(* ========================================================================= *) (* Set-theoretic hierarchy for modelling HOL inside itself. *) (* ========================================================================= *) let INJ_LEMMA = prove (`(!x y. (f x = f y) ==> (x = y)) <=> (!x y. (f x = f y) <=> (x = y))`, MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Useful to have a niceish "function update" notation. *) (* ------------------------------------------------------------------------- *) parse_as_infix("|->",(12,"right"));; let valmod = new_definition `(x |-> a) (v:A->B) = \y. if y = x then a else v(y)`;; let VALMOD = prove (`!v x y a. ((x |-> y) v) a = if a = x then y else v(a)`, REWRITE_TAC[valmod]);; let VALMOD_BASIC = prove (`!v x y. (x |-> y) v x = y`, REWRITE_TAC[valmod]);; let VALMOD_VALMOD_BASIC = prove (`!v a b x. (x |-> a) ((x |-> b) v) = (x |-> a) v`, REWRITE_TAC[valmod; FUN_EQ_THM] THEN REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]);; let VALMOD_REPEAT = prove (`!v x. (x |-> v(x)) v = v`, REWRITE_TAC[valmod; FUN_EQ_THM] THEN MESON_TAC[]);; let FORALL_VALMOD = prove (`!x. (!v a. P((x |-> a) v)) = (!v. P v)`, MESON_TAC[VALMOD_REPEAT]);; let VALMOD_SWAP = prove (`!v x y a b. ~(x = y) ==> ((x |-> a) ((y |-> b) v) = (y |-> b) ((x |-> a) v))`, REWRITE_TAC[valmod; FUN_EQ_THM] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* A dummy finite type inadequately modelling ":ind". *) (* ------------------------------------------------------------------------- *) let ind_model_tybij_th = prove(`?x. x IN @s:num->bool. ~(s = {}) /\ FINITE s`, MESON_TAC[MEMBER_NOT_EMPTY; IN_SING; FINITE_RULES]);; let ind_model_tybij = new_type_definition "ind_model" ("mk_ind","dest_ind") ind_model_tybij_th;; (* ------------------------------------------------------------------------- *) (* Introduce a type whose universe is "inaccessible" starting from *) (* "ind_model". Since "ind_model" is finite, we can just use any *) (* infinite set. In order to make "ind_model" infinite, we would need *) (* a new axiom. In order to keep things generic we try to deduce *) (* everything from this one uniform "axiom". Note that even in the *) (* infinite case, this can still be a small set in ZF terms, not a real *) (* inaccessible cardinal. *) (* ------------------------------------------------------------------------- *) (****** Here's what we'd do in the infinite case new_type("I",0);; let I_AXIOM = new_axiom `UNIV:ind_model->bool <_c UNIV:I->bool /\ (!s:A->bool. s <_c UNIV:I->bool ==> {t | t SUBSET s} <_c UNIV:I->bool)`;; *******) let inacc_tybij_th = prove (`?x:num. x IN UNIV`,REWRITE_TAC[IN_UNIV]);; let inacc_tybij = new_type_definition "I" ("mk_I","dest_I") inacc_tybij_th;; let I_AXIOM = prove (`UNIV:ind_model->bool <_c UNIV:I->bool /\ (!s:A->bool. s <_c UNIV:I->bool ==> {t | t SUBSET s} <_c UNIV:I->bool)`, let lemma = prove (`!s. s <_c UNIV:I->bool <=> FINITE s`, GEN_TAC THEN REWRITE_TAC[FINITE_CARD_LT] THEN MATCH_MP_TAC CARD_LT_CONG THEN REWRITE_TAC[CARD_EQ_REFL] THEN REWRITE_TAC[GSYM CARD_LE_ANTISYM; le_c; IN_UNIV] THEN MESON_TAC[inacc_tybij; IN_UNIV]) in REWRITE_TAC[lemma; FINITE_POWERSET] THEN SUBGOAL_THEN `UNIV = IMAGE mk_ind (@s. ~(s = {}) /\ FINITE s)` SUBST1_TAC THENL [MESON_TAC[EXTENSION; IN_IMAGE; IN_UNIV; ind_model_tybij]; MESON_TAC[FINITE_IMAGE; NOT_INSERT_EMPTY; FINITE_RULES]]);; (* ------------------------------------------------------------------------- *) (* I is infinite and therefore admits an injective pairing. *) (* ------------------------------------------------------------------------- *) let I_INFINITE = prove (`INFINITE(UNIV:I->bool)`, REWRITE_TAC[INFINITE] THEN DISCH_TAC THEN MP_TAC(ISPEC `{n | n < CARD(UNIV:I->bool) - 1}` (CONJUNCT2 I_AXIOM)) THEN ASM_SIMP_TAC[CARD_LT_CARD; FINITE_NUMSEG_LT; FINITE_POWERSET] THEN