/- Copyright (c) 2022 Pierre-Alexandre Bazin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pierre-Alexandre Bazin -/ import algebra.module.dedekind_domain import linear_algebra.free_module.pid import algebra.module.projective import algebra.category.Module.biproducts /-! # Structure of finitely generated modules over a PID ## Main statements * `module.equiv_direct_sum_of_is_torsion` : A finitely generated torsion module over a PID is isomorphic to a direct sum of some `R ⧸ R ∙ (p i ^ e i)` where the `p i ^ e i` are prime powers. * `module.equiv_free_prod_direct_sum` : A finitely generated module over a PID is isomorphic to the product of a free module (its torsion free part) and a direct sum of the form above (its torsion submodule). ## Notation * `R` is a PID and `M` is a (finitely generated for main statements) `R`-module, with additional torsion hypotheses in the intermediate lemmas. * `N` is a `R`-module lying over a higher type universe than `R`. This assumption is needed on the final statement for technical reasons. * `p` is an irreducible element of `R` or a tuple of these. ## Implementation details We first prove (`submodule.is_internal_prime_power_torsion_of_pid`) that a finitely generated torsion module is the internal direct sum of its `p i ^ e i`-torsion submodules for some (finitely many) prime powers `p i ^ e i`. This is proved in more generality for a Dedekind domain at `submodule.is_internal_prime_power_torsion`. Then we treat the case of a `p ^ ∞`-torsion module (that is, a module where all elements are cancelled by scalar multiplication by some power of `p`) and apply it to the `p i ^ e i`-torsion submodules (that are `p i ^ ∞`-torsion) to get the result for torsion modules. Then we get the general result using that a torsion free module is free (which has been proved at `module.free_of_finite_type_torsion_free'` at `linear_algebra/free_module/pid.lean`.) ## Tags Finitely generated module, principal ideal domain, classification, structure theorem -/ universes u v open_locale big_operators variables {R : Type u} [comm_ring R] [is_domain R] [is_principal_ideal_ring R] variables {M : Type v} [add_comm_group M] [module R M] variables {N : Type (max u v)} [add_comm_group N] [module R N] open_locale direct_sum open submodule /--A finitely generated torsion module over a PID is an internal direct sum of its `p i ^ e i`-torsion submodules for some primes `p i` and numbers `e i`.-/ theorem submodule.is_internal_prime_power_torsion_of_pid [module.finite R M] (hM : module.is_torsion R M) : ∃ (ι : Type u) [fintype ι] [decidable_eq ι] (p : ι → R) (h : ∀ i, irreducible $ p i) (e : ι → ℕ), by exactI direct_sum.is_internal (λ i, torsion_by R M $ p i ^ e i) := begin obtain ⟨P, dec, hP, e, this⟩ := is_internal_prime_power_torsion hM, refine ⟨P, infer_instance, dec, λ p, is_principal.generator (p : ideal R), _, e, _⟩, { rintro ⟨p, hp⟩, haveI := ideal.is_prime_of_prime (hP p hp), exact (is_principal.prime_generator_of_is_prime