/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau -/ import algebra.group.inj_surj import algebra.group.commute import algebra.hom.equiv import algebra.opposites import data.int.cast.defs /-! # Group structures on the multiplicative and additive opposites -/ universes u v variables (α : Type u) namespace mul_opposite /-! ### Additive structures on `αᵐᵒᵖ` -/ instance [add_semigroup α] : add_semigroup (αᵐᵒᵖ) := unop_injective.add_semigroup _ (λ x y, rfl) instance [add_left_cancel_semigroup α] : add_left_cancel_semigroup αᵐᵒᵖ := unop_injective.add_left_cancel_semigroup _ (λ x y, rfl) instance [add_right_cancel_semigroup α] : add_right_cancel_semigroup αᵐᵒᵖ := unop_injective.add_right_cancel_semigroup _ (λ x y, rfl) instance [add_comm_semigroup α] : add_comm_semigroup αᵐᵒᵖ := unop_injective.add_comm_semigroup _ (λ x y, rfl) instance [add_zero_class α] : add_zero_class αᵐᵒᵖ := unop_injective.add_zero_class _ rfl (λ x y, rfl) instance [add_monoid α] : add_monoid αᵐᵒᵖ := unop_injective.add_monoid _ rfl (λ _ _, rfl) (λ _ _, rfl) instance [add_monoid_with_one α] : add_monoid_with_one αᵐᵒᵖ := { nat_cast := λ n, op n, nat_cast_zero := show op ((0 : ℕ) : α) = 0, by simp, nat_cast_succ := show ∀ n, op ((n + 1 : ℕ) : α) = op (n : ℕ) + 1, by simp, .. mul_opposite.add_monoid α, .. mul_opposite.has_one α } instance [add_comm_monoid α] : add_comm_monoid αᵐᵒᵖ := unop_injective.add_comm_monoid _ rfl (λ _ _, rfl) (λ _ _, rfl) instance [sub_neg_monoid α] : sub_neg_monoid αᵐᵒᵖ := unop_injective.sub_neg_monoid _ rfl (λ _ _, rfl) (λ _, rfl) (λ _ _, rfl) (λ _ _, rfl) (λ _ _, rfl) instance [add_group α] : add_group αᵐᵒᵖ := unop_injective.add_group _ rfl (λ _ _, rfl) (λ _, rfl) (λ _ _, rfl) (λ _ _, rfl) (λ _ _, rfl) instance [add_group_with_one α] : add_group_with_one αᵐᵒᵖ := { int_cast := λ n, op n, int_cast_of_nat := λ n, show op ((n : ℤ) : α) = op n, by rw int.cast_coe_nat, int_cast_neg_succ_of_nat := λ n, show op _ = op (- unop (op ((n + 1 : ℕ) : α))), by erw [unop_op, int.cast_neg_succ_of_nat]; refl, .. mul_opposite.add_monoid_with_one α, .. mul_opposite.add_group α } instance [add_comm_group α] : add_comm_group αᵐᵒᵖ := unop_injective.add_comm_group _ rfl (λ _ _, rfl) (λ _, rfl) (λ _ _, rfl) (λ _ _, rfl) (λ _ _, rfl) /-! ### Multiplicative structures on `αᵐᵒᵖ` We also generate additive structures on `αᵃᵒᵖ` using `to_additive` -/ @[to_additive] instance [semigroup α] : semigroup αᵐᵒᵖ := { mul_assoc := λ x y z, unop_injective $ eq.symm $ mul_assoc (unop z) (unop y) (unop x), .. mul_opposite.has_mul α } @[to_additive] instance [right_cancel_semigroup α] : left_cancel_semigroup αᵐᵒᵖ := { mul_left_cancel := λ x y z H, unop_injective $ mul_right_cancel $ op_injective