(* ========================================================================= *) (* Set-of-support resolution. *) (* ========================================================================= *) let NEGATE_LITERAL = prove (`!q. literal q ==> literal(~~q)`, REWRITE_TAC[literal; ATOM] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[] THEN ASM_MESON_TAC[ATOM; NEGATE_ATOM; NEGATE_NEG]);; let RESOLVE_CLAUSE = prove (`!c1 c2 p. clause c1 /\ clause c2 ==> clause(resolve p c1 c2)`, REWRITE_TAC[clause; resolve; FINITE_UNION; IN_UNION; IN_DELETE] THEN MESON_TAC[DELETE_SUBSET; FINITE_SUBSET]);; let PRESPROOF_CLAUSE = prove (`!hyps cl. (!c. c IN hyps ==> clause c) /\ presproof hyps cl ==> clause cl`, REWRITE_TAC[IMP_CONJ] THEN GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN MATCH_MP_TAC presproof_INDUCT THEN ASM_MESON_TAC[RESOLVE_CLAUSE]);; let RESOLVE_MONO = prove (`!c1 c2 c1' c2' p. c1 SUBSET c1' /\ c2 SUBSET c2' ==> (resolve p c1 c2) SUBSET (resolve p c1' c2')`, REWRITE_TAC[SUBSET; resolve; IN_UNION; IN_DELETE] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Resolution where one argument is a tautology. *) (* ------------------------------------------------------------------------- *) let RESOLVE_SYM = prove (`!c1 c2 p. literal p ==> (resolve (~~p) c1 c2 = resolve p c2 c1)`, SIMP_TAC[resolve; NEGATE_NEGATE; UNION_ACI]);; let RESOLVE_TAUT_L = prove (`!c1 c2 p. clause c1 /\ tautologous c1 ==> tautologous(resolve p c1 c2) \/ c2 SUBSET (resolve p c1 c2)`, REWRITE_TAC[tautologous; SUBSET; resolve; IN_DELETE; IN_UNION; clause] THEN REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `q:form` STRIP_ASSUME_TAC) THEN ASM_CASES_TAC `(p = q) \/ (p = ~~q)` THENL [FIRST_X_ASSUM(DISJ_CASES_THEN SUBST_ALL_TAC); ALL_TAC] THEN ASM_MESON_TAC[NEGATE_REFL; NEGATE_NEGATE]);; let RESOLVE_TAUT_R = prove (`!c1 c2 p. clause c2 /\ tautologous c2 /\ literal p ==> tautologous(resolve p c1 c2) \/ c1 SUBSET (resolve p c1 c2)`, REWRITE_TAC[tautologous; SUBSET; resolve; IN_DELETE; IN_UNION; clause] THEN REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN DISCH_THEN(X_CHOOSE_THEN `q:form` STRIP_ASSUME_TAC) THEN ASM_CASES_TAC `(p = q) \/ (p = ~~q)` THENL [FIRST_X_ASSUM(DISJ_CASES_THEN SUBST_ALL_TAC); ALL_TAC] THEN ASM_MESON_TAC[NEGATE_REFL; NEGATE_NEGATE]);; let SUBSET_TAUT = prove (`!c1 c2. tautologous c1 /\ c1 SUBSET c2 ==> tautologous c2`, REWRITE_TAC[tautologous; SUBSET] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* We need induction on size of proof; hence incorporate sizes. *) (* ------------------------------------------------------------------------- *) let npresproof_RULES,npresproof_INDUCT,npresproof_CASES = new_inductive_definition `(!cl. cl IN hyps ==> npresproof hyps cl 1) /\ (!p n1 n2 cl1 cl2. npresproof hyps cl1 n1 /\ npresproof hyps cl2 n2 /\ p IN cl1 /\ ~~ p IN cl2 ==> npresproof hyps (resolve p cl1 cl2) (n1 + n2 + 