_left [has_smul R M] : has_smul (ulift R) M := ⟨λ s x, s.down • x⟩ @[simp, to_additive] lemma smul_def [has_smul R M] (s : ulift R) (x : M) : s • x = s.down • x := rfl instance is_scalar_tower [has_smul R M] [has_smul M N] [has_smul R N] [is_scalar_tower R M N] : is_scalar_tower (ulift R) M N := ⟨λ x y z, show (x.down • y) • z = x.down • y • z, from smul_assoc _ _ _⟩ instance is_scalar_tower' [has_smul R M] [has_smul M N] [has_smul R N] [is_scalar_tower R M N] : is_scalar_tower R (ulift M) N := ⟨λ x y z, show (x • y.down) • z = x • y.down • z, from smul_assoc _ _ _⟩ instance is_scalar_tower'' [has_smul R M] [has_smul M N] [has_smul R N] [is_scalar_tower R M N] : is_scalar_tower R M (ulift N) := ⟨λ x y z, show up ((x • y) • z.down) = ⟨x • y • z.down⟩, by rw smul_assoc⟩ instance [has_smul R M] [has_smul Rᵐᵒᵖ M] [is_central_scalar R M] : is_central_scalar R (ulift M) := ⟨λ r m, congr_arg up $ op_smul_eq_smul r m.down⟩ @[to_additive] instance mul_action [monoid R] [mul_action R M] : mul_action (ulift R) M := { smul := (•), mul_smul := λ _ _, mul_smul _ _, one_smul := one_smul _ } @[to_additive] instance mul_action' [monoid R] [mul_action R M] : mul_action R (ulift M) := { smul := (•), mul_smul := λ r s ⟨f⟩, ext _ _ $ mul_smul _ _ _, one_smul := λ ⟨f⟩, ext _ _ $ one_smul _ _, ..ulift.has_smul_left } instance distrib_mul_action [monoid R] [add_monoid M] [distrib_mul_action R M] : distrib_mul_action (ulift R) M := { smul_zero := λ _, smul_zero _, smul_add := λ _, smul_add _ } instance distrib_mul_action' [monoid R] [add_monoid M] [distrib_mul_action R M] : distrib_mul_action R (ulift M) := { smul_zero := λ c, by { ext, simp [smul_zero], }, smul_add := λ c f g, by { ext, simp [smul_add], }, ..ulift.mul_action' } instance mul_distrib_mul_action [monoid R] [monoid M] [mul_distrib_mul_action R M] : mul_distrib_mul_action (ulift R) M := { smul_one := λ _, smul_one _, smul_mul := λ _, smul_mul' _ } instance mul_distrib_mul_action' [monoid R] [monoid M] [mul_distrib_mul_action R M] : mul_distrib_mul_action R (ulift M) := { smul_one := λ _, by { ext, simp [smul_one], }, smul_mul := λ c f g, by { ext, simp [smul_mul'], }, ..ulift.mul_action' } instance smul_with_zero [has_zero R] [has_zero M] [smul_with_zero R M] : smul_with_zero (ulift R) M := { smul_zero := λ _, smul_zero' _ _, zero_smul := zero_smul _, ..ulift.has_smul_left } instance smul_with_zero' [has_zero R] [has_zero M] [smul_with_zero R M] : smul_with_zero R (ulift M) := { smul_zero := λ _, ulift.ext _ _ $ smul_zero' _ _, zero_smul := λ _, ulift.ext _ _ $ zero_smul _ _ } instance mul_action_with_zero [monoid_with_zero R] [has_zero M] [mul_action_with_zero R M] : mul_action_with_zero (ulift R) M := { ..ulift.smul_with_zero } instance mul_action_with_zero' [monoid_with_zero R] [has_zero M] [mul_action_with_zero R M] : mul_action_with_zero R (ulift M) := { ..ulift.smul_with_zero' } instance module [semiring R] [add_comm_monoid M] [module R M] : module (ulift R) M := { add_smul := λ _ _, add_smul _ _, ..ulift.smul_with_zero } instance module' [semiring R] [add_comm_monoid M] [module R M] : module R (ulift M) := { add_smul := λ _ _ _, ulift.ext _ _ $ add_smul _ _ _, ..ulift.smul_with_zero' } /-- The `R`-linear equivalence between `ulift M` and `M`. -/ def module_equiv [semiring R] [add_comm_monoid M] [module R M] : ulift M ≃ₗ[R] M := { to_fun := ulift.down, inv_fun := ulift.up, map_smul' := λ r x, rfl, map_add' := λ x y, rfl, left_inv := by tidy, right_inv := by tidy, } end ulift