SIMP_TAC[CARD_NUMSEG_LT; CARD_POWERSET; FINITE_NUMSEG_LT] THEN SUBGOAL_THEN `~(CARD(UNIV:I->bool) = 0)` MP_TAC THENL [ASM_SIMP_TAC[CARD_EQ_0; GSYM MEMBER_NOT_EMPTY; IN_UNIV]; ALL_TAC] THEN SIMP_TAC[ARITH_RULE `~(n = 0) ==> n - 1 < n`; NOT_LT] THEN MATCH_MP_TAC(ARITH_RULE `a - 1 < b ==> ~(a = 0) ==> a <= b`) THEN SPEC_TAC(`CARD(UNIV:I->bool) - 1`,`n:num`) THEN POP_ASSUM(K ALL_TAC) THEN INDUCT_TAC THEN REWRITE_TAC[EXP; ARITH] THEN POP_ASSUM MP_TAC THEN ARITH_TAC);; let I_PAIR_EXISTS = prove (`?f:I#I->I. !x y. (f x = f y) ==> (x = y)`, SUBGOAL_THEN `UNIV:I#I->bool <=_c UNIV:I->bool` MP_TAC THENL [ALL_TAC; REWRITE_TAC[le_c; IN_UNIV]] THEN MATCH_MP_TAC CARD_EQ_IMP_LE THEN MP_TAC(MATCH_MP CARD_SQUARE_INFINITE I_INFINITE) THEN MATCH_MP_TAC(TAUT `(a = b) ==> a ==> b`) THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; mul_c; IN_ELIM_THM; IN_UNIV] THEN MESON_TAC[PAIR]);; let I_PAIR = REWRITE_RULE[INJ_LEMMA] (new_specification ["I_PAIR"] I_PAIR_EXISTS);; (* ------------------------------------------------------------------------- *) (* It also admits injections from "bool" and "ind_model". *) (* ------------------------------------------------------------------------- *) let CARD_BOOL_LT_I = prove (`UNIV:bool->bool <_c UNIV:I->bool`, REWRITE_TAC[GSYM CARD_NOT_LE] THEN DISCH_TAC THEN MP_TAC I_INFINITE THEN REWRITE_TAC[INFINITE] THEN SUBGOAL_THEN `FINITE(UNIV:bool->bool)` (fun th -> ASM_MESON_TAC[th; CARD_LE_FINITE]) THEN SUBGOAL_THEN `UNIV:bool->bool = {F,T}` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_UNIV; IN_INSERT] THEN MESON_TAC[]; SIMP_TAC[FINITE_RULES]]);; let I_BOOL_EXISTS = prove (`?f:bool->I. !x y. (f x = f y) ==> (x = y)`, MP_TAC(MATCH_MP CARD_LT_IMP_LE CARD_BOOL_LT_I) THEN SIMP_TAC[lt_c; le_c; IN_UNIV]);; let I_BOOL = REWRITE_RULE[INJ_LEMMA] (new_specification ["I_BOOL"] I_BOOL_EXISTS);; let I_IND_EXISTS = prove (`?f:ind_model->I. !x y. (f x = f y) ==> (x = y)`, MP_TAC(CONJUNCT1 I_AXIOM) THEN SIMP_TAC[lt_c; le_c; IN_UNIV]);; let I_IND = REWRITE_RULE[INJ_LEMMA] (new_specification ["I_IND"] I_IND_EXISTS);; (* ------------------------------------------------------------------------- *) (* And the injection from powerset of any accessible set. *) (* ------------------------------------------------------------------------- *) let I_SET_EXISTS = prove (`!s:I->bool. s <_c UNIV:I->bool ==> ?f:(I->bool)->I. !t u. t SUBSET s /\ u SUBSET s /\ (f t = f u) ==> (t = u)`, GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP(CONJUNCT2 I_AXIOM)) THEN DISCH_THEN(MP_TAC o MATCH_MP CARD_LT_IMP_LE) THEN REWRITE_TAC[le_c; IN_UNIV; IN_ELIM_THM]);; let I_SET = new_specification ["I_SET"] (REWRITE_RULE[RIGHT_IMP_EXISTS_THM; SKOLEM_THM] I_SET_EXISTS);; (* ------------------------------------------------------------------------- *) (* Define a type for "levels" of our set theory. *) (* ------------------------------------------------------------------------- *) let setlevel_INDUCT,setlevel_RECURSION = define_type "setlevel = Ur_bool | Ur_ind | Powerset setlevel | Cartprod setlevel setlevel";; let setlevel_DISTINCT = distinctness "setlevel";; let setlevel_INJ = injectivity "setlevel";; (* ------------------------------------------------------------------------- *) (* Now define a subset of I corresponding to each. *) (* ------------------------------------------------------------------------- *) let setlevel = new_recursive_definition setlevel_RECURSION `(setlevel Ur_bool = IMAGE I_BOOL UNIV) /\ (setlevel Ur_ind = IMAGE I_IND UNIV) /\ (setlevel (Cartprod l1 l2) = IMAGE I_PAIR {x,y | x IN setlevel l1 /\ y IN setlevel l2}) /\ (setlevel (Powerset l) = IMAGE (I_SET (setlevel l)) {s | s SUBSET (setlevel l)})`;; (* ------------------------------------------------------------------------- *) (* Show they all satisfy the cardinal