/- Copyright (c) 2015 Nathaniel Thomas. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nathaniel Thomas, Jeremy Avigad, Johannes Hölzl, Mario Carneiro -/ import algebra.big_operators.basic import algebra.smul_with_zero import data.rat.cast import group_theory.group_action.big_operators import group_theory.group_action.group /-! # Modules over a ring In this file we define * `module R M` : an additive commutative monoid `M` is a `module` over a `semiring R` if for `r : R` and `x : M` their "scalar multiplication `r • x : M` is defined, and the operation `•` satisfies some natural associativity and distributivity axioms similar to those on a ring. ## Implementation notes In typical mathematical usage, our definition of `module` corresponds to "semimodule", and the word "module" is reserved for `module R M` where `R` is a `ring` and `M` an `add_comm_group`. If `R` is a `field` and `M` an `add_comm_group`, `M` would be called an `R`-vector space. Since those assumptions can be made by changing the typeclasses applied to `R` and `M`, without changing the axioms in `module`, mathlib calls everything a `module`. In older versions of mathlib, we had separate `semimodule` and `vector_space` abbreviations. This caused inference issues in some cases, while not providing any real advantages, so we decided to use a canonical `module` typeclass throughout. ## Tags semimodule, module, vector space -/ open function open_locale big_operators universes u v variables {α R k S M M₂ M₃ ι : Type*} /-- A module is a generalization of vector spaces to a scalar semiring. It consists of a scalar semiring `R` and an additive monoid of "vectors" `M`, connected by a "scalar multiplication" operation `r • x : M` (where `r : R` and `x : M`) with some natural associativity and distributivity axioms similar to those on a ring. -/ @[ext, protect_proj] class module (R : Type u) (M : Type v) [semiring R] [add_comm_monoid M] extends distrib_mul_action R M := (add_smul : ∀(r s : R) (x : M), (r + s) • x = r • x + s • x) (zero_smul : ∀x : M, (0 : R) • x = 0) section add_comm_monoid variables [semiring R] [add_comm_monoid M] [module R M] (r s : R) (x y : M) /-- A module over a semiring automatically inherits a `mul_action_with_zero` structure. -/ @[priority 100] -- see Note [lower instance priority] instance module.to_mul_action_with_zero : mul_action_with_zero R M := { smul_zero := smul_zero, zero_smul := module.zero_smul, ..(infer_instance : mul_action R M) } instance add_comm_monoid.nat_module : module ℕ M := { one_smul := one_nsmul, mul_smul := λ m n a, mul_nsmul a m n, smul_add := λ n a b, nsmul_add a b n, smul_zero := nsmul_zero, zero_smul := zero_nsmul, add_smul := λ r s x, add_nsmul x r s } lemma add_monoid.End.nat_cast_def (n : ℕ) : (↑n : add_monoid.End M) = distrib_mul_action.to_add_monoid_End ℕ M n := rfl theorem add_smul : (r + s) • x = r • x + s • x := module.add_smul r s x lemma convex.combo_self {a b : R} (h : a + b = 1) (x : M) : a • x + b • x = x := by rw [←add_smul, h, one_smul] variables (R) theorem two_smul : (2 : R) • x = x + x := by rw [bit0, add_smul, one_smul] theorem two_smul' : (2 : R) • x = bit0 x := two_smul R x @[simp] lemma inv_of_two_smul_add_inv_of_two_smul [invertible (2 : R)] (x : M) : (⅟2 : R) • x + (⅟2 : R) • x = x := convex.combo_self inv_of_two_add_inv_of_two _ /-- Pullback a `module` structure along an injective additive monoid homomorphism. See note [reducible non-instances]. -/ @[reducible] protected