(* open satTools dimacsTools SatSolvers minisatResolve satCommonTools minisatParse satScript def_cnf *) (* for interactive use: #load "str.cma";; #use "def_cnf.ml";; #use "satCommonTools.ml";; #use "dimacsTools.ml";; #use "SatSolvers.ml";; #use "satScript.ml";; #use "satTools.ml";; #use "minisatParse.ml";; #use "minisatResolve.ml";; #use "minisatProve.ml";; #use "taut.ml";; *) (* ------------------------------------------------------------------------- *) (* Flag to (de-)activate debugging facilities. *) (* ------------------------------------------------------------------------- *) let sat_debugging = ref false;; (* ------------------------------------------------------------------------- *) (* Split up a theorem according to conjuncts, in a general sense. *) (* ------------------------------------------------------------------------- *) let GCONJUNCTS = let [pth_ni1; pth_ni2; pth_no1; pth_no2; pth_an1; pth_an2; pth_nn] = (map UNDISCH_ALL o CONJUNCTS o TAUT) `(~(p ==> q) ==> p) /\ (~(p ==> q) ==> ~q) /\ (~(p \/ q) ==> ~p) /\ (~(p \/ q) ==> ~q) /\ (p /\ q ==> p) /\ (p /\ q ==> q) /\ (~ ~p ==> p)` in let p_tm = concl pth_an1 and q_tm = concl pth_an2 in let rec GCONJUNCTS th acc = match (concl th) with Comb(Const("~",_),Comb(Comb(Const("==>",_),p),q)) -> GCONJUNCTS (PROVE_HYP th (INST [p,p_tm; q,q_tm] pth_ni1)) (GCONJUNCTS (PROVE_HYP th (INST [p,p_tm; q,q_tm] pth_ni2)) acc) | Comb(Const("~",_),Comb(Comb(Const("\\/",_),p),q)) -> GCONJUNCTS (PROVE_HYP th (INST [p,p_tm; q,q_tm] pth_no1)) (GCONJUNCTS (PROVE_HYP th (INST [p,p_tm; q,q_tm] pth_no2)) acc) | Comb(Comb(Const("/\\",_),p),q) -> GCONJUNCTS (PROVE_HYP th (INST [p,p_tm; q,q_tm] pth_an1)) (GCONJUNCTS (PROVE_HYP th (INST [p,p_tm; q,q_tm] pth_an2)) acc) | Comb(Const("~",_),Comb(Const("~",_),p)) -> GCONJUNCTS (PROVE_HYP th (INST [p,p_tm] pth_nn)) acc | _ -> th::acc in fun th -> GCONJUNCTS th [];; (* ------------------------------------------------------------------------- *) (* Generate fresh variable names (could just use genvars). *) (* ------------------------------------------------------------------------- *) let propvar i = mk_var("x"^string_of_int i,bool_ty);; (* ------------------------------------------------------------------------- *) (* Set up the basic definitional arrangement. *) (* ------------------------------------------------------------------------- *) let rec localdefs tm (n,defs,lfn) = if is_neg tm then let n1,v1,defs1,lfn1 = localdefs (rand tm) (n,defs,lfn) in let tm' = mk_neg v1 in try (n1,apply defs1 tm',defs1,lfn1) with Failure _ -> let n2 = n1 + 1 in let v2 = propvar n2 in n2,v2,(tm' |-> v2) defs1,(v2 |-> tm) lfn1 else if is_conj tm || is_disj tm || is_imp tm || is_iff tm then let n1,v1,defs1,lfn1 = localdefs (lhand tm) (n,defs,lfn) in let n2,v2,defs2,lfn2 = localdefs (rand tm) (n1,defs1,lfn1) in let tm' = mk_comb(mk_comb(rator(rator tm),v1),v2) in try (n2,apply defs2 tm',defs2,lfn2) with Failure _ -> let n3 = n2 + 1 in let v3 = propvar n3 in n3,v3,(tm' |-> v3) defs2,(v3 |-> tm) lfn2 else try (n,apply defs tm,defs,lfn) with Failure _ -> let n1 = n + 1 in let v1 = propvar n1 in n1,v1,(tm |-> v1) defs,(v1 |-> tm) lfn;; (* ------------------------------------------------------------------------- *) (* Just translate to fresh variables, but otherwise leave