/- Copyright (c) 2020 Eric Wieser. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Eric Wieser -/ import algebra.module.equiv import group_theory.group_action.opposite /-! # Module operations on `Mᵐᵒᵖ` This file contains definitions that build on top of the group action definitions in `group_theory.group_action.opposite`. -/ namespace mul_opposite universes u v variables (R : Type u) {M : Type v} [semiring R] [add_comm_monoid M] [module R M] /-- `mul_opposite.distrib_mul_action` extends to a `module` -/ instance : module R (mul_opposite M) := { add_smul := λ r₁ r₂ x, unop_injective $ add_smul r₁ r₂ (unop x), zero_smul := λ x, unop_injective $ zero_smul _ (unop x), ..mul_opposite.distrib_mul_action M R } /-- The function `op` is a linear equivalence. -/ def op_linear_equiv : M ≃ₗ[R] Mᵐᵒᵖ := { map_smul' := mul_opposite.op_smul, .. op_add_equiv } @[simp] lemma coe_op_linear_equiv : (op_linear_equiv R : M → Mᵐᵒᵖ) = op := rfl @[simp] lemma coe_op_linear_equiv_symm : ((op_linear_equiv R).symm : Mᵐᵒᵖ → M) = unop := rfl @[simp] lemma coe_op_linear_equiv_to_linear_map : ((op_linear_equiv R).to_linear_map : M → Mᵐᵒᵖ) = op := rfl @[simp] lemma coe_op_linear_equiv_symm_to_linear_map : ((op_linear_equiv R).symm.to_linear_map : Mᵐᵒᵖ → M) = unop := rfl @[simp] lemma op_linear_equiv_to_add_equiv : (op_linear_equiv R : M ≃ₗ[R] Mᵐᵒᵖ).to_add_equiv = op_add_equiv := rfl @[simp] lemma op_linear_equiv_symm_to_add_equiv : (op_linear_equiv R : M ≃ₗ[R] Mᵐᵒᵖ).symm.to_add_equiv = op_add_equiv.symm := rfl end mul_opposite