H, .. mul_opposite.semigroup α } @[to_additive] instance [left_cancel_semigroup α] : right_cancel_semigroup αᵐᵒᵖ := { mul_right_cancel := λ x y z H, unop_injective $ mul_left_cancel $ op_injective H, .. mul_opposite.semigroup α } @[to_additive] instance [comm_semigroup α] : comm_semigroup αᵐᵒᵖ := { mul_comm := λ x y, unop_injective $ mul_comm (unop y) (unop x), .. mul_opposite.semigroup α } @[to_additive] instance [mul_one_class α] : mul_one_class αᵐᵒᵖ := { one_mul := λ x, unop_injective $ mul_one $ unop x, mul_one := λ x, unop_injective $ one_mul $ unop x, .. mul_opposite.has_mul α, .. mul_opposite.has_one α } @[to_additive] instance [monoid α] : monoid αᵐᵒᵖ := { npow := λ n x, op $ x.unop ^ n, npow_zero' := λ x, unop_injective $ monoid.npow_zero' x.unop, npow_succ' := λ n x, unop_injective $ pow_succ' x.unop n, .. mul_opposite.semigroup α, .. mul_opposite.mul_one_class α } @[to_additive] instance [right_cancel_monoid α] : left_cancel_monoid αᵐᵒᵖ := { .. mul_opposite.left_cancel_semigroup α, .. mul_opposite.monoid α } @[to_additive] instance [left_cancel_monoid α] : right_cancel_monoid αᵐᵒᵖ := { .. mul_opposite.right_cancel_semigroup α, .. mul_opposite.monoid α } @[to_additive] instance [cancel_monoid α] : cancel_monoid αᵐᵒᵖ := { .. mul_opposite.right_cancel_monoid α, .. mul_opposite.left_cancel_monoid α } @[to_additive] instance [comm_monoid α] : comm_monoid αᵐᵒᵖ := { .. mul_opposite.monoid α, .. mul_opposite.comm_semigroup α } @[to_additive] instance [cancel_comm_monoid α] : cancel_comm_monoid αᵐᵒᵖ := { .. mul_opposite.cancel_monoid α, .. mul_opposite.comm_monoid α } @[to_additive add_opposite.sub_neg_monoid] instance [div_inv_monoid α] : div_inv_monoid αᵐᵒᵖ := { zpow := λ n x, op $ x.unop ^ n, zpow_zero' := λ x, unop_injective $ div_inv_monoid.zpow_zero' x.unop, zpow_succ' := λ n x, unop_injective $ by rw [unop_op, zpow_of_nat, zpow_of_nat, pow_succ', unop_mul, unop_op], zpow_neg' := λ z x, unop_injective $ div_inv_monoid.zpow_neg' z x.unop, .. mul_opposite.monoid α, .. mul_opposite.has_inv α } @[to_additive add_opposite.subtraction_monoid] instance [division_monoid α] : division_monoid αᵐᵒᵖ := { mul_inv_rev := λ a b, unop_injective $ mul_inv_rev _ _, inv_eq_of_mul := λ a b h, unop_injective $ inv_eq_of_mul_eq_one_left $ congr_arg unop h, .. mul_opposite.div_inv_monoid α, .. mul_opposite.has_involutive_inv α } @[to_additive add_opposite.subtraction_comm_monoid] instance [division_comm_monoid α] : division_comm_monoid αᵐᵒᵖ := { ..mul_opposite.division_monoid α, ..mul_opposite.comm_semigroup α } @[to_additive] instance [group α] : group αᵐᵒᵖ := { mul_left_inv := λ x, unop_injective $ mul_inv_self $ unop x, .. mul_opposite.div_inv_monoid