1))`;; let NPRESPROOF = prove (`!hyps cl. presproof hyps cl <=> ?n. npresproof hyps cl n`, GEN_TAC THEN REWRITE_TAC[TAUT `(a <=> b) <=> (a ==> b) /\ (b ==> a)`] THEN REWRITE_TAC[FORALL_AND_THM; LEFT_IMP_EXISTS_THM] THEN CONJ_TAC THENL [MATCH_MP_TAC presproof_INDUCT THEN MESON_TAC[npresproof_RULES]; MATCH_MP_TAC npresproof_INDUCT THEN MESON_TAC[presproof_RULES]]);; let NPRESPROOF_CLAUSE = prove (`!hyps cl n. (!c. c IN hyps ==> clause c) /\ npresproof hyps cl n ==> clause cl`, MESON_TAC[NPRESPROOF; PRESPROOF_CLAUSE]);; (* ------------------------------------------------------------------------- *) (* Proofs with a given set of support. *) (* ------------------------------------------------------------------------- *) let psresproof_RULES,psresproof_INDUCT,psresproof_CASES = new_inductive_definition `(!c. c IN hyps /\ ~(tautologous c) ==> psresproof hyps sos (c IN sos) c) /\ (!c1 c2 s1 s2 p. psresproof hyps sos s1 c1 /\ psresproof hyps sos s2 c2 /\ p IN c1 /\ ~~p IN c2 /\ (s1 \/ s2) /\ ~tautologous(resolve p c1 c2) ==> psresproof hyps sos T (resolve p c1 c2))`;; (* ------------------------------------------------------------------------- *) (* Transformation theorem. *) (* ------------------------------------------------------------------------- *) let PSRESPROOF_CLAUSE = prove (`!hyps sos. (!c. c IN hyps ==> clause(c)) ==> !s cl. psresproof hyps sos s cl ==> clause cl`, REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC psresproof_INDUCT THEN ASM_SIMP_TAC[RESOLVE_CLAUSE]);; let SUPPORT_ASYMMETRIC = prove (`!hyps sos A B C p q nb nc. (!c. c IN hyps ==> clause c /\ ~tautologous c) /\ ~tautologous(resolve p A (resolve q B C)) /\ psresproof hyps sos T A /\ npresproof (hyps DIFF sos) B nb /\ npresproof (hyps DIFF sos) C nc /\ p IN A /\ ~~p IN (resolve q B C) /\ q IN B /\ ~~ q IN C /\ ~~p IN B /\ ~(q = ~~p) /\ (!m. m < nb + nc + 1 ==> (!c1 c2 p. psresproof hyps sos T c1 /\ npresproof (hyps DIFF sos) c2 m /\ p IN c1 /\ ~~ p IN c2 /\ ~tautologous (resolve p c1 c2) ==> (?cl'. cl' SUBSET resolve p c1 c2 /\ (psresproof hyps sos T cl' \/ (?m'. m' < m /\ npresproof (hyps DIFF sos) cl' m'))))) ==> ?cl'. cl' SUBSET resolve p A (resolve q B C) /\ (psresproof hyps sos T cl' \/ ?m. m < nb + nc + 1 /\ npresproof (hyps DIFF sos) cl' m)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `clause A /\ clause B /\ clause C` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[PSRESPROOF_CLAUSE; NPRESPROOF_CLAUSE; IN_DIFF]; ALL_TAC] THEN SUBGOAL_THEN `literal p /\ literal q` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[clause]; ALL_TAC] THEN ASM_CASES_TAC `tautologous (resolve q B C)` THENL [ASM_MESON_TAC[RESOLVE_TAUT_R; RESOLVE_CLAUSE; clause]; ALL_TAC] THEN ASM_CASES_TAC `p:form = q` THENL [FIRST_X_ASSUM SUBST_ALL_TAC THEN SUBGOAL_THEN `(resolve q A C) SUBSET (resolve q A (resolve q B C))` ASSUME_TAC THENL [MATCH_MP_TAC RESOLVE_MONO