limits. *) (* ------------------------------------------------------------------------- *) let SETLEVEL_CARD = prove (`!l. setlevel l <_c UNIV:I->bool`, MATCH_MP_TAC setlevel_INDUCT THEN REWRITE_TAC[setlevel] THEN REPEAT CONJ_TAC THENL [TRANS_TAC CARD_LET_TRANS `UNIV:bool->bool` THEN REWRITE_TAC[CARD_LE_IMAGE; CARD_BOOL_LT_I]; TRANS_TAC CARD_LET_TRANS `UNIV:ind_model->bool` THEN REWRITE_TAC[CARD_LE_IMAGE; I_AXIOM]; X_GEN_TAC `l:setlevel` THEN DISCH_TAC THEN TRANS_TAC CARD_LET_TRANS `{s | s SUBSET (setlevel l)}` THEN ASM_SIMP_TAC[I_AXIOM; CARD_LE_IMAGE]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`l1:setlevel`; `l2:setlevel`] THEN STRIP_TAC THEN TRANS_TAC CARD_LET_TRANS `setlevel l1 *_c setlevel l2` THEN ASM_SIMP_TAC[CARD_MUL_LT_INFINITE; I_INFINITE; GSYM mul_c; CARD_LE_IMAGE]);; (* ------------------------------------------------------------------------- *) (* Hence the injectivity of the mapping from powerset. *) (* ------------------------------------------------------------------------- *) let I_SET_SETLEVEL = prove (`!l s t. s SUBSET setlevel l /\ t SUBSET setlevel l /\ (I_SET (setlevel l) s = I_SET (setlevel l) t) ==> (s = t)`, MESON_TAC[SETLEVEL_CARD; I_SET]);; (* ------------------------------------------------------------------------- *) (* Now our universe of sets and (ur)elements. *) (* ------------------------------------------------------------------------- *) let universe = new_definition `universe = {(t,x) | x IN setlevel t}`;; (* ------------------------------------------------------------------------- *) (* Define an actual type V. *) (* *) (* This satisfies a suitable number of the ZF axioms. It isn't extensional *) (* but we could then construct a quotient structure if desired. Anyway it's *) (* only empty sets that aren't. A more significant difference is that we *) (* have urelements and the hierarchy levels are all distinct rather than *) (* being cumulative. *) (* ------------------------------------------------------------------------- *) let v_tybij_th = prove (`?a. a IN universe`, EXISTS_TAC `Ur_bool,I_BOOL T` THEN REWRITE_TAC[universe; IN_ELIM_THM; PAIR_EQ; CONJ_ASSOC; ONCE_REWRITE_RULE[CONJ_SYM] UNWIND_THM1; setlevel; IN_IMAGE; IN_UNIV] THEN MESON_TAC[]);; let v_tybij = new_type_definition "V" ("mk_V","dest_V") v_tybij_th;; let V_TYBIJ = prove (`!l e. e IN setlevel l <=> (dest_V(mk_V(l,e)) = (l,e))`, REWRITE_TAC[GSYM(CONJUNCT2 v_tybij)] THEN REWRITE_TAC[IN_ELIM_THM; universe; FORALL_PAIR_THM; PAIR_EQ] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Drop a level; test if something is a set. *) (* ------------------------------------------------------------------------- *) let droplevel = new_recursive_definition setlevel_RECURSION `droplevel(Powerset l) = l`;; let isasetlevel = new_recursive_definition setlevel_RECURSION `(isasetlevel Ur_bool = F) /\ (isasetlevel Ur_ind = F) /\ (isasetlevel (Cartprod l1 l2) = F) /\ (isasetlevel (Powerset l) = T)`;; (* ------------------------------------------------------------------------- *) (* Define some useful inversions. *) (* ------------------------------------------------------------------------- *) let level = new_definition `level x = FST(dest_V x)`;; let element = new_definition `element x = SND(dest_V x)`;; let ELEMENT_IN_LEVEL = prove (`!x. (element x) IN setlevel(level x)`, REWRITE_TAC[V_TYBIJ; v_tybij; level; element; PAIR]);; let SET = prove (`!x. mk_V(level x,element x) = x`, REWRITE_TAC[level; element; PAIR; v_tybij]);; let set = new_definition `set x = @s. s SUBSET (setlevel(droplevel(level x))) /\ (I_SET (setlevel(droplevel(level x))) s = element x)`;; let isaset = new_definition `isaset x <=> ?l. level x = Powerset l`;; (* ------------------------------------------------------------------------- *) (* Now all the critical relations. *) (* ------------------------------------------------------------------------- *) parse_as_infix("<:",(11,"right"));; let