p (hP p hp).ne_zero).irreducible }, { convert this, ext p : 1, rw [← torsion_by_span_singleton_eq, ideal.submodule_span_eq, ← ideal.span_singleton_pow, ideal.span_singleton_generator] } end namespace module section p_torsion variables {p : R} (hp : irreducible p) (hM : module.is_torsion' M (submonoid.powers p)) variables [dec : Π x : M, decidable (x = 0)] open ideal submodule.is_principal include dec include hp hM lemma _root_.ideal.torsion_of_eq_span_pow_p_order (x : M) : torsion_of R M x = span {p ^ p_order hM x} := begin dunfold p_order, rw [← (torsion_of R M x).span_singleton_generator, ideal.span_singleton_eq_span_singleton, ← associates.mk_eq_mk_iff_associated, associates.mk_pow], have prop : (λ n : ℕ, p ^ n • x = 0) = λ n : ℕ, (associates.mk $ generator $ torsion_of R M x) ∣ associates.mk p ^ n, { ext n, rw [← associates.mk_pow, associates.mk_dvd_mk, ← mem_iff_generator_dvd], refl }, have := (is_torsion'_powers_iff p).mp hM x, rw prop at this, classical, convert associates.eq_pow_find_of_dvd_irreducible_pow ((associates.irreducible_mk p).mpr hp) this.some_spec, end lemma p_pow_smul_lift {x y : M} {k : ℕ} (hM' : module.is_torsion_by R M (p ^ p_order hM y)) (h : p ^ k • x ∈ R ∙ y) : ∃ a : R, p ^ k • x = p ^ k • a • y := begin by_cases hk : k ≤ p_order hM y, { let f := ((R ∙ p ^ (p_order hM y - k) * p ^ k).quot_equiv_of_eq _ _).trans (quot_torsion_of_equiv_span_singleton R M y), have : f.symm ⟨p ^ k • x, h⟩ ∈ R ∙ ideal.quotient.mk (R ∙ p ^ (p_order hM y - k) * p ^ k) (p ^ k), { rw [← quotient.torsion_by_eq_span_singleton, mem_torsion_by_iff, ← f.symm.map_smul], convert f.symm.map_zero, ext, rw [coe_smul_of_tower, coe_mk, coe_zero, smul_smul, ← pow_add, nat.sub_add_cancel hk, @hM' x], { exact mem_non_zero_divisors_of_ne_zero (pow_ne_zero _ hp.ne_zero) } }, rw submodule.mem_span_singleton at this, obtain ⟨a, ha⟩ := this, use a, rw [f.eq_symm_apply, ← ideal.quotient.mk_eq_mk, ← quotient.mk_smul] at ha, dsimp only [smul_eq_mul, f, linear_equiv.trans_apply, submodule.quot_equiv_of_eq_mk, quot_torsion_of_equiv_span_singleton_apply_mk] at ha, rw [smul_smul, mul_comm], exact congr_arg coe ha.symm, { symmetry, convert ideal.torsion_of_eq_span_pow_p_order hp hM y, rw [← pow_add, nat.sub_add_cancel hk] } }, { use 0, rw [zero_smul, smul_zero, ← nat.sub_add_cancel (le_of_not_le hk), pow_add, mul_smul, hM', smul_zero] } end open submodule.quotient lemma exists_smul_eq_zero_and_mk_eq {z : M} (hz : module.is_torsion_by R M (p ^ p_order hM z)) {k : ℕ} (f : (R ⧸ R ∙ p ^ k) →ₗ[R] M ⧸ R ∙ z) : ∃ x : M, p ^ k • x = 0 ∧ submodule.quotient.mk x = f 1 := begin have f1 := mk_surjective (R ∙ z) (f 1), have : p ^ k • f1.some ∈ R ∙ z, { rw [← quotient.mk_eq_zero, mk_smul, f1.some_spec, ← f.map_smul], convert f.map_zero, change _ • submodule.quotient.mk _ = _, rw [← mk_smul, quotient.mk_eq_zero, algebra.id.smul_eq_mul, mul_one], exact mem_span_singleton_self _ }, obtain ⟨a, ha⟩ := p_pow_smul_lift hp hM hz this, refine ⟨f1.some - a • z, by rw [smul_sub, sub_eq_zero, ha], _⟩, rw [mk_sub, mk_smul, (quotient.mk_eq_zero _).mpr $ mem_span_singleton_self _, smul_zero, sub_zero, f1.some_spec] end open finset multiset omit dec hM /--A finitely generated `p ^ ∞`-torsion module over a PID is isomorphic to a direct sum of some `R ⧸ R ∙ (p ^ e i)` for some `e i`.