/- Copyright (c) 2018 Patrick Massot. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Massot, Chris Hughes, Michael Howes -/ import algebra.group.semiconj import algebra.group_with_zero.basic import algebra.hom.aut import algebra.hom.group import data.fintype.basic /-! # Conjugacy of group elements See also `mul_aut.conj` and `quandle.conj`. -/ universes u v variables {α : Type u} {β : Type v} section monoid variables [monoid α] [monoid β] /-- We say that `a` is conjugate to `b` if for some unit `c` we have `c * a * c⁻¹ = b`. -/ def is_conj (a b : α) := ∃ c : αˣ, semiconj_by ↑c a b @[refl] lemma is_conj.refl (a : α) : is_conj a a := ⟨1, semiconj_by.one_left a⟩ @[symm] lemma is_conj.symm {a b : α} : is_conj a b → is_conj b a | ⟨c, hc⟩ := ⟨c⁻¹, hc.units_inv_symm_left⟩ lemma is_conj_comm {g h : α} : is_conj g h ↔ is_conj h g := ⟨is_conj.symm, is_conj.symm⟩ @[trans] lemma is_conj.trans {a b c : α} : is_conj a b → is_conj b c → is_conj a c | ⟨c₁, hc₁⟩ ⟨c₂, hc₂⟩ := ⟨c₂ * c₁, hc₂.mul_left hc₁⟩ @[simp] lemma is_conj_iff_eq {α : Type*} [comm_monoid α] {a b : α} : is_conj a b ↔ a = b := ⟨λ ⟨c, hc⟩, begin rw [semiconj_by, mul_comm, ← units.mul_inv_eq_iff_eq_mul, mul_assoc, c.mul_inv, mul_one] at hc, exact hc, end, λ h, by rw h⟩ protected lemma monoid_hom.map_is_conj (f : α →* β) {a b : α} : is_conj a b → is_conj (f a) (f b) | ⟨c, hc⟩ := ⟨units.map f c, by rw [units.coe_map, semiconj_by, ← f.map_mul, hc.eq, f.map_mul]⟩ end monoid section cancel_monoid variables [cancel_monoid α] -- These lemmas hold for `right_cancel_monoid` with the current proofs, but for the sake of -- not duplicating code (these lemmas also hold for `left_cancel_monoids`) we leave these -- not generalised. @[simp] lemma is_conj_one_right {a : α} : is_conj 1 a ↔ a = 1 := ⟨λ ⟨c, hc⟩, mul_right_cancel (hc.symm.trans ((mul_one _).trans (one_mul _).symm)), λ h, by rw [h]⟩ @[simp] lemma is_conj_one_left {a : α} : is_conj a 1 ↔ a = 1 := calc is_conj a 1 ↔ is_conj 1 a : ⟨is_conj.symm, is_conj.symm⟩ ... ↔ a = 1 : is_conj_one_right end cancel_monoid section group variables [group α] @[simp] lemma is_conj_iff {a b : α} : is_conj a b ↔ ∃ c : α, c * a * c⁻¹ = b := ⟨λ ⟨c, hc⟩, ⟨c, mul_inv_eq_iff_eq_mul.2 hc⟩, λ ⟨c, hc⟩, ⟨⟨c, c⁻¹, mul_inv_self c, inv_mul_self c⟩, mul_inv_eq_iff_eq_mul.1 hc⟩⟩ @[simp] lemma conj_inv {a b : α} : (b * a * b⁻¹)⁻¹ = b * a⁻¹ * b⁻¹ := ((mul_aut.conj b).map_inv a).symm @[simp] lemma conj_mul {a b c : α} : (b * a * b⁻¹) * (b * c * b⁻¹) = b * (a * c) * b⁻¹ := ((mul_aut.conj b).map_mul a c).symm @[simp] lemma conj_pow {i : ℕ} {a b : α} : (a * b * a⁻¹) ^ i = a * (b ^ i) * a⁻¹ := begin induction i with i hi, { simp }, { simp [pow_succ, hi] } end @[simp] lemma conj_zpow {i : ℤ} {a b : α} : (a * b * a⁻¹) ^ i = a * (b ^ i) * a⁻¹ := begin induction i, { simp }, { simp [zpow_neg_succ_of_nat, conj_pow] } end lemma conj_injective {x : α} : function.injective (λ (g : α), x * g * x⁻¹) := (mul_aut.conj x).injective end group @[simp] lemma is_conj_iff₀ [group_with_zero α] {a b : α} : is_conj a b ↔ ∃ c : α, c ≠ 0 ∧ c * a * c⁻¹ = b := ⟨λ ⟨c, hc⟩, ⟨c, begin rw [← units.coe_inv, units.mul_inv_eq_iff_eq_mul], exact ⟨c.ne_zero, hc⟩, end⟩, λ ⟨c, c0, hc⟩, ⟨units.mk0 c c0, begin rw [semiconj_by, ← units.mul_inv_eq_iff_eq_mul, units.coe_inv, units.coe_mk0], exact hc end⟩⟩ namespace is_conj /- This small quotient API is largely