THEN REWRITE_TAC[SUBSET_REFL] THEN ASM_MESON_TAC[RESOLVE_TAUT_L; tautologous]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o C MATCH_MP (ARITH_RULE `nc < nb + nc + 1`)) THEN DISCH_THEN(MP_TAC o SPECL [`A:form->bool`; `C:form->bool`; `q:form`]) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[SUBSET_TAUT]; ALL_TAC] THEN ASM_MESON_TAC[SUBSET_TRANS; ARITH_RULE `x < c ==> x < b + c + 1`]; ALL_TAC] THEN SUBGOAL_THEN `~(~~p IN C) ==> (resolve q (resolve p A B) C) SUBSET (resolve p A (resolve q B C))` ASSUME_TAC THENL [MAP_EVERY UNDISCH_TAC [`p:form IN A`; `~~p IN B`; `~~p IN resolve q B C`; `q:form IN B`; `~~q IN C`] THEN REWRITE_TAC[resolve; IN_UNION; IN_DELETE; SUBSET] THEN MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `~~p IN C ==> (resolve p A (resolve q (resolve p A B) C)) SUBSET (resolve p A (resolve q B C))` ASSUME_TAC THENL [MAP_EVERY UNDISCH_TAC [`p:form IN A`; `~~p IN B`; `~~p IN resolve q B C`; `q:form IN B`; `~~q IN C`] THEN REWRITE_TAC[resolve; IN_UNION; IN_DELETE; SUBSET] THEN MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `~~p IN C ==> ~~p IN (resolve q (resolve p A B) C)` ASSUME_TAC THENL [MAP_EVERY UNDISCH_TAC [`p:form IN A`; `~~p IN B`; `~~p IN resolve q B C`; `q:form IN B`; `~~q IN C`; `~(q = ~~ p)`; `~(p:form = q)`] THEN REWRITE_TAC[resolve; IN_UNION; IN_DELETE; SUBSET] THEN ASM_MESON_TAC[NEGATE_NEGATE]; ALL_TAC] THEN ASM_CASES_TAC `tautologous(resolve q (resolve p A B) C)` THENL [SUBGOAL_THEN `~~p IN C` (fun th -> RULE_ASSUM_TAC(REWRITE_RULE[th]) THEN ASSUME_TAC th) THEN ASM_MESON_TAC[RESOLVE_TAUT_R; SUBSET_TRANS; RESOLVE_CLAUSE; SUBSET_TAUT]; ALL_TAC] THEN ASM_CASES_TAC `tautologous(resolve p A B)` THENL [ASM_CASES_TAC `~~p IN C` THENL [REPEAT(FIRST_X_ASSUM(ASSUME_TAC o C MATCH_MP (ASSUME `~~p IN C`))) THEN SUBGOAL_THEN `(resolve p A C) SUBSET (resolve p A (resolve q B C))` ASSUME_TAC THENL [ASM_MESON_TAC[RESOLVE_MONO; SUBSET_REFL; SUBSET_TRANS; RESOLVE_TAUT_L; RESOLVE_CLAUSE]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o C MATCH_MP (ARITH_RULE `nc < nb + nc + 1`)) THEN DISCH_THEN(MP_TAC o SPECL [`A:form->bool`; `C:form->bool`; `p:form`]) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[SUBSET_TAUT]; ALL_TAC] THEN ASM_MESON_TAC[SUBSET_TRANS; ARITH_RULE `x < nc ==> x < nb + nc + 1`]; ALL_TAC] THEN REPEAT(FIRST_X_ASSUM(ASSUME_TAC o C MATCH_MP (ASSUME `~(~~p IN C)`))) THEN ASM_MESON_TAC[SUBSET_TRANS; RESOLVE_TAUT_L; RESOLVE_CLAUSE; ARITH_RULE `nc < nb + nc + 1`]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o SPEC `nb:num`) THEN REWRITE_TAC[ARITH_RULE `nb < nb + nc + 1`] THEN DISCH_THEN(MP_TAC o SPECL [`A:form->bool`; `B:form->bool`; `p:form`]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `D:form->bool` (CONJUNCTS_THEN ASSUME_TAC)) THEN ASM_CASES_TAC `q:form IN D` THENL [ALL_TAC; EXISTS_TAC `D:form->bool` THEN CONJ_TAC THENL [MAP_EVERY UNDISCH_TAC [`D