inset = new_definition `x <: s <=> (level s = Powerset(level x)) /\ (element x) IN (set s)`;; parse_as_infix("<=:",(12,"right"));; let subset_def = new_definition `s <=: t <=> (level s = level t) /\ !x. x <: s ==> x <: t`;; (* ------------------------------------------------------------------------- *) (* If something has members, it's a set. *) (* ------------------------------------------------------------------------- *) let MEMBERS_ISASET = prove (`!x s. x <: s ==> isaset s`, REWRITE_TAC[inset; isaset] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Each level is nonempty. *) (* ------------------------------------------------------------------------- *) let LEVEL_NONEMPTY = prove (`!l. ?x. x IN setlevel l`, REWRITE_TAC[MEMBER_NOT_EMPTY] THEN MATCH_MP_TAC setlevel_INDUCT THEN REWRITE_TAC[setlevel; IMAGE_EQ_EMPTY] THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_UNIV] THEN REWRITE_TAC[EXISTS_PAIR_THM; IN_ELIM_THM] THEN MESON_TAC[EMPTY_SUBSET]);; let LEVEL_SET_EXISTS = prove (`!l. ?s. level s = l`, MP_TAC LEVEL_NONEMPTY THEN MATCH_MP_TAC MONO_FORALL THEN REWRITE_TAC[level] THEN MESON_TAC[FST; PAIR; V_TYBIJ]);; (* ------------------------------------------------------------------------- *) (* Empty sets (or non-sets, of course) exist at all set levels. *) (* ------------------------------------------------------------------------- *) let MK_V_CLAUSES = prove (`e IN setlevel l ==> (level(mk_V(l,e)) = l) /\ (element(mk_V(l,e)) = e)`, REWRITE_TAC[level; element; PAIR; GSYM PAIR_EQ; V_TYBIJ]);; let MK_V_SET = prove (`s SUBSET setlevel l ==> (set(mk_V(Powerset l,I_SET (setlevel l) s)) = s) /\ (level(mk_V(Powerset l,I_SET (setlevel l) s)) = Powerset l) /\ (element(mk_V(Powerset l,I_SET (setlevel l) s)) = I_SET (setlevel l) s)`, REPEAT GEN_TAC THEN DISCH_TAC THEN SUBGOAL_THEN `I_SET (setlevel l) s IN setlevel(Powerset l)` ASSUME_TAC THENL [REWRITE_TAC[setlevel; IN_IMAGE; IN_ELIM_THM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[MK_V_CLAUSES; set] THEN SUBGOAL_THEN `I_SET (setlevel l) s IN setlevel(Powerset l)` ASSUME_TAC THENL [REWRITE_TAC[setlevel; IN_IMAGE; IN_ELIM_THM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[MK_V_CLAUSES; droplevel] THEN MATCH_MP_TAC SELECT_UNIQUE THEN REWRITE_TAC[] THEN ASM_MESON_TAC[I_SET_SETLEVEL]);; let EMPTY_EXISTS = prove (`!l. ?s. (level s = l) /\ !x. ~(x <: s)`, MATCH_MP_TAC setlevel_INDUCT THEN REPEAT CONJ_TAC THENL [ALL_TAC; ALL_TAC; X_GEN_TAC `l:setlevel` THEN DISCH_THEN(K ALL_TAC) THEN EXISTS_TAC `mk_V(Powerset l,I_SET (setlevel l) {})` THEN SIMP_TAC[inset; MK_V_CLAUSES; MK_V_SET; EMPTY_SUBSET; NOT_IN_EMPTY]; ALL_TAC] THEN MESON_TAC[LEVEL_SET_EXISTS; MEMBERS_ISASET; isaset; setlevel_DISTINCT]);; let EMPTY_SET = new_specification ["emptyset"] (REWRITE_RULE[SKOLEM_THM] EMPTY_EXISTS);; (* ------------------------------------------------------------------------- *) (* Comprehension principle, with no change of levels. *) (* ------------------------------------------------------------------------- *) let COMPREHENSION_EXISTS = prove (`!s p. ?t. (level t = level s) /\ !x. x <: t <=> x <: s /\ p x`, REPEAT GEN_TAC THEN ASM_CASES_TAC `isaset s` THENL [ALL_TAC; ASM_MESON_TAC[MEMBERS_ISASET]] THEN POP_ASSUM(X_CHOOSE_TAC `l:setlevel` o REWRITE_RULE[isaset]) THEN MP_TAC(SPEC `s:V` ELEMENT_IN_LEVEL) THEN ASM_REWRITE_TAC[setlevel; IN_IMAGE; IN_ELIM_THM] THEN DISCH_THEN(X_CHOOSE_THEN `u:I->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `mk_V(Powerset l, I_SET(setlevel l) {i | i IN u /\ p(mk_V(l,i))})` THEN SUBGOAL_THEN `{i | i IN u /\ p (mk_V (l,i))} SUBSET (setlevel l)` ASSUME_TAC THENL [REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[SUBSET]; ALL_TAC] THEN ASM_SIMP_TAC[MK_V_SET; inset] THEN X_GEN_TAC `x:V` THEN