def function.injective.module [add_comm_monoid M₂] [has_smul R M₂] (f : M₂ →+ M) (hf : injective f) (smul : ∀ (c : R) x, f (c • x) = c • f x) : module R M₂ := { smul := (•), add_smul := λ c₁ c₂ x, hf $ by simp only [smul, f.map_add, add_smul], zero_smul := λ x, hf $ by simp only [smul, zero_smul, f.map_zero], .. hf.distrib_mul_action f smul } /-- Pushforward a `module` structure along a surjective additive monoid homomorphism. -/ protected def function.surjective.module [add_comm_monoid M₂] [has_smul R M₂] (f : M →+ M₂) (hf : surjective f) (smul : ∀ (c : R) x, f (c • x) = c • f x) : module R M₂ := { smul := (•), add_smul := λ c₁ c₂ x, by { rcases hf x with ⟨x, rfl⟩, simp only [add_smul, ← smul, ← f.map_add] }, zero_smul := λ x, by { rcases hf x with ⟨x, rfl⟩, simp only [← f.map_zero, ← smul, zero_smul] }, .. hf.distrib_mul_action f smul } /-- Push forward the action of `R` on `M` along a compatible surjective map `f : R →+* S`. See also `function.surjective.mul_action_left` and `function.surjective.distrib_mul_action_left`. -/ @[reducible] def function.surjective.module_left {R S M : Type*} [semiring R] [add_comm_monoid M] [module R M] [semiring S] [has_smul S M] (f : R →+* S) (hf : function.surjective f) (hsmul : ∀ c (x : M), f c • x = c • x) : module S M := { smul := (•), zero_smul := λ x, by rw [← f.map_zero, hsmul, zero_smul], add_smul := hf.forall₂.mpr (λ a b x, by simp only [← f.map_add, hsmul, add_smul]), .. hf.distrib_mul_action_left f.to_monoid_hom hsmul } variables {R} (M) /-- Compose a `module` with a `ring_hom`, with action `f s • m`. See note [reducible non-instances]. -/ @[reducible] def module.comp_hom [semiring S] (f : S →+* R) : module S M := { smul := has_smul.comp.smul f, add_smul := λ r s x, by simp [add_smul], .. mul_action_with_zero.comp_hom M f.to_monoid_with_zero_hom, .. distrib_mul_action.comp_hom M (f : S →* R) } variables (R) (M) /-- `(•)` as an `add_monoid_hom`. This is a stronger version of `distrib_mul_action.to_add_monoid_End` -/ @[simps apply_apply] def module.to_add_monoid_End : R →+* add_monoid.End M := { map_zero' := add_monoid_hom.ext $ λ r, by simp, map_add' := λ x y, add_monoid_hom.ext $ λ r, by simp [add_smul], ..distrib_mul_action.to_add_monoid_End R M } /-- A convenience alias for `module.to_add_monoid_End` as an `add_monoid_hom`, usually to allow the use of `add_monoid_hom.flip`. -/ def smul_add_hom : R →+ M →+ M := (module.to_add_monoid_End R M).to_add_monoid_hom variables {R M} @[simp] lemma smul_add_hom_apply (r : R) (x : M) : smul_add_hom R M r x = r • x := rfl lemma module.eq_zero_of_zero_eq_one (zero_eq_one : (0 : R) = 1) : x = 0 := by rw [←one_smul R x, ←zero_eq_one, zero_smul] lemma list.sum_smul {l : list R} {x : M} : l.sum • x = (l.map (λ r, r • x)).sum := ((smul_add_hom R M).flip x).map_list_sum l lemma multiset.sum_smul {l : multiset R} {x : M} : l.sum • x = (l.map (λ r, r • x)).sum := ((smul_add_hom R M).flip x).map_multiset_sum l lemma finset.sum_smul {f : ι → R} {s : finset ι} {x : M} : (∑ i in s, f i) • x = (∑ i in s, (f i) • x) := ((smul_add_hom R M).flip x).map_sum f s end add_comm_monoid variables (R) /-- An `add_comm_monoid` that is a `module` over a `ring` carries a natural `add_comm_group` structure. See note [reducible non-instances]. -/ @[reducible] def module.add_comm_monoid_to_add_comm_group [ring R] [add_comm_monoid M] [module R M] : add_comm_group M := { neg := λ a, (-1 : R) • a, add_left_neg := λ a, show (-1 : R) • a + a = 0, by { nth_rewrite 1 ← one_smul _ a, rw [← add_smul, add_left_neg, zero_smul] }, ..