SUBSET resolve p A B`; `~(q:form IN D)`; `~(~~ p IN C) ==> resolve q (resolve p A B) C SUBSET resolve p A (resolve q B C)`] THEN REWRITE_TAC[resolve; SUBSET; IN_UNION; IN_DELETE] THEN MESON_TAC[]; ALL_TAC] THEN ASM_MESON_TAC[ARITH_RULE `x < nb ==> x < nb + nc + 1`]] THEN FIRST_X_ASSUM(DISJ_CASES_THEN MP_TAC) THENL [ALL_TAC; DISCH_THEN(X_CHOOSE_THEN `nd:num` STRIP_ASSUME_TAC) THEN ASM_CASES_TAC `~~p IN C` THENL [REPEAT(FIRST_X_ASSUM(ASSUME_TAC o C MATCH_MP (ASSUME `~~p IN C`))) THEN FIRST_X_ASSUM(MP_TAC o SPEC `nd + nc + 1`) THEN REWRITE_TAC[LT_ADD_RCANCEL] THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPECL [`A:form->bool`; `resolve q D C`; `p:form`]) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [REPEAT CONJ_TAC THENL [MATCH_MP_TAC(CONJUNCT2(SPEC_ALL npresproof_RULES)) THEN ASM_REWRITE_TAC[]; SUBGOAL_THEN `~(~~p = ~~q)` MP_TAC THENL [ASM_MESON_TAC[NEGATE_NEGATE]; ALL_TAC] THEN UNDISCH_TAC `~~p IN C` THEN REWRITE_TAC[resolve; IN_UNION; IN_DELETE] THEN MESON_TAC[]; ASM_MESON_TAC[SUBSET_TAUT; RESOLVE_MONO; SUBSET_REFL; SUBSET_TRANS]]; ALL_TAC] THEN ASM_MESON_TAC[RESOLVE_MONO; SUBSET_REFL; SUBSET_TRANS; ARITH_RULE `d < b /\ m < d + c ==> m < b + c`]; ALL_TAC] THEN REPEAT(FIRST_X_ASSUM(ASSUME_TAC o C MATCH_MP (ASSUME `~(~~p IN C)`))) THEN EXISTS_TAC `resolve q D C` THEN CONJ_TAC THENL [ASM_MESON_TAC[RESOLVE_MONO; SUBSET_REFL; SUBSET_TRANS]; ALL_TAC] THEN DISJ2_TAC THEN EXISTS_TAC `nd + nc + 1` THEN ASM_REWRITE_TAC[LT_ADD_RCANCEL] THEN MATCH_MP_TAC(CONJUNCT2(SPEC_ALL npresproof_RULES)) THEN ASM_REWRITE_TAC[]] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o C MATCH_MP (ARITH_RULE `nc < nb + nc + 1`)) THEN DISCH_THEN(MP_TAC o SPECL [`D:form->bool`; `C:form->bool`; `q:form`]) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[SUBSET_TAUT; RESOLVE_MONO; SUBSET_REFL; SUBSET_TRANS]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `E:form->bool` MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (DISJ_CASES_THEN MP_TAC)) THENL [DISCH_TAC THEN ASM_CASES_TAC `~~p IN C` THENL [ALL_TAC; REPEAT(FIRST_X_ASSUM(ASSUME_TAC o C MATCH_MP (ASSUME `~(~~p IN C)`))) THEN EXISTS_TAC `E:form->bool` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[RESOLVE_MONO; SUBSET_REFL; SUBSET_TRANS]] THEN ASM_CASES_TAC `~~p IN E` THENL [EXISTS_TAC `resolve p A E` THEN CONJ_TAC THENL [ASM_MESON_TAC[RESOLVE_MONO; SUBSET_REFL; SUBSET_TRANS]; ALL_TAC] THEN DISJ1_TAC THEN MATCH_MP_TAC(CONJUNCT2(SPEC_ALL psresproof_RULES)) THEN REPEAT(EXISTS_TAC `T`) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[SUBSET_TAUT; RESOLVE_MONO; SUBSET_REFL; SUBSET_TRANS]; ALL_TAC] THEN EXISTS_TAC `E:form->bool` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `resolve p A E` THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[RESOLVE_MONO; SUBSET_REFL; SUBSET_TRANS]] THEN UNDISCH_TAC `~(~~p IN E)` THEN REWRITE_TAC[resolve; SUBSET; IN_UNION; IN_DELETE] THEN MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `ne:num` STRIP_ASSUME_TAC) THEN ASM_CASES_TAC `~~p IN C` THENL [ALL_TAC; REPEAT(FIRST_X_ASSUM(ASSUME_TAC o C MATCH_MP (ASSUME `~(~~p IN C)`))) THEN EXISTS_TAC `E:form->bool` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[RESOLVE_MONO; SUBSET_REFL; SUBSET_TRANS; ARITH_RULE `ne < nc ==> ne < nb + nc + 1`]] THEN REPEAT(FIRST_X_ASSUM(ASSUME_TAC o C MATCH_MP (ASSUME `~~p IN C`))) THEN ASM_CASES_TAC `~~p IN E` THENL [ALL_TAC; EXISTS_TAC `E:form->bool` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `resolve p A E` THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[RESOLVE_MONO; SUBSET_REFL; SUBSET_TRANS]] THEN UNDISCH_TAC `~(~~p IN E)` THEN REWRITE_TAC[resolve; SUBSET; IN_UNION; IN_DELETE] THEN MESON_TAC[]; ALL_TAC] THEN ASM_MESON_TAC[ARITH_RULE `ne < nc ==> ne < nb + nc + 1`]] THEN FIRST_X_ASSUM(MP_TAC o SPEC `ne:num`) THEN ASM_SIMP_TAC[ARITH_RULE `ne < nc ==> ne < nb + nc + 1`] THEN DISCH_THEN(MP_TAC o SPECL [`A:form->bool`; `E:form->bool`; `p:form`]) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[SUBSET_TAUT; RESOLVE_MONO; SUBSET_REFL; SUBSET_TRANS; ARITH_RULE `m < ne /\ ne < nc ==> m < nb + nc + 1`]);; let SUPPORT_SYMMETRIC = prove (`!hyps sos A B C p q nb nc. (!c. c IN hyps ==> clause c /\ ~tautologous c) /\ ~tautologous(resolve p A (resolve q B C)) /\ psresproof hyps sos T A /\ npresproof (hyps DIFF sos) B nb /\ npresproof (hyps DIFF sos) C nc /\ p IN A /\ ~~p IN (resolve q B C) /\ q IN B /\ ~~ q IN C /\ (!m. m < nb + nc + 1 ==> (!c1 c2 p. psresproof hyps sos T c1 /\ npresproof (hyps DIFF sos) c2 m /\ p IN c1 /\ ~~ p IN c2 /\ ~tautologous (resolve p c1 c2) ==> (?cl'. cl' SUBSET resolve p c1 c2 /\ (psresproof hyps sos T cl' \/ (?m'. m' < m /\ npresproof (hyps DIFF sos) cl' m'))))) ==> ?cl'. cl' SUBSET resolve p A (resolve q B C) /\ (psresproof hyps sos T cl' \/ ?m. m < nb + nc + 1 /\ npresproof (hyps DIFF sos) cl' m)`, REPEAT STRIP_TAC THEN MP_TAC(ASSUME `~~p IN (resolve q B C)`) THEN DISCH_THEN(MP_TAC o REWRITE_RULE[resolve; IN_UNION; IN_DELETE]) THEN STRIP_TAC THENL [MP_TAC(SPECL [`hyps:(form->bool)->bool`; `sos:(form->bool)->bool`; `A:form->bool`; `B:form->bool`; `C:form->bool`; `p:form`; `q:form`; `nb:num`; `nc:num`] SUPPORT_ASYMMETRIC) THEN ASM_REWRITE_TAC[]; MP_TAC(SPECL [`hyps:(form->bool)->bool`; `sos:(form->bool)->bool`; `A:form->bool`; `C:form->bool`; `B:form->bool`; `p:form`; `~~q`; `nc:num`; `nb:num`] SUPPORT_ASYMMETRIC) THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `clause A /\ clause B /\ clause C` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[PSRESPROOF_CLAUSE; NPRESPROOF_CLAUSE; IN_DIFF]; ALL_TAC] THEN SUBGOAL_THEN `literal q` ASSUME_TAC THENL [ASM_MESON_TAC[clause]; ALL_TAC] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [ARITH_RULE `a + b + 1 = b + a + 1`] THEN ASM_SIMP_TAC[RESOLVE_SYM; NEGATE_NEGATE]]);; let