/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Patrick Massot, Yury Kudryashov -/ import algebra.group.opposite /-! # Monoid, group etc structures on `M × N` In this file we define one-binop (`monoid`, `group` etc) structures on `M × N`. We also prove trivial `simp` lemmas, and define the following operations on `monoid_hom`s: * `fst M N : M × N →* M`, `snd M N : M × N →* N`: projections `prod.fst` and `prod.snd` as `monoid_hom`s; * `inl M N : M →* M × N`, `inr M N : N →* M × N`: inclusions of first/second monoid into the product; * `f.prod g : `M →* N × P`: sends `x` to `(f x, g x)`; * `f.coprod g : M × N →* P`: sends `(x, y)` to `f x * g y`; * `f.prod_map g : M × N → M' × N'`: `prod.map f g` as a `monoid_hom`, sends `(x, y)` to `(f x, g y)`. ## Main declarations * `mul_mul_hom`/`mul_monoid_hom`/`mul_monoid_with_zero_hom`: Multiplication bundled as a multiplicative/monoid/monoid with zero homomorphism. * `div_monoid_hom`/`div_monoid_with_zero_hom`: Division bundled as a monoid/monoid with zero homomorphism. -/ variables {A : Type*} {B : Type*} {G : Type*} {H : Type*} {M : Type*} {N : Type*} {P : Type*} namespace prod @[to_additive] instance [has_mul M] [has_mul N] : has_mul (M × N) := ⟨λ p q, ⟨p.1 * q.1, p.2 * q.2⟩⟩ @[simp, to_additive] lemma fst_mul [has_mul M] [has_mul N] (p q : M × N) : (p * q).1 = p.1 * q.1 := rfl @[simp, to_additive] lemma snd_mul [has_mul M] [has_mul N] (p q : M × N) : (p * q).2 = p.2 * q.2 := rfl @[simp, to_additive] lemma mk_mul_mk [has_mul M] [has_mul N] (a₁ a₂ : M) (b₁ b₂ : N) : (a₁, b₁) * (a₂, b₂) = (a₁ * a₂, b₁ * b₂) := rfl @[simp, to_additive] lemma swap_mul [has_mul M] [has_mul N] (p q : M × N) : (p * q).swap = p.swap * q.swap := rfl @[to_additive] lemma mul_def [has_mul M] [has_mul N] (p q : M × N) : p * q = (p.1 * q.1, p.2 * q.2) := rfl @[to_additive] instance [has_one M] [has_one N] : has_one (M × N) := ⟨(1, 1)⟩ @[simp, to_additive] lemma fst_one [has_one M] [has_one N] : (1 : M × N).1 = 1 := rfl @[simp, to_additive] lemma snd_one [has_one M] [has_one N] : (1 : M × N).2 = 1 := rfl @[to_additive] lemma one_eq_mk [has_one M] [has_one N] : (1 : M × N) = (1, 1) := rfl @[simp, to_additive] lemma mk_eq_one [has_one M] [has_one N] {x : M} {y : N} : (x, y) = 1 ↔ x = 1 ∧ y = 1 := mk.inj_iff @[simp, to_additive] lemma swap_one [has_one M] [has_one N] : (1 : M × N).swap = 1 := rfl @[to_additive] lemma fst_mul_snd [mul_one_class M] [mul_one_class N] (p : M × N) : (p.fst, 1) * (1, p.snd) = p := ext (mul_one p.1) (one_mul p.2) @[to_additive] instance [has_inv M] [has_inv N] : has_inv (M × N) := ⟨λp, (p.1⁻¹, p.2⁻¹)⟩ @[simp, to_additive] lemma fst_inv [has_inv G] [has_inv H] (p : G × H) : (p⁻¹).1 = (p.1)⁻¹ := rfl @[simp, to_additive] lemma snd_inv [has_inv G] [has_inv H] (p : G × H) : (p⁻¹).2 = (p.2)⁻¹ := rfl @[simp, to_additive] lemma inv_mk [has_inv G] [has_inv H] (a : G) (b : H) : (a, b)⁻¹ = (a⁻¹, b⁻¹) := rfl @[simp, to_additive] lemma swap_inv [has_inv