α, } @[to_additive] instance [comm_group α] : comm_group αᵐᵒᵖ := { .. mul_opposite.group α, .. mul_opposite.comm_monoid α } variable {α} @[simp, to_additive] lemma unop_div [div_inv_monoid α] (x y : αᵐᵒᵖ) : unop (x / y) = (unop y)⁻¹ * unop x := rfl @[simp, to_additive] lemma op_div [div_inv_monoid α] (x y : α) : op (x / y) = (op y)⁻¹ * op x := by simp [div_eq_mul_inv] @[simp, to_additive] lemma semiconj_by_op [has_mul α] {a x y : α} : semiconj_by (op a) (op y) (op x) ↔ semiconj_by a x y := by simp only [semiconj_by, ← op_mul, op_inj, eq_comm] @[simp, to_additive] lemma semiconj_by_unop [has_mul α] {a x y : αᵐᵒᵖ} : semiconj_by (unop a) (unop y) (unop x) ↔ semiconj_by a x y := by conv_rhs { rw [← op_unop a, ← op_unop x, ← op_unop y, semiconj_by_op] } @[to_additive] lemma _root_.semiconj_by.op [has_mul α] {a x y : α} (h : semiconj_by a x y) : semiconj_by (op a) (op y) (op x) := semiconj_by_op.2 h @[to_additive] lemma _root_.semiconj_by.unop [has_mul α] {a x y : αᵐᵒᵖ} (h : semiconj_by a x y) : semiconj_by (unop a) (unop y) (unop x) := semiconj_by_unop.2 h @[to_additive] lemma _root_.commute.op [has_mul α] {x y : α} (h : commute x y) : commute (op x) (op y) := h.op @[to_additive] lemma commute.unop [has_mul α] {x y : αᵐᵒᵖ} (h : commute x y) : commute (unop x) (unop y) := h.unop @[simp, to_additive] lemma commute_op [has_mul α] {x y : α} : commute (op x) (op y) ↔ commute x y := semiconj_by_op @[simp, to_additive] lemma commute_unop [has_mul α] {x y : αᵐᵒᵖ} : commute (unop x) (unop y) ↔ commute x y := semiconj_by_unop /-- The function `mul_opposite.op` is an additive equivalence. -/ @[simps { fully_applied := ff, simp_rhs := tt }] def op_add_equiv [has_add α] : α ≃+ αᵐᵒᵖ := { map_add' := λ a b, rfl, .. op_equiv } @[simp] lemma op_add_equiv_to_equiv [has_add α] : (op_add_equiv : α ≃+ αᵐᵒᵖ).to_equiv = op_equiv := rfl end mul_opposite /-! ### Multiplicative structures on `αᵃᵒᵖ` -/ namespace add_opposite instance [semigroup α] : semigroup (αᵃᵒᵖ) := unop_injective.semigroup _ (λ x y, rfl) instance [left_cancel_semigroup α] : left_cancel_semigroup αᵃᵒᵖ := unop_injective.left_cancel_semigroup _ (λ x y, rfl) instance [right_cancel_semigroup α] : right_cancel_semigroup αᵃᵒᵖ := unop_injective.right_cancel_semigroup _ (λ x y, rfl) instance [comm_semigroup α] : comm_semigroup αᵃᵒᵖ := unop_injective.comm_semigroup _ (λ x y, rfl) instance [mul_one_class α] : mul_one_class αᵃᵒᵖ := unop_injective.mul_one_class _ rfl (λ x y, rfl) instance {β} [has_pow α β] : has_pow αᵃᵒᵖ β := { pow := λ a b, op (unop a ^ b) } @[simp] lemma op_pow {β} [has_pow α β] (a : α) (b : β) : op (a ^ b) = op a ^ b := rfl @[simp] lemma unop_pow {β} [has_pow α β] (a : αᵃᵒᵖ) (b : β) : unop (a ^ b) = unop a ^ b := rfl instance [monoid α] : monoid αᵃᵒᵖ := unop_injective.monoid _ rfl (λ _ _, rfl) (λ _ _, rfl) instance [comm_monoid α] : comm_monoid αᵃᵒᵖ := unop_injective.comm_monoid _ rfl (λ _ _, rfl) (λ _ _, rfl) instance [div_inv_monoid α] : div_inv_monoid αᵃᵒᵖ := unop_injective.div_inv_monoid _ rfl (λ _ _, rfl) (λ _, rfl) (λ _ _, rfl) (λ _ _, rfl) (λ _ _, rfl) instance [group α] : group αᵃᵒᵖ := unop_injective.group _ rfl (λ _ _, rfl) (λ _, rfl) (λ _ _, rfl) (λ _ _, rfl) (λ _ _, rfl) instance [comm_group α] : comm_group αᵃᵒᵖ := unop_injective.comm_group _ rfl (λ _ _, rfl) (λ _, rfl) (λ _ _, rfl) (λ _ _, rfl) (λ _ _, rfl) variable {α} /-- The function `add_opposite.op` is a multiplicative equivalence. -/ @[simps { fully_applied := ff, simp_rhs := tt }] def op_mul_equiv [has_mul α] : α ≃* αᵃᵒᵖ := { map_mul' := λ a b, rfl, .. op_equiv } @[simp] lemma op_mul_equiv_to_equiv [has_mul α] : (op_mul_equiv : α ≃* αᵃᵒᵖ).to_equiv = op_equiv := rfl end add_opposite open mul_opposite /-- Inversion on a group is a `mul_equiv` to the opposite group. When `G` is commutative, there is `mul_equiv.inv`. -/ @[to_additive "Negation on an additive group is an `add_equiv` to the opposite group. When `G` is commutative, there is `add_equiv.inv`.", simps { fully_applied := ff, simp_rhs := tt }] def mul_equiv.inv' (G : Type*) [division_monoid G] : G ≃* Gᵐᵒᵖ := { map_mul' := λ x y, unop_injective $ mul_inv_rev x y, .. (equiv.inv G).trans op_equiv } /-- A semigroup homomorphism `f : M →ₙ* N` such that `f x` commutes with `f y` for all `x, y` defines a semigroup homomorphism to `Nᵐᵒᵖ`. -/ @[to_additive "An additive semigroup homomorphism `f : add_hom M N` such that `f x` additively commutes with `f y` for all `x, y` defines an additive semigroup homomorphism to `Sᵃᵒᵖ`.", simps {fully_applied := ff}] def mul_hom.to_opposite {M N : Type*} [has_mul M] [has_mul N] (f : M →ₙ* N) (hf : ∀ x y, commute (f x) (f y)) : M →ₙ* Nᵐᵒᵖ := { to_fun := mul_opposite.op ∘ f, map_mul' := λ x y, by simp [(hf x y).eq] } /-- A semigroup homomorphism `f : M →ₙ* N` such that `f x` commutes with `f y` for all `x, y` defines a semigroup homomorphism from `Mᵐᵒᵖ`. -/ @[to_additive "An additive semigroup homomorphism `f : add_hom M N` such that `f x` additively commutes with `f y` for all `x`, `y` defines an additive semigroup homomorphism from `Mᵃᵒᵖ`.", simps {fully_applied := ff}] def mul_hom.from_opposite {M N : Type*} [has_mul M] [has_mul N] (f : M →ₙ* N) (hf : ∀ x y, commute (f x) (f y)) : Mᵐᵒᵖ →ₙ* N := { to_fun := f ∘ mul_opposite.unop, map_mul' := λ x y, (f.map_mul _ _).trans (hf _ _).eq } /-- A monoid homomorphism `f : M →* N` such that `f x` commutes with `f y` for all `x, y` defines