/- Copyright (c) 2018 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Jens Wagemaker -/ import algebra.divisibility import algebra.group_power.lemmas import algebra.invertible import order.atoms /-! # Associated, prime, and irreducible elements. -/ variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} section prime variables [comm_monoid_with_zero α] /-- prime element of a `comm_monoid_with_zero` -/ def prime (p : α) : Prop := p ≠ 0 ∧ ¬ is_unit p ∧ (∀a b, p ∣ a * b → p ∣ a ∨ p ∣ b) namespace prime variables {p : α} (hp : prime p) include hp lemma ne_zero : p ≠ 0 := hp.1 lemma not_unit : ¬ is_unit p := hp.2.1 lemma not_dvd_one : ¬ p ∣ 1 := mt (is_unit_of_dvd_one _) hp.not_unit lemma ne_one : p ≠ 1 := λ h, hp.2.1 (h.symm ▸ is_unit_one) lemma dvd_or_dvd (hp : prime p) {a b : α} (h : p ∣ a * b) : p ∣ a ∨ p ∣ b := hp.2.2 a b h lemma dvd_of_dvd_pow (hp : prime p) {a : α} {n : ℕ} (h : p ∣ a^n) : p ∣ a := begin induction n with n ih, { rw pow_zero at h, have := is_unit_of_dvd_one _ h, have := not_unit hp, contradiction }, rw pow_succ at h, cases dvd_or_dvd hp h with dvd_a dvd_pow, { assumption }, exact ih dvd_pow end end prime @[simp] lemma not_prime_zero : ¬ prime (0 : α) := λ h, h.ne_zero rfl @[simp] lemma not_prime_one : ¬ prime (1 : α) := λ h, h.not_unit is_unit_one section map variables [comm_monoid_with_zero β] {F : Type*} {G : Type*} [monoid_with_zero_hom_class F α β] [mul_hom_class G β α] (f : F) (g : G) {p : α} lemma comap_prime (hinv : ∀ a, g (f a : β) = a) (hp : prime (f p)) : prime p := ⟨ λ h, hp.1 $ by simp [h], λ h, hp.2.1 $ h.map f, λ a b h, by { refine (hp.2.2 (f a) (f b) $ by { convert map_dvd f h, simp }).imp _ _; { intro h, convert ← map_dvd g h; apply hinv } } ⟩ lemma mul_equiv.prime_iff (e : α ≃* β) : prime p ↔ prime (e p) := ⟨ λ h, comap_prime e.symm e (λ a, by simp) $ (e.symm_apply_apply p).substr h, comap_prime e e.symm (λ a, by simp) ⟩ end map end prime lemma prime.left_dvd_or_dvd_right_of_dvd_mul [cancel_comm_monoid_with_zero α] {p : α} (hp : prime p) {a b : α} : a ∣ p * b → p ∣ a ∨ a ∣ b := begin rintro ⟨c, hc⟩, rcases hp.2.2 a c (hc ▸ dvd_mul_right _ _) with h | ⟨x, rfl⟩, { exact or.inl h }, { rw [mul_left_comm, mul_right_inj' hp.ne_zero] at hc, exact or.inr (hc.symm ▸ dvd_mul_right _ _) } end lemma prime.pow_dvd_of_dvd_mul_left [cancel_comm_monoid_with_zero α] {p a b : α} (hp : prime p) (n : ℕ) (h : ¬p ∣ a) (h' : p ^ n ∣ a * b) : p ^ n ∣ b := begin induction n with n ih, { rw pow_zero, exact one_dvd b }, { obtain ⟨c, rfl⟩ := ih (dvd_trans (pow_dvd_pow p n.le_succ) h'), rw pow_succ', apply mul_dvd_mul_left _ ((hp.dvd_or_dvd _).resolve_left h), rwa [←mul_dvd_mul_iff_left (pow_ne_zero n hp.ne_zero), ←pow_succ', mul_left_comm] } end lemma prime.pow_dvd_of_dvd_mul_right [cancel_comm_monoid_with_zero α] {p a b : α} (hp : prime p) (n : ℕ) (h : ¬p ∣ b) (h' : p ^ n ∣ a * b) : p ^ n ∣ a := by { rw [mul_comm] at h', exact hp.pow_dvd_of_dvd_mul_left n h h' } lemma prime.dvd_of_pow_dvd_pow_mul_pow_of_square_not_dvd [cancel_comm_monoid_with_zero α] {p a b : α} {n : ℕ} (hp : prime p) (hpow : p ^ n.succ ∣ a ^ n.succ * b ^ n) (hb : ¬ p ^ 2 ∣ b) : p ∣ a := begin -- Suppose `p ∣ b`, write `b = p * x` and `hy : a ^ n.succ * b ^ n = p ^ n.succ * y`. cases (hp.dvd_or_dvd ((dvd_pow_self p (nat.succ_ne_zero n)).trans hpow)) with H hbdiv, { exact hp.dvd_of_dvd_pow H }, obtain ⟨x, rfl⟩ := hp.dvd_of_dvd_pow hbdiv, obtain ⟨y, hy⟩ := hpow, -- Then we can divide out a common factor of `p ^ n` from the equation `hy`. have : a ^ n.succ * x ^ n = p * y, { refine mul_left_cancel₀ (pow_ne_zero n hp.ne_zero) _, rw [← mul_assoc _ p, ← pow_succ', ← hy, mul_pow, ← mul_assoc (a ^ n.succ), mul_comm _ (p ^ n), mul_assoc] }, -- So `p ∣ a` (and we're done) or `p ∣ x`, which can't be the case since it implies `p^2 ∣ b`. refine hp.dvd_of_dvd_pow ((hp.dvd_or_dvd ⟨_, this⟩).resolve_right (λ hdvdx, hb _)), obtain ⟨z, rfl⟩ := hp.dvd_of_dvd_pow hdvdx, rw [pow_two, ← mul_assoc], exact dvd_mul_right _ _, end /-- `irreducible p` states that `p` is non-unit and only factors into units. We explicitly avoid stating that `p` is non-zero, this would require a semiring. Assuming only a monoid allows us to reuse irreducible for associated elements. -/ structure irreducible [monoid α] (p : α) : Prop := (not_unit : ¬ is_unit p) (is_unit_or_is_unit' : ∀a b, p = a * b → is_unit a ∨ is_unit b) namespace irreducible lemma not_dvd_one [comm_monoid α] {p : α} (hp : irreducible p) : ¬ p ∣ 1 := mt (is_unit_of_dvd_one _) hp.not_unit lemma is_unit_or_is_unit [monoid α] {p : α} (hp : irreducible p) {a b : α} (h : p = a * b) : is_unit a ∨ is_unit b := hp.is_unit_or_is_unit' a b h end irreducible lemma irreducible_iff [monoid α] {p : α} : irreducible p ↔ ¬ is_unit p ∧ ∀a b, p = a * b → is_unit a ∨ is_unit b := ⟨λ h, ⟨h.1, h.2⟩, λ h, ⟨h.1, h.2⟩⟩ @[simp] theorem not_irreducible_one [monoid α] : ¬ irreducible (1 : α) := by simp [irreducible_iff] theorem irreducible.ne_one [monoid α] : ∀ {p:α}, irreducible p → p ≠ 1 | _ hp rfl := not_irreducible_one hp @[simp] theorem not_irreducible_zero [monoid_with_zero α] : ¬ irreducible (0 : α) | ⟨hn0, h⟩ := have is_unit (0:α) ∨ is_unit (0:α), from h 0 0 ((mul_zero 0).symm), this.elim hn0 hn0 theorem irreducible.ne_zero [monoid_with_zero α] : ∀ {p:α}, irreducible p → p ≠ 0 | _ hp rfl := not_irreducible_zero hp theorem of_irreducible_mul {α} [monoid α] {x y : α} : irreducible (x * y) → is_unit x ∨ is_unit y | ⟨_, h⟩ := h _ _ rfl theorem of_irreducible_pow {α} [monoid α] {x : α} {n : ℕ} (hn : n ≠ 1) : irreducible (x ^ n) → is_unit x := begin obtain hn|hn := hn.lt_or_lt, { simp only [nat.lt_one_iff.mp hn, is_empty.forall_iff, not_irreducible_one, pow_zero] }, intro h, obtain ⟨k, rfl⟩ := nat.exists_eq_add_of_lt hn, rw [pow_succ, add_comm] at h, exact (or_iff_left_of_imp ((is_unit_pos_pow_iff (nat.succ_pos _)).mp)).mp (of_irreducible_mul h) end theorem irreducible_or_factor {α} [monoid α] (x : α) (h : ¬ is_unit x) : irreducible x ∨ ∃ a b, ¬ is_unit a ∧ ¬ is_unit b ∧ a * b = x := begin haveI := classical.dec, refine or_iff_not_imp_right.2 (λ H, _), simp [h, irreducible_iff] at H ⊢, refine λ a b h, classical.by_contradiction $ λ o, _, simp [not_or_distrib] at o, exact H _ o.1 _ o.2 h.symm end protected lemma prime.irreducible [cancel_comm_monoid_with_zero α] {p : α} (hp : prime p) : irreducible p := ⟨hp.not_unit, λ a b hab, (show a * b ∣ a ∨ a * b ∣ b, from hab ▸ hp.dvd_or_dvd (hab ▸ dvd_rfl)).elim (λ ⟨x, hx⟩, or.inr (is_unit_iff_dvd_one.2 ⟨x, mul_right_cancel₀ (show a ≠ 0, from λ h, by simp [*, prime] at *) $ by conv {to_lhs, rw hx}; simp [mul_comm, mul_assoc, mul_left_comm]⟩)) (λ ⟨x, hx⟩, or.inl (is_unit_iff_dvd_one.2 ⟨x, mul_right_cancel₀ (show b ≠ 0, from λ h, by simp [*, prime] at *) $ by conv {to_lhs, rw hx}; simp [mul_comm, mul_assoc, mul_left_comm]⟩))⟩ lemma succ_dvd_or_succ_dvd_of_succ_sum_dvd_mul [cancel_comm_monoid_with_zero α] {p : α} (hp : prime p) {a b : α} {k l : ℕ} : p ^ k ∣ a → p ^ l ∣ b → p ^ ((k + l) + 1) ∣ a * b → p ^ (k + 1) ∣ a ∨ p ^ (l + 1) ∣ b := λ ⟨x, hx⟩ ⟨y, hy⟩ ⟨z, hz⟩, have h : p ^ (k + l) * (x * y) = p ^ (k + l) * (p * z), by simpa [mul_comm, pow_add, hx, hy, mul_assoc, mul_left_comm] using hz, have hp0: p ^ (k + l) ≠ 0, from pow_ne_zero _ hp.ne_zero, have hpd : p ∣ x * y, from ⟨z, by rwa [mul_right_inj' hp0] at h⟩, (hp.dvd_or_dvd hpd).elim (λ ⟨d, hd⟩, or.inl ⟨d, by simp [*, pow_succ, mul_comm, mul_left_comm, mul_assoc]⟩) (λ ⟨d, hd⟩, or.inr ⟨d, by simp [*, pow_succ, mul_comm, mul_left_comm, mul_assoc]⟩) /-- If `p` and `q` are irreducible, then `p ∣ q` implies `q ∣ p`. -/ lemma irreducible.dvd_symm [monoid α] {p q : α} (hp : irreducible p) (hq : irreducible q) : p ∣ q → q ∣ p := begin unfreezingI { rintros ⟨q', rfl⟩ }, rw is_unit.mul_right_dvd (or.resolve_left (of_irreducible_mul hq) hp.not_unit), end lemma irreducible.dvd_comm [monoid α] {p q : α} (hp : irreducible p) (hq : irreducible q) : p ∣ q ↔ q ∣ p := ⟨hp.dvd_symm hq, hq.dvd_symm hp⟩ section variables [monoid α] lemma irreducible_units_mul (a : αˣ) (b : α) : irreducible (↑a * b) ↔ irreducible b := begin simp only [irreducible_iff, units.is_unit_units_mul, and.congr_right_iff], refine λ hu, ⟨λ h A B HAB, _, λ h A B HAB, _⟩, { rw [←a.is_unit_units_mul], apply h, rw [mul_assoc, ←HAB] }, { rw [←(a⁻¹).is_unit_units_mul], apply h, rw [mul_assoc, ←HAB, units.inv_mul_cancel_left] }, end lemma irreducible_is_unit_mul {a b : α} (h : is_unit a) : irreducible (a * b) ↔ irreducible b := let ⟨a, ha⟩ := h in ha ▸ irreducible_units_mul a b lemma irreducible_mul_units (a : αˣ) (b : α) : irreducible (b * ↑a) ↔ irreducible b := begin simp only [irreducible_iff, units.is_unit_mul_units, and.congr_right_iff], refine λ hu, ⟨λ h A B HAB, _, λ h A B HAB, _⟩, { rw [←units.is_unit_mul_units B a], apply h, rw [←mul_assoc, ←HAB] }, { rw [←units.is_unit_mul_units B a⁻¹], apply h, rw [←mul_assoc, ←HAB, units.mul_inv_cancel_right] }, end lemma irreducible_mul_is_unit {a b : α} (h : is_unit a) : irreducible (b * a) ↔ irreducible b := let ⟨a, ha⟩ := h in ha ▸ irreducible_mul_units a b lemma irreducible_mul_iff {a b : α} : irreducible (a * b) ↔ (irreducible a ∧ is_unit b) ∨ (irreducible b ∧ is_unit a) := begin split, { refine λ h, or.imp (λ h', ⟨_, h'⟩) (λ h', ⟨_, h'⟩) (h.is_unit_or_is_unit rfl).symm, { rwa [irreducible_mul_is_unit h'] at h }, { rwa [irreducible_is_unit_mul h'] at h } }, { rintros (⟨ha, hb⟩|⟨hb, ha⟩), { rwa [irreducible_mul_is_unit hb] }, { rwa [irreducible_is_unit_mul ha] } }, end end lemma pow_not_prime [cancel_comm_monoid_with_zero α] {x : α} {n : ℕ} (hn : n ≠ 1) : ¬ prime (x ^ n) := λ hp, hp.not_unit $ is_unit.pow _ $ of_irreducible_pow hn $ hp.irreducible /-- Two elements of a `monoid` are `associated` if one of them is another one multiplied by a unit on the right. -/ def associated [monoid α] (x y : α) : Prop := ∃u:αˣ, x * u = y local infix ` ~ᵤ ` : 50 := associated namespace associated @[refl] protected theorem refl [monoid α] (x : α) : x ~ᵤ x := ⟨1, by simp⟩ instance [monoid α] : is_refl α associated := ⟨associated.refl⟩ @[symm] protected theorem symm [monoid α] : ∀{x y : α}, x ~ᵤ y → y ~ᵤ x | x _ ⟨u, rfl⟩ := ⟨u⁻¹, by rw [mul_assoc, units.mul_inv, mul_one]⟩ instance [monoid α] : is_symm α associated := ⟨λ a b, associated.symm⟩ @[trans] protected theorem trans [monoid α] : ∀{x y z : α}, x ~ᵤ y → y ~ᵤ z → x ~ᵤ z | x _ _ ⟨u, rfl⟩ ⟨v, rfl⟩ := ⟨u * v, by rw [units.coe_mul, mul_assoc]⟩ instance [monoid α] : is_trans α associated := ⟨λ a b c, associated.trans⟩ /-- The setoid of the relation `x ~ᵤ y` iff there is a unit `u` such that `x * u = y` -/ protected def setoid (α : Type*) [monoid α] : setoid α := { r := associated, iseqv := ⟨associated.refl, λa b, associated.symm, λa b c, associated.trans⟩ } end associated local attribute [instance] associated.setoid theorem unit_associated_one [monoid α] {u : αˣ} : (u : α) ~ᵤ 1 := ⟨u⁻¹, units.mul_inv u⟩ theorem associated_one_iff_is_unit [monoid α] {a : α} : (a : α) ~ᵤ 1 ↔ is_unit a := iff.intro (assume h, let ⟨c, h⟩ := h.symm in h ▸ ⟨c, (one_mul _).symm⟩) (assume ⟨c, h⟩, associated.symm ⟨c, by simp [h]⟩) theorem associated_zero_iff_eq_zero [monoid_with_zero α] (a : α) : a ~ᵤ 0 ↔ a = 0 := iff.intro (assume h, let ⟨u, h⟩ := h.symm in by simpa using h.symm) (assume h, h ▸ associated.refl a) theorem associated_one_of_mul_eq_one [comm_monoid α] {a : α} (b : α) (hab : a * b = 1) : a ~ᵤ 1 := show (units.mk_of_mul_eq_one a b hab : α) ~ᵤ 1, from unit_associated_one theorem associated_one_of_associated_mul_one [comm_monoid α] {a b : α} : a * b ~ᵤ 1 → a ~ᵤ 1 | ⟨u, h⟩ := associated_one_of_mul_eq_one (b * u) $ by simpa [mul_assoc] using h lemma associated_mul_unit_left {β : Type*} [monoid β] (a u : β) (hu : is_unit u) : associated (a * u) a := let ⟨u', hu⟩ := hu in ⟨u'⁻¹, hu ▸ units.mul_inv_cancel_right _ _⟩ lemma associated_unit_mul_left {β : Type*} [comm_monoid β] (a u : β) (hu : is_unit u) : associated (u * a) a := begin rw mul_comm, exact associated_mul_unit_left _ _ hu end lemma associated_mul_unit_right {β : Type*} [monoid β] (a u : β) (hu : is_unit u) : associated a (a * u) := (associated_mul_unit_left a u hu).symm lemma associated_unit_mul_right {β : Type*} [comm_monoid β] (a u : β) (hu : is_unit u) : associated a (u * a) := (associated_unit_mul_left a u hu).symm lemma associated.mul_mul [comm_monoid α] {a₁ a₂ b₁ b₂ : α} : a₁ ~ᵤ b₁ → a₂ ~ᵤ b₂ → (a₁ * a₂) ~ᵤ (b₁ * b₂) | ⟨c₁, h₁⟩ ⟨c₂, h₂⟩ := ⟨c₁ * c₂, by simp [h₁.symm, h₂.symm, mul_assoc, mul_comm, mul_left_comm]⟩ lemma associated.mul_left [comm_monoid α] (a : α) {b c : α} (h : b ~ᵤ c) : (a * b) ~ᵤ (a * c) := (associated.refl a).mul_mul h lemma associated.mul_right [comm_monoid α] {a b : α} (h : a ~ᵤ b) (c : α) : (a * c) ~ᵤ (b * c) := h.mul_mul (associated.refl c) lemma associated.pow_pow [comm_monoid α] {a b : α} {n : ℕ} (h : a ~ᵤ b) : a ^ n ~ᵤ b ^ n := begin induction n with n ih, { simp [h] }, convert h.mul_mul ih; rw pow_succ end protected lemma associated.dvd [monoid α] {a b : α} : a ~ᵤ b → a ∣ b := λ ⟨u, hu⟩, ⟨u, hu.symm⟩ protected lemma associated.dvd_dvd [monoid α] {a b : α} (h : a ~ᵤ b) : a ∣ b ∧ b ∣ a := ⟨h.dvd, h.symm.dvd⟩ theorem associated_of_dvd_dvd [cancel_monoid_with_zero α] {a b : α} (hab : a ∣ b) (hba : b ∣ a) : a ~ᵤ b := begin rcases hab with ⟨c, rfl⟩, rcases hba with ⟨d, a_eq⟩, by_cases ha0 : a = 0, { simp [*] at * }, have hac0 : a * c ≠ 0, { intro con, rw [con, zero_mul] at a_eq, apply ha0 a_eq, }, have : a * (c * d) = a * 1 := by rw [← mul_assoc, ← a_eq, mul_one], have hcd : (c * d) = 1, from mul_left_cancel₀ ha0 this, have : a * c * (d * c) = a * c * 1 := by rw [← mul_assoc, ← a_eq, mul_one], have hdc : d * c = 1, from mul_left_cancel₀ hac0 this, exact ⟨⟨c, d, hcd, hdc⟩, rfl⟩ end theorem dvd_dvd_iff_associated [cancel_monoid_with_zero α] {a b : α} : a ∣ b ∧ b ∣ a ↔ a ~ᵤ b := ⟨λ ⟨h1, h2⟩, associated_of_dvd_dvd h1 h2, associated.dvd_dvd⟩ instance [cancel_monoid_with_zero α] [decidable_rel ((∣) : α → α → Prop)] : decidable_rel ((~ᵤ) : α → α → Prop) := λ a b, decidable_of_iff _ dvd_dvd_iff_associated lemma associated.dvd_iff_dvd_left [monoid α] {a b c : α} (h : a ~ᵤ b) : a ∣ c ↔ b ∣ c := let ⟨u, hu⟩ := h in hu ▸ units.mul_right_dvd.symm lemma associated.dvd_iff_dvd_right [monoid α] {a b c : α} (h : b ~ᵤ c) : a ∣ b ↔ a ∣ c := let ⟨u, hu⟩ := h in hu ▸ units.dvd_mul_right.symm lemma associated.eq_zero_iff [monoid_with_zero α] {a b : α} (h : a ~ᵤ b) : a = 0 ↔ b = 0 := ⟨λ ha, let ⟨u, hu⟩ := h in by simp [hu.symm, ha], λ hb, let ⟨u, hu⟩ := h.symm in by simp [hu.symm, hb]⟩ lemma associated.ne_zero_iff [monoid_with_zero α] {a b : α} (h : a ~ᵤ b) : a ≠ 0 ↔ b ≠ 0 := not_congr h.eq_zero_iff protected lemma associated.prime [comm_monoid_with_zero α] {p q : α} (h : p ~ᵤ q) (hp : prime p) : prime q := ⟨h.ne_zero_iff.1 hp.ne_zero, let ⟨u, hu⟩ := h in ⟨λ ⟨v, hv⟩, hp.not_unit ⟨v * u⁻¹, by simp [hv, hu.symm]⟩, hu ▸ by { simp [units.mul_right_dvd], intros a b, exact hp.dvd_or_dvd }⟩⟩ lemma irreducible.associated_of_dvd [cancel_monoid_with_zero α] {p q : α} (p_irr : irreducible p) (q_irr : irreducible q) (dvd : p ∣ q) : associated p q := associated_of_dvd_dvd dvd (p_irr.dvd_symm q_irr dvd) lemma irreducible.dvd_irreducible_iff_associated [cancel_monoid_with_zero α] {p q : α} (pp : irreducible p) (qp : irreducible q) : p ∣ q ↔ associated p q := ⟨irreducible.associated_of_dvd pp qp, associated.dvd⟩ lemma prime.associated_of_dvd [cancel_comm_monoid_with_zero α] {p q : α} (p_prime : prime p) (q_prime : prime q) (dvd : p ∣ q) : associated p q := p_prime.irreducible.associated_of_dvd q_prime.irreducible dvd theorem prime.dvd_prime_iff_associated [cancel_comm_monoid_with_zero α] {p q : α} (pp : prime p) (qp : prime q) : p ∣ q ↔ associated p q := pp.irreducible.dvd_irreducible_iff_associated qp.irreducible lemma associated.prime_iff [comm_monoid_with_zero α] {p q : α} (h : p ~ᵤ q) : prime p ↔ prime q := ⟨h.prime, h.symm.prime⟩ protected lemma associated.is_unit [monoid α] {a b : α} (h : a ~ᵤ b) : is_unit a → is_unit b := let ⟨u, hu⟩ := h in λ ⟨v, hv⟩, ⟨v * u, by simp [hv, hu.symm]⟩ lemma associated.is_unit_iff [monoid α] {a b : α} (h : a ~ᵤ b) : is_unit a ↔ is_unit b := ⟨h.is_unit, h.symm.is_unit⟩ protected lemma associated.irreducible [monoid α] {p q : α} (h : p ~ᵤ q) (hp : irreducible p) : irreducible q := ⟨mt h.symm.is_unit hp.1, let ⟨u, hu⟩ := h in λ a b hab, have hpab : p = a * (b * (u⁻¹ : αˣ)), from calc p = (p * u) * (u ⁻¹ : αˣ) : by simp ... = _ : by rw hu; simp [hab, mul_assoc], (hp.is_unit_or_is_unit hpab).elim or.inl (λ ⟨v, hv⟩, or.inr ⟨v * u, by simp [hv]⟩)⟩ protected lemma associated.irreducible_iff [monoid α] {p q : α} (h : p ~ᵤ q) : irreducible p ↔ irreducible q := ⟨h.irreducible, h.symm.irreducible⟩ lemma associated.of_mul_left [cancel_comm_monoid_with_zero α] {a b c d : α} (h : a * b ~ᵤ c * d) (h₁ : a ~ᵤ c) (ha : a ≠ 0) : b ~ᵤ d := let ⟨u, hu⟩ := h in let ⟨v, hv⟩ := associated.symm h₁ in ⟨u * (v : αˣ), mul_left_cancel₀ ha begin rw [← hv, mul_assoc c (v : α) d, mul_left_comm c, ← hu], simp [hv.symm, mul_assoc, mul_comm, mul_left_comm] end⟩ lemma associated.of_mul_right [cancel_comm_monoid_with_zero α] {a b c d : α} : a * b ~ᵤ c * d → b ~ᵤ d → b ≠ 0 → a ~ᵤ c := by rw [mul_comm a, mul_comm c]; exact associated.of_mul_left lemma associated.of_pow_associated_of_prime [cancel_comm_monoid_with_zero α] {p₁ p₂ : α} {k₁ k₂ : ℕ} (hp₁ : prime p₁) (hp₂ : prime p₂) (hk₁ : 0 < k₁) (h : p₁ ^ k₁ ~ᵤ p₂ ^ k₂) : p₁ ~ᵤ p₂ := begin have : p₁ ∣ p₂ ^ k₂, { rw ←h.dvd_iff_dvd_right, apply dvd_pow_self _ hk₁.ne' }, rw ←hp₁.dvd_prime_iff_associated hp₂, exact hp₁.dvd_of_dvd_pow this, end lemma associated.of_pow_associated_of_prime' [cancel_comm_monoid_with_zero α] {p₁ p₂ : α} {k₁ k₂ : ℕ} (hp₁ : prime p₁) (hp₂ : prime p₂) (hk₂ : 0 < k₂) (h : p₁ ^ k₁ ~ᵤ p₂ ^ k₂) : p₁ ~ᵤ p₂ := (h.symm.of_pow_associated_of_prime hp₂ hp₁ hk₂).symm section unique_units variables [monoid α] [unique αˣ] lemma units_eq_one (u : αˣ) : u = 1 := subsingleton.elim u 1 theorem associated_iff_eq {x y : α} : x ~ᵤ y ↔ x = y := begin split, { rintro ⟨c, rfl⟩, rw [units_eq_one c, units.coe_one, mul_one] }, { rintro rfl, refl }, end theorem associated_eq_eq : (associated : α → α → Prop) = eq := by { ext, rw associated_iff_eq } lemma prime_dvd_prime_iff_eq {M : Type*} [cancel_comm_monoid_with_zero M] [unique Mˣ] {p q : M} (pp : prime p) (qp : prime q) : p ∣ q ↔ p = q := by rw [pp.dvd_prime_iff_associated qp, ←associated_eq_eq] end unique_units /-- The quotient of a monoid by the `associated` relation. Two elements `x` and `y` are associated iff there is a unit `u` such that `x * u = y`. There is a natural monoid structure on `associates α`. -/ def associates (α : Type*) [monoid α] : Type* := quotient (associated.setoid α) namespace associates open associated /-- The canonical quotient map from a monoid `α` into the `associates` of `α` -/ protected def mk {α : Type*} [monoid α] (a : α) : associates α := ⟦ a ⟧ instance [monoid α] : inhabited (associates α) := ⟨⟦1⟧⟩ theorem mk_eq_mk_iff_associated [monoid α] {a b : α} : associates.mk a = associates.mk b ↔ a ~ᵤ b := iff.intro quotient.exact quot.sound theorem quotient_mk_eq_mk [monoid α] (a : α) : ⟦ a ⟧ = associates.mk a := rfl theorem quot_mk_eq_mk [monoid α] (a : α) : quot.mk setoid.r a = associates.mk a := rfl theorem forall_associated [monoid α] {p : associates α → Prop} : (∀a, p a) ↔ (∀a, p (associates.mk a)) := iff.intro (assume h a, h _) (assume h a, quotient.induction_on a h) theorem mk_surjective [monoid α] : function.surjective (@associates.mk α _) := forall_associated.2 (λ a, ⟨a, rfl⟩) instance [monoid α] : has_one (associates α) := ⟨⟦ 1 ⟧⟩ @[simp] lemma mk_one [monoid α] : associates.mk (1 : α) = 1 := rfl theorem one_eq_mk_one [monoid α] : (1 : associates α) = associates.mk 1 := rfl instance [monoid α] : has_bot (associates α) := ⟨1⟩ lemma bot_eq_one [monoid α] : (⊥ : associates α) = 1 := rfl lemma exists_rep [monoid α] (a : associates α) : ∃ a0 : α, associates.mk a0 = a := quot.exists_rep a instance [monoid α] [subsingleton α] : unique (associates α) := { default := 1, uniq := λ a, by { apply quotient.rec_on_subsingleton₂, intros a b, congr } } lemma mk_injective [monoid α] [unique (units α)] : function.injective (@associates.mk α _) := λ a b h, associated_iff_eq.mp (associates.mk_eq_mk_iff_associated.mp h) section comm_monoid variable [comm_monoid α] instance : has_mul (associates α) := ⟨λa' b', quotient.lift_on₂ a' b' (λa b, ⟦ a * b ⟧) $ assume a₁ a₂ b₁ b₂ ⟨c₁, h₁⟩ ⟨c₂, h₂⟩, quotient.sound $ ⟨c₁ * c₂, by simp [h₁.symm, h₂.symm, mul_assoc, mul_comm, mul_left_comm]⟩⟩ theorem mk_mul_mk {x y : α} : associates.mk x * associates.mk y = associates.mk (x * y) := rfl instance : comm_monoid (associates α) := { one := 1, mul := (*), mul_one := assume a', quotient.induction_on a' $ assume a, show ⟦a * 1⟧ = ⟦ a ⟧, by simp, one_mul := assume a', quotient.induction_on a' $ assume a, show ⟦1 * a⟧ = ⟦ a ⟧, by simp, mul_assoc := assume a' b' c', quotient.induction_on₃ a' b' c' $ assume a b c, show ⟦a * b * c⟧ = ⟦a * (b * c)⟧, by rw [mul_assoc], mul_comm := assume a' b', quotient.induction_on₂ a' b' $ assume a b, show ⟦a * b⟧ = ⟦b * a⟧, by rw [mul_comm] } instance : preorder (associates α) := { le := has_dvd.dvd, le_refl := dvd_refl, le_trans := λ a b c, dvd_trans} /-- `associates.mk` as a `monoid_hom`. -/ protected def mk_monoid_hom : α →* (associates α) := ⟨associates.mk, mk_one, λ x y, mk_mul_mk⟩ @[simp] lemma mk_monoid_hom_apply (a : α) : associates.mk_monoid_hom