G] [has_inv H] (p : G × H) : (p⁻¹).swap = p.swap⁻¹ := rfl @[to_additive] instance [has_involutive_inv M] [has_involutive_inv N] : has_involutive_inv (M × N) := { inv_inv := λ a, ext (inv_inv _) (inv_inv _), ..prod.has_inv } @[to_additive] instance [has_div M] [has_div N] : has_div (M × N) := ⟨λ p q, ⟨p.1 / q.1, p.2 / q.2⟩⟩ @[simp, to_additive] lemma fst_div [has_div G] [has_div H] (a b : G × H) : (a / b).1 = a.1 / b.1 := rfl @[simp, to_additive] lemma snd_div [has_div G] [has_div H] (a b : G × H) : (a / b).2 = a.2 / b.2 := rfl @[simp, to_additive] lemma mk_div_mk [has_div G] [has_div H] (x₁ x₂ : G) (y₁ y₂ : H) : (x₁, y₁) / (x₂, y₂) = (x₁ / x₂, y₁ / y₂) := rfl @[simp, to_additive] lemma swap_div [has_div G] [has_div H] (a b : G × H) : (a / b).swap = a.swap / b.swap := rfl instance [mul_zero_class M] [mul_zero_class N] : mul_zero_class (M × N) := { zero_mul := assume a, prod.rec_on a $ λa b, mk.inj_iff.mpr ⟨zero_mul _, zero_mul _⟩, mul_zero := assume a, prod.rec_on a $ λa b, mk.inj_iff.mpr ⟨mul_zero _, mul_zero _⟩, .. prod.has_zero, .. prod.has_mul } @[to_additive] instance [semigroup M] [semigroup N] : semigroup (M × N) := { mul_assoc := assume a b c, mk.inj_iff.mpr ⟨mul_assoc _ _ _, mul_assoc _ _ _⟩, .. prod.has_mul } @[to_additive] instance [comm_semigroup G] [comm_semigroup H] : comm_semigroup (G × H) := { mul_comm := assume a b, mk.inj_iff.mpr ⟨mul_comm _ _, mul_comm _ _⟩, .. prod.semigroup } instance [semigroup_with_zero M] [semigroup_with_zero N] : semigroup_with_zero (M × N) := { .. prod.mul_zero_class, .. prod.semigroup } @[to_additive] instance [mul_one_class M] [mul_one_class N] : mul_one_class (M × N) := { one_mul := assume a, prod.rec_on a $ λa b, mk.inj_iff.mpr ⟨one_mul _, one_mul _⟩, mul_one := assume a, prod.rec_on a $ λa b, mk.inj_iff.mpr ⟨mul_one _, mul_one _⟩, .. prod.has_mul, .. prod.has_one } @[to_additive] instance [monoid M] [monoid N] : monoid (M × N) := { npow := λ z a, ⟨monoid.npow z a.1, monoid.npow z a.2⟩, npow_zero' := λ z, ext (monoid.npow_zero' _) (monoid.npow_zero' _), npow_succ' := λ z a, ext (monoid.npow_succ' _ _) (monoid.npow_succ' _ _), .. prod.semigroup, .. prod.mul_one_class } @[to_additive prod.sub_neg_monoid] instance [div_inv_monoid G] [div_inv_monoid H] : div_inv_monoid (G × H) := { div_eq_mul_inv := λ a b, mk.inj_iff.mpr ⟨div_eq_mul_inv _ _, div_eq_mul_inv _ _⟩, zpow := λ z a, ⟨div_inv_monoid.zpow z a.1, div_inv_monoid.zpow z a.2⟩, zpow_zero' := λ z, ext (div_inv_monoid.zpow_zero' _) (div_inv_monoid.zpow_zero' _), zpow_succ' := λ z a, ext (div_inv_monoid.zpow_succ' _ _) (div_inv_monoid.zpow_succ' _ _), zpow_neg' := λ z a, ext (div_inv_monoid.zpow_neg' _ _) (div_inv_monoid.zpow_neg' _ _), .. prod.monoid, .. prod.has_inv, .. prod.has_div } @[to_additive subtraction_monoid] instance [division_monoid G] [division_monoid H] : division_monoid (G × H) := { mul_inv_rev := λ a b, ext (mul_inv_rev _ _) (mul_inv_rev _ _), inv_eq_of_mul := λ a b h, ext (inv_eq_of_mul_eq_one_right $ congr_arg fst h) (inv_eq_of_mul_eq_one_right $ congr_arg snd h), .. prod.div_inv_monoid, .. prod.has_involutive_inv } @[to_additive subtraction_comm_monoid] instance [division_comm_monoid G] [division_comm_monoid H] : division_comm_monoid (G × H) := { .. prod.division_monoid, .. prod.comm_semigroup } @[to_additive] instance [group G] [group H] : group (G × H) := { mul_left_inv := assume a, mk.inj_iff.mpr ⟨mul_left_inv _, mul_left_inv _⟩, .. prod.div_inv_monoid } @[to_additive] instance [left_cancel_semigroup G] [left_cancel_semigroup H] : left_cancel_semigroup (G × H) := { mul_left_cancel := λ a b c h, prod.ext (mul_left_cancel (prod.ext_iff.1 h).1) (mul_left_cancel (prod.ext_iff.1 h).2), .. prod.semigroup } @[to_additive] instance [right_cancel_semigroup G] [right_cancel_semigroup H] : right_cancel_semigroup (G × H) := { mul_right_cancel := λ a b c h, prod.ext (mul_right_cancel (prod.ext_iff.1 h).1) (mul_right_cancel (prod.ext_iff.1 h).2), .. prod.semigroup } @[to_additive] instance [left_cancel_monoid M] [left_cancel_monoid N] : left_cancel_monoid (M × N) := { .. prod.left_cancel_semigroup, .. prod.monoid } @[to_additive] instance [right_cancel_monoid M] [right_cancel_monoid N] : right_cancel_monoid (M × N) := { .. prod.right_cancel_semigroup, .. prod.monoid } @[to_additive] instance [cancel_monoid M] [cancel_monoid N] : cancel_monoid (M × N) := { .. prod.right_cancel_monoid, .. prod.left_cancel_monoid } @[to_additive] instance [comm_monoid M] [comm_monoid N] : comm_monoid (M × N) := { .. prod.comm_semigroup, .. prod.monoid } @[to_additive] instance [cancel_comm_monoid M] [cancel_comm_monoid N] : cancel_comm_monoid (M × N) := { .. prod.left_cancel_monoid, .. prod.comm_monoid } instance [mul_zero_one_class M] [mul_zero_one_class N] : mul_zero_one_class (M × N) := { .. prod.mul_zero_class, .. prod.mul_one_class } instance [monoid_with_zero M] [monoid_with_zero N] : monoid_with_zero (M × N) := { .. prod.monoid, .. prod.mul_zero_one_class } instance [comm_monoid_with_zero M] [comm_monoid_with_zero N] : comm_monoid_with_zero (M × N) := { .. prod.comm_monoid, .. prod.monoid_with_zero } @[to_additive] instance [comm_group G] [comm_group H] : comm_group (G × H) := { .. prod.comm_semigroup, .. prod.group } end prod namespace mul_hom section prod variables (M N) [has_mul M] [has_mul N] [has_mul P] /-- Given magmas `M`, `N`, the natural projection homomorphism from `M × N` to `M`.-/ @[to_additive "Given additive magmas `A`, `B`, the natural projection homomorphism from `A × B` to `A`"] def fst : (M × N) →ₙ* M := ⟨prod.fst, λ _ _, rfl⟩ /-- Given magmas `M`, `N`, the natural projection homomorphism from `M × N` to `N`.