a monoid homomorphism to `Nᵐᵒᵖ`. -/ @[to_additive "An additive monoid homomorphism `f : M →+ N` such that `f x` additively commutes with `f y` for all `x, y` defines an additive monoid homomorphism to `Sᵃᵒᵖ`.", simps {fully_applied := ff}] def monoid_hom.to_opposite {M N : Type*} [mul_one_class M] [mul_one_class N] (f : M →* N) (hf : ∀ x y, commute (f x) (f y)) : M →* Nᵐᵒᵖ := { to_fun := mul_opposite.op ∘ f, map_one' := congr_arg op f.map_one, map_mul' := λ x y, by simp [(hf x y).eq] } /-- A monoid homomorphism `f : M →* N` such that `f x` commutes with `f y` for all `x, y` defines a monoid homomorphism from `Mᵐᵒᵖ`. -/ @[to_additive "An additive monoid homomorphism `f : M →+ N` such that `f x` additively commutes with `f y` for all `x`, `y` defines an additive monoid homomorphism from `Mᵃᵒᵖ`.", simps {fully_applied := ff}] def monoid_hom.from_opposite {M N : Type*} [mul_one_class M] [mul_one_class N] (f : M →* N) (hf : ∀ x y, commute (f x) (f y)) : Mᵐᵒᵖ →* N := { to_fun := f ∘ mul_opposite.unop, map_one' := f.map_one, map_mul' := λ x y, (f.map_mul _ _).trans (hf _ _).eq } /-- The units of the opposites are equivalent to the opposites of the units. -/ @[to_additive "The additive units of the additive opposites are equivalent to the additive opposites of the additive units."] def units.op_equiv {M} [monoid M] : (Mᵐᵒᵖ)ˣ ≃* (Mˣ)ᵐᵒᵖ := { to_fun := λ u, op ⟨unop u, unop ↑(u⁻¹), op_injective u.4, op_injective u.3⟩, inv_fun := mul_opposite.rec $ λ u, ⟨op ↑(u), op ↑(u⁻¹), unop_injective $ u.4, unop_injective u.3⟩, map_mul' := λ x y, unop_injective $ units.ext $ rfl, left_inv := λ x, units.ext $ by simp, right_inv := λ x, unop_injective $ units.ext $ rfl } @[simp, to_additive] lemma units.coe_unop_op_equiv {M} [monoid M] (u : (Mᵐᵒᵖ)ˣ) : ((units.op_equiv u).unop : M) = unop (u : Mᵐᵒᵖ) := rfl @[simp, to_additive] lemma units.coe_op_equiv_symm {M} [monoid M] (u : (Mˣ)ᵐᵒᵖ) : (units.op_equiv.symm u : Mᵐᵒᵖ) = op (u.unop : M) := rfl /-- A semigroup homomorphism `M →ₙ* N` can equivalently be viewed as a semigroup homomorphism `Mᵐᵒᵖ →ₙ* Nᵐᵒᵖ`. This is the action of the (fully faithful) `ᵐᵒᵖ`-functor on morphisms. -/ @[to_additive "An additive semigroup homomorphism `add_hom M N` can equivalently be viewed as an additive semigroup homomorphism `add_hom Mᵃᵒᵖ Nᵃᵒᵖ`. This is the action of the (fully faithful) `ᵃᵒᵖ`-functor on morphisms.", simps] def mul_hom.op {M N} [has_mul M] [has_mul N] : (M →ₙ* N) ≃ (Mᵐᵒᵖ →ₙ* Nᵐᵒᵖ) := { to_fun := λ f, { to_fun := op ∘ f ∘ unop, map_mul' := λ x y, unop_injective (f.map_mul y.unop x.unop) }, inv_fun := λ f, { to_fun := unop ∘ f ∘ op, map_mul' := λ x y, congr_arg unop (f.map_mul (op y) (op x)) }, left_inv := λ f, by { ext, refl }, right_inv := λ f, by { ext x, simp } } /-- The 'unopposite' of a semigroup homomorphism `Mᵐᵒᵖ →ₙ* Nᵐᵒᵖ`. Inverse to `mul_hom.op`. -/ @[simp, to_additive "The 'unopposite' of an additive semigroup homomorphism `Mᵃᵒᵖ →ₙ+ Nᵃᵒᵖ`. Inverse to `add_hom.op`."] def mul_hom.unop {M N} [has_mul M] [has_mul N] : (Mᵐᵒᵖ →ₙ* Nᵐᵒᵖ) ≃ (M →ₙ* N) := mul_hom.op.symm /-- An additive semigroup homomorphism `add_hom M N` can equivalently be viewed as an additive homomorphism `add_hom Mᵐᵒᵖ Nᵐᵒᵖ`. This is the action of the (fully faithful) `ᵐᵒᵖ`-functor on morphisms. -/ @[simps] def add_hom.mul_op {M N} [has_add M] [has_add N] : (add_hom M N) ≃ (add_hom Mᵐᵒᵖ Nᵐᵒᵖ) := { to_fun := λ f, { to_fun := op ∘ f ∘ unop, map_add' := λ x y, unop_injective (f.map_add x.unop y.unop) }, inv_fun := λ f, { to_fun := unop ∘ f ∘ op, map_add' := λ x y, congr_arg unop (f.map_add (op x) (op y)) }, left_inv := λ f, by { ext, refl }, right_inv := λ f, by { ext, simp } } /-- The 'unopposite' of an additive semigroup hom `αᵐᵒᵖ →+ βᵐᵒᵖ`. Inverse to `add_hom.mul_op`. -/ @[simp] def add_hom.mul_unop {α β} [has_add α] [has_add β] : (add_hom αᵐᵒᵖ βᵐᵒᵖ) ≃ (add_hom α β) := add_hom.mul_op.symm /-- A monoid homomorphism `M →* N` can equivalently be viewed as a monoid homomorphism `Mᵐᵒᵖ →* Nᵐᵒᵖ`. This is the action of the (fully faithful) `ᵐᵒᵖ`-functor on morphisms. -/ @[to_additive "An additive monoid homomorphism `M →+ N` can equivalently be viewed as an additive monoid homomorphism `Mᵃᵒᵖ →+ Nᵃᵒᵖ`. This is the action of the (fully faithful) `ᵃᵒᵖ`-functor on morphisms.", simps] def monoid_hom.op {M N} [mul_one_class M] [mul_one_class N] : (M →* N) ≃ (Mᵐᵒᵖ →* Nᵐᵒᵖ) := { to_fun := λ f, { to_fun := op ∘ f ∘ unop, map_one' := congr_arg op f.map_one, map_mul' := λ x y, unop_injective (f.map_mul y.unop x.unop) }, inv_fun := λ f, { to_fun := unop ∘ f ∘ op, map_one' := congr_arg unop f.map_one, map_mul' := λ x y, congr_arg unop (f.map_mul (op y) (op x)) }, left_inv := λ f, by { ext, refl }, right_inv := λ f, by { ext x, simp } } /-- The 'unopposite' of a monoid homomorphism `Mᵐᵒᵖ →* Nᵐᵒᵖ`. Inverse to `monoid_hom.op`. -/ @[simp, to_additive "The 'unopposite' of an additive monoid homomorphism `Mᵃᵒᵖ →+ Nᵃᵒᵖ`. Inverse to `add_monoid_hom.op`."] def monoid_hom.unop {M N} [mul_one_class M] [mul_one_class N] : (Mᵐᵒᵖ →* Nᵐᵒᵖ) ≃ (M →* N) := monoid_hom.op.symm /-- An additive homomorphism `M →+ N` can equivalently be viewed as an additive homomorphism `Mᵐᵒᵖ →+ Nᵐᵒᵖ`. This is the action of the (fully faithful) `ᵐᵒᵖ`-functor on morphisms. -/ @[simps] def add_monoid_hom.mul_op {M N} [add_zero_class M] [add_zero_class N] : (M →+ N) ≃ (Mᵐᵒᵖ →+ Nᵐᵒᵖ) := { to_fun := λ f, { to_fun := op ∘ f ∘ unop, map_zero' := unop_injective