/- Copyright (c) 2022 Jujian Zhang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jujian Zhang -/ import algebra.category.Module.abelian import category_theory.preadditive.injective import ring_theory.ideal.basic /-! # Injective modules ## Main definitions * `module.injective`: an `R`-module `Q` is injective if and only if every injective `R`-linear map descends to a linear map to `Q`, i.e. in the following diagram, if `f` is injective then there is an `R`-linear map `h : Y ⟶ Q` such that `g = h ∘ f` ``` X --- f ---> Y | | g v Q ``` * `module.Baer`: an `R`-module `Q` satisfies Baer's criterion if any `R`-linear map from an `ideal R` extends to an `R`-linear map `R ⟶ Q` ## Main statements * `module.Baer.criterion`: an `R`-module is injective if it is Baer. -/ noncomputable theory universes u v variables (R : Type u) [ring R] (Q : Type (max u v)) [add_comm_group Q] [module R Q] /--An `R`-module `Q` is injective if and only if every injective `R`-linear map descends to a linear map to `Q`, i.e. in the following diagram, if `f` is injective then there is an `R`-linear map `h : Y ⟶ Q` such that `g = h ∘ f` ``` X --- f ---> Y | | g v Q ``` -/ class module.injective : Prop := (out : ∀ (X Y : Type (max u v)) [add_comm_group X] [add_comm_group Y] [module R X] [module R Y] (f : X →ₗ[R] Y) (hf : function.injective f) (g : X →ₗ[R] Q), ∃ (h : Y →ₗ[R] Q), ∀ x, h (f x) = g x) lemma module.injective_object_of_injective_module [module.injective.{u v} R Q] : category_theory.injective.{max u v} (⟨Q⟩ : Module.{max u v} R) := { factors := λ X Y g f mn, begin rcases module.injective.out X Y f ((Module.mono_iff_injective f).mp mn) g with ⟨h, eq1⟩, exact ⟨h, linear_map.ext eq1⟩, end } lemma module.injective_module_of_injective_object [category_theory.injective.{max u v} (⟨Q⟩ : Module.{max u v} R)] : module.injective.{u v} R Q := { out := λ X Y ins1 ins2 ins3 ins4 f hf g, begin resetI, rcases @category_theory.injective.factors (Module R) _ ⟨Q⟩ _ ⟨X⟩ ⟨Y⟩ g f ((Module.mono_iff_injective _).mpr hf) with ⟨h, rfl⟩, exact ⟨h, λ x, rfl⟩ end } lemma module.injective_iff_injective_object : module.injective.{u v} R Q ↔ category_theory.injective.{max u v} (⟨Q⟩ : Module.{max u v} R) := ⟨λ h, @@module.injective_object_of_injective_module R _ Q _ _ h, λ h, @@module.injective_module_of_injective_object R _ Q _ _ h⟩ /--An `R`-module `Q` satisfies Baer's criterion if any `R`-linear map from an `ideal R` extends to an `R`-linear map `R ⟶ Q`-/ def module.Baer : Prop := ∀ (I : ideal R) (g : I →ₗ[R] Q), ∃ (g' : R →ₗ[R] Q), ∀ (x : R) (mem : x ∈ I), g' x = g ⟨x, mem⟩ namespace module.Baer variables {R Q} {M N : Type (max u v)} [add_comm_group M] [add_comm_group N] variables [module R M] [module R N] (i : M →ₗ[R] N) (f : M →ₗ[R] Q) /-- If we view `M` as a submodule of `N` via the injective linear map `i : M ↪ N`, then a submodule between `M` and `N` is a submodule `N'` of `N`. To prove Baer's criterion, we need to consider pairs of `(N', f')` such that `M ≤ N' ≤ N` and `f'` extends `f`. -/ structure extension_of