(infer_instance : add_comm_monoid M), } variables {R} section add_comm_group variables (R M) [semiring R] [add_comm_group M] instance add_comm_group.int_module : module ℤ M := { one_smul := one_zsmul, mul_smul := λ m n a, mul_zsmul a m n, smul_add := λ n a b, zsmul_add a b n, smul_zero := zsmul_zero, zero_smul := zero_zsmul, add_smul := λ r s x, add_zsmul x r s } lemma add_monoid.End.int_cast_def (z : ℤ) : (↑z : add_monoid.End M) = distrib_mul_action.to_add_monoid_End ℤ M z := rfl /-- A structure containing most informations as in a module, except the fields `zero_smul` and `smul_zero`. As these fields can be deduced from the other ones when `M` is an `add_comm_group`, this provides a way to construct a module structure by checking less properties, in `module.of_core`. -/ @[nolint has_nonempty_instance] structure module.core extends has_smul R M := (smul_add : ∀(r : R) (x y : M), r • (x + y) = r • x + r • y) (add_smul : ∀(r s : R) (x : M), (r + s) • x = r • x + s • x) (mul_smul : ∀(r s : R) (x : M), (r * s) • x = r • s • x) (one_smul : ∀x : M, (1 : R) • x = x) variables {R M} /-- Define `module` without proving `zero_smul` and `smul_zero` by using an auxiliary structure `module.core`, when the underlying space is an `add_comm_group`. -/ def module.of_core (H : module.core R M) : module R M := by letI := H.to_has_smul; exact { zero_smul := λ x, (add_monoid_hom.mk' (λ r : R, r • x) (λ r s, H.add_smul r s x)).map_zero, smul_zero := λ r, (add_monoid_hom.mk' ((•) r) (H.smul_add r)).map_zero, ..H } end add_comm_group /-- A variant of `module.ext` that's convenient for term-mode. -/ -- We'll later use this to show `module ℕ M` and `module ℤ M` are subsingletons. lemma module.ext' {R : Type*} [semiring R] {M : Type*} [add_comm_monoid M] (P Q : module R M) (w : ∀ (r : R) (m : M), by { haveI := P, exact r • m } = by { haveI := Q, exact r • m }) : P = Q := begin ext, exact w _ _ end section module variables [ring R] [add_comm_group M] [module R M] (r s : R) (x y : M) @[simp] theorem neg_smul : -r • x = - (r • x) := eq_neg_of_add_eq_zero_left $ by rw [← add_smul, add_left_neg, zero_smul] @[simp] lemma neg_smul_neg : -r • -x = r • x := by rw [neg_smul, smul_neg, neg_neg] @[simp] theorem units.neg_smul (u : Rˣ) (x : M) : -u • x = - (u • x) := by rw [units.smul_def, units.coe_neg, neg_smul, units.smul_def] variables (R) theorem neg_one_smul (x : M) : (-1 : R) • x = -x := by simp variables {R} theorem sub_smul (r s : R) (y : M) : (r - s) • y = r • y - s • y := by simp [add_smul, sub_eq_add_neg] end module /-- A module over a `subsingleton` semiring is a `subsingleton`. We cannot register this as an instance because Lean has no way to guess `R`. -/ protected theorem module.subsingleton (R M : Type*) [semiring R] [subsingleton R] [add_comm_monoid M] [module R M] : subsingleton M := ⟨λ x y, by rw [← one_smul R x, ← one_smul R y, subsingleton.elim (1:R) 0, zero_smul, zero_smul]⟩ /-- A semiring is `nontrivial` provided that there exists a nontrivial module over this semiring. -/ protected theorem module.nontrivial (R M : Type*) [semiring R] [nontrivial M] [add_comm_monoid M] [module R M] : nontrivial R := (subsingleton_or_nontrivial R).resolve_left $ λ hR, not_subsingleton M $ by exactI module.subsingleton R M @[priority 910] -- see Note [lower instance priority] instance semiring.to_module [semiring R] : module R R := { smul_add := mul_add, add_smul := add_mul, zero_smul := zero_mul, smul_zero := mul_zero } /-- Like `semiring.to_module`, but multiplies on the right. -/ @[priority 910] -- see Note [lower instance priority] instance semiring.to_opposite_module [semiring R] : module Rᵐᵒᵖ R := { smul_add := λ r x y, add_mul _ _ _, add_smul := λ r x y, mul_add _ _ _, ..monoid_with_zero.to_opposite_mul_action_with_zero R} /-- A ring homomorphism `f : R →+* M` defines a module structure by `r • x = f r * x`. -/ def ring_hom.to_module [semiring R] [semiring S] (f : R →+* S) : module R S := module.comp_hom S f /-- The tautological action by `R →+* R` on `R`. This generalizes `function.End.apply_mul_action`. -/ instance ring_hom.apply_distrib_mul_action [semiring R] : distrib_mul_action (R →+* R) R := { smul := ($), smul_zero := ring_hom.map_zero, smul_add := ring_hom.map_add, one_smul := λ _, rfl, mul_smul := λ _ _ _, rfl } @[simp] protected lemma ring_hom.smul_def [semiring R] (f : R →+* R) (a : R) : f • a = f a := rfl /-- `ring_hom.apply_distrib_mul_action` is faithful. -/ instance ring_hom.apply_has_faithful_smul [semiring R] : has_faithful_smul (R →+* R) R := ⟨ring_hom.ext⟩ section add_comm_monoid variables [semiring R] [add_comm_monoid M] [module R M] section variables (R) /-- `nsmul` is equal to any other module structure via a cast. -/ lemma nsmul_eq_smul_cast (n : ℕ) (b : M) : n • b = (n : R) • b := begin induction n with n ih, { rw [nat.cast_zero, zero_smul, zero_smul] }, { rw [nat.succ_eq_add_one, nat.cast_succ, add_smul, add_smul, one_smul, ih, one_smul], } end end /-- Convert back any exotic `ℕ`-smul to the canonical instance. This should not be needed since in mathlib all `add_comm_monoid`s should normally have exactly one `ℕ`-module structure by design. -/ lemma nat_smul_eq_nsmul (h : module ℕ M) (n : ℕ) (x : M) : @has_smul.smul ℕ M h.to_has_smul n x = n • x := by rw [nsmul_eq_smul_cast ℕ n x, nat.cast_id] /-- All `ℕ`-module structures are equal. Not an instance since in mathlib all `add_comm_monoid` should normally have exactly one `ℕ`-module structure by design. -/ def add_comm_monoid.nat_module.unique : unique (module ℕ M) := { default := by apply_instance, uniq := λ P, module.ext' P _ $ λ n, nat_smul_eq_nsmul P n } instance add_comm_monoid.nat_is_scalar_tower : is_scalar_tower ℕ R M := { smul_assoc := λ n x y, nat.rec_on n (by simp only [zero_smul]) (λ n ih, by simp only [nat.succ_eq_add_one, add_smul, one_smul, ih]) } end add_comm_monoid section add_comm_group variables [semiring S] [ring R] [add_comm_group M] [module S M] [module R M] section variables (R) /-- `zsmul` is equal to any other module structure via a cast. -/ lemma zsmul_eq_smul_cast (n : ℤ) (b : M) : n • b = (n : R) • b := have (smul_add_hom ℤ M).flip b = ((smul_add_hom R M).flip b).comp (int.cast_add_hom R), by { ext, simp }, add_monoid_hom.congr_fun this n end /-- Convert back any exotic `ℤ`-smul to the canonical instance. This should not be needed since in mathlib all `add_comm_group`s should normally have exactly one `ℤ`-module structure by design. -/ lemma int_smul_eq_zsmul (h : module ℤ M) (n : ℤ) (x : M) : @has_smul.smul ℤ M h.to_has_smul n x = n • x := by rw [zsmul_eq_smul_cast ℤ n x, int.cast_id] /-- All `ℤ`-module structures are equal. Not an instance since in mathlib all `add_comm_group` should normally have exactly one `ℤ`-module structure by design. -/ def add_comm_group.int_module.unique : unique (module ℤ M) := { default := by