f.map_zero, map_add' := λ x y, unop_injective (f.map_add x.unop y.unop) }, inv_fun := λ f, { to_fun := unop ∘ f ∘ op, map_zero' := congr_arg unop f.map_zero, map_add' := λ x y, congr_arg unop (f.map_add (op x) (op y)) }, left_inv := λ f, by { ext, refl }, right_inv := λ f, by { ext, simp } } /-- The 'unopposite' of an additive monoid hom `αᵐᵒᵖ →+ βᵐᵒᵖ`. Inverse to `add_monoid_hom.mul_op`. -/ @[simp] def add_monoid_hom.mul_unop {α β} [add_zero_class α] [add_zero_class β] : (αᵐᵒᵖ →+ βᵐᵒᵖ) ≃ (α →+ β) := add_monoid_hom.mul_op.symm /-- A iso `α ≃+ β` can equivalently be viewed as an iso `αᵐᵒᵖ ≃+ βᵐᵒᵖ`. -/ @[simps] def add_equiv.mul_op {α β} [has_add α] [has_add β] : (α ≃+ β) ≃ (αᵐᵒᵖ ≃+ βᵐᵒᵖ) := { to_fun := λ f, op_add_equiv.symm.trans (f.trans op_add_equiv), inv_fun := λ f, op_add_equiv.trans (f.trans op_add_equiv.symm), left_inv := λ f, by { ext, refl }, right_inv := λ f, by { ext, simp } } /-- The 'unopposite' of an iso `αᵐᵒᵖ ≃+ βᵐᵒᵖ`. Inverse to `add_equiv.mul_op`. -/ @[simp] def add_equiv.mul_unop {α β} [has_add α] [has_add β] : (αᵐᵒᵖ ≃+ βᵐᵒᵖ) ≃ (α ≃+ β) := add_equiv.mul_op.symm /-- A iso `α ≃* β` can equivalently be viewed as an iso `αᵐᵒᵖ ≃* βᵐᵒᵖ`. -/ @[to_additive "A iso `α ≃+ β` can equivalently be viewed as an iso `αᵃᵒᵖ ≃+ βᵃᵒᵖ`.", simps] def mul_equiv.op {α β} [has_mul α] [has_mul β] : (α ≃* β) ≃ (αᵐᵒᵖ ≃* βᵐᵒᵖ) := { to_fun := λ f, { to_fun := op ∘ f ∘ unop, inv_fun := op ∘ f.symm ∘ unop, left_inv := λ x, unop_injective (f.symm_apply_apply x.unop), right_inv := λ x, unop_injective (f.apply_symm_apply x.unop), map_mul' := λ x y, unop_injective (f.map_mul y.unop x.unop) }, inv_fun := λ f, { to_fun := unop ∘ f ∘ op, inv_fun := unop ∘ f.symm ∘ op, left_inv := λ x, by simp, right_inv := λ x, by simp, map_mul' := λ x y, congr_arg unop (f.map_mul (op y) (op x)) }, left_inv := λ f, by { ext, refl }, right_inv := λ f, by { ext, simp } } /-- The 'unopposite' of an iso `αᵐᵒᵖ ≃* βᵐᵒᵖ`. Inverse to `mul_equiv.op`. -/ @[simp, to_additive "The 'unopposite' of an iso `αᵃᵒᵖ ≃+ βᵃᵒᵖ`. Inverse to `add_equiv.op`."] def mul_equiv.unop {α β} [has_mul α] [has_mul β] : (αᵐᵒᵖ ≃* βᵐᵒᵖ) ≃ (α ≃* β) := mul_equiv.op.symm section ext /-- This ext lemma change equalities on `αᵐᵒᵖ →+ β` to equalities on `α →+ β`. This is useful because there are often ext lemmas for specific `α`s that will apply to an equality of `α →+ β` such as `finsupp.add_hom_ext'`. -/ @[ext] lemma add_monoid_hom.mul_op_ext {α β} [add_zero_class α] [add_zero_class β] (f g : αᵐᵒᵖ →+ β) (h : f.comp (op_add_equiv : α ≃+ αᵐᵒᵖ).to_add_monoid_hom = g.comp (op_add_equiv : α ≃+ αᵐᵒᵖ).to_add_monoid_hom) : f = g := add_monoid_hom.ext $ mul_opposite.rec $ λ x, (add_monoid_hom.congr_fun h : _) x end ext