/- Copyright (c) 2019 Neil Strickland. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Neil Strickland, Yury Kudryashov -/ import algebra.group.semiconj /-! # Commuting pairs of elements in monoids We define the predicate `commute a b := a * b = b * a` and provide some operations on terms `(h : commute a b)`. E.g., if `a`, `b`, and c are elements of a semiring, and that `hb : commute a b` and `hc : commute a c`. Then `hb.pow_left 5` proves `commute (a ^ 5) b` and `(hb.pow_right 2).add_right (hb.mul_right hc)` proves `commute a (b ^ 2 + b * c)`. Lean does not immediately recognise these terms as equations, so for rewriting we need syntax like `rw [(hb.pow_left 5).eq]` rather than just `rw [hb.pow_left 5]`. This file defines only a few operations (`mul_left`, `inv_right`, etc). Other operations (`pow_right`, field inverse etc) are in the files that define corresponding notions. ## Implementation details Most of the proofs come from the properties of `semiconj_by`. -/ variables {G : Type*} /-- Two elements commute if `a * b = b * a`. -/ @[to_additive add_commute "Two elements additively commute if `a + b = b + a`"] def commute {S : Type*} [has_mul S] (a b : S) : Prop := semiconj_by a b b namespace commute section has_mul variables {S : Type*} [has_mul S] /-- Equality behind `commute a b`; useful for rewriting. -/ @[to_additive "Equality behind `add_commute a b`; useful for rewriting."] protected lemma eq {a b : S} (h : commute a b) : a * b = b * a := h /-- Any element commutes with itself. -/ @[refl, simp, to_additive "Any element commutes with itself."] protected lemma refl (a : S) : commute a a := eq.refl (a * a) /-- If `a` commutes with `b`, then `b` commutes with `a`. -/ @[symm, to_additive "If `a` commutes with `b`, then `b` commutes with `a`."] protected lemma symm {a b : S} (h : commute a b) : commute b a := eq.symm h @[to_additive] protected theorem semiconj_by {a b : S} (h : commute a b) : semiconj_by a b b := h @[to_additive] protected theorem symm_iff {a b : S} : commute a b ↔ commute b a := ⟨commute.symm, commute.symm⟩ end has_mul section semigroup variables {S : Type*} [semigroup S] {a b c : S} /-- If `a` commutes with both `b` and `c`, then it commutes with their product. -/ @[simp, to_additive "If `a` commutes with both `b` and `c`, then it commutes with their sum."] lemma mul_right (hab : commute a b) (hac : commute a c) : commute a (b * c) := hab.mul_right hac /-- If both `a` and `b` commute with `c`, then their product commutes with `c`. -/ @[simp, to_additive "If both `a` and `b` commute with `c`, then their product commutes with `c`."] lemma mul_left (hac : commute a c) (hbc : commute b c) : commute (a * b) c := hac.mul_left hbc @[to_additive] protected lemma right_comm (h : commute b c) (a : S) : a * b * c = a * c * b := by simp only [mul_assoc, h.eq] @[to_additive] protected lemma left_comm (h : commute a b) (c) : a * (b * c) = b * (a * c) := by simp only [← mul_assoc, h.eq] end semigroup @[to_additive] protected theorem all {S : Type*} [comm_semigroup S] (a b : S) : commute a b := mul_comm a b section mul_one_class variables {M : Type*} [mul_one_class M] @[simp, to_additive] theorem one_right (a : M) : commute a 1 := semiconj_by.one_right a @[simp, to_additive] theorem one_left (a : M) : commute 1 a := semiconj_by.one_left a end mul_one_class section monoid variables {M : Type*} [monoid M] {a b : M} {u u₁ u₂ : Mˣ} @[simp, to_additive] theorem pow_right (h : commute a b) (n : ℕ) : commute a (b ^ n) := h.pow_right n @[simp, to_additive] theorem pow_left (h : commute a b) (n : ℕ) : commute (a ^ n) b := (h.symm.pow_right n).symm @[simp, to_additive] theorem pow_pow (h : commute a b) (m n : ℕ) : commute (a ^ m) (b ^ n) := (h.pow_left m).pow_right n @[simp, to_additive] theorem self_pow (a : M) (n : ℕ) : commute a (a ^ n) := (commute.refl a).pow_right n @[simp, to_additive] theorem pow_self (a : M) (n : ℕ) : commute (a ^ n) a := (commute.refl a).pow_left n @[simp, to_additive] theorem pow_pow_self (a : M) (m n : ℕ) : commute (a ^ m) (a ^ n) := (commute.refl a).pow_pow m n @[to_additive succ_nsmul'] theorem _root_.pow_succ' (a : M) (n : ℕ) : a ^ (n + 1) = a ^ n * a := (pow_succ a n).trans (self_pow _ _) @[to_additive] theorem units_inv_right : commute a u → commute a ↑u⁻¹ := semiconj_by.units_inv_right @[simp, to_additive] theorem units_inv_right_iff : commute a ↑u⁻¹ ↔ commute a u := semiconj_by.units_inv_right_iff @[to_additive] theorem units_inv_left : commute ↑u a → commute ↑u⁻¹ a := semiconj_by.units_inv_symm_left @[simp, to_additive] theorem units_inv_left_iff: commute ↑u⁻¹ a ↔ commute ↑u a := semiconj_by.units_inv_symm_left_iff @[to_additive] theorem units_coe : commute u₁ u₂ → commute (u₁ : M) u₂ := semiconj_by.units_coe @[to_additive] theorem units_of_coe : commute (u₁ : M) u₂ → commute u₁ u₂ := semiconj_by.units_of_coe @[simp, to_additive] theorem units_coe_iff : commute (u₁ : M) u₂ ↔ commute u₁ u₂ := semiconj_by.units_coe_iff @[to_additive] lemma is_unit_mul_iff (h : commute a b) : is_unit (a * b) ↔ is_unit a ∧ is_unit b := begin refine ⟨_, λ H, H.1.mul H.2⟩, rintro ⟨u, hu⟩, have : b * ↑u⁻¹ * a = 1, { have : commute a u := hu.symm ▸ (commute.refl _).mul_right h, rw [← this.units_inv_right.right_comm, ← h.eq, ← hu, u.mul_inv] }, split, { refine ⟨⟨a, b * ↑u⁻¹, _, this⟩, rfl⟩, rw [← mul_assoc, ← hu, u.mul_inv] }, { rw mul_assoc at this, refine ⟨⟨b, ↑u⁻¹ * a, this, _⟩, rfl⟩, rw [mul_assoc, ← hu, u.inv_mul] } end @[simp, to_additive] lemma _root_.is_unit_mul_self_iff : is_unit (a * a) ↔ is_unit a := (commute.refl a).is_unit_mul_iff.trans (and_self _) end monoid section division_monoid variables [division_monoid G] {a b : G} @[to_additive] lemma inv_inv : commute a b → commute a⁻¹ b⁻¹ := semiconj_by.inv_inv_symm @[simp, to_additive] lemma inv_inv_iff : commute a⁻¹ b⁻¹ ↔ commute a b := semiconj_by.inv_inv_symm_iff end division_monoid section group variables [group G] {a b : G} @[to_additive] theorem inv_right : commute a b → commute a b⁻¹ := semiconj_by.inv_right @[simp, to_additive] theorem inv_right_iff : commute a b⁻¹ ↔ commute a b := semiconj_by.inv_right_iff @[to_additive] theorem inv_left : commute a b → commute a⁻¹ b := semiconj_by.inv_symm_left @[simp, to_additive] theorem inv_left_iff : commute a⁻¹ b ↔ commute a b := semiconj_by.inv_symm_left_iff @[to_additive] protected theorem inv_mul_cancel (h : commute a b) : a⁻¹ * b * a = b := by rw [h.inv_left.eq, inv_mul_cancel_right] @[to_additive] theorem inv_mul_cancel_assoc (h : commute a b) : a⁻¹ * (b * a) = b := by rw [← mul_assoc, h.inv_mul_cancel] @[to_additive] protected theorem mul_inv_cancel (h : commute a b) : a * b * a⁻¹ = b := by rw [h.eq, mul_inv_cancel_right] @[to_additive] theorem mul_inv_cancel_assoc (h : commute a b) : a * (b * a⁻¹) = b := by rw [← mul_assoc, h.mul_inv_cancel] end group end commute section comm_group variables [comm_group G] (a b : G) @[simp, to_additive] lemma mul_inv_cancel_comm : a * b * a⁻¹ = b := (commute.all a b).mul_inv_cancel @[simp, to_additive] lemma mul_inv_cancel_comm_assoc : a * (b * a⁻¹) = b := (commute.all a b).mul_inv_cancel_assoc @[simp, to_additive] lemma inv_mul_cancel_comm : a⁻¹ * b * a = b := (commute.all a b).inv_mul_cancel @[simp, to_additive] lemma inv_mul_cancel_comm_assoc : a⁻¹ * (b * a) = b := (commute.all a b).inv_mul_cancel_assoc end comm_group