/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nathaniel Thomas, Jeremy Avigad, Johannes Hölzl, Mario Carneiro, Anne Baanen, Frédéric Dupuis, Heather Macbeth -/ import algebra.module.linear_map /-! # (Semi)linear equivalences In this file we define * `linear_equiv σ M M₂`, `M ≃ₛₗ[σ] M₂`: an invertible semilinear map. Here, `σ` is a `ring_hom` from `R` to `R₂` and an `e : M ≃ₛₗ[σ] M₂` satisfies `e (c • x) = (σ c) • (e x)`. The plain linear version, with `σ` being `ring_hom.id R`, is denoted by `M ≃ₗ[R] M₂`, and the star-linear version (with `σ` being `star_ring_end`) is denoted by `M ≃ₗ⋆[R] M₂`. ## Implementation notes To ensure that composition works smoothly for semilinear equivalences, we use the typeclasses `ring_hom_comp_triple`, `ring_hom_inv_pair` and `ring_hom_surjective` from `algebra/ring/comp_typeclasses`. The group structure on automorphisms, `linear_equiv.automorphism_group`, is provided elsewhere. ## TODO * Parts of this file have not yet been generalized to semilinear maps ## Tags linear equiv, linear equivalences, linear isomorphism, linear isomorphic -/ open function open_locale big_operators universes u u' v w x y z variables {R : Type*} {R₁ : Type*} {R₂ : Type*} {R₃ : Type*} variables {k : Type*} {S : Type*} {M : Type*} {M₁ : Type*} {M₂ : Type*} {M₃ : Type*} variables {N₁ : Type*} {N₂ : Type*} {N₃ : Type*} {N₄ : Type*} {ι : Type*} section set_option old_structure_cmd true /-- A linear equivalence is an invertible linear map. -/ @[nolint has_nonempty_instance] structure linear_equiv {R : Type*} {S : Type*} [semiring R] [semiring S] (σ : R →+* S) {σ' : S →+* R} [ring_hom_inv_pair σ σ'] [ring_hom_inv_pair σ' σ] (M : Type*) (M₂ : Type*) [add_comm_monoid M] [add_comm_monoid M₂] [module R M] [module S M₂] extends linear_map σ M M₂, M ≃+ M₂ attribute [nolint doc_blame] linear_equiv.to_linear_map attribute [nolint doc_blame] linear_equiv.to_add_equiv notation M ` ≃ₛₗ[`:50 σ `] ` M₂ := linear_equiv σ M M₂ notation M ` ≃ₗ[`:50 R `] ` M₂ := linear_equiv (ring_hom.id R) M M₂ notation M ` ≃ₗ⋆[`:50 R `] ` M₂ := linear_equiv (star_ring_end R) M M₂ /-- `semilinear_equiv_class F σ M M₂` asserts `F` is a type of bundled `σ`-semilinear equivs `M → M₂`. See also `linear_equiv_class F R M M₂` for the case where `σ` is the identity map on `R`. A map `f` between an `R`-module and an `S`-module over a ring homomorphism `σ : R →+* S` is semilinear if it satisfies the two properties `f (x + y) = f x + f y` and `f (c • x) = (σ c) • f x`. -/ class semilinear_equiv_class (F : Type*) {R S : out_param Type*} [semiring R] [semiring S] (σ : out_param $ R →+* S) {σ' : out_param $ S →+* R} [ring_hom_inv_pair σ σ'] [ring_hom_inv_pair σ' σ] (M M₂ : out_param Type*) [add_comm_monoid M] [add_comm_monoid M₂] [module R M] [module