(* ---------------------------------------------------------------------- *) (* PDIVIDES *) (* ---------------------------------------------------------------------- *) let PDIVIDES vars sgns p q = let s_thm = FINDSIGN vars sgns (head vars q) in let op,l1,r1 = get_binop (concl s_thm) in if op = req then failwith "PDIVIDES : head coefficient is zero" else let div_thm = PDIVIDE vars p q in let asx,pqr = dest_eq (concl div_thm) in let pq,r = dest_plus pqr in let p',q' = dest_mult pq in let ak,s = dest_mult asx in let a,k = dest_pow ak in let k' = dest_small_numeral k in if op = rgt || even k' then r,div_thm else if odd k' && op = rlt then let par_thm = PARITY_CONV k in let mp_thm = MATCH_MPL[neg_odd_lem;div_thm;par_thm] in let mp_thm1 = (CONV_RULE (LAND_CONV (LAND_CONV (LAND_CONV POLY_NEG_CONV)))) mp_thm in let mp_thm2 = (CONV_RULE (RAND_CONV (LAND_CONV (LAND_CONV (POLY_NEG_CONV))))) mp_thm1 in let mp_thm3 = (CONV_RULE (RAND_CONV (RAND_CONV POLY_NEG_CONV))) mp_thm2 in let ret = (snd o dest_plus o rhs o concl) mp_thm3 in ret,mp_thm3 else if odd k' && op = rneq then let par_thm = PARITY_CONV k in let mp_thm = MATCH_MPL[mul_odd_lem;div_thm;par_thm] in let mp_thm1 = (CONV_RULE (LAND_CONV (LAND_CONV (LAND_CONV (POLYNATE_CONV vars))))) mp_thm in let mp_thm2 = (CONV_RULE (RAND_CONV (LAND_CONV (POLYNATE_CONV vars)))) mp_thm1 in let mp_thm3 = (CONV_RULE (RAND_CONV (RAND_CONV (POLY_MUL_CONV vars)))) mp_thm2 in let ret = (snd o dest_plus o rhs o concl) mp_thm3 in ret,mp_thm3 else failwith "PDIVIDES: 1";; (* ---------------------------------------------------------------------- *) (* Timing *) (* ---------------------------------------------------------------------- *) let PDIVIDES vars sgns mat_thm div_thms = let start_time = Sys.time() in let res = PDIVIDES vars sgns mat_thm div_thms in pdivides_timer +.= (Sys.time() -. start_time); res;; (* PDIVIDES vars sgns p let q = (ith 2 qs) let vars = [`x:real`;`y:real`];; let sgns = [ARITH_RULE `&1 > &0`;ASSUME `&0 + y * &1 < &0`];; let q = rhs(concl (POLYNATE_CONV vars `x * y`));; let p = rhs(concl (POLYNATE_CONV vars `&1 + y * x * x + x * x * x * &5 * y`));; PDIVIDE vars p q;; PDIVIDES vars sgns p q;; let vars = [`x:real`;`y:real`];; let sgns = [ARITH_RULE `&1 > &0`;ASSUME `&0 + y * &1 > &0`];; let q = rhs(concl (POLYNATE_CONV vars `x * x * y`));; let p = rhs(concl (POLYNATE_CONV vars `&1 + x * x + x * x * x * y`));; PDIVIDE vars p q;; PDIVIDES vars sgns p q;; let vars = [`x:real`;`y:real`];; let sgns = [ARITH_RULE `&1 > &0`;ASSUME `&0 + y * &1 < &0`];; let q = rhs(concl (POLYNATE_CONV vars `x * x * y`));; let p = rhs(concl (POLYNATE_CONV vars `&1 + x * x + x * x * x * y`));; PDIVIDE vars p q;; PDIVIDES vars sgns p q;; let vars = [`x:real`;`y:real`];; let sgns = [ASSUME `&0 + y * &1 < &0`];; let q = rhs(concl (POLYNATE_CONV vars `-- x:real`));; let p = rhs(concl (POLYNATE_CONV vars `x * x * y`));; PDIVIDE vars p q;; PDIVIDES vars sgns p q let vars = [`x:real`;`y:real`];; let sgns = [ARITH_RULE `&1 > &0`;ASSUME `&0 + y * &1 <> &0`];; let q = rhs(concl (POLYNATE_CONV vars `x * x * y`));; let p = rhs(concl (POLYNATE_CONV vars `&1 + x * x + x * x * x * y`));; PDIVIDE vars p q;; PDIVIDES vars sgns p q;; *)