-/ @[to_additive "Given additive magmas `A`, `B`, the natural projection homomorphism from `A × B` to `B`"] def snd : (M × N) →ₙ* N := ⟨prod.snd, λ _ _, rfl⟩ variables {M N} @[simp, to_additive] lemma coe_fst : ⇑(fst M N) = prod.fst := rfl @[simp, to_additive] lemma coe_snd : ⇑(snd M N) = prod.snd := rfl /-- Combine two `monoid_hom`s `f : M →ₙ* N`, `g : M →ₙ* P` into `f.prod g : M →ₙ* (N × P)` given by `(f.prod g) x = (f x, g x)`. -/ @[to_additive prod "Combine two `add_monoid_hom`s `f : add_hom M N`, `g : add_hom M P` into `f.prod g : add_hom M (N × P)` given by `(f.prod g) x = (f x, g x)`"] protected def prod (f : M →ₙ* N) (g : M →ₙ* P) : M →ₙ* (N × P) := { to_fun := pi.prod f g, map_mul' := λ x y, prod.ext (f.map_mul x y) (g.map_mul x y) } @[to_additive coe_prod] lemma coe_prod (f : M →ₙ* N) (g : M →ₙ* P) : ⇑(f.prod g) = pi.prod f g := rfl @[simp, to_additive prod_apply] lemma prod_apply (f : M →ₙ* N) (g : M →ₙ* P) (x) : f.prod g x = (f x, g x) := rfl @[simp, to_additive fst_comp_prod] lemma fst_comp_prod (f : M →ₙ* N) (g : M →ₙ* P) : (fst N P).comp (f.prod g) = f := ext $ λ x, rfl @[simp, to_additive snd_comp_prod] lemma snd_comp_prod (f : M →ₙ* N) (g : M →ₙ* P) : (snd N P).comp (f.prod g) = g := ext $ λ x, rfl @[simp, to_additive prod_unique] lemma prod_unique (f : M →ₙ* (N × P)) : ((fst N P).comp f).prod ((snd N P).comp f) = f := ext $ λ x, by simp only [prod_apply, coe_fst, coe_snd, comp_apply, prod.mk.eta] end prod section prod_map variables {M' : Type*} {N' : Type*} [has_mul M] [has_mul N] [has_mul M'] [has_mul N'] [has_mul P] (f : M →ₙ* M') (g : N →ₙ* N') /-- `prod.map` as a `monoid_hom`. -/ @[to_additive prod_map "`prod.map` as an `add_monoid_hom`"] def prod_map : (M × N) →ₙ* (M' × N') := (f.comp (fst M N)).prod (g.comp (snd M N)) @[to_additive prod_map_def] lemma prod_map_def : prod_map f g = (f.comp (fst M N)).prod (g.comp (snd M N)) := rfl @[simp, to_additive coe_prod_map] lemma coe_prod_map : ⇑(prod_map f g) = prod.map f g := rfl @[to_additive prod_comp_prod_map] lemma prod_comp_prod_map (f : P →ₙ* M) (g : P →ₙ* N) (f' : M →ₙ* M') (g' : N →ₙ* N') : (f'.prod_map g').comp (f.prod g) = (f'.comp f).prod (g'.comp g) := rfl end prod_map section coprod variables [has_mul M] [has_mul N] [comm_semigroup P] (f : M →ₙ* P) (g : N →ₙ* P) /-- Coproduct of two `mul_hom`s with the same codomain: `f.coprod g (p : M × N) = f p.1 * g p.2`. -/ @[to_additive "Coproduct of two `add_hom`s with the same codomain: `f.coprod g (p : M × N) = f p.1 + g p.2`."] def coprod : (M × N) →ₙ* P := f.comp (fst M N) * g.comp (snd M N) @[simp, to_additive] lemma coprod_apply (p : M × N) : f.coprod g p = f p.1 * g p.2 := rfl @[to_additive] lemma comp_coprod {Q : Type*} [comm_semigroup Q] (h : P →ₙ* Q) (f : M →ₙ* P) (g : N →ₙ* P) : h.comp (f.coprod g) = (h.comp f).coprod (h.comp g) := ext $ λ x, by simp end coprod end mul_hom namespace monoid_hom variables (M N) [mul_one_class M] [mul_one_class N] /-- Given monoids `M`, `N`, the natural projection homomorphism from `M × N` to `M`.-/ @[to_additive "Given additive monoids `A`, `B`, the natural projection homomorphism from `A × B` to `A`"] def fst : M × N →* M := ⟨prod.fst, rfl, λ _ _, rfl⟩ /-- Given monoids `M`, `N`, the natural projection homomorphism from `M × N` to `N`.