S M₂] extends add_equiv_class F M M₂ := (map_smulₛₗ : ∀ (f : F) (r : R) (x : M), f (r • x) = (σ r) • f x) -- `R, S, σ, σ'` become metavars, but it's OK since they are outparams. attribute [nolint dangerous_instance] semilinear_equiv_class.to_add_equiv_class /-- `linear_equiv_class F R M M₂` asserts `F` is a type of bundled `R`-linear equivs `M → M₂`. This is an abbreviation for `semilinear_equiv_class F (ring_hom.id R) M M₂`. -/ abbreviation linear_equiv_class (F : Type*) (R M M₂ : out_param Type*) [semiring R] [add_comm_monoid M] [add_comm_monoid M₂] [module R M] [module R M₂] := semilinear_equiv_class F (ring_hom.id R) M M₂ end namespace semilinear_equiv_class variables (F : Type*) [semiring R] [semiring S] variables [add_comm_monoid M] [add_comm_monoid M₁] [add_comm_monoid M₂] variables [module R M] [module S M₂] {σ : R →+* S} {σ' : S →+* R} -- `σ'` becomes a metavariable, but it's OK since it's an outparam @[priority 100, nolint dangerous_instance] instance [ring_hom_inv_pair σ σ'] [ring_hom_inv_pair σ' σ] [s : semilinear_equiv_class F σ M M₂] : semilinear_map_class F σ M M₂ := { coe := (coe : F → M → M₂), coe_injective' := @fun_like.coe_injective F _ _ _, ..s } end semilinear_equiv_class namespace linear_equiv section add_comm_monoid variables {M₄ : Type*} variables [semiring R] [semiring S] section variables [add_comm_monoid M] [add_comm_monoid M₁] [add_comm_monoid M₂] variables [module R M] [module S M₂] {σ : R →+* S} {σ' : S →+* R} variables [ring_hom_inv_pair σ σ'] [ring_hom_inv_pair σ' σ] include R include σ' instance : has_coe (M ≃ₛₗ[σ] M₂) (M →ₛₗ[σ] M₂) := ⟨to_linear_map⟩ -- see Note [function coercion] instance : has_coe_to_fun (M ≃ₛₗ[σ] M₂) (λ _, M → M₂) := ⟨to_fun⟩ @[simp] lemma coe_mk {to_fun inv_fun map_add map_smul left_inv right_inv } : ⇑(⟨to_fun, map_add, map_smul, inv_fun, left_inv, right_inv⟩ : M ≃ₛₗ[σ] M₂) = to_fun := rfl -- This exists for compatibility, previously `≃ₗ[R]` extended `≃` instead of `≃+`. @[nolint doc_blame] def to_equiv : (M ≃ₛₗ[σ] M₂) → M ≃ M₂ := λ f, f.to_add_equiv.to_equiv lemma to_equiv_injective : function.injective (to_equiv : (M ≃ₛₗ[σ] M₂) → M ≃ M₂) := λ ⟨_, _, _, _, _, _⟩ ⟨_, _, _, _, _, _⟩ h, linear_equiv.mk.inj_eq.mpr (equiv.mk.inj h) @[simp] lemma to_equiv_inj {e₁ e₂ : M ≃ₛₗ[σ] M₂} : e₁.to_equiv = e₂.to_equiv ↔ e₁ = e₂ := to_equiv_injective.eq_iff lemma to_linear_map_injective : injective (coe : (M ≃ₛₗ[σ] M₂) → (M →ₛₗ[σ] M₂)) := λ e₁ e₂ H, to_equiv_injective $ equiv.ext $ linear_map.congr_fun H @[simp, norm_cast] lemma to_linear_map_inj {e₁ e₂ : M ≃ₛₗ[σ] M₂} : (e₁ : M →ₛₗ[σ] M₂) = e₂ ↔ e₁ = e₂ := to_linear_map_injective.eq_iff instance : semilinear_equiv_class (M ≃ₛₗ[σ] M₂) σ M M₂ := { coe := linear_equiv.to_fun, inv := linear_equiv.inv_fun, coe_injective' := λ f