REWRITE_TAC[setlevel_INJ] THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[SET; MK_V_SET]);; parse_as_infix("suchthat",(21,"left"));; let SUCHTHAT = new_specification ["suchthat"] (REWRITE_RULE[SKOLEM_THM] COMPREHENSION_EXISTS);; (* ------------------------------------------------------------------------- *) (* Each setlevel exists as a set. *) (* ------------------------------------------------------------------------- *) let SETLEVEL_EXISTS = prove (`!l. ?s. (level s = Powerset l) /\ !x. x <: s <=> (level x = l) /\ element(x) IN setlevel l`, GEN_TAC THEN EXISTS_TAC `mk_V(Powerset l,I_SET (setlevel l) (setlevel l))` THEN SIMP_TAC[MK_V_SET; SUBSET_REFL; inset; setlevel_INJ] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Conversely, set(s) belongs in the appropriate level. *) (* ------------------------------------------------------------------------- *) let SET_DECOMP = prove (`!s. isaset s ==> (set s) SUBSET (setlevel(droplevel(level s))) /\ (I_SET (setlevel(droplevel(level s))) (set s) = element s)`, REPEAT GEN_TAC THEN REWRITE_TAC[isaset] THEN DISCH_THEN(X_CHOOSE_TAC `l:setlevel`) THEN REWRITE_TAC[set] THEN CONV_TAC SELECT_CONV THEN ASM_REWRITE_TAC[setlevel; droplevel] THEN MP_TAC(SPEC `s:V` ELEMENT_IN_LEVEL) THEN ASM_REWRITE_TAC[setlevel; IN_IMAGE; IN_ELIM_THM] THEN MESON_TAC[]);; let SET_SUBSET_SETLEVEL = prove (`!s. isaset s ==> set(s) SUBSET setlevel(droplevel(level s))`, MESON_TAC[SET_DECOMP]);; (* ------------------------------------------------------------------------- *) (* Power set exists. *) (* ------------------------------------------------------------------------- *) let POWERSET_EXISTS = prove (`!s. ?t. (level t = Powerset(level s)) /\ !x. x <: t <=> x <=: s`, GEN_TAC THEN ASM_CASES_TAC `isaset s` THENL [FIRST_ASSUM(MP_TAC o GSYM o MATCH_MP SET_DECOMP) THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [isaset]) THEN DISCH_THEN(X_CHOOSE_THEN `l:setlevel` STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[droplevel] THEN STRIP_TAC THEN X_CHOOSE_THEN `t:V` STRIP_ASSUME_TAC (SPEC `Powerset l` SETLEVEL_EXISTS) THEN MP_TAC(SPECL [`t:V`; `\v. !x. x <: v ==> x <: s`] COMPREHENSION_EXISTS) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:V` THEN STRIP_TAC THEN ASM_REWRITE_TAC[subset_def] THEN ASM_MESON_TAC[ELEMENT_IN_LEVEL]; MP_TAC(SPEC `level s` SETLEVEL_EXISTS) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `t:V` THEN STRIP_TAC THEN ASM_REWRITE_TAC[subset_def] THEN ASM_MESON_TAC[ELEMENT_IN_LEVEL; MEMBERS_ISASET; isaset]]);; let POWERSET = new_specification ["powerset"] (REWRITE_RULE[SKOLEM_THM] POWERSET_EXISTS);; (* ------------------------------------------------------------------------- *) (* Pairing operation. *) (* ------------------------------------------------------------------------- *) let pair = new_definition `pair x y = mk_V(Cartprod (level x) (level y),I_PAIR(element x,element y))`;; let PAIR_IN_LEVEL = prove (`!x y l m. x IN setlevel l /\ y IN setlevel m ==> I_PAIR(x,y) IN setlevel (Cartprod l m)`, REWRITE_TAC[setlevel; IN_IMAGE; IN_ELIM_THM] THEN MESON_TAC[]);; let DEST_MK_PAIR = prove (`dest_V(mk_V(Cartprod (level x) (level y),I_PAIR(element x,element y))) = Cartprod (level x) (level y),I_PAIR(element x,element y)`, REWRITE_TAC[GSYM V_TYBIJ] THEN SIMP_TAC[PAIR_IN_LEVEL; ELEMENT_IN_LEVEL]);; let PAIR_INJ = prove (`!x1 y1 x2 y2. (pair x1 y1 = pair x2 y2) <=> (x1 = x2) /\ (y1 = y2)`, REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; SIMP_TAC[]] THEN REWRITE_TAC[pair] THEN DISCH_THEN(MP_TAC o AP_TERM `dest_V`) THEN REWRITE_TAC[DEST_MK_PAIR] THEN REWRITE_TAC[setlevel_INJ; PAIR_EQ; I_PAIR] THEN REWRITE_TAC[level; element] THEN MESON_TAC[PAIR; CONJUNCT1 v_tybij]);; let LEVEL_PAIR = prove (`!x y. level(pair x y) = Cartprod (level x) (level y)`, REWRITE_TAC[level; REWRITE_RULE[DEST_MK_PAIR] (AP_TERM `dest_V` (SPEC_ALL