extends linear_pmap R N Q := (le : i.range ≤ domain) (is_extension : ∀ (m : M), f m = to_linear_pmap ⟨i m, le ⟨m, rfl⟩⟩) section ext variables {i f} @[ext] lemma extension_of.ext {a b : extension_of i f} (domain_eq : a.domain = b.domain) (to_fun_eq : ∀ ⦃x : a.domain⦄ ⦃y : b.domain⦄, (x : N) = y → a.to_linear_pmap x = b.to_linear_pmap y) : a = b := begin rcases a with ⟨a, a_le, e1⟩, rcases b with ⟨b, b_le, e2⟩, congr, exact linear_pmap.ext domain_eq to_fun_eq, end lemma extension_of.ext_iff {a b : extension_of i f} : a = b ↔ ∃ (domain_eq : a.domain = b.domain), ∀ ⦃x : a.domain⦄ ⦃y : b.domain⦄, (x : N) = y → a.to_linear_pmap x = b.to_linear_pmap y := ⟨λ r, r ▸ ⟨rfl, λ x y h, congr_arg a.to_fun $ by exact_mod_cast h⟩, λ ⟨h1, h2⟩, extension_of.ext h1 h2⟩ end ext instance : has_inf (extension_of i f) := { inf := λ X1 X2, { le := λ x hx, (begin rcases hx with ⟨x, rfl⟩, refine ⟨X1.le (set.mem_range_self _), X2.le (set.mem_range_self _), _⟩, rw [← X1.is_extension x, ← X2.is_extension x], end : x ∈ X1.to_linear_pmap.eq_locus X2.to_linear_pmap), is_extension := λ m, X1.is_extension _, .. (X1.to_linear_pmap ⊓ X2.to_linear_pmap)} } instance : semilattice_inf (extension_of i f) := function.injective.semilattice_inf extension_of.to_linear_pmap (λ X Y h, extension_of.ext (by rw h) $ λ x y h', by { induction h, congr, exact_mod_cast h' }) $ λ X Y, linear_pmap.ext rfl $ λ x y h, by { congr, exact_mod_cast h } variables {R i f} lemma chain_linear_pmap_of_chain_extension_of {c : set (extension_of i f)} (hchain : is_chain (≤) c) : (is_chain (≤) $ (λ x : extension_of i f, x.to_linear_pmap) '' c) := begin rintro _ ⟨a, a_mem, rfl⟩ _ ⟨b, b_mem, rfl⟩ neq, exact hchain a_mem b_mem (ne_of_apply_ne _ neq), end /-- The maximal element of every nonempty chain of `extension_of i f`. -/ def extension_of.max {c : set (extension_of i f)} (hchain : is_chain (≤) c) (hnonempty : c.nonempty) : extension_of i f := { le := le_trans hnonempty.some.le $ (linear_pmap.le_Sup _ $ (set.mem_image _ _ _).mpr ⟨hnonempty.some, hnonempty.some_spec, rfl⟩).1, is_extension := λ m, begin refine eq.trans (hnonempty.some.is_extension m) _, symmetry, generalize_proofs _ h0 h1, exact linear_pmap.Sup_apply (is_chain.directed_on $ chain_linear_pmap_of_chain_extension_of hchain) ((set.mem_image _ _ _).mpr ⟨hnonempty.some, hnonempty.some_spec, rfl⟩) ⟨i m, h1⟩, end, ..linear_pmap.Sup _ (is_chain.directed_on $ chain_linear_pmap_of_chain_extension_of hchain) } lemma extension_of.le_max {c : set (extension_of i f)} (hchain : is_chain (≤) c) (hnonempty : c.nonempty) (a : extension_of i f) (ha : a ∈ c) : a ≤ extension_of.max hchain hnonempty := linear_pmap.le_Sup (is_chain.directed_on $ chain_linear_pmap_of_chain_extension_of hchain) $ (set.mem_image _ _ _).mpr ⟨a, ha, rfl⟩ variables (i f) [fact $ function.injective i] instance extension_of.inhabited : inhabited (extension_of i f) := { default := { domain := i.range, to_fun := { to_fun := λ x, f x.2.some, map_add' := λ x y, begin have eq1 : _ + _ = (x + y).1 := congr_arg2 (+) x.2.some_spec