/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Simon Hudon, Mario Carneiro -/ import algebra.group.defs import data.bracket import logic.function.basic /-! # Basic lemmas about semigroups, monoids, and groups This file lists various basic lemmas about semigroups, monoids, and groups. Most proofs are one-liners from the corresponding axioms. For the definitions of semigroups, monoids and groups, see `algebra/group/defs.lean`. -/ open function universe u variables {α G : Type*} section associative variables (f : α → α → α) [is_associative α f] (x y : α) /-- Composing two associative operations of `f : α → α → α` on the left is equal to an associative operation on the left. -/ lemma comp_assoc_left : (f x) ∘ (f y) = (f (f x y)) := by { ext z, rw [function.comp_apply, @is_associative.assoc _ f] } /-- Composing two associative operations of `f : α → α → α` on the right is equal to an associative operation on the right. -/ lemma comp_assoc_right : (λ z, f z x) ∘ (λ z, f z y) = (λ z, f z (f y x)) := by { ext z, rw [function.comp_apply, @is_associative.assoc _ f] } end associative section semigroup /-- Composing two multiplications on the left by `y` then `x` is equal to a multiplication on the left by `x * y`. -/ @[simp, to_additive "Composing two additions on the left by `y` then `x` is equal to a addition on the left by `x + y`."] lemma comp_mul_left [semigroup α] (x y : α) : ((*) x) ∘ ((*) y) = ((*) (x * y)) := comp_assoc_left _ _ _ /-- Composing two multiplications on the right by `y` and `x` is equal to a multiplication on the right by `y * x`. -/ @[simp, to_additive "Composing two additions on the right by `y` and `x` is equal to a addition on the right by `y + x`."] lemma comp_mul_right [semigroup α] (x y : α) : (* x) ∘ (* y) = (* (y * x)) := comp_assoc_right _ _ _ end semigroup section mul_one_class variables {M : Type u} [mul_one_class M] @[to_additive] lemma ite_mul_one {P : Prop} [decidable P] {a b : M} : ite P (a * b) 1 = ite P a 1 * ite P b 1 := by { by_cases h : P; simp [h], } @[to_additive] lemma ite_one_mul {P : Prop} [decidable P] {a b : M} : ite P 1 (a * b) = ite P 1 a * ite P 1 b := by { by_cases h : P; simp [h], } @[to_additive] lemma eq_one_iff_eq_one_of_mul_eq_one {a b : M} (h : a * b = 1) : a = 1 ↔ b = 1 := by split; { rintro rfl, simpa using h } @[to_additive] lemma one_mul_eq_id : ((*) (1 : M)) = id := funext one_mul @[to_additive] lemma mul_one_eq_id : (* (1 : M)) = id := funext mul_one end mul_one_class section comm_semigroup variables [comm_semigroup G] @[no_rsimp, to_additive] lemma mul_left_comm : ∀ a b c : G, a * (b * c) = b * (a * c) := left_comm has_mul.mul mul_comm mul_assoc @[to_additive] lemma mul_right_comm : ∀ a b c : G, a * b * c = a * c * b := right_comm has_mul.mul mul_comm mul_assoc @[to_additive] theorem mul_mul_mul_comm (a b c d : G) : (a * b) * (c * d) = (a * c) * (b * d) := by simp only [mul_left_comm, mul_assoc] @[to_additive] lemma mul_rotate (a b c : G) : a * b * c = b * c * a := by simp only [mul_left_comm, mul_comm] @[to_additive] lemma mul_rotate' (a b c : G) : a * (b * c) = b * (c * a) := by simp only [mul_left_comm, mul_comm] end comm_semigroup section add_comm_semigroup variables {M : Type u} [add_comm_semigroup M] lemma bit0_add (a b : M) : bit0 (a + b) = bit0 a + bit0 b := add_add_add_comm _ _ _ _ lemma bit1_add [has_one M] (a b : M) : bit1 (a + b) = bit0 a + bit1 b := (congr_arg (+ (1 : M)) $ bit0_add a b : _).trans (add_assoc _ _ _) lemma bit1_add' [has_one M] (a b : M) : bit1 (a + b) = bit1 a + bit0 b := by rw [add_comm, bit1_add, add_comm] end add_comm_semigroup local attribute [simp] mul_assoc sub_eq_add_neg section add_monoid variables {M : Type u} [add_monoid M] {a b c : M} @[simp] lemma bit0_zero : bit0 (0 : M) = 0 := add_zero _ @[simp] lemma bit1_zero [has_one M] : bit1 (0 : M) = 1 := by rw [bit1, bit0_zero, zero_add] end add_monoid section comm_monoid variables {M : Type u} [comm_monoid M] {x y z : M} @[to_additive] lemma inv_unique (hy : x * y = 1) (hz : x * z = 1) : y = z := left_inv_eq_right_inv (trans (mul_comm _ _) hy) hz end comm_monoid section left_cancel_monoid variables {M : Type u} [left_cancel_monoid M] {a b : M} @[simp, to_additive] lemma mul_right_eq_self : a * b = a ↔ b = 1 := calc a * b = a ↔ a * b = a * 1 : by rw mul_one ... ↔ b = 1 : mul_left_cancel_iff @[simp, to_additive] lemma self_eq_mul_right : a = a * b ↔ b = 1 := eq_comm.trans mul_right_eq_self end left_cancel_monoid section right_cancel_monoid variables {M : Type u} [right_cancel_monoid M] {a b : M} @[simp, to_additive] lemma mul_left_eq_self : a * b = b ↔ a = 1 := calc a * b = b ↔ a * b = 1 * b : by rw one_mul ... ↔ a = 1 : mul_right_cancel_iff @[simp, to_additive] lemma self_eq_mul_left : b = a * b ↔ a = 1 := eq_comm.trans mul_left_eq_self end right_cancel_monoid section has_involutive_inv variables [has_involutive_inv G] {a b : G} @[simp, to_additive] lemma inv_involutive : function.involutive (has_inv.inv : G → G) := inv_inv @[simp, to_additive] lemma inv_surjective : function.surjective (has_inv.inv : G → G) := inv_involutive.surjective @[to_additive] lemma inv_injective : function.injective (has_inv.inv : G → G) := inv_involutive.injective @[simp, to_additive] theorem inv_inj {a b : G} : a⁻¹ = b⁻¹ ↔ a = b := inv_injective.eq_iff @[to_additive] lemma eq_inv_of_eq_inv (h : a = b⁻¹) : b = a⁻¹ := by simp [h] @[to_additive] theorem eq_inv_iff_eq_inv : a = b⁻¹ ↔ b = a⁻¹ := ⟨eq_inv_of_eq_inv, eq_inv_of_eq_inv⟩ @[to_additive] theorem inv_eq_iff_inv_eq : a⁻¹ = b ↔ b⁻¹ = a := eq_comm.trans $ eq_inv_iff_eq_inv.trans eq_comm variables (G) @[simp, to_additive] lemma inv_comp_inv : has_inv.inv ∘ has_inv.inv = @id G := inv_involutive.comp_self @[to_additive] lemma left_inverse_inv : left_inverse (λ a : G, a⁻¹) (λ a, a⁻¹) := inv_inv @[to_additive] lemma right_inverse_inv : left_inverse (λ a : G, a⁻¹) (λ a, a⁻¹) := inv_inv end has_involutive_inv section div_inv_monoid variables [div_inv_monoid G] {a b c : G} @[to_additive, field_simps] -- The attributes are out of order on purpose lemma inv_eq_one_div (x : G) : x⁻¹ = 1 / x := by rw [div_eq_mul_inv, one_mul] @[to_additive] lemma mul_one_div (x y : G) : x * (1 / y) = x / y := by rw [div_eq_mul_inv, one_mul, div_eq_mul_inv] @[to_additive] lemma mul_div_assoc (a b c : G) : a * b / c = a * (b / c) := by rw [div_eq_mul_inv, div_eq_mul_inv, mul_assoc _ _ _] @[to_additive, field_simps] -- The attributes are out of order on purpose lemma mul_div_assoc' (a b c : G) : a * (b / c) = (a * b) / c := (mul_div_assoc _ _ _).symm @[simp, to_additive] lemma one_div (a : G) : 1 / a = a⁻¹ := (inv_eq_one_div a).symm @[to_additive] lemma mul_div (a b c : G) : a * (b / c) = a * b / c := by simp only [mul_assoc, div_eq_mul_inv] @[to_additive] lemma div_eq_mul_one_div (a b : G) : a / b = a * (1 / b) := by rw [div_eq_mul_inv, one_div] end div_inv_monoid section division_monoid variables [division_monoid α] {a b c : α} local attribute [simp] mul_assoc div_eq_mul_inv @[to_additive] lemma inv_eq_of_mul_eq_one_left (h : a * b = 1) : b⁻¹ = a := by rw [←inv_eq_of_mul_eq_one_right h, inv_inv] @[to_additive] lemma eq_inv_of_mul_eq_one_left (h : a * b = 1) : a = b⁻¹ := (inv_eq_of_mul_eq_one_left h).symm @[to_additive] lemma eq_inv_of_mul_eq_one_right (h : a * b = 1) : b = a⁻¹ := (inv_eq_of_mul_eq_one_right h).symm @[to_additive] lemma eq_one_div_of_mul_eq_one_left (h : b * a = 1) : b = 1 / a := by rw [eq_inv_of_mul_eq_one_left h, one_div] @[to_additive] lemma eq_one_div_of_mul_eq_one_right (h : a * b = 1) : b = 1 / a := by rw [eq_inv_of_mul_eq_one_right h, one_div] @[to_additive] lemma eq_of_div_eq_one (h : a / b = 1) : a = b := inv_injective $ inv_eq_of_mul_eq_one_right $ by rwa ←div_eq_mul_inv @[to_additive] lemma div_ne_one_of_ne : a ≠ b → a / b ≠ 1 := mt eq_of_div_eq_one variables (a b c) @[to_additive] lemma one_div_mul_one_div_rev : (1 / a) * (1 / b) = 1 / (b * a) := by simp @[to_additive] lemma inv_div_left : a⁻¹ / b = (b * a)⁻¹ := by simp @[simp, to_additive] lemma inv_div : (a / b)⁻¹ = b / a := by simp @[simp, to_additive] lemma one_div_div : 1 / (a / b) = b / a := by simp @[simp, to_additive] lemma inv_one : (1 : α)⁻¹ = 1 := by simpa only [one_div, inv_inv] using (inv_div (1 : α) 1).symm @[simp, to_additive] lemma div_one : a / 1 = a := by simp @[to_additive] lemma one_div_one : (1 : α) / 1 = 1 := div_one _ @[to_additive] lemma one_div_one_div : 1 / (1 / a) = a := by simp variables {a b c} @[simp, to_additive] lemma inv_eq_one : a⁻¹ = 1 ↔ a = 1 := inv_injective.eq_iff' inv_one @[simp, to_additive] lemma one_eq_inv : 1 = a⁻¹ ↔ a = 1 := eq_comm.trans inv_eq_one @[to_additive] lemma inv_ne_one : a⁻¹ ≠ 1 ↔ a ≠ 1 := inv_eq_one.not @[to_additive] lemma eq_of_one_div_eq_one_div (h : 1 / a = 1 / b) : a = b := by rw [←one_div_one_div a, h, one_div_one_div] variables (a b c) -- The attributes are out of order on purpose @[to_additive, field_simps] lemma div_div_eq_mul_div : a / (b / c) = a * c / b := by simp @[simp, to_additive] lemma div_inv_eq_mul : a / b⁻¹ = a * b := by simp @[to_additive] lemma div_mul_eq_div_div_swap : a / (b * c) = a / c / b := by simp only [mul_assoc, mul_inv_rev, div_eq_mul_inv] end division_monoid lemma bit0_neg [subtraction_monoid α] (a : α) : bit0 (-a) = -bit0 a := (neg_add_rev _ _).symm section division_comm_monoid variables [division_comm_monoid α] (a b c d : α) local attribute [simp] mul_assoc mul_comm mul_left_comm div_eq_mul_inv @[to_additive neg_add] lemma mul_inv : (a * b)⁻¹ = a⁻¹ * b⁻¹ := by simp @[to_additive] lemma inv_div' : (a / b)⁻¹ = a⁻¹ / b⁻¹ := by simp @[to_additive] lemma div_eq_inv_mul : a / b = b⁻¹ * a := by simp @[to_additive] lemma inv_mul_eq_div : a⁻¹ * b = b / a := by simp @[to_additive] lemma inv_mul' : (a * b)⁻¹ = a⁻¹ / b := by simp @[simp, to_additive] lemma inv_div_inv : (a⁻¹ / b⁻¹) = b / a := by simp @[to_additive] lemma inv_inv_div_inv : (a⁻¹ / b⁻¹)⁻¹ = a / b := by simp @[to_additive] lemma one_div_mul_one_div : (1 / a) * (1 / b) = 1 / (a * b) := by simp @[to_additive] lemma div_right_comm : a / b / c = a / c / b := by simp @[to_additive, field_simps] lemma div_div : a / b / c = a / (b * c) := by simp @[to_additive] lemma div_mul : a / b * c = a / (b / c) := by simp @[to_additive] lemma mul_div_left_comm : a * (b / c) = b * (a / c) := by simp @[to_additive] lemma mul_div_right_comm : a * b / c = a / c * b := by simp @[to_additive] lemma div_mul_eq_div_div : a / (b * c) = a / b / c := by simp @[to_additive, field_simps] lemma div_mul_eq_mul_div : a / b * c = a * c / b := by simp @[to_additive] lemma mul_comm_div : a / b * c = a * (c / b) := by simp @[to_additive] lemma div_mul_comm : a / b * c = c / b * a := by simp @[to_additive] lemma div_mul_eq_div_mul_one_div : a / (b * c) = (a / b) * (1 / c) := by simp @[to_additive] lemma div_div_div_eq : a / b / (c / d) = a * d / (b * c) := by simp @[to_additive] lemma div_div_div_comm : a / b / (c / d) = a / c / (b / d) := by simp @[to_additive] lemma div_mul_div_comm : a / b * (c / d) = a * c / (b * d) := by simp @[to_additive] lemma mul_div_mul_comm : a * b / (c * d) = a / c * (b / d) := by simp end division_comm_monoid section group variables [group G] {a b c d : G} @[simp, to_additive] theorem div_eq_inv_self : a / b = b⁻¹ ↔ a = 1 := by rw [div_eq_mul_inv, mul_left_eq_self] @[to_additive] theorem mul_left_surjective (a : G) : function.surjective ((*) a) := λ x, ⟨a⁻¹ * x, mul_inv_cancel_left a x⟩ @[to_additive] theorem mul_right_surjective (a : G) : function.surjective (λ x, x * a) := λ x, ⟨x * a⁻¹, inv_mul_cancel_right x a⟩ @[to_additive] lemma eq_mul_inv_of_mul_eq (h : a * c = b) : a = b * c⁻¹ := by simp [h.symm] @[to_additive] lemma eq_inv_mul_of_mul_eq (h : b * a = c) : a = b⁻¹ * c := by simp [h.symm] @[to_additive] lemma inv_mul_eq_of_eq_mul (h : b = a * c) : a⁻¹ * b = c := by simp [h] @[to_additive] lemma mul_inv_eq_of_eq_mul (h : a = c * b) : a * b⁻¹ = c := by simp [h] @[to_additive] lemma eq_mul_of_mul_inv_eq (h : a * c⁻¹ = b) : a = b * c := by simp [h.symm] @[to_additive] lemma eq_mul_of_inv_mul_eq (h : b⁻¹ * a = c) : a = b * c := by simp [h.symm, mul_inv_cancel_left] @[to_additive] lemma mul_eq_of_eq_inv_mul (h : b = a⁻¹ * c) : a * b = c := by rw [h, mul_inv_cancel_left] @[to_additive] lemma mul_eq_of_eq_mul_inv (h : a = c * b⁻¹) : a * b = c := by simp [h] @[to_additive] theorem mul_eq_one_iff_eq_inv : a * b = 1 ↔ a = b⁻¹ := ⟨eq_inv_of_mul_eq_one_left, λ h, by rw [h, mul_left_inv]⟩ @[to_additive] theorem mul_eq_one_iff_inv_eq : a * b = 1 ↔ a⁻¹ = b := by rw [mul_eq_one_iff_eq_inv, eq_inv_iff_eq_inv, eq_comm] @[to_additive] theorem eq_inv_iff_mul_eq_one : a = b⁻¹ ↔ a * b = 1 := mul_eq_one_iff_eq_inv.symm @[to_additive] theorem inv_eq_iff_mul_eq_one : a⁻¹ = b ↔ a * b = 1 := mul_eq_one_iff_inv_eq.symm @[to_additive] theorem eq_mul_inv_iff_mul_eq : a = b * c⁻¹ ↔ a * c = b := ⟨λ h, by rw [h, inv_mul_cancel_right], λ h, by rw [← h, mul_inv_cancel_right]⟩ @[to_additive] theorem eq_inv_mul_iff_mul_eq : a = b⁻¹ * c ↔ b * a = c := ⟨λ h, by rw [h, mul_inv_cancel_left], λ h, by rw [← h, inv_mul_cancel_left]⟩ @[to_additive] theorem inv_mul_eq_iff_eq_mul : a⁻¹ * b = c ↔ b = a * c := ⟨λ h, by rw [← h, mul_inv_cancel_left], λ h, by rw [h, inv_mul_cancel_left]⟩ @[to_additive] theorem mul_inv_eq_iff_eq_mul : a * b⁻¹ = c ↔ a = c * b := ⟨λ h, by rw [← h, inv_mul_cancel_right], λ h, by rw [h, mul_inv_cancel_right]⟩ @[to_additive] theorem mul_inv_eq_one : a * b⁻¹ = 1 ↔ a = b := by rw [mul_eq_one_iff_eq_inv, inv_inv] @[to_additive] theorem inv_mul_eq_one : a⁻¹ * b = 1 ↔ a = b := by rw [mul_eq_one_iff_eq_inv, inv_inj] @[to_additive] lemma div_left_injective : function.injective (λ a, a / b) := by simpa only [div_eq_mul_inv] using λ a a' h, mul_left_injective (b⁻¹) h @[to_additive] lemma div_right_injective : function.injective (λ a, b / a) := by simpa only [div_eq_mul_inv] using λ a a' h, inv_injective (mul_right_injective b h) @[simp, to_additive sub_add_cancel] lemma div_mul_cancel' (a b : G) : a / b * b = a := by rw [div_eq_mul_inv, inv_mul_cancel_right a b] @[simp, to_additive sub_self] lemma div_self' (a : G) : a / a = 1 := by rw [div_eq_mul_inv, mul_right_inv a] @[simp, to_additive add_sub_cancel] lemma mul_div_cancel'' (a b : G) : a * b / b = a := by rw [div_eq_mul_inv, mul_inv_cancel_right a b] @[simp, to_additive] lemma mul_div_mul_right_eq_div (a b c : G) : (a * c) / (b * c) = a / b := by rw [div_mul_eq_div_div_swap]; simp only [mul_left_inj, eq_self_iff_true, mul_div_cancel''] @[to_additive eq_sub_of_add_eq] lemma eq_div_of_mul_eq' (h : a * c = b) : a = b / c := by simp [← h] @[to_additive sub_eq_of_eq_add] lemma div_eq_of_eq_mul'' (h : a = c * b) : a / b = c := by simp [h] @[to_additive] lemma eq_mul_of_div_eq (h : a / c = b) : a = b * c := by simp [← h] @[to_additive] lemma mul_eq_of_eq_div (h : a = c / b) : a * b = c := by simp [h] @[simp, to_additive] lemma div_right_inj : a / b = a / c ↔ b = c := div_right_injective.eq_iff @[simp, to_additive] lemma div_left_inj : b / a = c / a ↔ b = c := by { rw [div_eq_mul_inv, div_eq_mul_inv], exact mul_left_inj _ } @[simp, to_additive sub_add_sub_cancel] lemma div_mul_div_cancel' (a b c : G) : (a / b) * (b / c) = a / c := by rw [← mul_div_assoc, div_mul_cancel'] @[simp, to_additive sub_sub_sub_cancel_right] lemma div_div_div_cancel_right' (a b c : G) : (a / c) / (b / c) = a / b := by rw [← inv_div c b, div_inv_eq_mul, div_mul_div_cancel'] @[to_additive] theorem div_eq_one : a / b = 1 ↔ a = b := ⟨eq_of_div_eq_one, λ h, by rw [h, div_self']⟩ alias div_eq_one ↔ _ div_eq_one_of_eq alias sub_eq_zero ↔ _ sub_eq_zero_of_eq @[to_additive] theorem div_ne_one : a / b ≠ 1 ↔ a ≠ b := not_congr div_eq_one @[simp, to_additive] theorem div_eq_self : a / b = a ↔ b = 1 := by rw [div_eq_mul_inv, mul_right_eq_self, inv_eq_one] @[to_additive eq_sub_iff_add_eq] theorem eq_div_iff_mul_eq' : a = b / c ↔ a * c = b := by rw [div_eq_mul_inv, eq_mul_inv_iff_mul_eq] @[to_additive] theorem div_eq_iff_eq_mul : a / b = c ↔ a = c * b := by rw [div_eq_mul_inv, mul_inv_eq_iff_eq_mul] @[to_additive] theorem eq_iff_eq_of_div_eq_div (H : a / b = c / d) : a = b ↔ c = d := by rw [← div_eq_one, H, div_eq_one] @[to_additive] theorem left_inverse_div_mul_left (c : G) : function.left_inverse (λ x, x / c) (λ x, x * c) := assume x, mul_div_cancel'' x c @[to_additive] theorem left_inverse_mul_left_div (c : G) : function.left_inverse (λ x, x * c) (λ x, x / c) := assume x, div_mul_cancel' x c @[to_additive] theorem left_inverse_mul_right_inv_mul (c : G) : function.left_inverse (λ x, c * x) (λ x, c⁻¹ * x) := assume x, mul_inv_cancel_left c x @[to_additive] theorem left_inverse_inv_mul_mul_right (c : G) : function.left_inverse (λ x, c⁻¹ * x) (λ x, c * x) := assume x, inv_mul_cancel_left c x @[to_additive] lemma exists_npow_eq_one_of_zpow_eq_one {n : ℤ} (hn : n ≠ 0) {x : G} (h : x ^ n = 1) : ∃ n : ℕ, 0 < n ∧ x ^ n = 1 := begin cases n with n n, { rw zpow_of_nat at h, refine ⟨n, nat.pos_of_ne_zero (λ n0, hn _), h⟩, rw n0, refl }, { rw [zpow_neg_succ_of_nat, inv_eq_one] at h, refine ⟨n + 1, n.succ_pos, h⟩ } end end group section comm_group variables [comm_group G] {a b c d : G} local attribute [simp] mul_assoc mul_comm mul_left_comm div_eq_mul_inv @[to_additive] lemma div_eq_of_eq_mul' {a b c : G} (h : a = b * c) : a / b = c := by rw [h, div_eq_mul_inv, mul_comm, inv_mul_cancel_left] @[simp, to_additive] lemma mul_div_mul_left_eq_div (a b c : G) : (c * a) / (c * b) = a / b := by simp @[to_additive eq_sub_of_add_eq'] lemma eq_div_of_mul_eq'' (h : c * a = b) : a = b / c := by simp [h.symm] @[to_additive] lemma eq_mul_of_div_eq' (h : a / b = c) : a = b * c := by simp [h.symm] @[to_additive] lemma mul_eq_of_eq_div' (h : b = c / a) : a * b = c := begin simp [h], rw [mul_comm c, mul_inv_cancel_left] end @[to_additive sub_sub_self] lemma div_div_self' (a b : G) : a / (a / b) = b := by simpa using