unchanged. *) (* ------------------------------------------------------------------------- *) let rec transvar (n,tm,vdefs,lfn) = if is_neg tm then let n1,tm1,vdefs1,lfn1 = transvar (n,rand tm,vdefs,lfn) in n1,mk_comb(rator tm,tm1),vdefs1,lfn1 else if is_conj tm || is_disj tm || is_imp tm || is_iff tm then let n1,tm1,vdefs1,lfn1 = transvar (n,lhand tm,vdefs,lfn) in let n2,tm2,vdefs2,lfn2 = transvar (n1,rand tm,vdefs1,lfn1) in n2,mk_comb(mk_comb(rator(rator tm),tm1),tm2),vdefs2,lfn2 else try n,apply vdefs tm,vdefs,lfn with Failure _ -> let n1 = n + 1 in let v1 = propvar n1 in n1,v1,(tm |-> v1) vdefs,(v1 |-> tm) lfn;; (* ------------------------------------------------------------------------- *) (* Flag to choose whether to exploit existing conjunctive structure. *) (* ------------------------------------------------------------------------- *) let exploit_conjunctive_structure = ref true;; (* ------------------------------------------------------------------------- *) (* Check if something is clausal (slightly stupid). *) (* ------------------------------------------------------------------------- *) let is_literal tm = is_var tm || is_neg tm && is_var(rand tm);; let is_clausal tm = let djs = disjuncts tm in forall is_literal djs && list_mk_disj djs = tm;; (* ------------------------------------------------------------------------- *) (* Now do the definitional arrangement but not wastefully at the top. *) (* ------------------------------------------------------------------------- *) let definitionalize = let transform_imp = let pth = TAUT `(p ==> q) <=> ~p \/ q` in let ptm = rand(concl pth) in let p_tm = rand(lhand ptm) and q_tm = rand ptm in fun th -> let ip,q = dest_comb(concl th) in let p = rand ip in EQ_MP (INST [p,p_tm; q,q_tm] pth) th and transform_iff_1 = let pth = UNDISCH(TAUT `(p <=> q) ==> (p \/ ~q)`) in let ptm = concl pth in let p_tm = lhand ptm and q_tm = rand(rand ptm) in fun th -> let ip,q = dest_comb(concl th) in let p = rand ip in PROVE_HYP th (INST [p,p_tm; q,q_tm] pth) and transform_iff_2 = let pth = UNDISCH(TAUT `(p <=> q) ==> (~p \/ q)`) in let ptm = concl pth in let p_tm = rand(lhand ptm) and q_tm = rand ptm in fun th -> let ip,q = dest_comb(concl th) in let p = rand ip in PROVE_HYP th (INST [p,p_tm; q,q_tm] pth) in let definitionalize th (n,tops,defs,lfn) = let t = concl th in if is_clausal t then let n',v,defs',lfn' = transvar (n,t,defs,lfn) in (n',(v,th)::tops,defs',lfn') else if is_neg t then let n1,v1,defs1,lfn1 = localdefs (rand t) (n,defs,lfn) in (n1,(mk_neg v1,th)::tops,defs1,lfn1) else if is_disj t then let n1,v1,defs1,lfn1 = localdefs (lhand t) (n,defs,lfn) in let n2,v2,defs2,lfn2 = localdefs (rand t) (n1,defs1,lfn1) in (n2,(mk_disj(v1,v2),th)::tops,defs2,lfn2) else if is_imp t then let n1,v1,defs1,lfn1 = localdefs (lhand t) (n,defs,lfn) in let n2,v2,defs2,lfn2 = localdefs (rand t) (n1,defs1,lfn1) in (n2,(mk_disj(mk_neg v1,v2),transform_imp th)::tops,defs2,lfn2) else if is_iff t then let n1,v1,defs1,lfn1 = localdefs (lhand t) (n,defs,lfn) in let n2,v2,defs2,lfn2 = localdefs (rand t) (n1,defs1,lfn1) in (n2,(mk_disj(v1,mk_neg v2),transform_iff_1 th):: (mk_disj(mk_neg v1,v2),transform_iff_2 th)::tops,defs2,lfn2) else let n',v,defs',lfn' = localdefs t (n,defs,lfn) in (n',(v,th)::tops,defs',lfn') in definitionalize;; (* SAT_PROVE is the main interface