g h₁ h₂, by { cases f, cases g, congr' }, left_inv := linear_equiv.left_inv, right_inv := linear_equiv.right_inv, map_add := map_add', map_smulₛₗ := map_smul' } lemma coe_injective : @injective (M ≃ₛₗ[σ] M₂) (M → M₂) coe_fn := fun_like.coe_injective end section variables [semiring R₁] [semiring R₂] [semiring R₃] variables [add_comm_monoid M] [add_comm_monoid M₁] [add_comm_monoid M₂] variables [add_comm_monoid M₃] [add_comm_monoid M₄] variables [add_comm_monoid N₁] [add_comm_monoid N₂] variables {module_M : module R M} {module_S_M₂ : module S M₂} {σ : R →+* S} {σ' : S →+* R} variables {re₁ : ring_hom_inv_pair σ σ'} {re₂ : ring_hom_inv_pair σ' σ} variables (e e' : M ≃ₛₗ[σ] M₂) lemma to_linear_map_eq_coe : e.to_linear_map = (e : M →ₛₗ[σ] M₂) := rfl @[simp, norm_cast] theorem coe_coe : ⇑(e : M →ₛₗ[σ] M₂) = e := rfl @[simp] lemma coe_to_equiv : ⇑e.to_equiv = e := rfl @[simp] lemma coe_to_linear_map : ⇑e.to_linear_map = e := rfl @[simp] lemma to_fun_eq_coe : e.to_fun = e := rfl section variables {e e'} @[ext] lemma ext (h : ∀ x, e x = e' x) : e = e' := fun_like.ext _ _ h lemma ext_iff : e = e' ↔ ∀ x, e x = e' x := fun_like.ext_iff protected lemma congr_arg {x x'} : x = x' → e x = e x' := fun_like.congr_arg e protected lemma congr_fun (h : e = e') (x : M) : e x = e' x := fun_like.congr_fun h x end section variables (M R) /-- The identity map is a linear equivalence. -/ @[refl] def refl [module R M] : M ≃ₗ[R] M := { .. linear_map.id, .. equiv.refl M } end @[simp] lemma refl_apply [module R M] (x : M) : refl R M x = x := rfl include module_M module_S_M₂ re₁ re₂ /-- Linear equivalences are symmetric. -/ @[symm] def symm (e : M ≃ₛₗ[σ] M₂) : M₂ ≃ₛₗ[σ'] M := { to_fun := e.to_linear_map.inverse e.inv_fun e.left_inv e.right_inv, inv_fun := e.to_equiv.symm.inv_fun, map_smul' := λ r x, by rw map_smulₛₗ, .. e.to_linear_map.inverse e.inv_fun e.left_inv e.right_inv, .. e.to_equiv.symm } omit module_M module_S_M₂ re₁ re₂ /-- See Note [custom simps projection] -/ def simps.symm_apply {R : Type*} {S : Type*} [semiring R] [semiring S] {σ : R →+* S} {σ' : S →+* R} [ring_hom_inv_pair σ σ'] [ring_hom_inv_pair σ' σ] {M : Type*} {M₂ : Type*} [add_comm_monoid M] [add_comm_monoid M₂] [module R M] [module S M₂] (e : M ≃ₛₗ[σ] M₂) : M₂ → M := e.symm initialize_simps_projections linear_equiv (to_fun → apply, inv_fun → symm_apply) include σ' @[simp] lemma inv_fun_eq_symm : e.inv_fun = e.symm := rfl omit σ' @[simp] lemma coe_to_equiv_symm : ⇑e.to_equiv.symm = e.symm := rfl variables {module_M₁ : module R₁ M₁} {module_M₂ : module R₂ M₂} {module_M₃ : module R₃ M₃} variables {module_N₁ : module R₁ N₁} {module_N₂ : module R₁ N₂} variables {σ₁₂ : R₁ →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R₁ →+* R₃} variables {σ₂₁ : R₂ →+* R₁} {σ₃₂ : R₃ →+* R₂} {σ₃₁ : R₃ →+* R₁} variables [ring_hom_comp_triple σ₁₂ σ₂₃ σ₁₃] variables [ring_hom_comp_triple σ₃₂ σ₂₁ σ₃₁] variables {re₁₂ : ring_hom_inv_pair σ₁₂ σ₂₁} {re₂₃ : ring_hom_inv_pair σ₂₃ σ₃₂} variables [ring_hom_inv_pair σ₁₃ σ₃₁] {re₂₁ : ring_hom_inv_pair σ₂₁ σ₁₂} variables {re₃₂ : ring_hom_inv_pair σ₃₂ σ₂₃} [ring_hom_inv_pair σ₃₁ σ₁₃] variables (e₁₂ : M₁ ≃ₛₗ[σ₁₂] M₂) (e₂₃ : M₂ ≃ₛₗ[σ₂₃] M₃) include σ₃₁ /-- Linear equivalences are transitive. -/ -- Note: The linter thinks the `ring_hom_comp_triple` argument is doubled -- it is not. @[trans, nolint unused_arguments] def trans : M₁ ≃ₛₗ[σ₁₃] M₃ := { .. e₂₃.to_linear_map.comp e₁₂.to_linear_map, .. e₁₂.to_equiv.trans e₂₃.to_equiv } omit σ₃₁ infixl ` ≪≫ₗ `:80 := @linear_equiv.trans _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (ring_hom.id _) (ring_hom.id _) (ring_hom.id _) (ring_hom.id _) (ring_hom.id _) (ring_hom.id _) ring_hom_comp_triple.ids ring_hom_comp_triple.ids ring_hom_inv_pair.ids ring_hom_inv_pair.ids ring_hom_inv_pair.ids ring_hom_inv_pair.ids ring_hom_inv_pair.ids ring_hom_inv_pair.ids variables {e₁₂} {e₂₃} @[simp] lemma coe_to_add_equiv : ⇑(e.to_add_equiv) = e := rfl /-- The two paths coercion can take to an `add_monoid_hom` are equivalent -/ lemma to_add_monoid_hom_commutes : e.to_linear_map.to_add_monoid_hom = e.to_add_equiv.to_add_monoid_hom := rfl include σ₃₁ @[simp] theorem trans_apply (c : M₁) : (e₁₂.trans e₂₃ : M₁ ≃ₛₗ[σ₁₃] M₃) c = e₂₃ (e₁₂ c) := rfl omit σ₃₁ include σ' @[simp] theorem apply_symm_apply (c : M₂) : e (e.symm c) = c := e.right_inv c @[simp] theorem symm_apply_apply (b : M) : e.symm (e b) = b := e.left_inv b omit σ' include σ₃₁ σ₂₁ σ₃₂ @[simp] lemma trans_symm : (e₁₂.trans e₂₃ : M₁ ≃ₛₗ[σ₁₃] M₃).symm = e₂₃.symm.trans e₁₂.symm := rfl lemma symm_trans_apply (c : M₃) : (e₁₂.trans e₂₃ : M₁ ≃ₛₗ[σ₁₃] M₃).symm c = e₁₂.symm (e₂₃.symm c) := rfl omit σ₃₁ σ₂₁ σ₃₂ @[simp] lemma trans_refl : e.trans (refl S M₂) = e := to_equiv_injective e.to_equiv.trans_refl @[simp] lemma refl_trans : (refl R M).trans e = e := to_equiv_injective e.to_equiv.refl_trans include σ' lemma symm_apply_eq {x y} : e.symm x = y ↔ x = e y := e.to_equiv.symm_apply_eq lemma eq_symm_apply {x y} : y = e.symm x ↔ e y = x := e.to_equiv.eq_symm_apply omit σ' lemma eq_comp_symm {α : Type*} (f : M₂ → α) (g : M₁ → α) : f = g ∘ e₁₂.symm ↔ f ∘ e₁₂ = g := e₁₂.to_equiv.eq_comp_symm f g lemma comp_symm_eq {α : Type*} (f : M₂ → α) (g : M₁ → α) : g ∘ e₁₂.symm = f ↔ g = f ∘ e₁₂ := e₁₂.to_equiv.comp_symm_eq f g lemma eq_symm_comp {α : Type*} (f : α → M₁) (g : α → M₂) : f = e₁₂.symm ∘ g ↔ e₁₂ ∘ f = g := e₁₂.to_equiv.eq_symm_comp f g lemma symm_comp_eq {α : Type*} (f : α → M₁) (g : α → M₂) : e₁₂.symm ∘ g = f ↔ g = e₁₂ ∘ f := e₁₂.to_equiv.symm_comp_eq f g variables [ring_hom_comp_triple σ₂₁ σ₁₃ σ₂₃] [ring_hom_comp_triple σ₃₁ σ₁₂ σ₃₂] include module_M₃ lemma eq_comp_to_linear_map_symm (f : M₂ →ₛₗ[σ₂₃] M₃) (g : M₁ →ₛₗ[σ₁₃] M₃) : f = g.comp e₁₂.symm.to_linear_map ↔ f.comp e₁₂.to_linear_map = g := begin split; intro H; ext, { simp [H, e₁₂.to_equiv.eq_comp_symm f g] }, { simp [←H, ←e₁₂.to_equiv.eq_comp_symm f g] } end lemma comp_to_linear_map_symm_eq (f : M₂ →ₛₗ[σ₂₃] M₃) (g : M₁ →ₛₗ[σ₁₃] M₃) : g.comp e₁₂.symm.to_linear_map = f ↔ g = f.comp e₁₂.to_linear_map := begin split; intro H; ext, { simp [←H, ←e₁₂.to_equiv.comp_symm_eq f g] }, { simp [H, e₁₂.to_equiv.comp_symm_eq f g] } end lemma eq_to_linear_map_symm_comp (f : M₃ →ₛₗ[σ₃₁] M₁) (g : M₃ →ₛₗ[σ₃₂] M₂) : f = e₁₂.symm.to_linear_map.comp g ↔ e₁₂.to_linear_map.comp f = g := begin split; intro H; ext, { simp [H, e₁₂.to_equiv.eq_symm_comp f g] }, { simp [←H, ←e₁₂.to_equiv.eq_symm_comp f g] } end lemma to_linear_map_symm_comp_eq (f : M₃ →ₛₗ[σ₃₁] M₁) (g : M₃ →ₛₗ[σ₃₂] M₂) : e₁₂.symm.to_linear_map.comp g = f ↔ g = e₁₂.to_linear_map.comp f := begin split; intro H; ext, { simp [←H, ←e₁₂.to_equiv.symm_comp_eq f g] }, { simp [H, e₁₂.to_equiv.symm_comp_eq f g] } end omit module_M₃ @[simp] lemma refl_symm [module R M] : (refl R M).symm = linear_equiv.refl R M := rfl @[simp] lemma self_trans_symm [module R M] [module R M₂] (f : M ≃ₗ[R] M₂) : f.trans f.symm = linear_equiv.refl R M := by { ext x, simp } @[simp] lemma symm_trans_self [module R M] [module R M₂] (f : M ≃ₗ[R] M₂) : f.symm.trans f = linear_equiv.refl R M₂ := by { ext x, simp } @[simp, norm_cast] lemma refl_to_linear_map [module R M] : (linear_equiv.refl R M : M →ₗ[R] M) = linear_map.id := rfl @[simp, norm_cast] lemma comp_coe [module R M] [module R M₂] [module R M₃] (f : M ≃ₗ[R] M₂) (f' : M₂ ≃ₗ[R] M₃) : (f' : M₂ →ₗ[R] M₃).comp (f : M →ₗ[R] M₂) = (f.trans f' : M ≃ₗ[R] M₃) := rfl @[simp] lemma mk_coe (h₁ h₂ f h₃ h₄) : (linear_equiv.mk e h₁ h₂ f h₃ h₄ : M ≃ₛₗ[σ] M₂) = e := ext $ λ _, rfl protected theorem map_add (a b : M) : e (a + b) = e a + e b := map_add e a b protected theorem map_zero : e 0 = 0 := map_zero e -- TODO: `simp` isn't picking up `map_smulₛₗ` for `linear_equiv`s without specifying `map_smulₛₗ f` @[simp] protected theorem map_smulₛₗ (c : R) (x : M) : e (c • x) = (σ c) • e x := e.map_smul' c x include module_N₁ module_N₂ theorem map_smul (e : N₁ ≃ₗ[R₁] N₂) (c : R₁) (x : N₁) : e (c • x) = c • e x := map_smulₛₗ e c x omit module_N₁ module_N₂ @[simp] lemma map_sum {s : finset ι} (u : ι → M) : e (∑ i in s, u i) = ∑ i in s, e (u i) := e.to_linear_map.map_sum @[simp] theorem map_eq_zero_iff {x : M} : e x = 0 ↔ x = 0 := e.to_add_equiv.map_eq_zero_iff theorem map_ne_zero_iff {x : M} : e x ≠ 0 ↔ x ≠ 0 := e.to_add_equiv.map_ne_zero_iff include module_M module_S_M₂ re₁ re₂ @[simp] theorem symm_symm (e : M ≃ₛₗ[σ] M₂): e.symm.symm = e := by { cases e, refl } omit module_M module_S_M₂ re₁ re₂ lemma symm_bijective [module R M] [module S M₂] [ring_hom_inv_pair σ' σ] [ring_hom_inv_pair σ σ'] : function.bijective (symm : (M ≃ₛₗ[σ] M₂) → (M₂ ≃ₛₗ[σ'] M)) := equiv.bijective ⟨(symm : (M ≃ₛₗ[σ] M₂) → (M₂ ≃ₛₗ[σ'] M)), (symm : (M₂ ≃ₛₗ[σ'] M) → (M ≃ₛₗ[σ] M₂)), symm_symm, symm_symm⟩ @[simp] lemma mk_coe' (f h₁ h₂ h₃ h₄) : (linear_equiv.mk f h₁ h₂ ⇑e h₃ h₄ : M₂ ≃ₛₗ[σ'] M) = e.symm := symm_bijective.injective $ ext $ λ x, rfl @[simp] theorem symm_mk (f h₁ h₂ h₃ h₄) : (⟨e, h₁, h₂, f, h₃, h₄⟩ : M ≃ₛₗ[σ] M₂).symm = { to_fun := f, inv_fun := e, ..(⟨e, h₁, h₂, f, h₃, h₄⟩ : M ≃ₛₗ[σ] M₂).symm } := rfl @[simp] lemma coe_symm_mk [module R M] [module R M₂] {to_fun inv_fun map_add map_smul left_inv right_inv} : ⇑((⟨to_fun, map_add, map_smul, inv_fun, left_inv, right_inv⟩ : M ≃ₗ[R] M₂).symm) = inv_fun := rfl protected lemma bijective : function.bijective e := e.to_equiv.bijective protected lemma injective : function.injective e := e.to_equiv.injective protected lemma surjective : function.surjective e := e.to_equiv.surjective protected lemma image_eq_preimage (s : set M) : e '' s = e.symm ⁻¹' s := e.to_equiv.image_eq_preimage s protected lemma image_symm_eq_preimage (s : set M₂) : e.symm '' s = e ⁻¹' s := e.to_equiv.symm.image_eq_preimage s end /-- Interpret a `ring_equiv` `f` as an `f`-semilinear equiv. -/ @[simps] def _root_.ring_equiv.to_semilinear_equiv (f : R ≃+* S) : by haveI := ring_hom_inv_pair.of_ring_equiv f; haveI := ring_hom_inv_pair.symm (↑f : R →+* S) (f.symm : S →+* R); exact (R ≃ₛₗ[(↑f : R →+* S)] S) := by exact { to_fun := f, map_smul' := f.map_mul, .. f} variables [semiring R₁] [semiring R₂] [semiring R₃] variables [add_comm_monoid M] [add_comm_monoid M₁] [add_comm_monoid M₂] /-- An involutive linear map is a linear equivalence. -/ def of_involutive {σ σ' : R →+* R} [ring_hom_inv_pair σ σ'] [ring_hom_inv_pair σ' σ] {module_M : module R M} (f : M →ₛₗ[σ] M) (hf : involutive f) : M ≃ₛₗ[σ] M := { .. f, .. hf.to_perm f } @[simp] lemma coe_of_involutive {σ σ' : R →+* R} [ring_hom_inv_pair σ σ'] [ring_hom_inv_pair σ' σ] {module_M : module R M} (f : M →ₛₗ[σ] M) (hf : involutive f) : ⇑(of_involutive f hf) = f := rfl section restrict_scalars variables (R) [module R M] [module R M₂] [module S M] [module S M₂] [linear_map.compatible_smul M M₂ R S] /-- If `M` and `M₂` are both `R`-semimodules and `S`-semimodules and `R`-semimodule structures are defined by an action of `R` on `S` (formally, we have two scalar towers), then any `S`-linear equivalence from `M` to `M₂` is also an `R`-linear equivalence. See also `linear_map.restrict_scalars`. -/ @[simps] def restrict_scalars (f : M ≃ₗ[S] M₂) : M ≃ₗ[R] M₂ := { to_fun := f, inv_fun := f.symm, left_inv := f.left_inv, right_inv := f.right_inv, .. f.to_linear_map.restrict_scalars R } lemma restrict_scalars_injective : function.injective (restrict_scalars R : (M ≃ₗ[S] M₂) → (M ≃ₗ[R] M₂)) := λ f g h, ext (linear_equiv.congr_fun h : _) @[simp] lemma restrict_scalars_inj (f g : M ≃ₗ[S] M₂) : f.restrict_scalars R = g.restrict_scalars R ↔ f = g := (restrict_scalars_injective R).eq_iff end restrict_scalars section automorphisms variables [module R M] instance automorphism_group : group (M ≃ₗ[R] M) := { mul := λ f g, g.trans f, one := linear_equiv.refl R M, inv := λ f, f.symm, mul_assoc := λ f g h, rfl, mul_one := λ f, ext $ λ x, rfl, one_mul := λ f, ext $ λ x, rfl, mul_left_inv := λ f, ext $ f.left_inv } /-- Restriction from `R`-linear automorphisms of `M` to `R`-linear endomorphisms of `M`, promoted to a monoid hom. -/ @[simps] def automorphism_group.to_linear_map_monoid_hom : (M ≃ₗ[R] M) →* (M →ₗ[R] M) := { to_fun := coe, map_one' := rfl, map_mul' := λ _ _, rfl } /-- The tautological action by `M ≃ₗ[R] M` on `M`. This generalizes `function.End.apply_mul_action`. -/ instance apply_distrib_mul_action : distrib_mul_action (M ≃ₗ[R] M) M := { smul := ($), smul_zero := linear_equiv.map_zero, smul_add := linear_equiv.map_add, one_smul := λ _, rfl, mul_smul := λ _ _ _, rfl } @[simp] protected lemma smul_def (f : M ≃ₗ[R] M) (a : M) : f • a = f a := rfl /-- `linear_equiv.apply_distrib_mul_action` is faithful. -/ instance apply_has_faithful_smul : has_faithful_smul (M ≃ₗ[R] M) M := ⟨λ _ _, linear_equiv.ext⟩ instance apply_smul_comm_class : smul_comm_class R (M ≃ₗ[R] M) M := { smul_comm := λ r e m, (e.map_smul r m).symm } instance apply_smul_comm_class' : smul_comm_class (M ≃ₗ[R] M) R M := { smul_comm := linear_equiv.map_smul } end automorphisms end add_comm_monoid end linear_equiv namespace module /-- `g : R ≃+* S` is `R`-linear when the module structure on `S` is `module.comp_hom S g` . -/ @[simps] def comp_hom.to_linear_equiv {R S : Type*} [semiring R] [semiring S] (g : R ≃+* S) : (by haveI := comp_hom S (↑g : R →+* S); exact (R ≃ₗ[R] S)) := by exact { to_fun := (g : R → S), inv_fun := (g.symm : S → R), map_smul' := g.map_mul, ..g } end module namespace distrib_mul_action variables (R M) [semiring R] [add_comm_monoid M] [module R M] variables [group S] [distrib_mul_action S M] [smul_comm_class S R M] /-- Each element of the group defines a linear equivalence. This is a stronger version of `distrib_mul_action.to_add_equiv`. -/ @[simps] def to_linear_equiv (s : S) : M ≃ₗ[R] M := { ..to_add_equiv M s, ..to_linear_map R M s } /-- Each element of the group defines a module automorphism. This is a stronger version of `distrib_mul_action.to_add_aut`. -/ @[simps] def to_module_aut : S →* M ≃ₗ[R] M := { to_fun := to_linear_equiv R