a = associates.mk a := rfl lemma associated_map_mk {f : associates α →* α} (hinv : function.right_inverse f associates.mk) (a : α) : a ~ᵤ f (associates.mk a) := associates.mk_eq_mk_iff_associated.1 (hinv (associates.mk a)).symm lemma mk_pow (a : α) (n : ℕ) : associates.mk (a ^ n) = (associates.mk a) ^ n := by induction n; simp [*, pow_succ, associates.mk_mul_mk.symm] lemma dvd_eq_le : ((∣) : associates α → associates α → Prop) = (≤) := rfl theorem mul_eq_one_iff {x y : associates α} : x * y = 1 ↔ (x = 1 ∧ y = 1) := iff.intro (quotient.induction_on₂ x y $ assume a b h, have a * b ~ᵤ 1, from quotient.exact h, ⟨quotient.sound $ associated_one_of_associated_mul_one this, quotient.sound $ associated_one_of_associated_mul_one $ by rwa [mul_comm] at this⟩) (by simp {contextual := tt}) theorem units_eq_one (u : (associates α)ˣ) : u = 1 := units.ext (mul_eq_one_iff.1 u.val_inv).1 instance unique_units : unique ((associates α)ˣ) := { default := 1, uniq := associates.units_eq_one } theorem coe_unit_eq_one (u : (associates α)ˣ): (u : associates α) = 1 := by simp theorem is_unit_iff_eq_one (a : associates α) : is_unit a ↔ a = 1 := iff.intro (assume ⟨u, h⟩, h ▸ coe_unit_eq_one _) (assume h, h.symm ▸ is_unit_one) lemma is_unit_iff_eq_bot {a : associates α} : is_unit a ↔ a = ⊥ := by rw [associates.is_unit_iff_eq_one, bot_eq_one] theorem is_unit_mk {a : α} : is_unit (associates.mk a) ↔ is_unit a := calc is_unit (associates.mk a) ↔ a ~ᵤ 1 : by rw [is_unit_iff_eq_one, one_eq_mk_one, mk_eq_mk_iff_associated] ... ↔ is_unit a : associated_one_iff_is_unit section order theorem mul_mono {a b c d : associates α} (h₁ : a ≤ b) (h₂ : c ≤ d) : a * c ≤ b * d := let ⟨x, hx⟩ := h₁, ⟨y, hy⟩ := h₂ in ⟨x * y, by simp [hx, hy, mul_comm, mul_assoc, mul_left_comm]⟩ theorem one_le {a : associates α} : 1 ≤ a := dvd.intro _ (one_mul a) theorem le_mul_right {a b : associates α} : a ≤ a * b := ⟨b, rfl⟩ theorem le_mul_left {a b : associates α} : a ≤ b * a := by rw [mul_comm]; exact le_mul_right instance : order_bot (associates α) := { bot := 1, bot_le := assume a, one_le } end order theorem dvd_of_mk_le_mk {a b : α} : associates.mk a ≤ associates.mk b → a ∣ b | ⟨c', hc'⟩ := (quotient.induction_on c' $ assume c hc, let ⟨d, hd⟩ := (quotient.exact hc).symm in ⟨(↑d) * c, calc b = (a * c) * ↑d : hd.symm ... = a * (↑d * c) : by ac_refl⟩) hc' theorem mk_le_mk_of_dvd {a b : α} : a ∣ b → associates.mk a ≤ associates.mk b := assume ⟨c, hc⟩, ⟨associates.mk c, by simp [hc]; refl⟩ theorem mk_le_mk_iff_dvd_iff {a b : α} : associates.mk a ≤ associates.mk b ↔ a ∣ b := iff.intro dvd_of_mk_le_mk mk_le_mk_of_dvd theorem mk_dvd_mk {a b : α} : associates.mk a ∣ associates.mk b ↔ a ∣ b := iff.intro dvd_of_mk_le_mk mk_le_mk_of_dvd end comm_monoid instance [has_zero α] [monoid α] : has_zero (associates α) := ⟨⟦ 0 ⟧⟩ instance [has_zero α] [monoid α] : has_top (associates α) := ⟨0⟩ section monoid_with_zero variables [monoid_with_zero α] @[simp] theorem mk_eq_zero {a : α} : associates.mk a = 0 ↔ a = 0 := ⟨assume h, (associated_zero_iff_eq_zero a).1 $ quotient.exact h, assume h, h.symm ▸ rfl⟩ theorem mk_ne_zero {a : α} : associates.mk a ≠ 0 ↔ a ≠ 0 := not_congr mk_eq_zero instance [nontrivial α] : nontrivial (associates α) := ⟨⟨0, 1, assume h, have (0 : α) ~ᵤ 1, from quotient.exact h, have (0 : α) = 1, from ((associated_zero_iff_eq_zero 1).1 this.symm).symm, zero_ne_one this⟩⟩ lemma exists_non_zero_rep {a : associates α} : a ≠ 0 → ∃ a0 : α, a0 ≠ 0 ∧ associates.mk a0 = a := quotient.induction_on a (λ b nz, ⟨b, mt (congr_arg quotient.mk) nz, rfl⟩) end monoid_with_zero section comm_monoid_with_zero variables [comm_monoid_with_zero α] instance : comm_monoid_with_zero (associates α) := { zero_mul := by { rintro ⟨a⟩, show associates.mk (0 * a) = associates.mk 0, rw [zero_mul] }, mul_zero := by { rintro ⟨a⟩, show associates.mk (a * 0) = associates.mk 0, rw [mul_zero] }, .. associates.comm_monoid, .. associates.has_zero } instance : order_top (associates α) := { top := 0, le_top := assume a, ⟨0, (mul_zero a).symm⟩ } instance : bounded_order (associates α) := { .. associates.order_top, .. associates.order_bot } instance [decidable_rel ((∣) : α → α → Prop)] : decidable_rel ((∣) : associates α → associates α → Prop) := λ a b, quotient.rec_on_subsingleton₂ a b (λ a b, decidable_of_iff' _ mk_dvd_mk) lemma prime.le_or_le {p : associates α} (hp : prime p) {a b : associates α} (h : p ≤ a * b) : p ≤ a ∨ p ≤ b := hp.2.2 a b h lemma prime_mk (p : α) : prime (associates.mk p) ↔ _root_.prime p := begin rw [prime, _root_.prime, forall_associated], transitivity, { apply and_congr, refl, apply and_congr, refl, apply forall_congr, assume a, exact forall_associated }, apply and_congr mk_ne_zero, apply and_congr, { rw [is_unit_mk], }, refine forall₂_congr (λ a b, _), rw [mk_mul_mk, mk_dvd_mk, mk_dvd_mk, mk_dvd_mk], end theorem irreducible_mk (a : α) : irreducible (associates.mk a) ↔ irreducible a := begin simp only [irreducible_iff, is_unit_mk], apply and_congr iff.rfl, split, { rintro h x y rfl, simpa [is_unit_mk] using h (associates.mk x) (associates.mk y) rfl }, { intros h x y, refine quotient.induction_on₂ x y (assume x y a_eq, _), rcases quotient.exact a_eq.symm with ⟨u, a_eq⟩, rw mul_assoc at a_eq, show is_unit (associates.mk x) ∨ is_unit (associates.mk y), simpa [is_unit_mk] using h _ _ a_eq.symm } end theorem mk_dvd_not_unit_mk_iff {a b : α} : dvd_not_unit (associates.mk a) (associates.mk b) ↔ dvd_not_unit a b := begin rw [dvd_not_unit, dvd_not_unit, mk_ne_zero], apply and_congr_right, intro ane0, split, { contrapose!, rw forall_associated, intros h x hx hbax, rw [mk_mul_mk, mk_eq_mk_iff_associated] at hbax, cases hbax with u hu, apply h (x * ↑u⁻¹), { rw is_unit_mk at hx, rw associated.is_unit_iff, apply hx, use u, simp, }, simp [← mul_assoc, ← hu] }, { rintro ⟨x, ⟨hx, rfl⟩⟩, use associates.mk x, simp [is_unit_mk, mk_mul_mk, hx], } end theorem dvd_not_unit_of_lt {a b : associates α} (hlt : a < b) : dvd_not_unit a b := begin split, { rintro rfl, apply not_lt_of_le _ hlt, apply dvd_zero }, rcases hlt with ⟨⟨x, rfl⟩, ndvd⟩, refine ⟨x, _, rfl⟩, contrapose! ndvd, rcases ndvd with ⟨u, rfl⟩, simp, end theorem irreducible_iff_prime_iff : (∀ a : α, irreducible a ↔ prime a) ↔ (∀ a : (associates α), irreducible a ↔ prime a) := by simp_rw [forall_associated, irreducible_mk, prime_mk] end comm_monoid_with_zero section cancel_comm_monoid_with_zero variable [cancel_comm_monoid_with_zero α] instance : partial_order (associates α) := { le_antisymm := λ a' b', quotient.induction_on₂ a' b' (λ a b hab hba, quot.sound $ associated_of_dvd_dvd (dvd_of_mk_le_mk hab) (dvd_of_mk_le_mk hba)) .. associates.preorder } instance : ordered_comm_monoid (associates α) := { mul_le_mul_left := λ a b ⟨d, hd⟩ c, hd.symm ▸ mul_assoc c a d ▸ le_mul_right, ..associates.comm_monoid, ..associates.partial_order} instance : no_zero_divisors (associates α) := ⟨λ x y, (quotient.induction_on₂ x y $ assume a b h, have a * b = 0, from (associated_zero_iff_eq_zero _).1 (quotient.exact h), have a = 0 ∨ b = 0, from mul_eq_zero.1 this, this.imp (assume h, h.symm ▸ rfl) (assume h, h.symm ▸ rfl))⟩ lemma eq_of_mul_eq_mul_left : ∀(a b c : associates α), a ≠ 0 → a * b = a * c → b = c := begin rintros ⟨a⟩ ⟨b⟩ ⟨c⟩ ha h, rcases quotient.exact' h with ⟨u, hu⟩, have hu : a * (b * ↑u) = a * c, { rwa [← mul_assoc] }, exact quotient.sound' ⟨u, mul_left_cancel₀ (mk_ne_zero.1 ha) hu⟩ end lemma eq_of_mul_eq_mul_right : ∀(a b c : associates α), b ≠ 0 → a * b = c * b → a = c := λ a b c bne0, (mul_comm b a) ▸ (mul_comm b c) ▸ (eq_of_mul_eq_mul_left b a c bne0) lemma le_of_mul_le_mul_left (a b c : associates α) (ha : a ≠ 0) : a * b ≤ a * c → b ≤ c | ⟨d, hd⟩ := ⟨d, eq_of_mul_eq_mul_left a _ _ ha $ by rwa ← mul_assoc⟩ lemma one_or_eq_of_le_of_prime : ∀(p m : associates α), prime p → m ≤ p → (m = 1 ∨ m = p) | _ m ⟨hp0, hp1, h⟩ ⟨d, rfl⟩ := match h m d dvd_rfl with | or.inl h := classical.by_cases (assume : m = 0, by simp [this]) $ assume : m ≠ 0, have m * d ≤ m * 1, by simpa using h, have d ≤ 1, from associates.le_of_mul_le_mul_left m d 1 ‹m ≠ 0› this, have d = 1, from bot_unique this, by simp [this] | or.inr h := classical.by_cases (assume : d = 0, by simp [this] at hp0; contradiction) $ assume : d ≠ 0, have d * m ≤ d * 1, by simpa [mul_comm] using h, or.inl $ bot_unique $ associates.le_of_mul_le_mul_left d m 1 ‹d ≠ 0› this end instance : cancel_comm_monoid_with_zero (associates α) := { mul_left_cancel_of_ne_zero := eq_of_mul_eq_mul_left, mul_right_cancel_of_ne_zero := eq_of_mul_eq_mul_right, .. (infer_instance : comm_monoid_with_zero (associates α)) } instance : canonically_ordered_monoid (associates α) := { exists_mul_of_le := λ a b, id, le_self_mul := λ a b, ⟨b, rfl⟩, ..associates.cancel_comm_monoid_with_zero, ..associates.bounded_order, ..associates.ordered_comm_monoid} theorem dvd_not_unit_iff_lt {a b : associates α} : dvd_not_unit a b ↔ a < b := dvd_and_not_dvd_iff.symm lemma le_one_iff {p : associates α} : p ≤ 1 ↔ p = 1 := by rw [← associates.bot_eq_one, le_bot_iff] end cancel_comm_monoid_with_zero end associates section comm_monoid_with_zero lemma dvd_not_unit.is_unit_of_irreducible_right [comm_monoid_with_zero α] {p q : α} (h : dvd_not_unit p q) (hq : irreducible q) : is_unit p := begin obtain ⟨hp', x, hx, hx'⟩ := h, exact or.resolve_right ((irreducible_iff.1 hq).right p x hx') hx end lemma not_irreducible_of_not_unit_dvd_not_unit [comm_monoid_with_zero α] {p q : α} (hp : ¬is_unit p) (h : dvd_not_unit p q) : ¬ irreducible q := mt h.is_unit_of_irreducible_right hp lemma dvd_not_unit.not_unit [comm_monoid_with_zero α] {p q : α} (hp : dvd_not_unit p q) : ¬ is_unit q := begin obtain ⟨-, x, hx, rfl⟩ := hp, exact λ hc, hx (is_unit_iff_dvd_one.mpr (dvd_of_mul_left_dvd (is_unit_iff_dvd_one.mp hc))), end lemma dvd_not_unit_of_dvd_not_unit_associated [comm_monoid_with_zero α] [nontrivial α] {p q r : α} (h : dvd_not_unit p q) (h' : associated q r) : dvd_not_unit p r := begin obtain ⟨u, rfl⟩ := associated.symm h', obtain ⟨hp, x, hx⟩ := h, refine ⟨hp, x * ↑(u⁻¹), dvd_not_unit.not_unit ⟨u⁻¹.ne_zero, x, hx.left, mul_comm _ _⟩, _⟩, rw [← mul_assoc, ← hx.right, mul_assoc, units.mul_inv, mul_one] end end comm_monoid_with_zero section cancel_comm_monoid_with_zero lemma is_unit_of_associated_mul [cancel_comm_monoid_with_zero α] {p b : α} (h : associated (p * b) p) (hp : p ≠ 0) : is_unit b := begin cases h with a ha, refine is_unit_of_mul_eq_one b a ((mul_right_inj' hp).mp _), rwa [← mul_assoc, mul_one], end lemma associates.is_atom_iff [cancel_comm_monoid_with_zero α] {p : associates α} (h₁ : p ≠ 0) : is_atom p ↔ irreducible p := ⟨λ hp, ⟨by simpa only [associates.is_unit_iff_eq_one] using hp.1, λ a b h, (hp.le_iff.mp ⟨_, h⟩).cases_on (λ ha, or.inl (a.is_unit_iff_eq_one.mpr ha)) (λ ha, or.inr (show is_unit b, by {rw ha at h, apply is_unit_of_associated_mul (show associated (p * b) p, by conv_rhs {rw h}) h₁ }))⟩, λ hp, ⟨by simpa only [associates.is_unit_iff_eq_one, associates.bot_eq_one] using hp.1, λ b ⟨⟨a, hab⟩, hb⟩, (hp.is_unit_or_is_unit hab).cases_on (λ hb, show b = ⊥, by rwa [associates.is_unit_iff_eq_one, ← associates.bot_eq_one] at hb) (λ ha, absurd (show p ∣ b, from ⟨(ha.unit⁻¹ : units _), by simp [hab]; rw mul_assoc; rw is_unit.mul_coe_inv ha; rw mul_one⟩) hb)⟩⟩ lemma dvd_not_unit.not_associated [cancel_comm_monoid_with_zero α] {p q : α} (h : dvd_not_unit p q) : ¬ associated p q := begin rintro ⟨a, rfl⟩, obtain ⟨hp, x, hx, hx'⟩ := h, rcases (mul_right_inj' hp).mp hx' with rfl, exact hx a.is_unit, end lemma dvd_not_unit.ne [cancel_comm_monoid_with_zero α] {p q : α} (h : dvd_not_unit p q) : p ≠ q := begin by_contra hcontra, obtain ⟨hp, x, hx', hx''⟩ := h, conv_lhs at hx'' {rw [← hcontra, ← mul_one p]}, rw (mul_left_cancel₀ hp hx'').symm at hx', exact hx' is_unit_one, end lemma pow_injective_of_not_unit [cancel_comm_monoid_with_zero α] {q : α} (hq : ¬ is_unit q) (hq' : q ≠ 0): function.injective (λ (n : ℕ), q^n) := begin refine injective_of_lt_imp_ne (λ n m h, dvd_not_unit.ne ⟨pow_ne_zero n hq', q^(m - n), _, _⟩), { exact not_is_unit_of_not_is_unit_dvd hq (dvd_pow (dvd_refl _) (nat.sub_pos_of_lt h).ne') }, { exact (pow_mul_pow_sub q h.le).symm } end lemma dvd_prime_pow [cancel_comm_monoid_with_zero α] {p q : α} (hp : prime p) (n : ℕ) : q ∣ p^n ↔ ∃ i ≤ n, associated q (p ^ i) := begin induction n with n ih generalizing q, { simp [← is_unit_iff_dvd_one, associated_one_iff_is_unit] }, refine ⟨λ h, _, λ ⟨i, hi, hq⟩, hq.dvd.trans (pow_dvd_pow p hi)⟩, rw pow_succ at h, rcases hp.left_dvd_or_dvd_right_of_dvd_mul h with (⟨q, rfl⟩ | hno), { rw [mul_dvd_mul_iff_left hp.ne_zero, ih] at h, rcases h with ⟨i, hi, hq⟩, refine ⟨i + 1, nat.succ_le_succ hi, (hq.mul_left p).trans _⟩, rw pow_succ }, { obtain ⟨i, hi, hq⟩ := ih.mp hno, exact ⟨i, hi.trans n.le_succ, hq⟩ } end end cancel_comm_monoid_with_zero