apply_instance, uniq := λ P, module.ext' P _ $ λ n, int_smul_eq_zsmul P n } end add_comm_group lemma map_int_cast_smul [add_comm_group M] [add_comm_group M₂] {F : Type*} [add_monoid_hom_class F M M₂] (f : F) (R S : Type*) [ring R] [ring S] [module R M] [module S M₂] (x : ℤ) (a : M) : f ((x : R) • a) = (x : S) • f a := by simp only [←zsmul_eq_smul_cast, map_zsmul] lemma map_nat_cast_smul [add_comm_monoid M] [add_comm_monoid M₂] {F : Type*} [add_monoid_hom_class F M M₂] (f : F) (R S : Type*) [semiring R] [semiring S] [module R M] [module S M₂] (x : ℕ) (a : M) : f ((x : R) • a) = (x : S) • f a := by simp only [←nsmul_eq_smul_cast, map_nsmul] lemma map_inv_int_cast_smul [add_comm_group M] [add_comm_group M₂] {F : Type*} [add_monoid_hom_class F M M₂] (f : F) (R S : Type*) [division_ring R] [division_ring S] [module R M] [module S M₂] (n : ℤ) (x : M) : f ((n⁻¹ : R) • x) = (n⁻¹ : S) • f x := begin by_cases hR : (n : R) = 0; by_cases hS : (n : S) = 0, { simp [hR, hS] }, { suffices : ∀ y, f y = 0, by simp [this], clear x, intro x, rw [← inv_smul_smul₀ hS (f x), ← map_int_cast_smul f R S], simp [hR] }, { suffices : ∀ y, f y = 0, by simp [this], clear x, intro x, rw [← smul_inv_smul₀ hR x, map_int_cast_smul f R S, hS, zero_smul] }, { rw [← inv_smul_smul₀ hS (f _), ← map_int_cast_smul f R S, smul_inv_smul₀ hR] } end lemma map_inv_nat_cast_smul [add_comm_group M] [add_comm_group M₂] {F : Type*} [add_monoid_hom_class F M M₂] (f : F) (R S : Type*) [division_ring R] [division_ring S] [module R M] [module S M₂] (n : ℕ) (x : M) : f ((n⁻¹ : R) • x) = (n⁻¹ : S) • f x := by exact_mod_cast map_inv_int_cast_smul f R S n x lemma map_rat_cast_smul [add_comm_group M] [add_comm_group M₂] {F : Type*} [add_monoid_hom_class F M M₂] (f : F) (R S : Type*) [division_ring R] [division_ring S] [module R M] [module S M₂] (c : ℚ) (x : M) : f ((c : R) • x) = (c : S) • f x := by rw [rat.cast_def, rat.cast_def, div_eq_mul_inv, div_eq_mul_inv, mul_smul, mul_smul, map_int_cast_smul f R S, map_inv_nat_cast_smul f R S] lemma map_rat_smul [add_comm_group M] [add_comm_group M₂] [module ℚ M] [module ℚ M₂] {F : Type*} [add_monoid_hom_class F M M₂] (f : F) (c : ℚ) (x : M) : f (c • x) = c • f x := rat.cast_id c ▸ map_rat_cast_smul f ℚ ℚ c x /-- There can be at most one `module ℚ E` structure on an additive commutative group. This is not an instance because `simp` becomes very slow if we have many `subsingleton` instances, see [gh-6025]. -/ lemma subsingleton_rat_module (E : Type*) [add_comm_group E] : subsingleton (module ℚ E) := ⟨λ P Q, module.ext' P Q $ λ r x, @map_rat_smul _ _ _ _ P Q _ _ (add_monoid_hom.id E) r x⟩ /-- If `E` is a vector space over two division rings `R` and `S`, then scalar multiplications agree on inverses of integer numbers in `R` and `S`. -/ lemma inv_int_cast_smul_eq {E : Type*} (R S : Type*) [add_comm_group E] [division_ring R] [division_ring S] [module R E] [module S E] (n : ℤ) (x : E) : (n⁻¹ : R) • x = (n⁻¹ : S) • x := map_inv_int_cast_smul (add_monoid_hom.id E) R S n x /-- If `E` is a vector space over two division rings `R` and `S`, then scalar multiplications agree on inverses of natural numbers in `R` and `S`. -/ lemma inv_nat_cast_smul_eq {E : Type*} (R S : Type*) [add_comm_group E] [division_ring R] [division_ring S] [module R E] [module S E] (n : ℕ) (x : E) : (n⁻¹ : R) • x = (n⁻¹ : S) • x := map_inv_nat_cast_smul (add_monoid_hom.id E) R S n x /-- If `E` is a vector space over a division rings `R` and has a