/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Patrick Massot, Eric Wieser -/ import algebra.module.basic import group_theory.group_action.prod /-! # Prod instances for module and multiplicative actions This file defines instances for binary product of modules -/ variables {R : Type*} {S : Type*} {M : Type*} {N : Type*} namespace prod instance smul_with_zero [has_zero R] [has_zero M] [has_zero N] [smul_with_zero R M] [smul_with_zero R N] : smul_with_zero R (M × N) := { smul_zero := λ r, prod.ext (smul_zero' _ _) (smul_zero' _ _), zero_smul := λ ⟨m, n⟩, prod.ext (zero_smul _ _) (zero_smul _ _), ..prod.has_smul } instance mul_action_with_zero [monoid_with_zero R] [has_zero M] [has_zero N] [mul_action_with_zero R M] [mul_action_with_zero R N] : mul_action_with_zero R (M × N) := { smul_zero := λ r, prod.ext (smul_zero' _ _) (smul_zero' _ _), zero_smul := λ ⟨m, n⟩, prod.ext (zero_smul _ _) (zero_smul _ _), ..prod.mul_action } instance {r : semiring R} [add_comm_monoid M] [add_comm_monoid N] [module R M] [module R N] : module R (M × N) := { add_smul := λ a p₁ p₂, mk.inj_iff.mpr ⟨add_smul _ _ _, add_smul _ _ _⟩, zero_smul := λ ⟨b, c⟩, mk.inj_iff.mpr ⟨zero_smul _ _, zero_smul _ _⟩, .. prod.distrib_mul_action } instance {r : semiring R} [add_comm_monoid M] [add_comm_monoid N] [module R M] [module R N] [no_zero_smul_divisors R M] [no_zero_smul_divisors R N] : no_zero_smul_divisors R (M × N) := ⟨λ c ⟨x, y⟩ h, or_iff_not_imp_left.mpr (λ hc, mk.inj_iff.mpr ⟨(smul_eq_zero.mp (congr_arg fst h)).resolve_left hc, (smul_eq_zero.mp (congr_arg snd h)).resolve_left hc⟩)⟩ end prod