-/ @[to_additive "Given additive monoids `A`, `B`, the natural projection homomorphism from `A × B` to `B`"] def snd : M × N →* N := ⟨prod.snd, rfl, λ _ _, rfl⟩ /-- Given monoids `M`, `N`, the natural inclusion homomorphism from `M` to `M × N`. -/ @[to_additive "Given additive monoids `A`, `B`, the natural inclusion homomorphism from `A` to `A × B`."] def inl : M →* M × N := ⟨λ x, (x, 1), rfl, λ _ _, prod.ext rfl (one_mul 1).symm⟩ /-- Given monoids `M`, `N`, the natural inclusion homomorphism from `N` to `M × N`. -/ @[to_additive "Given additive monoids `A`, `B`, the natural inclusion homomorphism from `B` to `A × B`."] def inr : N →* M × N := ⟨λ y, (1, y), rfl, λ _ _, prod.ext (one_mul 1).symm rfl⟩ variables {M N} @[simp, to_additive] lemma coe_fst : ⇑(fst M N) = prod.fst := rfl @[simp, to_additive] lemma coe_snd : ⇑(snd M N) = prod.snd := rfl @[simp, to_additive] lemma inl_apply (x) : inl M N x = (x, 1) := rfl @[simp, to_additive] lemma inr_apply (y) : inr M N y = (1, y) := rfl @[simp, to_additive] lemma fst_comp_inl : (fst M N).comp (inl M N) = id M := rfl @[simp, to_additive] lemma snd_comp_inl : (snd M N).comp (inl M N) = 1 := rfl @[simp, to_additive] lemma fst_comp_inr : (fst M N).comp (inr M N) = 1 := rfl @[simp, to_additive] lemma snd_comp_inr : (snd M N).comp (inr M N) = id N := rfl section prod variable [mul_one_class P] /-- Combine two `monoid_hom`s `f : M →* N`, `g : M →* P` into `f.prod g : M →* N × P` given by `(f.prod g) x = (f x, g x)`. -/ @[to_additive prod "Combine two `add_monoid_hom`s `f : M →+ N`, `g : M →+ P` into `f.prod g : M →+ N × P` given by `(f.prod g) x = (f x, g x)`"] protected def prod (f : M →* N) (g : M →* P) : M →* N × P := { to_fun := pi.prod f g, map_one' := prod.ext f.map_one g.map_one, map_mul' := λ x y, prod.ext (f.map_mul x y) (g.map_mul x y) } @[to_additive coe_prod] lemma coe_prod (f : M →* N) (g : M →* P) : ⇑(f.prod g) = pi.prod f g := rfl @[simp, to_additive prod_apply] lemma prod_apply (f : M →* N) (g : M →* P) (x) : f.prod g x = (f x, g x) := rfl @[simp, to_additive fst_comp_prod] lemma fst_comp_prod (f : M →* N) (g : M →* P) : (fst N P).comp (f.prod g) = f := ext $ λ x, rfl @[simp, to_additive snd_comp_prod] lemma snd_comp_prod (f : M →* N) (g : M →* P) : (snd N P).comp (f.prod g) = g := ext $ λ x, rfl @[simp, to_additive prod_unique] lemma prod_unique (f : M →* N × P) : ((fst N P).comp f).prod ((snd N P).comp f) = f := ext $ λ x, by simp only [prod_apply, coe_fst, coe_snd, comp_apply, prod.mk.eta] end prod section prod_map variables {M' : Type*} {N' : Type*} [mul_one_class M'] [mul_one_class N'] [mul_one_class P] (f : M →* M') (g : N →* N') /-- `prod.map` as a `monoid_hom`. -/ @[to_additive prod_map "`prod.map` as an `add_monoid_hom`"] def prod_map : M × N →* M' × N' := (f.comp (fst M N)).prod (g.comp (snd M N)) @[to_additive prod_map_def] lemma prod_map_def : prod_map f g = (f.comp (fst M N)).prod (g.comp (snd M N)) := rfl @[simp, to_additive coe_prod_map] lemma coe_prod_map : ⇑(prod_map f g) = prod.map f g := rfl @[to_additive prod_comp_prod_map] lemma prod_comp_prod_map (f : P →* M) (g : P →* N) (f' : M →* M') (g' : N →* N') : (f'.prod_map g').comp (f.prod g) = (f'.comp f).prod (g'.comp g) := rfl end prod_map section coprod variables [comm_monoid P] (f : M →* P) (g : N →* P) /-- Coproduct of two `monoid_hom`s with the same codomain: `f.coprod g (p : M × N) = f p.1 * g p.2`. -/ @[to_additive "Coproduct of two `add_monoid_hom`s with the same codomain: `f.coprod g (p : M × N) = f p.1 + g p.2`."] def coprod : M × N →* P := f.comp (fst M N) * g.comp (snd M N) @[simp, to_additive] lemma coprod_apply (p : M × N) : f.coprod g p = f p.1 * g p.2 := rfl @[simp, to_additive] lemma coprod_comp_inl : (f.coprod g).comp (inl M N) = f := ext $ λ x, by simp [coprod_apply] @[simp, to_additive] lemma coprod_comp_inr : (f.coprod g).comp (inr M N) = g := ext $ λ x, by simp [coprod_apply] @[simp, to_additive] lemma coprod_unique (f : M × N →* P) : (f.comp (inl M N)).coprod (f.comp (inr M N)) = f := ext $ λ x, by simp [coprod_apply, inl_apply, inr_apply, ← map_mul] @[simp, to_additive] lemma coprod_inl_inr {M N : Type*} [comm_monoid M] [comm_monoid N] : (inl M N).coprod (inr M N) = id (M × N) := coprod_unique (id $ M × N) @[to_additive] lemma comp_coprod {Q : Type*} [comm_monoid Q] (h : P →* Q) (f : M →* P) (g : N →* P) : h.comp (f.coprod g) = (h.comp f).coprod (h.comp g) := ext $ λ x, by simp end coprod end monoid_hom namespace mul_equiv section variables {M N} [mul_one_class M] [mul_one_class N] /-- The equivalence between `M × N` and `N × M` given by swapping the components is multiplicative. -/ @[to_additive prod_comm "The equivalence between `M × N` and `N × M` given by swapping the components is additive."] def prod_comm : M × N ≃* N × M := { map_mul' := λ ⟨x₁, y₁⟩ ⟨x₂, y₂⟩, rfl, ..equiv.prod_comm M N } @[simp, to_additive coe_prod_comm] lemma coe_prod_comm : ⇑(prod_comm : M × N ≃* N × M) = prod.swap := rfl @[simp, to_additive coe_prod_comm_symm] lemma coe_prod_comm_symm : ⇑((prod_comm : M × N ≃* N × M).symm) = prod.swap := rfl variables {M' N' : Type*} [mul_one_class M'] [mul_one_class N'] /--Product of multiplicative isomorphisms; the maps come from `equiv.prod_congr`.-/ @[to_additive prod_congr "Product of additive isomorphisms; the maps come from `equiv.prod_congr`."] def prod_congr (f : M ≃* M') (g : N ≃* N') : M × N ≃* M' × N' := { map_mul' := λ x y, prod.ext (f.map_mul _ _) (g.map_mul _ _), ..f.to_equiv.prod_congr g.to_equiv } /--Multiplying by the trivial monoid doesn't change the structure.-/ @[to_additive unique_prod "Multiplying by the trivial monoid doesn't change the structure."] def unique_prod [unique N] : N × M ≃* M := { map_mul' := λ x y, rfl, ..equiv.unique_prod M N } /--Multiplying by the trivial monoid doesn't change the structure.