SUPPORT_LEMMA = prove (`!hyps sos. (!c. c IN hyps ==> clause c /\ ~tautologous c) ==> !n c1 c2 p. psresproof hyps sos T c1 /\ npresproof (hyps DIFF sos) c2 n /\ p IN c1 /\ ~~p IN c2 /\ ~(tautologous(resolve p c1 c2)) ==> ?cl'. cl' SUBSET (resolve p c1 c2) /\ (psresproof hyps sos T cl' \/ ?m. m < n /\ npresproof (hyps DIFF sos) cl' m)`, REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`A:form->bool`; `Z:form->bool`; `p:form`] THEN STRIP_TAC THEN MP_TAC(ASSUME `npresproof (hyps DIFF sos) Z n`) THEN GEN_REWRITE_TAC LAND_CONV [npresproof_CASES] THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN EXISTS_TAC `resolve p A Z` THEN REWRITE_TAC[SUBSET_REFL] THEN DISJ1_TAC THEN MATCH_MP_TAC(CONJUNCT2(SPEC_ALL psresproof_RULES)) THEN MAP_EVERY EXISTS_TAC [`T`; `F`] THEN ASM_REWRITE_TAC[] THEN MP_TAC(SPECL [`hyps:(form->bool)->bool`; `sos:(form->bool)->bool`] psresproof_RULES) THEN DISCH_THEN(MP_TAC o SPEC `Z:form->bool` o CONJUNCT1) THEN RULE_ASSUM_TAC(REWRITE_RULE[IN_DIFF]) THEN ASM_SIMP_TAC[]; ALL_TAC] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`q:form`; `nb:num`; `nc:num`; `B:form->bool`; `C:form->bool`] THEN DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC MP_TAC) THEN STRIP_TAC THEN MP_TAC(SPECL [`hyps:(form->bool)->bool`; `sos:(form->bool)->bool`; `A:form->bool`; `B:form->bool`; `C:form->bool`; `p:form`; `q:form`; `nb:num`; `nc:num`] SUPPORT_SYMMETRIC) THEN ASM_REWRITE_TAC[]);; (* ------------------------------------------------------------------------- *) (* Old stuff; should be able to recycle it. *) (* ------------------------------------------------------------------------- *) let SUPPORT_INDUCT_LEMMA = prove (`!hyps sos p c1 c2. (!c. c IN hyps ==> clause c /\ ~tautologous c) /\ psresproof hyps sos T c1 /\ presproof (hyps DIFF sos) c2 /\ p IN c1 /\ ~~p IN c2 /\ ~(tautologous(resolve p c1 c2)) ==> ?cl'. cl' SUBSET (resolve p c1 c2) /\ (presproof (hyps DIFF sos) cl' \/ psresproof hyps sos T cl')`, REPEAT STRIP_TAC THEN MP_TAC(SPECL [`hyps:(form->bool)->bool`; `sos:(form->bool)->bool`] SUPPORT_LEMMA) THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NPRESPROOF]) THEN DISCH_THEN(X_CHOOSE_TAC `n:num`) THEN DISCH_THEN(MP_TAC o SPECL [`n:num`; `c1:form->bool`; `c2:form->bool`; `p:form`]) THEN ASM_REWRITE_TAC[] THEN MESON_TAC[NPRESPROOF]);; let SUPPORT_INDUCT = prove (`!hyps sos. (!c. c IN hyps ==> clause c /\ ~(tautologous c)) ==> !cl. presproof hyps cl ==> clause cl /\ (~(tautologous cl) ==> ?cl'. cl' SUBSET cl /\ (presproof (hyps DIFF sos) cl' \/ psresproof hyps sos T cl'))`, REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC presproof_INDUCT THEN CONJ_TAC THENL [X_GEN_TAC `cl:form->bool` THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[] THEN EXISTS_TAC `cl:form->bool` THEN REWRITE_TAC[SUBSET_REFL] THEN ASM_CASES_TAC `cl:form->bool IN sos` THENL [ALL_TAC; ASM_MESON_TAC[presproof_RULES; IN_DIFF]] THEN DISJ2_TAC THEN MP_TAC(SPECL [`hyps:(form->bool)->bool`; `sos:(form->bool)->bool`] psresproof_RULES) THEN DISCH_THEN(MP_TAC o SPEC `cl:form->bool` o CONJUNCT1) THEN ASM_SIMP_TAC[]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`p:form`; `c1:form->bool`; `c2:form->bool`] THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN ASM_SIMP_TAC[RESOLVE_CLAUSE] THEN DISCH_TAC THEN ASM_CASES_TAC `tautologous c1` THENL [SUBGOAL_THEN `~(tautologous c2)` ASSUME_TAC THENL [ASM_MESON_TAC[RESOLVE_TAUT_L; SUBSET_TAUT]; ALL_TAC] THEN ASM_MESON_TAC[RESOLVE_TAUT_L; SUBSET_TRANS; SUBSET_UNION]; ALL_TAC] THEN ASM_CASES_TAC `tautologous c2` THENL [ASM_MESON_TAC[RESOLVE_TAUT_R; clause; SUBSET_TRANS; SUBSET_UNION]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o C MATCH_MP (ASSUME `~(tautologous c2)`)) THEN FIRST_X_ASSUM(MP_TAC o C MATCH_MP (ASSUME `~(tautologous c1)`)) THEN DISCH_THEN(X_CHOOSE_THEN `c1':form->bool` (REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC)) THEN DISCH_THEN(X_CHOOSE_THEN `c2':form->bool` (REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC)) THEN ASM_CASES_TAC `p:form IN c1'` THENL [ALL_TAC; EXISTS_TAC `c1':form->bool` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[SUBSET; resolve; IN_UNION; IN_DELETE] THEN ASM_MESON_TAC[SUBSET]] THEN ASM_CASES_TAC `~~p IN c2'` THENL [ALL_TAC; EXISTS_TAC `c2':form->bool` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[SUBSET; resolve; IN_UNION; IN_DELETE] THEN ASM_MESON_TAC[SUBSET]] THEN UNDISCH_THEN `presproof (hyps DIFF sos) c1' \/ psresproof hyps sos T c1'` DISJ_CASES_TAC THEN FIRST_X_ASSUM DISJ_CASES_TAC THENL [ASM_MESON_TAC[presproof_RULES; RESOLVE_MONO]; MP_TAC(SPECL [`hyps:(form->bool)->bool`; `sos:(form->bool)->bool`; `~~p`; `c2':form->bool`; `c1':form->bool`] SUPPORT_INDUCT_LEMMA) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[NEGATE_NEGATE; SUBSET_TAUT; RESOLVE_MONO; clause; SUBSET; RESOLVE_SYM]; ASM_MESON_TAC[RESOLVE_MONO; SUBSET_TRANS; SUBSET_TAUT; clause; SUBSET; RESOLVE_SYM]]; MP_TAC(SPECL [`hyps:(form->bool)->bool`; `sos:(form->bool)->bool`; `p:form`; `c1':form->bool`; `c2':form->bool`] SUPPORT_INDUCT_LEMMA) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[RESOLVE_MONO; SUBSET_TRANS; SUBSET_TAUT]; EXISTS_TAC `resolve p c1' c2'` THEN ASM_SIMP_TAC[RESOLVE_MONO] THEN DISJ2_TAC THEN MATCH_MP_TAC(CONJUNCT2(SPEC_ALL psresproof_RULES)) THEN REPEAT(EXISTS_TAC `T`) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[SUBSET_TAUT; RESOLVE_MONO]]);; let SUPPORT = prove (`!sos hyps cl. (!c. c IN hyps ==> clause c /\ ~(tautologous c)) /\ presproof hyps cl /\ ~(tautologous cl) ==> ?cl'. cl' SUBSET cl /\ (presproof (hyps DIFF sos) cl' \/ psresproof hyps sos T cl')`, REPEAT STRIP_TAC THEN MP_TAC(SPECL [`hyps:(form->bool)->bool`; `sos:(form->bool)->bool`] SUPPORT_INDUCT) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Slightly