/- Copyright (c) 2022 Oliver Nash. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Oliver Nash -/ import ring_theory.tensor_product /-! # Bimodules One frequently encounters situations in which several sets of scalars act on a single space, subject to compatibility condition(s). A distinguished instance of this is the theory of bimodules: one has two rings `R`, `S` acting on an additive group `M`, with `R` acting covariantly ("on the left") and `S` acting contravariantly ("on the right"). The compatibility condition is just: `(r • m) • s = r • (m • s)` for all `r : R`, `s : S`, `m : M`. This situation can be set up in Mathlib as: ```lean variables (R S M : Type*) [ring R] [ring S] variables [add_comm_group M] [module R M] [module Sᵐᵒᵖ M] [smul_comm_class R Sᵐᵒᵖ M] ``` The key fact is: ```lean example : module (R ⊗[ℕ] Sᵐᵒᵖ) M := tensor_product.algebra.module ``` Note that the corresponding result holds for the canonically isomorphic ring `R ⊗[ℤ] Sᵐᵒᵖ` but it is preferable to use the `R ⊗[ℕ] Sᵐᵒᵖ` instance since it works without additive inverses. Bimodules are thus just a special case of `module`s and most of their properties follow from the theory of `module`s`. In particular a two-sided submodule of a bimodule is simply a term of type `submodule (R ⊗[ℕ] Sᵐᵒᵖ) M`. This file is a place to collect results which are specific to bimodules. ## Main definitions * `subbimodule.mk` * `subbimodule.smul_mem` * `subbimodule.smul_mem'` * `subbimodule.to_submodule` * `subbimodule.to_submodule'` ## Implementation details For many definitions and lemmas it is preferable to set things up without opposites, i.e., as: `[module S M] [smul_comm_class R S M]` rather than `[module Sᵐᵒᵖ M] [smul_comm_class R Sᵐᵒᵖ M]`. The corresponding results for opposites then follow automatically and do not require taking advantage of the fact that `(Sᵐᵒᵖ)ᵐᵒᵖ` is defeq to `S`. ## TODO Develop the theory of two-sided ideals, which have type `submodule (R ⊗[ℕ] Rᵐᵒᵖ) R`. -/ open_locale tensor_product local attribute [instance] tensor_product.algebra.module namespace subbimodule section algebra variables {R A B M : Type*} variables [comm_semiring R] [add_comm_monoid M] [module R M] variables [semiring A] [semiring B] [module A M] [module B M] variables [algebra R A] [algebra R B] variables [is_scalar_tower R A M] [is_scalar_tower R B M] variables [smul_comm_class A B M] /-- A constructor for a subbimodule which demands closure under the two sets of scalars individually, rather than jointly via their tensor product. Note that `R` plays no role but it is convenient to make this generalisation to support the cases `R = ℕ` and `R = ℤ` which both show up naturally. See also `base_change`. -/ @[simps] def mk (p : add_submonoid M) (hA : ∀ (a : A) {m : M}, m ∈ p → a • m ∈ p) (hB : ∀ (b : B) {m : M}, m ∈ p → b • m ∈ p) : submodule (A ⊗[R] B) M := { carrier := p, smul_mem' := λ ab m, tensor_product.induction_on ab (λ hm, by simpa only [zero_smul] using p.zero_mem) (λ a b hm, by simpa only [tensor_product.algebra.smul_def] using hA a (hB b hm)) (λ z w hz hw hm, by simpa only [add_smul] using p.add_mem (hz hm) (hw hm)), .. p } lemma smul_mem (p : submodule (A ⊗[R] B) M) (a : A) {m : M} (hm : m ∈ p) : a • m ∈ p := begin suffices : a • m = a ⊗ₜ[R] (1 : B) • m, { exact this.symm ▸ p.smul_mem _ hm, }, simp [tensor_product.algebra.smul_def], end lemma smul_mem' (p : submodule (A ⊗[R] B) M) (b : B) {m : M} (hm : m ∈ p) : b • m ∈ p := begin suffices : b • m = (1 : A) ⊗ₜ[R] b • m, { exact this.symm ▸ p.smul_mem _ hm, }, simp [tensor_product.algebra.smul_def], end /-- If `A` and `B` are also `algebra`s over yet another set of scalars `S` then we may "base change" from `R` to `S`. -/ @[simps] def base_change (S : Type*) [comm_semiring S] [module S M] [algebra S A] [algebra S B] [is_scalar_tower S A M] [is_scalar_tower S B M] (p : submodule (A ⊗[R] B) M) : submodule (A ⊗[S] B) M := mk p.to_add_submonoid (smul_mem p) (smul_mem' p) /-- Forgetting the `B` action, a `submodule` over `A ⊗[R] B` is just a `submodule` over `A`. -/ @[simps] def to_submodule (p : submodule (A ⊗[R] B) M) : submodule A M := { carrier := p, smul_mem' := smul_mem p, .. p } /-- Forgetting the `A` action, a `submodule` over `A ⊗[R] B` is just a `submodule` over `B`. -/ @[simps] def to_submodule' (p : submodule (A ⊗[R] B) M) : submodule B M := { carrier := p, smul_mem' := smul_mem' p, .. p } end algebra section ring variables (R S M : Type*) [ring R] [ring S] variables [add_comm_group M] [module R M] [module S M] [smul_comm_class R S M] /-- A `submodule` over `R ⊗[ℕ] S` is naturally also a `submodule` over the canonically-isomorphic ring `R ⊗[ℤ] S`. -/ @[simps] def to_subbimodule_int (p : submodule (R ⊗[ℕ] S) M) : submodule (R ⊗[ℤ] S) M := base_change ℤ p /-- A `submodule` over `R ⊗[ℤ] S` is naturally also a `submodule` over the canonically-isomorphic ring `R ⊗[ℕ] S`. -/ @[simps] def to_subbimodule_nat (p : submodule (R ⊗[ℤ] S) M) : submodule (R ⊗[ℕ] S) M := base_change ℕ p end ring end subbimodule