function. Takes in a term t and returns thm or exception if not a taut *) (* invokes minisatp, returns |- t or |- model ==> ~t *) (* if minisatp proof log does not exist after minisatp call returns, we will assume that minisatp discovered UNSAT during the read-in phase and did not bother with a proof log. In that case the problem is simple and can be delegated to TAUT *) (* FIXME: I do not like the TAUT solution; what is trivial for Minisat may not be so for TAUT *) exception Sat_counterexample of thm;; (* delete temporary files *) (* if zChaff was used, also delete hard-wired trace filenames*) let CLEANUP fname solvername = let delete fname = try Sys.remove fname with Sys_error _ -> () in (delete fname; delete (fname^".cnf"); delete (fname^"."^solvername); delete (fname^"."^solvername^".proof"); delete (fname^"."^solvername^".stats"); if solvername="zchaff" then (delete(Filename.concat (!temp_path) "resolve_trace"); delete(Filename.concat (!temp_path) "zc2mso_trace")) else ());; let GEN_SAT_PROVE solver solvername = let false_tm = `F` and presimp_conv = GEN_REWRITE_CONV DEPTH_CONV [NOT_CLAUSES; AND_CLAUSES; OR_CLAUSES; IMP_CLAUSES; EQ_CLAUSES] and p_tm = `p:bool` and q_tm = `q:bool` and pth_triv = TAUT `(~p <=> F) <=> p` and pth_main = UNDISCH_ALL(TAUT `(~p <=> q) ==> (q ==> F) ==> p`) in let triv_rule p th = EQ_MP(INST [p,p_tm] pth_triv) th and main_rule p q sth th = itlist PROVE_HYP [sth; DISCH_ALL th] (INST [p,p_tm; q,q_tm] pth_main) in let invoke_minisat lfn mcth stm t rcv vc = let nr = Array.length rcv in let res = match invokeSat solver None t (Some vc) with Some model -> let model2 = mapfilter (fun l -> let x = hd(frees l) in let y = apply lfn x in if is_var y then vsubst [y,x] l else fail()) model in satCheck model2 stm | None -> (match parseMinisatProof nr ((!tmp_name)^"."^solvername^".proof") vc rcv with Some (cl,sk,scl,srl,cc) -> unsatProveResolve lfn mcth (cl,sk,srl) (* returns p |- F *) | None -> UNDISCH(TAUT(mk_imp(stm,false_tm)))) in res in fun tm -> let sth = presimp_conv (mk_neg tm) in let stm = rand(concl sth) in if stm = false_tm then triv_rule tm sth else let th = ASSUME stm in let ths = if !exploit_conjunctive_structure then GCONJUNCTS th else [th] in let n,tops,defs,lfn = itlist definitionalize ths (-1,[],undefined,undefined) in let defg = foldl (fun a t nv -> (t,nv)::a) [] defs in let mdefs = filter (fun (r,_) -> not (is_var r)) defg in let eqs = map (fun (r,l) -> mk_iff(l,r)) mdefs in let clausify eq cls = let fvs = frees eq and eth = (NNFC_CONV THENC CNF_CONV) eq in let tth = INST (map (fun v -> apply lfn v,v) fvs) eth in let xth = ADD_ASSUM stm (EQ_MP tth (REFL(apply lfn (lhand eq)))) in zip (conjuncts(rand(concl eth))) (CONJUNCTS xth) @ cls in let all_clauses = itlist clausify eqs tops in let mcth = itlist (fun (c,th) m -> Termmap.add c th m) all_clauses Termmap.empty in let vc = n + 1 in let rcv = Array.of_list (map fst all_clauses) in let ntdcnf = list_mk_conj (map fst all_clauses) in let th = invoke_minisat lfn mcth stm ntdcnf rcv vc in (if not (!sat_debugging) then CLEANUP (!tmp_name) solvername else (); if is_imp(concl th) then raise (Sat_counterexample (EQ_MP (AP_TERM (rator(concl th)) (SYM sth)) th)) else main_rule tm stm sth th);; let SAT_PROVE = GEN_SAT_PROVE minisatp "minisatp";; let ZSAT_PROVE = GEN_SAT_PROVE zchaff "zchaff";;