monoid action by `α`, then that action commutes by scalar multiplication of inverses of integers in `R` -/ lemma inv_int_cast_smul_comm {α E : Type*} (R : Type*) [add_comm_group E] [division_ring R] [monoid α] [module R E] [distrib_mul_action α E] (n : ℤ) (s : α) (x : E) : (n⁻¹ : R) • s • x = s • (n⁻¹ : R) • x := (map_inv_int_cast_smul (distrib_mul_action.to_add_monoid_hom E s) R R n x).symm /-- If `E` is a vector space over a division rings `R` and has a monoid action by `α`, then that action commutes by scalar multiplication of inverses of natural numbers in `R`. -/ lemma inv_nat_cast_smul_comm {α E : Type*} (R : Type*) [add_comm_group E] [division_ring R] [monoid α] [module R E] [distrib_mul_action α E] (n : ℕ) (s : α) (x : E) : (n⁻¹ : R) • s • x = s • (n⁻¹ : R) • x := (map_inv_nat_cast_smul (distrib_mul_action.to_add_monoid_hom E s) R R n x).symm /-- If `E` is a vector space over two division rings `R` and `S`, then scalar multiplications agree on rational numbers in `R` and `S`. -/ lemma rat_cast_smul_eq {E : Type*} (R S : Type*) [add_comm_group E] [division_ring R] [division_ring S] [module R E] [module S E] (r : ℚ) (x : E) : (r : R) • x = (r : S) • x := map_rat_cast_smul (add_monoid_hom.id E) R S r x instance add_comm_group.int_is_scalar_tower {R : Type u} {M : Type v} [ring R] [add_comm_group M] [module R M]: is_scalar_tower ℤ R M := { smul_assoc := λ n x y, ((smul_add_hom R M).flip y).map_zsmul x n } instance is_scalar_tower.rat {R : Type u} {M : Type v} [ring R] [add_comm_group M] [module R M] [module ℚ R] [module ℚ M] : is_scalar_tower ℚ R M := { smul_assoc := λ r x y, map_rat_smul ((smul_add_hom R M).flip y) r x } instance smul_comm_class.rat {R : Type u} {M : Type v} [semiring R] [add_comm_group M] [module R M] [module ℚ M] : smul_comm_class ℚ R M := { smul_comm := λ r x y, (map_rat_smul (smul_add_hom R M x) r y).symm } instance smul_comm_class.rat' {R : Type u} {M : Type v} [semiring R] [add_comm_group M] [module R M] [module ℚ M] : smul_comm_class R ℚ M := smul_comm_class.symm _ _ _ section no_zero_smul_divisors /-! ### `no_zero_smul_divisors` This section defines the `no_zero_smul_divisors` class, and includes some tests for the vanishing of elements (especially in modules over division rings). -/ /-- `no_zero_smul_divisors R M` states that a scalar multiple is `0` only if either argument is `0`. This a version of saying that `M` is torsion free, without assuming `R` is zero-divisor free. The main application of `no_zero_smul_divisors R M`, when `M` is a module, is the result `smul_eq_zero`: a scalar multiple is `0` iff either argument is `0`. It is a generalization of the `no_zero_divisors` class to heterogeneous multiplication. -/ class no_zero_smul_divisors (R M : Type*) [has_zero R] [has_zero M] [has_smul R M] : Prop := (eq_zero_or_eq_zero_of_smul_eq_zero : ∀ {c : R} {x : M}, c • x = 0 → c = 0 ∨ x = 0) export no_zero_smul_divisors (eq_zero_or_eq_zero_of_smul_eq_zero) /-- Pullback a `no_zero_smul_divisors` instance along an injective function. -/ lemma function.injective.no_zero_smul_divisors {R M N : Type*} [has_zero R] [has_zero M] [has_zero N] [has_smul R M] [has_smul R N] [no_zero_smul_divisors R N] (f : M → N) (hf : function.injective f) (h0 : f 0 = 0) (hs : ∀ (c : R) (x : M), f (c • x) = c • f x) : no_zero_smul_divisors R M := ⟨λ c m h, or.imp_right (@hf _ _) $ h0.symm ▸ eq_zero_or_eq_zero_of_smul_eq_zero (by rw [←hs, h, h0])⟩ @[priority 100] -- See note [lower instance