pair))]);; (* ------------------------------------------------------------------------- *) (* Decomposition functions. *) (* ------------------------------------------------------------------------- *) let fst_def = new_definition `fst p = @x. ?y. p = pair x y`;; let snd_def = new_definition `snd p = @y. ?x. p = pair x y`;; let PAIR_CLAUSES = prove (`!x y. (fst(pair x y) = x) /\ (snd(pair x y) = y)`, REWRITE_TAC[fst_def; snd_def] THEN MESON_TAC[PAIR_INJ]);; (* ------------------------------------------------------------------------- *) (* And the Cartesian product space. *) (* ------------------------------------------------------------------------- *) let CARTESIAN_EXISTS = prove (`!s t. ?u. (level u = Powerset(Cartprod (droplevel(level s)) (droplevel(level t)))) /\ !z. z <: u <=> ?x y. (z = pair x y) /\ x <: s /\ y <: t`, REPEAT GEN_TAC THEN ASM_CASES_TAC `isaset s` THENL [ALL_TAC; ASM_MESON_TAC[EMPTY_EXISTS; MEMBERS_ISASET]] THEN SUBGOAL_THEN `?l. (level s = Powerset l)` CHOOSE_TAC THENL [ASM_MESON_TAC[isaset]; ALL_TAC] THEN ASM_CASES_TAC `isaset t` THENL [ALL_TAC; ASM_MESON_TAC[EMPTY_EXISTS; MEMBERS_ISASET]] THEN SUBGOAL_THEN `?m. (level t = Powerset m)` CHOOSE_TAC THENL [ASM_MESON_TAC[isaset]; ALL_TAC] THEN MP_TAC(SPEC `Cartprod l m` SETLEVEL_EXISTS) THEN ASM_REWRITE_TAC[droplevel] THEN DISCH_THEN(X_CHOOSE_THEN `u:V` STRIP_ASSUME_TAC) THEN MP_TAC(SPECL [`u:V`; `\z. ?x y. (z = pair x y) /\ x <: s /\ y <: t`] COMPREHENSION_EXISTS) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `w:V` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `z:V` THEN MATCH_MP_TAC(TAUT `(a ==> b) /\ (c ==> a) ==> ((a /\ b) /\ c <=> c)`) THEN CONJ_TAC THENL [MESON_TAC[ELEMENT_IN_LEVEL]; ALL_TAC] THEN STRIP_TAC THEN ASM_REWRITE_TAC[LEVEL_PAIR] THEN BINOP_TAC THEN ASM_MESON_TAC[inset; setlevel_INJ]);; let CARTPRODUCT = new_specification ["cartproduct"] (REWRITE_RULE[SKOLEM_THM] CARTESIAN_EXISTS);; (* ------------------------------------------------------------------------- *) (* Extensionality for sets at the same level. *) (* ------------------------------------------------------------------------- *) let IN_SET_ELEMENT = prove (`!s. isaset s /\ e IN set(s) ==> ?x. (e = element x) /\ (level s = Powerset(level x)) /\ x <: s`, REPEAT STRIP_TAC THEN FIRST_ASSUM(X_CHOOSE_TAC `l:setlevel` o REWRITE_RULE[isaset]) THEN EXISTS_TAC `mk_V(l,e)` THEN REWRITE_TAC[inset] THEN SUBGOAL_THEN `e IN setlevel l` (fun t -> ASM_SIMP_TAC[t; MK_V_CLAUSES]) THEN ASM_MESON_TAC[SET_SUBSET_SETLEVEL; SUBSET; droplevel]);; let SUBSET_ALT = prove (`isaset s /\ isaset t ==> (s <=: t <=> (level s = level t) /\ set(s) SUBSET set(t))`, REPEAT GEN_TAC THEN REWRITE_TAC[subset_def; inset] THEN ASM_CASES_TAC `level s = level t` THEN ASM_REWRITE_TAC[SUBSET] THEN STRIP_TAC THEN EQ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN ASM_MESON_TAC[IN_SET_ELEMENT]);; let SUBSET_ANTISYM_LEVEL = prove (`!s t. isaset s /\ isaset t /\ s <=: t /\ t <=: s ==> (s = t)`, REPEAT GEN_TAC THEN REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ASM_SIMP_TAC[SUBSET_ALT] THEN EVERY_ASSUM(MP_TAC o GSYM o MATCH_MP SET_DECOMP) THEN REPEAT STRIP_TAC THEN MP_TAC(SPEC `s:V` SET) THEN MP_TAC(SPEC `t:V` SET) THEN REPEAT(DISCH_THEN(SUBST1_TAC o SYM)) THEN AP_TERM_TAC THEN BINOP_TAC THEN ASM_MESON_TAC[SUBSET_ANTISYM]);; let EXTENSIONALITY_LEVEL = prove (`!s t. isaset s /\ isaset t /\ (level s = level t) /\ (!x. x <: s <=> x <: t) ==> (s = t)`, MESON_TAC[SUBSET_ANTISYM_LEVEL; subset_def]);; (* ------------------------------------------------------------------------- *) (* And hence for any nonempty sets. *) (* ------------------------------------------------------------------------- *) let EXTENSIONALITY_NONEMPTY = prove (`!s t. (?x. x <: s) /\ (?x. x <: t) /\ (!x. x <: s <=> x <: t) ==> (s = t)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC EXTENSIONALITY_LEVEL THEN ASM_MESON_TAC[MEMBERS_ISASET; inset]);; (* ------------------------------------------------------------------------- *) (* Union set exists. I don't need this but if might be a sanity check. *) (* ------------------------------------------------------------------------- *) let UNION_EXISTS = prove (`!s. ?t. (level t = droplevel(level s)) /\ !x. x <: t <=> ?u. x <: u /\ u <: s`, GEN_TAC THEN ASM_CASES_TAC `isaset s` THENL [ALL_TAC; MP_TAC(SPEC `droplevel(level s)` EMPTY_EXISTS) THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[MEMBERS_ISASET]] THEN FIRST_ASSUM(X_CHOOSE_TAC `l:setlevel` o REWRITE_RULE[isaset]) THEN ASM_REWRITE_TAC[droplevel] THEN ASM_CASES_TAC `?m. l = Powerset m` THENL [ALL_TAC; MP_TAC(SPEC `l:setlevel` EMPTY_EXISTS) THEN MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[inset] THEN ASM_MESON_TAC[setlevel_INJ]] THEN FIRST_X_ASSUM(X_CHOOSE_THEN `m:setlevel` SUBST_ALL_TAC) THEN MP_TAC(SPEC `m:setlevel` SETLEVEL_EXISTS) THEN ASM_REWRITE_TAC[droplevel] THEN DISCH_THEN(X_CHOOSE_THEN `t:V` STRIP_ASSUME_TAC) THEN MP_TAC(SPECL [`t:V`; `\x. ?u. x <: u /\ u <: s`] COMPREHENSION_EXISTS) THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[inset; ELEMENT_IN_LEVEL; setlevel_INJ]);; let SETUNION = new_specification ["setunion"] (REWRITE_RULE[SKOLEM_THM] UNION_EXISTS);; (* ------------------------------------------------------------------------- *) (* Boolean stuff. *) (* ------------------------------------------------------------------------- *) let true_def = new_definition `true = mk_V(Ur_bool,I_BOOL T)`;; let false_def = new_definition `false = mk_V(Ur_bool,I_BOOL F)`;; let boolset = new_definition `boolset = mk_V(Powerset Ur_bool,I_SET (setlevel Ur_bool) (setlevel Ur_bool))`;; let IN_BOOL = prove (`!x. x <: boolset <=> (x = true) \/ (x = false)`, REWRITE_TAC[inset; boolset; true_def; false_def] THEN SIMP_TAC[MK_V_SET; SUBSET_REFL] THEN REWRITE_TAC[setlevel_INJ; setlevel] THEN SUBGOAL_THEN `IMAGE I_BOOL UNIV = {I_BOOL F,I_BOOL T}` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_IMAGE; IN_UNIV; IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[I_BOOL]; ALL_TAC] THEN GEN_TAC THEN GEN_REWRITE_TAC (RAND_CONV o BINOP_CONV o LAND_CONV) [GSYM SET] THEN REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN SUBGOAL_THEN `!b. (I_BOOL b) IN setlevel Ur_bool` ASSUME_TAC THENL [REWRITE_TAC[setlevel; IN_IMAGE; IN_UNIV] THEN MESON_TAC[]; ASM_MESON_TAC[V_TYBIJ; ELEMENT_IN_LEVEL; PAIR_EQ]]);; let TRUE_NE_FALSE = prove (`~(true = false)`, REWRITE_TAC[true_def; false_def] THEN DISCH_THEN(MP_TAC o AP_TERM `dest_V`) THEN SUBGOAL_THEN `!b. (I_BOOL b) IN setlevel Ur_bool` ASSUME_TAC THENL [REWRITE_TAC[setlevel; IN_IMAGE; IN_UNIV] THEN MESON_TAC[]; ASM_MESON_TAC[V_TYBIJ; I_BOOL; PAIR_EQ]]);; let BOOLEAN_EQ = prove (`!x y. x <: boolset /\ y <: boolset /\ ((x = true) <=> (y = true)) ==> (x = y)`, MESON_TAC[TRUE_NE_FALSE; IN_BOOL]);; (* ------------------------------------------------------------------------- *) (* Ind stuff. *) (* ------------------------------------------------------------------------- *) let indset = new_definition `indset = mk_V(Powerset Ur_ind,I_SET (setlevel Ur_ind) (setlevel Ur_ind))`;; let INDSET_IND_MODEL = prove (`?f. (!i:ind_model. f(i) <: indset) /\ (!i j. (f i = f j) ==> (i = j))`, EXISTS_TAC `\i. mk_V(Ur_ind,I_IND i)` THEN REWRITE_TAC[] THEN SUBGOAL_THEN `!i. (I_IND i) IN setlevel Ur_ind` ASSUME_TAC THENL [REWRITE_TAC[setlevel; IN_IMAGE; IN_UNIV] THEN MESON_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[MK_V_SET; SUBSET_REFL; inset; indset; MK_V_CLAUSES] THEN ASM_MESON_TAC[V_TYBIJ; I_IND; ELEMENT_IN_LEVEL; PAIR_EQ]);; let INDSET_INHABITED = prove (`?x. x <: indset`, MESON_TAC[INDSET_IND_MODEL]);; (* ------------------------------------------------------------------------- *) (* Axiom