/- Copyright (c) 2021 Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kevin Buzzard -/ import algebra.module.basic import linear_algebra.finsupp import linear_algebra.free_module.basic /-! # Projective modules This file contains a definition of a projective module, the proof that our definition is equivalent to a lifting property, and the proof that all free modules are projective. ## Main definitions Let `R` be a ring (or a semiring) and let `M` be an `R`-module. * `is_projective R M` : the proposition saying that `M` is a projective `R`-module. ## Main theorems * `is_projective.lifting_property` : a map from a projective module can be lifted along a surjection. * `is_projective.of_lifting_property` : If for all R-module surjections `A →ₗ B`, all maps `M →ₗ B` lift to `M →ₗ A`, then `M` is projective. * `is_projective.of_free` : Free modules are projective ## Implementation notes The actual definition of projective we use is that the natural R-module map from the free R-module on the type M down to M splits. This is more convenient than certain other definitions which involve quantifying over universes, and also universe-polymorphic (the ring and module can be in different universes). We require that the module sits in at least as high a universe as the ring: without this, free modules don't even exist, and it's unclear if projective modules are even a useful notion. ## References https://en.wikipedia.org/wiki/Projective_module ## TODO - Direct sum of two projective modules is projective. - Arbitrary sum of projective modules is projective. All of these should be relatively straightforward. ## Tags projective module -/ universes u v /- The actual implementation we choose: `P` is projective if the natural surjection from the free `R`-module on `P` to `P` splits. -/ /-- An R-module is projective if it is a direct summand of a free module, or equivalently if maps from the module lift along surjections. There are several other equivalent definitions. -/ class module.projective (R : Type u) [semiring R] (P : Type (max u v)) [add_comm_monoid P] [module R P] : Prop := (out : ∃ s : P →ₗ[R] (P →₀ R), function.left_inverse (finsupp.total P P R id) s) namespace module lemma projective_def {R : Type u} [semiring R] {P : Type (max u v)} [add_comm_monoid P] [module R P] : projective R P ↔ (∃ s : P →ₗ[R] (P →₀ R), function.left_inverse (finsupp.total P P R id) s) := ⟨λ h, h.1, λ h, ⟨h⟩⟩ section semiring variables {R : Type u} [semiring R] {P : Type (max u v)} [add_comm_monoid P] [module R P] {M : Type (max u v)} [add_comm_group M] [module R M] {N : Type*} [add_comm_group N] [module R N] /-- A projective R-module has the property that maps from it lift along surjections. -/ theorem projective_lifting_property [h : projective R P] (f : M →ₗ[R] N) (g : P →ₗ[R] N) (hf : function.surjective f) : ∃ (h : P →ₗ[R] M), f.comp h = g := begin /- Here's the first step of the proof. Recall that `X →₀ R` is Lean's way of talking about the free `R`-module on a type `X`. The universal property `finsupp.total` says that to a map `X → N` from a type to an `R`-module, we get an associated R-module map `(X →₀ R) →ₗ N`. Apply this to a (noncomputable) map `P → M` coming from the map `P →ₗ N` and a random splitting of the surjection `M →ₗ N`, and we get a map `φ : (P →₀ R) →ₗ M`. -/ let φ : (P →₀ R) →ₗ[R] M := finsupp.total _ _ _ (λ p, function.surj_inv hf (g p)), -- By projectivity we have a map `P →ₗ (P →₀ R)`; cases h.out with s hs, -- Compose to get `P →ₗ M`. This works. use φ.comp s, ext p, conv_rhs {rw ← hs p}, simp [φ, finsupp.total_apply, function.surj_inv_eq hf], end /-- A module which satisfies the universal property is projective. Note that the universe variables in `huniv` are somewhat restricted. -/ theorem projective_of_lifting_property' -- If for all surjections of `R`-modules `M →ₗ N`, all maps `P →ₗ N` lift to `P →ₗ M`, (huniv : ∀ {M : Type (max v u)} {N : Type (max u v)} [add_comm_monoid M] [add_comm_monoid N], by exactI ∀ [module R M] [module R N], by exactI ∀ (f : M →ₗ[R] N) (g : P →ₗ[R] N), function.surjective f → ∃ (h : P →ₗ[R] M), f.comp h = g) : -- then `P` is projective. projective R P := begin -- let `s` be the universal map `(P →₀ R) →ₗ P` coming from the identity map `P →ₗ P`. obtain ⟨s, hs⟩ : ∃ (s : P →ₗ[R] P →₀ R), (finsupp.total P P R id).comp s = linear_map.id := huniv (finsupp.total P P R (id : P → P)) (linear_map.id : P →ₗ[R] P) _, -- This `s` works. { use s, rwa linear_map.ext_iff at hs }, { intro p, use finsupp.single p 1, simp }, end end semiring section ring variables {R : Type u} [ring R] {P : Type (max u v)} [add_comm_group P] [module R P] /-- A variant of `of_lifting_property'` when we're working over a `[ring R]`, which only requires quantifying over modules with an `add_comm_group` instance. -/ theorem projective_of_lifting_property -- If for all surjections of `R`-modules `M →ₗ N`, all maps `P →ₗ N` lift to `P →ₗ M`, (huniv : ∀ {M : Type (max v u)} {N : Type (max u v)} [add_comm_group M] [add_comm_group N], by exactI ∀ [module R M] [module R N], by exactI ∀ (f : M →ₗ[R] N) (g : P →ₗ[R] N), function.surjective f → ∃ (h : P →ₗ[R] M), f.comp h = g) : -- then `P` is projective. projective R P := -- We could try and prove this *using* `of_lifting_property`, -- but this quickly leads to typeclass hell, -- so we just prove it over again. begin -- let `s` be the universal map `(P →₀ R) →ₗ P` coming from the identity map `P →ₗ P`. obtain ⟨s, hs⟩ : ∃ (s : P →ₗ[R] P →₀ R), (finsupp.total P P R id).comp s = linear_map.id := huniv (finsupp.total P P R (id : P → P)) (linear_map.id : P →ₗ[R] P) _, -- This `s` works. { use s, rwa linear_map.ext_iff at hs }, { intro p, use finsupp.single p 1, simp }, end /-- Free modules are projective. -/ theorem projective_of_basis {ι : Type*} (b : basis ι R P) : projective R P := begin -- need P →ₗ (P →₀ R) for definition of projective. -- get it from `ι → (P →₀ R)` coming from `b`. use b.constr ℕ (λ i, finsupp.single (b i) (1 : R)), intro m, simp only [b.constr_apply, mul_one, id.def, finsupp.smul_single', finsupp.total_single, linear_map.map_finsupp_sum], exact b.total_repr m, end @[priority 100] instance projective_of_free [module.free R P] : module.projective R P := projective_of_basis $ module.free.choose_basis R P end ring end module