-/ theorem torsion_by_prime_power_decomposition (hN : module.is_torsion' N (submonoid.powers p)) [h' : module.finite R N] : ∃ (d : ℕ) (k : fin d → ℕ), nonempty $ N ≃ₗ[R] ⨁ (i : fin d), R ⧸ R ∙ (p ^ (k i : ℕ)) := begin obtain ⟨d, s, hs⟩ := @module.finite.exists_fin _ _ _ _ _ h', use d, clear h', unfreezingI { induction d with d IH generalizing N }, { use λ i, fin_zero_elim i, rw [set.range_eq_empty, submodule.span_empty] at hs, haveI : unique N := ⟨⟨0⟩, λ x, by { rw [← mem_bot _, hs], trivial }⟩, exact ⟨0⟩ }, { haveI : Π x : N, decidable (x = 0), classical, apply_instance, obtain ⟨j, hj⟩ := exists_is_torsion_by hN d.succ d.succ_ne_zero s hs, let s' : fin d → N ⧸ R ∙ s j := submodule.quotient.mk ∘ s ∘ j.succ_above, obtain ⟨k, ⟨f⟩⟩ := IH _ s' _; clear IH, { have : ∀ i : fin d, ∃ x : N, p ^ k i • x = 0 ∧ f (submodule.quotient.mk x) = direct_sum.lof R _ _ i 1, { intro i, let fi := f.symm.to_linear_map.comp (direct_sum.lof _ _ _ i), obtain ⟨x, h0, h1⟩ := exists_smul_eq_zero_and_mk_eq hp hN hj fi, refine ⟨x, h0, _⟩, rw h1, simp only [linear_map.coe_comp, f.symm.coe_to_linear_map, f.apply_symm_apply] }, refine ⟨_, ⟨((( @lequiv_prod_of_right_split_exact _ _ _ _ _ _ _ _ _ _ _ _ ((f.trans ulift.module_equiv.{u u v}.symm).to_linear_map.comp $ mkq _) ((direct_sum.to_module _ _ _ $ λ i, (liftq_span_singleton.{u u} (p ^ k i) (linear_map.to_span_singleton _ _ _) (this i).some_spec.left : R ⧸ _ →ₗ[R] _)).comp ulift.module_equiv.to_linear_map) (R ∙ s j).injective_subtype _ _).symm.trans $ ((quot_torsion_of_equiv_span_singleton _ _ _).symm.trans $ quot_equiv_of_eq _ _ $ ideal.torsion_of_eq_span_pow_p_order hp hN _).prod $ ulift.module_equiv).trans $ (@direct_sum.lequiv_prod_direct_sum R _ _ _ (λ i, R ⧸ R ∙ p ^ @option.rec _ (λ _, ℕ) (p_order hN $ s j) k i) _ _).symm).trans $ direct_sum.lequiv_congr_left R (fin_succ_equiv d).symm⟩⟩, { rw [range_subtype, linear_equiv.to_linear_map_eq_coe, linear_equiv.ker_comp, ker_mkq] }, { rw [linear_equiv.to_linear_map_eq_coe, ← f.comp_coe, linear_map.comp_assoc, linear_map.comp_assoc, ← linear_equiv.to_linear_map_eq_coe, linear_equiv.to_linear_map_symm_comp_eq, linear_map.comp_id, ← linear_map.comp_assoc, ← linear_map.comp_assoc], suffices : (f.to_linear_map.comp (R ∙ s j).mkq).comp _ = linear_map.id, { rw [← f.to_linear_map_eq_coe, this, linear_map.id_comp] }, ext i : 3, simp only [linear_map.coe_comp, function.comp_app, mkq_apply], rw [linear_equiv.coe_to_linear_map, linear_map.id_apply, direct_sum.to_module_lof, liftq_span_singleton_apply, linear_map.to_span_singleton_one, ideal.quotient.mk_eq_mk, map_one, (this i).some_spec.right] } }, { exact (mk_surjective _).forall.mpr (λ x, ⟨(@hN x).some, by rw [← quotient.mk_smul, (@hN