copied from the API of `associates`; where possible, try to keep them in sync -/ /-- The setoid of the relation `is_conj` iff there is a unit `u` such that `u * x = y * u` -/ protected def setoid (α : Type*) [monoid α] : setoid α := { r := is_conj, iseqv := ⟨is_conj.refl, λa b, is_conj.symm, λa b c, is_conj.trans⟩ } end is_conj local attribute [instance, priority 100] is_conj.setoid /-- The quotient type of conjugacy classes of a group. -/ def conj_classes (α : Type*) [monoid α] : Type* := quotient (is_conj.setoid α) namespace conj_classes section monoid variables [monoid α] [monoid β] /-- The canonical quotient map from a monoid `α` into the `conj_classes` of `α` -/ protected def mk {α : Type*} [monoid α] (a : α) : conj_classes α := ⟦a⟧ instance : inhabited (conj_classes α) := ⟨⟦1⟧⟩ theorem mk_eq_mk_iff_is_conj {a b : α} : conj_classes.mk a = conj_classes.mk b ↔ is_conj a b := iff.intro quotient.exact quot.sound theorem quotient_mk_eq_mk (a : α) : ⟦ a ⟧ = conj_classes.mk a := rfl theorem quot_mk_eq_mk (a : α) : quot.mk setoid.r a = conj_classes.mk a := rfl theorem forall_is_conj {p : conj_classes α → Prop} : (∀a, p a) ↔ (∀a, p (conj_classes.mk a)) := iff.intro (assume h a, h _) (assume h a, quotient.induction_on a h) theorem mk_surjective : function.surjective (@conj_classes.mk α _) := forall_is_conj.2 (λ a, ⟨a, rfl⟩) instance : has_one (conj_classes α) := ⟨⟦ 1 ⟧⟩ theorem one_eq_mk_one : (1 : conj_classes α) = conj_classes.mk 1 := rfl lemma exists_rep (a : conj_classes α) : ∃ a0 : α, conj_classes.mk a0 = a := quot.exists_rep a /-- A `monoid_hom` maps conjugacy classes of one group to conjugacy classes of another. -/ def map (f : α →* β) : conj_classes α → conj_classes β := quotient.lift (conj_classes.mk ∘ f) (λ a b ab, mk_eq_mk_iff_is_conj.2 (f.map_is_conj ab)) lemma map_surjective {f : α →* β} (hf : function.surjective f) : function.surjective (conj_classes.map f) := begin intros b, obtain ⟨b, rfl⟩ := conj_classes.mk_surjective b, obtain ⟨a, rfl⟩ := hf b, exact ⟨conj_classes.mk a, rfl⟩, end instance [fintype α] [decidable_rel (is_conj : α → α → Prop)] : fintype (conj_classes α) := quotient.fintype (is_conj.setoid α) /-- Certain instances trigger further searches when they are considered as candidate instances; these instances should be assigned a priority lower than the default of 1000 (for example, 900). The conditions for this rule are as follows: * a class `C` has instances `instT : C T` and `instT' : C T'` * types `T` and `T'` are both specializations of another type `S` * the parameters supplied to `S` to produce `T` are not (fully) determined by `instT`, instead they have to be found by instance search If those conditions hold, the instance `instT` should be assigned lower priority. For example, suppose the search for an instance of `decidable_eq (multiset α)` tries the candidate instance `con.quotient.decidable_eq (c : con M) : decidable_eq c.quotient`. Since `multiset` and `con.quotient` are both quotient types, unification will check that the relations `list.perm` and `c.to_setoid.r` unify. However, `c.to_setoid` depends on a `has_mul M` instance, so this unification triggers a search for `has_mul (list α)`; this will traverse all subclasses of `has_mul` before failing. On the other hand, the search for an instance of `decidable_eq (con.quotient c)` for `c : con