y.2.some_spec, rw [← map_add, ← (x + y).2.some_spec] at eq1, rw [← fact.out (function.injective i) eq1, map_add], end, map_smul' := λ r x, begin have eq1 : r • _ = (r • x).1 := congr_arg ((•) r) x.2.some_spec, rw [← linear_map.map_smul, ← (r • x).2.some_spec] at eq1, rw [ring_hom.id_apply, ← fact.out (function.injective i) eq1, linear_map.map_smul], end }, le := le_refl _, is_extension := λ m, begin simp only [linear_pmap.mk_apply, linear_map.coe_mk], congr, exact fact.out (function.injective i) (⟨i m, ⟨_, rfl⟩⟩ : i.range).2.some_spec.symm, end } } /-- Since every nonempty chain has a maximal element, by Zorn's lemma, there is a maximal `extension_of i f`. -/ def extension_of_max : extension_of i f := (@zorn_nonempty_partial_order (extension_of i f) _ ⟨inhabited.default⟩ (λ c hchain hnonempty, ⟨extension_of.max hchain hnonempty, extension_of.le_max hchain hnonempty⟩)).some lemma extension_of_max_is_max : ∀ (a : extension_of i f), extension_of_max i f ≤ a → a = extension_of_max i f := (@zorn_nonempty_partial_order (extension_of i f) _ ⟨inhabited.default⟩ ((λ c hchain hnonempty, ⟨extension_of.max hchain hnonempty, extension_of.le_max hchain hnonempty⟩))).some_spec variables {f} private lemma extension_of_max_adjoin.aux1 {y : N} (x : (extension_of_max i f).domain ⊔ submodule.span R {y}) : ∃ (a : (extension_of_max i f).domain) (b : R), x.1 = a.1 + b • y := begin have mem1 : x.1 ∈ (_ : set _) := x.2, rw submodule.coe_sup at mem1, rcases mem1 with ⟨a, b, a_mem, (b_mem : b ∈ (submodule.span R _ : submodule R N)), eq1⟩, rw submodule.mem_span_singleton at b_mem, rcases b_mem with ⟨z, eq2⟩, exact ⟨⟨a, a_mem⟩, z, by rw [← eq1, ← eq2]⟩, end /--If `x ∈ M ⊔ ⟨y⟩`, then `x = m + r • y`, `fst` pick an arbitrary such `m`.-/ def extension_of_max_adjoin.fst {y : N} (x : (extension_of_max i f).domain ⊔ submodule.span R {y}) : (extension_of_max i f).domain := (extension_of_max_adjoin.aux1 i x).some /--If `x ∈ M ⊔ ⟨y⟩`, then `x = m + r • y`, `snd` pick an arbitrary such `r`.-/ def extension_of_max_adjoin.snd {y : N} (x : (extension_of_max i f).domain ⊔ submodule.span R {y}) : R := (extension_of_max_adjoin.aux1 i x).some_spec.some lemma extension_of_max_adjoin.eqn {y : N} (x : (extension_of_max i f).domain ⊔ submodule.span R {y}) : ↑x = ↑(extension_of_max_adjoin.fst i x) + (extension_of_max_adjoin.snd i x) • y := (extension_of_max_adjoin.aux1 i x).some_spec.some_spec variables (f) /--the ideal `I = {r | r • y ∈ N}`-/ def extension_of_max_adjoin.ideal (y : N) : ideal R := (extension_of_max i f).domain.comap (linear_map.id.smul_right y) /--A linear map `I ⟶ Q` by `x ↦ f' (x • y)` where `f'` is the maximal extension-/ def extension_of_max_adjoin.ideal_to (y : N) : extension_of_max_adjoin.ideal i f y →ₗ[R] Q := { to_fun := λ z, (extension_of_max i f).to_linear_pmap ⟨(↑z : R) • y, z.prop⟩, map_add' := λ z1 z2, by simp [← (extension_of_max i f).to_linear_pmap.map_add, add_smul], map_smul' := λ z1 z2, by simp [← (extension_of_max i f).to_linear_pmap.map_smul, mul_smul]; refl } /-- Since we assumed `Q` being Baer, the linear map `x ↦ f' (x • y) : I ⟶ Q` extends to `R ⟶ Q`, call this extended map `φ`-/ def extension_of_max_adjoin.extend_ideal_to (h : module.Baer R Q) (y : N) : R →ₗ[R] Q := (h (extension_of_max_adjoin.ideal i f y) (extension_of_max_adjoin.ideal_to i f y)).some lemma extension_of_max_adjoin.extend_ideal_to_is_extension (h : module.Baer R Q) (y : N) : ∀ (x : R) (mem : x ∈ extension_of_max_adjoin.ideal i f y), extension_of_max_adjoin.extend_ideal_to i f h y x = extension_of_max_adjoin.ideal_to i f y ⟨x, mem⟩ := (h (extension_of_max_adjoin.ideal i f y) (extension_of_max_adjoin.ideal_to i f y)).some_spec lemma extension_of_max_adjoin.extend_ideal_to_wd' (h : module.Baer R Q) {y : N} (r : R) (eq1 : r • y = 0) : extension_of_max_adjoin.extend_ideal_to i f h y r = 0 := begin rw extension_of_max_adjoin.extend_ideal_to_is_extension i f h y r (by rw eq1; exact submodule.zero_mem _ : r • y ∈ _), simp only [extension_of_max_adjoin.ideal_to, linear_map.coe_mk, eq1, subtype.coe_mk, ← add_submonoid_class.zero_def, (extension_of_max i f).to_linear_pmap.map_zero] end lemma extension_of_max_adjoin.extend_ideal_to_wd (h : module.Baer R Q) {y : N} (r r' : R) (eq1 : r • y = r' • y) : extension_of_max_adjoin.extend_ideal_to i f h y r = extension_of_max_adjoin.extend_ideal_to i f h y r' := begin rw [← sub_eq_zero, ← map_sub], convert extension_of_max_adjoin.extend_ideal_to_wd' i f h (r - r') _, rw [sub_smul, sub_eq_zero, eq1], end lemma extension_of_max_adjoin.extend_ideal_to_eq (h : module.Baer R Q) {y : N} (r : R) (hr : r • y ∈ (extension_of_max i f).domain) : extension_of_max_adjoin.extend_ideal_to i f h y r = (extension_of_max i f).to_linear_pmap ⟨r • y, hr⟩ := by simp only [extension_of_max_adjoin.extend_ideal_to_is_extension i f h _ _ hr, extension_of_max_adjoin.ideal_to, linear_map.coe_mk, subtype.coe_mk] /--We can finally define a linear map `M ⊔ ⟨y⟩ ⟶ Q` by `x + r • y ↦ f x + φ r` -/ def extension_of_max_adjoin.extension_to_fun (h : module.Baer R Q) {y : N} : (extension_of_max i f).domain ⊔ submodule.span R {y} → Q := λ x, (extension_of_max i f).to_linear_pmap (extension_of_max_adjoin.fst i x) + extension_of_max_adjoin.extend_ideal_to i f h y (extension_of_max_adjoin.snd i x) lemma extension_of_max_adjoin.extension_to_fun_wd (h : module.Baer R Q) {y : N} (x : (extension_of_max i f).domain ⊔ submodule.span R {y}) (a : (extension_of_max i f).domain) (r : R) (eq1 : ↑x = ↑a + r • y) : extension_of_max_adjoin.extension_to_fun i f h x = (extension_of_max i f).to_linear_pmap a + extension_of_max_adjoin.extend_ideal_to i f h y r := begin cases a with a ha, rw subtype.coe_mk at eq1, have eq2 : (extension_of_max_adjoin.fst i x - a : N) = (r - extension_of_max_adjoin.snd i x) • y, { rwa [extension_of_max_adjoin.eqn, ← sub_eq_zero, ←sub_sub_sub_eq, sub_eq_zero, ← sub_smul] at eq1 }, have eq3 := extension_of_max_adjoin.extend_ideal_to_eq i f h (r - extension_of_max_adjoin.snd i x) (by rw ← eq2; exact submodule.sub_mem _ (extension_of_max_adjoin.fst i x).2 ha), simp only [map_sub, sub_smul, sub_eq_iff_eq_add] at eq3, unfold extension_of_max_adjoin.extension_to_fun, rw [eq3, ← add_assoc, ← (extension_of_max i f).to_linear_pmap.map_add, add_mem_class.mk_add_mk], congr, ext, rw [subtype.coe_mk, add_sub, ← eq1], exact eq_sub_of_add_eq (extension_of_max_adjoin.eqn _ _).symm end /--The linear map `M ⊔ ⟨y⟩ ⟶ Q` by `x + r • y ↦ f x + φ r` is an extension of `f`-/ def extension_of_max_adjoin (h : module.Baer R Q) (y : N) : extension_of i f := { domain := (extension_of_max i f).domain ⊔ submodule.span R {y}, le := le_trans (extension_of_max i f).le le_sup_left, to_fun := { to_fun := extension_of_max_adjoin.extension_to_fun i f h, map_add' := λ a b, begin have eq1 : ↑a + ↑b = ↑((extension_of_max_adjoin.fst i a) + (extension_of_max_adjoin.fst i b)) + (extension_of_max_adjoin.snd i a + extension_of_max_adjoin.snd i b) • y, { rw [extension_of_max_adjoin.eqn, extension_of_max_adjoin.eqn, add_smul], abel, }, rw [extension_of_max_adjoin.extension_to_fun_wd i f h (a + b) _ _ eq1, linear_pmap.map_add, map_add], unfold extension_of_max_adjoin.extension_to_fun, abel, end, map_smul' := λ r a, begin rw [ring_hom.id_apply], have eq1 : r • ↑a = ↑(r • extension_of_max_adjoin.fst i a) + (r • extension_of_max_adjoin.snd i a) • y, { rw [extension_of_max_adjoin.eqn, smul_add, smul_eq_mul, mul_smul], refl, }, rw [extension_of_max_adjoin.extension_to_fun_wd i f h (r • a) _ _ eq1, linear_map.map_smul, linear_pmap.map_smul, ← smul_add], congr', end }, is_extension := λ m, begin simp only [linear_pmap.mk_apply, linear_map.coe_mk], rw [(extension_of_max i f).is_extension, extension_of_max_adjoin.extension_to_fun_wd i f h _ ⟨i m, _⟩ 0 _, map_zero, add_zero], simp, end } lemma extension_of_max_le (h : module.Baer R Q) {y : N} : extension_of_max i f ≤ extension_of_max_adjoin i f h y := ⟨le_sup_left, λ x x' EQ, begin symmetry, change extension_of_max_adjoin.extension_to_fun i f h _ = _, rw [extension_of_max_adjoin.extension_to_fun_wd i f h x' x 0 (by simp [EQ]), map_zero, add_zero], end⟩ lemma extension_of_max_to_submodule_eq_top (h : module.Baer R Q) : (extension_of_max i f).domain = ⊤ := begin refine submodule.eq_top_iff'.mpr (λ y, _), rw [← extension_of_max_is_max i f _ (extension_of_max_le i f h), extension_of_max_adjoin, submodule.mem_sup], exact ⟨0, submodule.zero_mem _, y, submodule.mem_span_singleton_self _, zero_add _⟩ end /--**Baer's criterion** for injective module : a Baer module is an injective module, i.e. if every linear map from an ideal can be extended, then the module is injective.-/ protected theorem injective (h : module.Baer R Q) : module.injective R Q := { out := λ X Y ins1 ins2 ins3 ins4 i hi f, begin haveI : fact (function.injective i) := ⟨hi⟩, exact ⟨{ to_fun := λ y, (extension_of_max i f).to_linear_pmap ⟨y, (extension_of_max_to_submodule_eq_top i f h).symm ▸ trivial⟩, map_add' := λ x y, by { rw ← linear_pmap.map_add, congr, }, map_smul' := λ r x, by { rw ← linear_pmap.map_smul, congr } }, λ x, ((extension_of_max i f).is_extension x).symm⟩, end } end module.Baer