-/ @[to_additive prod_unique "Multiplying by the trivial monoid doesn't change the structure."] def prod_unique [unique N] : M × N ≃* M := { map_mul' := λ x y, rfl, ..equiv.prod_unique M N } end section variables {M N} [monoid M] [monoid N] /-- The monoid equivalence between units of a product of two monoids, and the product of the units of each monoid. -/ @[to_additive prod_add_units "The additive monoid equivalence between additive units of a product of two additive monoids, and the product of the additive units of each additive monoid."] def prod_units : (M × N)ˣ ≃* Mˣ × Nˣ := { to_fun := (units.map (monoid_hom.fst M N)).prod (units.map (monoid_hom.snd M N)), inv_fun := λ u, ⟨(u.1, u.2), (↑u.1⁻¹, ↑u.2⁻¹), by simp, by simp⟩, left_inv := λ u, by simp, right_inv := λ ⟨u₁, u₂⟩, by simp [units.map], map_mul' := monoid_hom.map_mul _ } end end mul_equiv namespace units open mul_opposite /-- Canonical homomorphism of monoids from `αˣ` into `α × αᵐᵒᵖ`. Used mainly to define the natural topology of `αˣ`. -/ @[to_additive "Canonical homomorphism of additive monoids from `add_units α` into `α × αᵃᵒᵖ`. Used mainly to define the natural topology of `add_units α`.", simps] def embed_product (α : Type*) [monoid α] : αˣ →* α × αᵐᵒᵖ := { to_fun := λ x, ⟨x, op ↑x⁻¹⟩, map_one' := by simp only [inv_one, eq_self_iff_true, units.coe_one, op_one, prod.mk_eq_one, and_self], map_mul' := λ x y, by simp only [mul_inv_rev, op_mul, units.coe_mul, prod.mk_mul_mk] } @[to_additive] lemma embed_product_injective (α : Type*) [monoid α] : function.injective (embed_product α) := λ a₁ a₂ h, units.ext $ (congr_arg prod.fst h : _) end units /-! ### Multiplication and division as homomorphisms -/ section bundled_mul_div variables {α : Type*} /-- Multiplication as a multiplicative homomorphism. -/ @[to_additive "Addition as an additive homomorphism.", simps] def mul_mul_hom [comm_semigroup α] : (α × α) →ₙ* α := { to_fun := λ a, a.1 * a.2, map_mul' := λ a b, mul_mul_mul_comm _ _ _ _ } /-- Multiplication as a monoid homomorphism. -/ @[to_additive "Addition as an additive monoid homomorphism.", simps] def mul_monoid_hom [comm_monoid α] : α × α →* α := { map_one' := mul_one _, .. mul_mul_hom } /-- Multiplication as a multiplicative homomorphism with zero. -/ @[simps] def mul_monoid_with_zero_hom [comm_monoid_with_zero α] : α × α →*₀ α := { map_zero' := mul_zero _, .. mul_monoid_hom } /-- Division as a monoid homomorphism. -/ @[to_additive "Subtraction as an additive monoid homomorphism.", simps] def div_monoid_hom [division_comm_monoid α] : α × α →* α := { to_fun := λ a, a.1 / a.2, map_one' := div_one _, map_mul' := λ a b, mul_div_mul_comm _ _ _ _ } /-- Division as a multiplicative homomorphism with zero. -/ @[simps] def div_monoid_with_zero_hom [comm_group_with_zero α] : α × α →*₀ α := { to_fun := λ a, a.1 / a.2, map_zero' := zero_div _, map_one' := div_one _, map_mul' := λ a b, mul_div_mul_comm _ _ _ _ } end bundled_mul_div