mul_inv_cancel_left a b @[to_additive] lemma div_eq_div_mul_div (a b c : G) : a / b = c / b * (a / c) := by simp [mul_left_comm c] @[simp, to_additive] lemma div_div_cancel (a b : G) : a / (a / b) = b := div_div_self' a b @[simp, to_additive] lemma div_div_cancel_left (a b : G) : a / b / a = b⁻¹ := by simp @[to_additive eq_sub_iff_add_eq'] lemma eq_div_iff_mul_eq'' : a = b / c ↔ c * a = b := by rw [eq_div_iff_mul_eq', mul_comm] @[to_additive] lemma div_eq_iff_eq_mul' : a / b = c ↔ a = b * c := by rw [div_eq_iff_eq_mul, mul_comm] @[simp, to_additive add_sub_cancel'] lemma mul_div_cancel''' (a b : G) : a * b / a = b := by rw [div_eq_inv_mul, inv_mul_cancel_left] @[simp, to_additive] lemma mul_div_cancel'_right (a b : G) : a * (b / a) = b := by rw [← mul_div_assoc, mul_div_cancel'''] @[simp, to_additive sub_add_cancel'] lemma div_mul_cancel'' (a b : G) : a / (a * b) = b⁻¹ := by rw [← inv_div, mul_div_cancel'''] -- This lemma is in the `simp` set under the name `mul_inv_cancel_comm_assoc`, -- along with the additive version `add_neg_cancel_comm_assoc`, -- defined in `algebra/group/commute` @[to_additive] lemma mul_mul_inv_cancel'_right (a b : G) : a * (b * a⁻¹) = b := by rw [← div_eq_mul_inv, mul_div_cancel'_right a b] @[simp, to_additive] lemma mul_mul_div_cancel (a b c : G) : (a * c) * (b / c) = a * b := by rw [mul_assoc, mul_div_cancel'_right] @[simp, to_additive] lemma div_mul_mul_cancel (a b c : G) : (a / c) * (b * c) = a * b := by rw [mul_left_comm, div_mul_cancel', mul_comm] @[simp, to_additive sub_add_sub_cancel'] lemma div_mul_div_cancel'' (a b c : G) : (a / b) * (c / a) = c / b := by rw mul_comm; apply div_mul_div_cancel' @[simp, to_additive] lemma mul_div_div_cancel (a b c : G) : (a * b) / (a / c) = b * c := by rw [← div_mul, mul_div_cancel'''] @[simp, to_additive] lemma div_div_div_cancel_left (a b c : G) : (c / a) / (c / b) = b / a := by rw [← inv_div b c, div_inv_eq_mul, mul_comm, div_mul_div_cancel'] @[to_additive] lemma div_eq_div_iff_mul_eq_mul : a / b = c / d ↔ a * d = c * b := begin rw [div_eq_iff_eq_mul, div_mul_eq_mul_div, eq_comm, div_eq_iff_eq_mul'], simp only [mul_comm, eq_comm] end @[to_additive] lemma div_eq_div_iff_div_eq_div : a / b = c / d ↔ a / c = b / d := by rw [div_eq_iff_eq_mul, div_mul_eq_mul_div, div_eq_iff_eq_mul', mul_div_assoc] end comm_group section subtraction_comm_monoid variables {M : Type u} [subtraction_comm_monoid M] lemma bit0_sub (a b : M) : bit0 (a - b) = bit0 a - bit0 b := sub_add_sub_comm _ _ _ _ lemma bit1_sub [has_one M] (a b : M) : bit1 (a - b) = bit1 a - bit0 b := (congr_arg (+ (1 : M)) $ bit0_sub a b : _).trans $ sub_add_eq_add_sub _ _ _ end subtraction_comm_monoid section commutator /-- The commutator of two elements `g₁` and `g₂`. -/ instance commutator_element {G : Type*} [group G] : has_bracket G G := ⟨λ g₁ g₂, g₁ * g₂ * g₁⁻¹ * g₂⁻¹⟩ lemma commutator_element_def {G : Type*} [group G] (g₁ g₂ : G) : ⁅g₁, g₂⁆ = g₁ * g₂ * g₁⁻¹ * g₂⁻¹ := rfl end commutator