of choice (this is trivially so in HOL anyway, but...) *) (* ------------------------------------------------------------------------- *) let ch = let th = prove (`?ch. !s. (?x. x <: s) ==> ch(s) <: s`, REWRITE_TAC[GSYM SKOLEM_THM] THEN MESON_TAC[]) in new_specification ["ch"] th;; (* ------------------------------------------------------------------------- *) (* Sanity check lemmas. *) (* ------------------------------------------------------------------------- *) let IN_POWERSET = prove (`!x s. x <: powerset s <=> x <=: s`, MESON_TAC[POWERSET]);; let IN_CARTPRODUCT = prove (`!z s t. z <: cartproduct s t <=> ?x y. (z = pair x y) /\ x <: s /\ y <: t`, MESON_TAC[CARTPRODUCT]);; let IN_COMPREHENSION = prove (`!p s x. x <: s suchthat p <=> x <: s /\ p x`, MESON_TAC[SUCHTHAT]);; let CARTPRODUCT_INHABITED = prove (`(?x. x <: s) /\ (?y. y <: t) ==> ?z. z <: cartproduct s t`, MESON_TAC[IN_CARTPRODUCT]);; (* ------------------------------------------------------------------------- *) (* Definition of function space. *) (* ------------------------------------------------------------------------- *) let funspace = new_definition `funspace s t = powerset(cartproduct s t) suchthat (\u. !x. x <: s ==> ?!y. pair x y <: u)`;; let apply_def = new_definition `apply f x = @y. pair x y <: f`;; let abstract = new_definition `abstract s t f = (cartproduct s t) suchthat (\z. !x y. (pair x y = z) ==> (y = f x))`;; let APPLY_ABSTRACT = prove (`!x s t. x <: s /\ f(x) <: t ==> (apply(abstract s t f) x = f(x))`, REPEAT STRIP_TAC THEN REWRITE_TAC[apply_def; abstract; IN_CARTPRODUCT; SUCHTHAT] THEN MATCH_MP_TAC SELECT_UNIQUE THEN REWRITE_TAC[PAIR_INJ] THEN ASM_MESON_TAC[]);; let APPLY_IN_RANSPACE = prove (`!f x s t. x <: s /\ f <: funspace s t ==> apply f x <: t`, REWRITE_TAC[funspace; SUCHTHAT; IN_POWERSET; IN_CARTPRODUCT; subset_def] THEN REWRITE_TAC[apply_def] THEN MESON_TAC[PAIR_INJ]);; let ABSTRACT_IN_FUNSPACE = prove (`!f x s t. (!x. x <: s ==> f(x) <: t) ==> abstract s t f <: funspace s t`, REWRITE_TAC[funspace; abstract; SUCHTHAT; IN_POWERSET; IN_CARTPRODUCT; subset_def; PAIR_INJ] THEN SIMP_TAC[LEFT_FORALL_IMP_THM; GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM] THEN REWRITE_TAC[UNWIND_THM1; EXISTS_REFL] THEN MESON_TAC[]);; let FUNSPACE_INHABITED = prove (`!s t. ((?x. x <: s) ==> (?y. y <: t)) ==> ?f. f <: funspace s t`, REPEAT STRIP_TAC THEN EXISTS_TAC `abstract s t (\x. @y. y <: t)` THEN MATCH_MP_TAC ABSTRACT_IN_FUNSPACE THEN ASM_MESON_TAC[]);; let ABSTRACT_EQ = prove (`!s t1 t2 f g. (?x. x <: s) /\ (!x. x <: s ==> f(x) <: t1 /\ g(x) <: t2 /\ (f x = g x)) ==> (abstract s t1 f = abstract s t2 g)`, REWRITE_TAC[abstract] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC EXTENSIONALITY_NONEMPTY THEN REWRITE_TAC[SUCHTHAT; IN_CARTPRODUCT] THEN REPEAT CONJ_TAC THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN SIMP_TAC[TAUT `(a /\ b /\ c) /\ d <=> ~(a ==> b /\ c ==> ~d)`] THEN REWRITE_TAC[PAIR_INJ] THEN SIMP_TAC[LEFT_FORALL_IMP_THM] THENL [ASM_MESON_TAC[]; ASM_MESON_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[PAIR_INJ] THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_REFL] THEN REWRITE_TAC[NOT_IMP] THEN GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[PAIR_INJ] THEN ASM_MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Special case of treating a Boolean function as a set. *) (* ------------------------------------------------------------------------- *) let boolean = new_definition `boolean b = if b then true else false`;; let holds = new_definition `holds s x <=> (apply s x = true)`;; let BOOLEAN_IN_BOOLSET = prove (`!b. boolean b <: boolset`, REWRITE_TAC[boolean] THEN MESON_TAC[IN_BOOL]);; let BOOLEAN_EQ_TRUE = prove (`!b. (boolean b = true) <=> b`, REWRITE_TAC[boolean] THEN MESON_TAC[TRUE_NE_FALSE]);;