M, map_one' := linear_equiv.ext $ one_smul _, map_mul' := λ a b, linear_equiv.ext $ mul_smul _ _ } end distrib_mul_action namespace add_equiv section add_comm_monoid variables [semiring R] [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] variables [module R M] [module R M₂] variable (e : M ≃+ M₂) /-- An additive equivalence whose underlying function preserves `smul` is a linear equivalence. -/ def to_linear_equiv (h : ∀ (c : R) x, e (c • x) = c • e x) : M ≃ₗ[R] M₂ := { map_smul' := h, .. e, } @[simp] lemma coe_to_linear_equiv (h : ∀ (c : R) x, e (c • x) = c • e x) : ⇑(e.to_linear_equiv h) = e := rfl @[simp] lemma coe_to_linear_equiv_symm (h : ∀ (c : R) x, e (c • x) = c • e x) : ⇑(e.to_linear_equiv h).symm = e.symm := rfl /-- An additive equivalence between commutative additive monoids is a linear equivalence between ℕ-modules -/ def to_nat_linear_equiv : M ≃ₗ[ℕ] M₂ := e.to_linear_equiv $ λ c a, by { erw e.to_add_monoid_hom.map_nsmul, refl } @[simp] lemma coe_to_nat_linear_equiv : ⇑(e.to_nat_linear_equiv) = e := rfl @[simp] lemma to_nat_linear_equiv_to_add_equiv : e.to_nat_linear_equiv.to_add_equiv = e := by { ext, refl } @[simp] lemma _root_.linear_equiv.to_add_equiv_to_nat_linear_equiv (e : M ≃ₗ[ℕ] M₂) : e.to_add_equiv.to_nat_linear_equiv = e := fun_like.coe_injective rfl @[simp] lemma to_nat_linear_equiv_symm : (e.to_nat_linear_equiv).symm = e.symm.to_nat_linear_equiv := rfl @[simp] lemma to_nat_linear_equiv_refl : ((add_equiv.refl M).to_nat_linear_equiv) = linear_equiv.refl ℕ M := rfl @[simp] lemma to_nat_linear_equiv_trans (e₂ : M₂ ≃+ M₃) : (e.to_nat_linear_equiv).trans (e₂.to_nat_linear_equiv) = (e.trans e₂).to_nat_linear_equiv := rfl end add_comm_monoid section add_comm_group variables [add_comm_group M] [add_comm_group M₂] [add_comm_group M₃] variable (e : M ≃+ M₂) /-- An additive equivalence between commutative additive groups is a linear equivalence between ℤ-modules -/ def to_int_linear_equiv : M ≃ₗ[ℤ] M₂ := e.to_linear_equiv $ λ c a, e.to_add_monoid_hom.map_zsmul a c @[simp] lemma coe_to_int_linear_equiv : ⇑(e.to_int_linear_equiv) = e := rfl @[simp] lemma to_int_linear_equiv_to_add_equiv : e.to_int_linear_equiv.to_add_equiv = e := by { ext, refl } @[simp] lemma _root_.linear_equiv.to_add_equiv_to_int_linear_equiv (e : M ≃ₗ[ℤ] M₂) : e.to_add_equiv.to_int_linear_equiv = e := fun_like.coe_injective rfl @[simp] lemma to_int_linear_equiv_symm : (e.to_int_linear_equiv).symm = e.symm.to_int_linear_equiv := rfl @[simp] lemma to_int_linear_equiv_refl : ((add_equiv.refl M).to_int_linear_equiv) = linear_equiv.refl ℤ M := rfl @[simp] lemma to_int_linear_equiv_trans (e₂ : M₂ ≃+ M₃) : (e.to_int_linear_equiv).trans (e₂.to_int_linear_equiv) = (e.trans e₂).to_int_linear_equiv := rfl end add_comm_group end add_equiv