let EVEN_DIV_LEM = prove_by_refinement( `!set p q c d a n. (!x. a pow n * p x = c x * q x + d x) ==> a <> &0 ==> EVEN n ==> ((interpsign set q Zero) ==> (interpsign set d Neg) ==> (interpsign set p Neg)) /\ ((interpsign set q Zero) ==> (interpsign set d Pos) ==> (interpsign set p Pos)) /\ ((interpsign set q Zero) ==> (interpsign set d Zero) ==> (interpsign set p Zero))`, (* {{{ Proof *) [ REWRITE_TAC[interpsign]; REPEAT STRIP_TAC; RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); POP_ASSUM MP_TAC; POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); STRIP_TAC; CLAIM `&0 < a pow n`; ASM_MESON_TAC[EVEN_ODD_POW;real_gt]; STRIP_TAC; CLAIM `a pow n * p x < &0`; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; REWRITE_TAC[REAL_MUL_LT]; REPEAT STRIP_TAC; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); POP_ASSUM MP_TAC; POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); STRIP_TAC; CLAIM `&0 < a pow n`; ASM_MESON_TAC[EVEN_ODD_POW;real_gt]; STRIP_TAC; CLAIM `a pow n * p x > &0`; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt]; REPEAT STRIP_TAC; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); POP_ASSUM MP_TAC; POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); STRIP_TAC; CLAIM `&0 < a pow n`; ASM_MESON_TAC[EVEN_ODD_POW;real_gt]; STRIP_TAC; CLAIM `a pow n * p x = &0`; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt]; REPEAT STRIP_TAC; ASM_MESON_TAC[REAL_ENTIRE;REAL_LT_IMP_NZ]; ]);; (* }}} *) let GT_DIV_LEM = prove_by_refinement( `!set p q c d a n. (!x. a pow n * p x = c x * q x + d x) ==> a > &0 ==> ((interpsign set q Zero) ==> (interpsign set d Neg) ==> (interpsign set p Neg)) /\ ((interpsign set q Zero) ==> (interpsign set d Pos) ==> (interpsign set p Pos)) /\ ((interpsign set q Zero) ==> (interpsign set d Zero) ==> (interpsign set p Zero))`, (* {{{ Proof *) [ REWRITE_TAC[interpsign]; REPEAT_N 9 STRIP_TAC; CLAIM `a pow n > &0`; ASM_MESON_TAC[REAL_POW_LT;real_gt;]; STRIP_TAC; REPEAT STRIP_TAC; RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); POP_ASSUM MP_TAC; POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); STRIP_TAC; CLAIM `a pow n * p x < &0`; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; REWRITE_TAC[REAL_MUL_LT]; REPEAT STRIP_TAC; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; (* save *) RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); POP_ASSUM MP_TAC; POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); STRIP_TAC; CLAIM `a pow n * p x > &0`; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; REWRITE_TAC[REAL_MUL_GT;real_gt]; REPEAT STRIP_TAC; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); POP_ASSUM MP_TAC; POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); STRIP_TAC; CLAIM `a pow n * p x = &0`; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; ASM_MESON_TAC[REAL_ENTIRE;REAL_NOT_EQ;real_gt]; ]);; (* }}} *) let NEG_ODD_LEM = prove_by_refinement( `!set p q c d a n. (!x. a pow n * p x = c x * q x + d x) ==> a < &0 ==> ODD n ==> ((interpsign set q Zero) ==> (interpsign set (\x. -- d x) Neg) ==> (interpsign set p Neg)) /\ ((interpsign set q Zero) ==> (interpsign set (\x. -- d x) Pos) ==> (interpsign set p Pos)) /\ ((interpsign set q Zero) ==> (interpsign set (\x. -- d x) Zero) ==> (interpsign set p Zero))`, (* {{{ Proof *) [ REWRITE_TAC[interpsign;POLY_NEG]; REPEAT_N 10 STRIP_TAC; CLAIM `a pow n < &0`; ASM_MESON_TAC[PARITY_POW_LT;real_gt;]; STRIP_TAC; REAL_SIMP_TAC; REPEAT STRIP_TAC; RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); POP_ASSUM MP_TAC; POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); STRIP_TAC; CLAIM `a pow n * p x > &0`; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt]; REPEAT STRIP_TAC; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; (* save *) RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); POP_ASSUM MP_TAC; POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); STRIP_TAC; CLAIM `a pow n * p x < &0`; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt]; REPEAT STRIP_TAC; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); POP_ASSUM MP_TAC; POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); STRIP_TAC; CLAIM `a pow n * p x = &0`; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; ASM_MESON_TAC[REAL_ENTIRE;REAL_NOT_EQ;real_gt]; ]);; (* }}} *) let NEQ_ODD_LEM = prove_by_refinement( `!set p q c d a n. (!x. a pow n * p x = c x * q x + d x) ==> a <> &0 ==> ODD n ==> ((interpsign set q Zero) ==> (interpsign set (\x. a * d x) Neg) ==> (interpsign set p Neg)) /\ ((interpsign set q Zero) ==> (interpsign set (\x. a * d x) Pos) ==> (interpsign set p Pos)) /\ ((interpsign set q Zero) ==> (interpsign set (\x. a * d x) Zero) ==> (interpsign set p Zero))`, (* {{{ Proof *) [ REWRITE_TAC[interpsign;POLY_CMUL]; REPEAT_N 10 STRIP_TAC; CLAIM `a < &0 \/ a > &0 \/ (a = &0)`; REAL_ARITH_TAC; REWRITE_ASSUMS[NEQ]; ASM_REWRITE_TAC[]; LABEL_ALL_TAC; STRIP_TAC; (* save *) CLAIM `a pow n < &0`; ASM_MESON_TAC[PARITY_POW_LT]; STRIP_TAC; REPEAT STRIP_TAC; RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); POP_ASSUM MP_TAC; POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); STRIP_TAC; CLAIM `d x > &0`; POP_ASSUM MP_TAC; ASM_REWRITE_TAC[real_gt;REAL_MUL_LT]; REPEAT STRIP_TAC; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt]; REPEAT STRIP_TAC; POP_ASSUM MP_TAC; POP_ASSUM MP_TAC; REWRITE_TAC[REAL_MUL_LT]; REPEAT STRIP_TAC; CLAIM `&0 < a pow n * p x`; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; REWRITE_TAC[REAL_MUL_GT]; REPEAT STRIP_TAC; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; (* save *) RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); POP_ASSUM MP_TAC; POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); STRIP_TAC; CLAIM `d x < &0`; POP_ASSUM MP_TAC; REWRITE_TAC[REAL_MUL_GT;real_gt]; REPEAT STRIP_TAC; CLAIM `a pow n * p x < &0`; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt]; REPEAT STRIP_TAC; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; STRIP_TAC; CLAIM `a pow n * p x < &0`; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt]; REPEAT STRIP_TAC; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); POP_ASSUM MP_TAC; POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); STRIP_TAC; CLAIM `d x = &0`; ASM_MESON_TAC[REAL_ENTIRE;REAL_NOT_EQ;real_gt]; STRIP_TAC; CLAIM `a pow n * p x = &0`; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; ASM_MESON_TAC[REAL_ENTIRE;REAL_NOT_EQ;real_gt]; (* save *) CLAIM `a pow n > &0`; ASM_MESON_TAC[EVEN_ODD_POW;NEQ;real_gt]; STRIP_TAC; REPEAT STRIP_TAC; RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); POP_ASSUM MP_TAC; POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); STRIP_TAC; CLAIM `d x < &0`; POP_ASSUM MP_TAC; ASM_REWRITE_TAC[real_gt;REAL_MUL_LT]; REPEAT STRIP_TAC; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt]; REPEAT STRIP_TAC; POP_ASSUM MP_TAC; POP_ASSUM MP_TAC; REWRITE_TAC[REAL_MUL_LT]; REPEAT STRIP_TAC; CLAIM `a pow n * p x < &0`; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt]; REPEAT STRIP_TAC; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; CLAIM `a pow n * p x < &0`; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt]; REPEAT STRIP_TAC; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; (* save *) RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); POP_ASSUM MP_TAC; POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); STRIP_TAC; CLAIM `d x > &0`; POP_ASSUM MP_TAC; REWRITE_TAC[REAL_MUL_GT;real_gt]; REPEAT STRIP_TAC; CLAIM `a pow n * p x < &0`; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt]; REPEAT STRIP_TAC; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; STRIP_TAC; CLAIM `a pow n * p x > &0`; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;real_gt]; REPEAT STRIP_TAC; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; RULE_ASSUM_TAC (fun y -> try ISPEC `x:real` y with _ -> y); POP_ASSUM (fun x -> REWRITE_ASSUMS[x]); POP_ASSUM MP_TAC; POP_ASSUM (fun x -> REWRITE_ASSUMS[x;REAL_MUL_RZERO;REAL_ADD_LID;]); STRIP_TAC; CLAIM `d x = &0`; ASM_MESON_TAC[REAL_ENTIRE;REAL_NOT_EQ;real_gt]; STRIP_TAC; CLAIM `a pow n * p x = &0`; EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; ASM_MESON_TAC[REAL_ENTIRE;REAL_NOT_EQ;real_gt]; ]);; (* }}} *) let NEQ_MULT_LT_LEM = prove_by_refinement( `!a q d d' set. a < &0 ==> ((interpsign set d Neg) ==> (interpsign set (\x. a * d x) Pos)) /\ ((interpsign set d Pos) ==> (interpsign set (\x. a * d x) Neg)) /\ ((interpsign set d Zero) ==> (interpsign set (\x. a * d x) Zero))`, (* {{{ Proof *) [ REWRITE_TAC[interpsign;POLY_NEG]; REPEAT STRIP_TAC; ASM_MESON_TAC[REAL_MUL_GT;real_gt]; ASM_MESON_TAC[REAL_MUL_LT;real_gt]; ASM_MESON_TAC[REAL_ENTIRE;REAL_NOT_EQ;real_gt]; ]);; (* }}} *) let NEQ_MULT_GT_LEM = prove_by_refinement( `!a q d d' set. a > &0 ==> ((interpsign set d Neg) ==> (interpsign set (\x. a * d x) Neg)) /\ ((interpsign set d Pos) ==> (interpsign set (\x. a * d x) Pos)) /\ ((interpsign set d Zero) ==> (interpsign set (\x. a * d x) Zero))`, (* {{{ Proof *) [ REWRITE_TAC[interpsign;POLY_NEG] THEN MESON_TAC[REAL_MUL_LT;REAL_ENTIRE;REAL_NOT_EQ;REAL_MUL_GT;real_gt]; ]);; (* }}} *) let unknown_thm = prove( `!set p. (interpsign set p Unknown)`, MESON_TAC[interpsign]);; let ips_gt_nz_thm = prove_by_refinement( `!x. x > &0 ==> x <> &0`, (* {{{ Proof *) [ REWRITE_TAC[NEQ]; REAL_ARITH_TAC; ]);; (* }}} *) let ips_lt_nz_thm = prove_by_refinement( `!x. x < &0 ==> x <> &0`, (* {{{ Proof *) [ REWRITE_TAC[NEQ]; REAL_ARITH_TAC; ]);; (* }}} *)