priority] instance no_zero_divisors.to_no_zero_smul_divisors [has_zero R] [has_mul R] [no_zero_divisors R] : no_zero_smul_divisors R R := ⟨λ c x, eq_zero_or_eq_zero_of_mul_eq_zero⟩ section module variables [semiring R] [add_comm_monoid M] [module R M] @[simp] theorem smul_eq_zero [no_zero_smul_divisors R M] {c : R} {x : M} : c • x = 0 ↔ c = 0 ∨ x = 0 := ⟨eq_zero_or_eq_zero_of_smul_eq_zero, λ h, h.elim (λ h, h.symm ▸ zero_smul R x) (λ h, h.symm ▸ smul_zero c)⟩ theorem smul_ne_zero [no_zero_smul_divisors R M] {c : R} {x : M} : c • x ≠ 0 ↔ c ≠ 0 ∧ x ≠ 0 := by simp only [ne.def, smul_eq_zero, not_or_distrib] section nat variables (R) (M) [no_zero_smul_divisors R M] [char_zero R] include R lemma nat.no_zero_smul_divisors : no_zero_smul_divisors ℕ M := ⟨by { intros c x, rw [nsmul_eq_smul_cast R, smul_eq_zero], simp }⟩ @[simp] lemma two_nsmul_eq_zero {v : M} : 2 • v = 0 ↔ v = 0 := by { haveI := nat.no_zero_smul_divisors R M, simp [smul_eq_zero] } end nat variables (R M) /-- If `M` is an `R`-module with one and `M` has characteristic zero, then `R` has characteristic zero as well. Usually `M` is an `R`-algebra. -/ lemma char_zero.of_module (M) [add_comm_monoid_with_one M] [char_zero M] [module R M] : char_zero R := begin refine ⟨λ m n h, @nat.cast_injective M _ _ _ _ _⟩, rw [← nsmul_one, ← nsmul_one, nsmul_eq_smul_cast R m (1 : M), nsmul_eq_smul_cast R n (1 : M), h] end end module section add_comm_group -- `R` can still be a semiring here variables [semiring R] [add_comm_group M] [module R M] section smul_injective variables (M) lemma smul_right_injective [no_zero_smul_divisors R M] {c : R} (hc : c ≠ 0) : function.injective ((•) c : M → M) := (injective_iff_map_eq_zero (smul_add_hom R M c)).2 $ λ a ha, (smul_eq_zero.mp ha).resolve_left hc variables {M} lemma smul_right_inj [no_zero_smul_divisors R M] {c : R} (hc : c ≠ 0) {x y : M} : c • x = c • y ↔ x = y := (smul_right_injective M hc).eq_iff end smul_injective section nat variables (R M) [no_zero_smul_divisors R M] [char_zero R] include R lemma self_eq_neg {v : M} : v = - v ↔ v = 0 := by rw [← two_nsmul_eq_zero R M, two_smul, add_eq_zero_iff_eq_neg] lemma neg_eq_self {v : M} : - v = v ↔ v = 0 := by rw [eq_comm, self_eq_neg R M] lemma self_ne_neg {v : M} : v ≠ -v ↔ v ≠ 0 := (self_eq_neg R M).not lemma neg_ne_self {v : M} : -v ≠ v ↔ v ≠ 0 := (neg_eq_self R M).not end nat end add_comm_group section module variables [ring R] [add_comm_group M] [module R M] [no_zero_smul_divisors R M] section smul_injective variables (R) lemma smul_left_injective {x : M} (hx : x ≠ 0) : function.injective (λ (c : R), c • x) := λ c d h, sub_eq_zero.mp ((smul_eq_zero.mp (calc (c - d) • x = c • x - d • x : sub_smul c d x ... = 0 : sub_eq_zero.mpr h)).resolve_right hx) end smul_injective end module section division_ring variables [division_ring R] [add_comm_group M] [module R M] @[priority 100] -- see note [lower instance priority] instance division_ring.to_no_zero_smul_divisors : no_zero_smul_divisors R M := ⟨λ c x h, or_iff_not_imp_left.2 $ λ hc, (smul_eq_zero_iff_eq' hc).1 h⟩ end division_ring end no_zero_smul_divisors @[simp] lemma nat.smul_one_eq_coe {R : Type*} [semiring R] (m : ℕ) : m • (1 : R) = ↑m := by rw [nsmul_eq_mul, mul_one] @[simp] lemma int.smul_one_eq_coe {R : Type*} [ring R] (m : ℤ) : m • (1 : R) = ↑m := by rw [zsmul_eq_mul, mul_one] lemma finset.cast_card [comm_semiring R] (s : finset α) : (s.card : R) = ∑ a in s, 1 := by rw [finset.sum_const, nat.smul_one_eq_coe]