x).some_spec, quotient.mk_zero]⟩) }, { have hs' := congr_arg (submodule.map $ mkq $ R ∙ s j) hs, rw [submodule.map_span, submodule.map_top, range_mkq] at hs', simp only [mkq_apply] at hs', simp only [s'], rw [set.range_comp (_ ∘ s), fin.range_succ_above], rw [← set.range_comp, ← set.insert_image_compl_eq_range _ j, function.comp_apply, (quotient.mk_eq_zero _).mpr (mem_span_singleton_self _), span_insert_zero] at hs', exact hs' } } end end p_torsion /--A finitely generated torsion module over a PID is isomorphic to a direct sum of some `R ⧸ R ∙ (p i ^ e i)` where the `p i ^ e i` are prime powers.-/ theorem equiv_direct_sum_of_is_torsion [h' : module.finite R N] (hN : module.is_torsion R N) : ∃ (ι : Type u) [fintype ι] (p : ι → R) (h : ∀ i, irreducible $ p i) (e : ι → ℕ), nonempty $ N ≃ₗ[R] ⨁ (i : ι), R ⧸ R ∙ (p i ^ e i) := begin obtain ⟨I, fI, _, p, hp, e, h⟩ := submodule.is_internal_prime_power_torsion_of_pid hN, haveI := fI, have : ∀ i, ∃ (d : ℕ) (k : fin d → ℕ), nonempty $ torsion_by R N (p i ^ e i) ≃ₗ[R] ⨁ j, R ⧸ R ∙ (p i ^ k j), { haveI := is_noetherian_of_fg_of_noetherian' (module.finite_def.mp h'), haveI := λ i, is_noetherian_submodule' (torsion_by R N $ p i ^ e i), exact λ i, torsion_by_prime_power_decomposition (hp i) ((is_torsion'_powers_iff $ p i).mpr $ λ x, ⟨e i, smul_torsion_by _ _⟩) }, refine ⟨Σ i, fin (this i).some, infer_instance, λ ⟨i, j⟩, p i, λ ⟨i, j⟩, hp i, λ ⟨i, j⟩, (this i).some_spec.some j, ⟨(linear_equiv.of_bijective (direct_sum.coe_linear_map _) h.1 h.2).symm.trans $ (dfinsupp.map_range.linear_equiv $ λ i, (this i).some_spec.some_spec.some).trans $ (direct_sum.sigma_lcurry_equiv R).symm.trans (dfinsupp.map_range.linear_equiv $ λ i, quot_equiv_of_eq _ _ _)⟩⟩, cases i with i j, simp only end /--**Structure theorem of finitely generated modules over a PID** : A finitely generated module over a PID is isomorphic to the product of a free module and a direct sum of some `R ⧸ R ∙ (p i ^ e i)` where the `p i ^ e i` are prime powers.-/ theorem equiv_free_prod_direct_sum [h' : module.finite R N] : ∃ (n : ℕ) (ι : Type u) [fintype ι] (p : ι → R) (h : ∀ i, irreducible $ p i) (e : ι → ℕ), nonempty $ N ≃ₗ[R] (fin n →₀ R) × ⨁ (i : ι), R ⧸ R ∙ (p i ^ e i) := begin haveI := is_noetherian_of_fg_of_noetherian' (module.finite_def.mp h'), haveI := is_noetherian_submodule' (torsion R N), haveI := module.finite.of_surjective _ (torsion R N).mkq_surjective, obtain ⟨I, fI, p, hp, e, ⟨h⟩⟩ := equiv_direct_sum_of_is_torsion (@torsion_is_torsion R N _ _ _), obtain ⟨n, ⟨g⟩⟩ := @module.free_of_finite_type_torsion_free' R _ _ _ (N ⧸ torsion R N) _ _ _ _, haveI : module.projective R (N ⧸ torsion R N) := module.projective_of_basis ⟨g⟩, obtain ⟨f, hf⟩ := module.projective_lifting_property _ linear_map.id (torsion R N).mkq_surjective, refine ⟨n, I, fI, p, hp, e, ⟨(lequiv_prod_of_right_split_exact (torsion R N).injective_subtype _ hf).symm.trans $ (h.prod g).trans $ linear_equiv.prod_comm R _ _⟩⟩, rw [range_subtype, ker_mkq] end end module