M` can quickly reject the candidate instance `multiset.has_decidable_eq` because the type of `list.perm : list ?m_1 → list ?m_1 → Prop` does not unify with `M → M → Prop`. Therefore, we should assign `con.quotient.decidable_eq` a lower priority because it fails slowly. (In terms of the rules above, `C := decidable_eq`, `T := con.quotient`, `instT := con.quotient.decidable_eq`, `T' := multiset`, `instT' := multiset.has_decidable_eq`, and `S := quot`.) If the type involved is a free variable (rather than an instantiation of some type `S`), the instance priority should be even lower, see Note [lower instance priority]. -/ library_note "slow-failing instance priority" @[priority 900] -- see Note [slow-failing instance priority] instance [decidable_rel (is_conj : α → α → Prop)] : decidable_eq (conj_classes α) := quotient.decidable_eq instance [decidable_eq α] [fintype α] : decidable_rel (is_conj : α → α → Prop) := λ a b, by { delta is_conj semiconj_by, apply_instance } end monoid section comm_monoid variable [comm_monoid α] lemma mk_injective : function.injective (@conj_classes.mk α _) := λ _ _, (mk_eq_mk_iff_is_conj.trans is_conj_iff_eq).1 lemma mk_bijective : function.bijective (@conj_classes.mk α _) := ⟨mk_injective, mk_surjective⟩ /-- The bijection between a `comm_group` and its `conj_classes`. -/ def mk_equiv : α ≃ conj_classes α := ⟨conj_classes.mk, quotient.lift id (λ (a : α) b, is_conj_iff_eq.1), quotient.lift_mk _ _, begin rw [function.right_inverse, function.left_inverse, forall_is_conj], intro x, rw [← quotient_mk_eq_mk, ← quotient_mk_eq_mk, quotient.lift_mk, id.def], end⟩ end comm_monoid end conj_classes section monoid variables [monoid α] /-- Given an element `a`, `conjugates a` is the set of conjugates. -/ def conjugates_of (a : α) : set α := {b | is_conj a b} lemma mem_conjugates_of_self {a : α} : a ∈ conjugates_of a := is_conj.refl _ lemma is_conj.conjugates_of_eq {a b : α} (ab : is_conj a b) : conjugates_of a = conjugates_of b := set.ext (λ g, ⟨λ ag, (ab.symm).trans ag, λ bg, ab.trans bg⟩) lemma is_conj_iff_conjugates_of_eq {a b : α} : is_conj a b ↔ conjugates_of a = conjugates_of b := ⟨is_conj.conjugates_of_eq, λ h, begin have ha := mem_conjugates_of_self, rwa ← h at ha, end⟩ instance [fintype α] [decidable_rel (is_conj : α → α → Prop)] {a : α} : fintype (conjugates_of a) := @subtype.fintype _ _ (‹decidable_rel is_conj› a) _ end monoid namespace conj_classes variables [monoid α] local attribute [instance] is_conj.setoid /-- Given a conjugacy class `a`, `carrier a` is the set it represents. -/ def carrier : conj_classes α → set α := quotient.lift conjugates_of (λ (a : α) b ab, is_conj.conjugates_of_eq ab) lemma mem_carrier_mk {a : α} : a ∈ carrier (conj_classes.mk a) := is_conj.refl _ lemma mem_carrier_iff_mk_eq {a : α} {b : conj_classes α} : a ∈ carrier b ↔ conj_classes.mk a = b := begin revert b, rw forall_is_conj, intro b, rw [carrier, eq_comm, mk_eq_mk_iff_is_conj, ← quotient_mk_eq_mk, quotient.lift_mk], refl, end lemma carrier_eq_preimage_mk {a : conj_classes α} : a.carrier = conj_classes.mk ⁻¹' {a} := set.ext (λ x, mem_carrier_iff_mk_eq) section fintype variables [fintype α] [decidable_rel (is_conj : α → α → Prop)] instance {x : conj_classes α} : fintype (carrier x) := quotient.rec_on_subsingleton x $ λ a, conjugates_of.fintype end fintype end conj_classes