different formulation of the propositional case. *) (* ------------------------------------------------------------------------- *) let spresproof_RULES,spresproof_INDUCT,spresproof_CASES = new_inductive_definition `(!c. c IN hyps /\ c IN sos /\ ~(tautologous c) ==> spresproof hyps sos c) /\ (!c1 c2 p. spresproof hyps sos c1 /\ (spresproof hyps sos c2 \/ c2 IN hyps) /\ p IN c1 /\ ~~p IN c2 /\ ~(tautologous(resolve p c1 c2)) ==> spresproof hyps sos (resolve p c1 c2))`;; (* ------------------------------------------------------------------------- *) (* Relation to previous version. *) (* ------------------------------------------------------------------------- *) let SPRESPROOF_PSRESPROOF = prove (`!hyps sos. (!c. c IN hyps ==> clause c /\ ~(tautologous c)) ==> !cl. spresproof hyps sos cl = psresproof hyps sos T cl`, GEN_TAC THEN GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[TAUT `(a <=> b) <=> (a ==> b) /\ (b ==> a)`] THEN REWRITE_TAC[FORALL_AND_THM] THEN CONJ_TAC THENL [MATCH_MP_TAC spresproof_INDUCT THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN MP_TAC(SPECL [`hyps:(form->bool)->bool`; `sos:(form->bool)->bool`] psresproof_RULES) THEN DISCH_THEN(MP_TAC o SPEC `c:form->bool` o CONJUNCT1) THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(CONJUNCT2(SPEC_ALL psresproof_RULES)) THENL [REPEAT(EXISTS_TAC `T`) THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN MAP_EVERY EXISTS_TAC [`T`; `c2:form->bool IN sos`] THEN ASM_SIMP_TAC[psresproof_RULES] THEN MATCH_MP_TAC(CONJUNCT1(SPEC_ALL psresproof_RULES)) THEN ASM_MESON_TAC[IN_DIFF]; ALL_TAC] THEN SUBGOAL_THEN `!s cl. psresproof hyps sos s cl ==> (if s then spresproof hyps sos cl else cl IN hyps /\ ~(cl IN sos) /\ ~(tautologous cl))` (fun th -> MP_TAC(SPEC `T` th) THEN REWRITE_TAC[]) THEN MATCH_MP_TAC psresproof_INDUCT THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_MESON_TAC[spresproof_RULES]; ALL_TAC] THEN REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN REWRITE_TAC[] THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN MAP_EVERY BOOL_CASES_TAC [`s1:bool`; `s2:bool`] THEN ASM_REWRITE_TAC[] THENL [MESON_TAC[spresproof_RULES]; MESON_TAC[spresproof_RULES; IN_DIFF]; ALL_TAC] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `resolve p c1 c2 = resolve (~~p) c2 c1` SUBST_ALL_TAC THENL [ASM_MESON_TAC[RESOLVE_SYM; clause]; ALL_TAC] THEN MATCH_MP_TAC(CONJUNCT2(SPEC_ALL spresproof_RULES)) THEN ASM_REWRITE_TAC[IN_DIFF] THEN ASM_MESON_TAC[NEGATE_NEGATE; clause]);; let SPRESPROOF_CLAUSE_NONTAUT = prove (`!hyps sos. (!c. c IN hyps ==> clause c /\ ~(tautologous c)) ==> !c. spresproof hyps sos c ==> clause c /\ ~(tautologous c)`, REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC spresproof_INDUCT THEN ASM_SIMP_TAC[RESOLVE_CLAUSE; IN_DIFF] THEN ASM_MESON_TAC[RESOLVE_CLAUSE]);; let SPRESPROOF_CLAUSE = prove (`!hyps sos. (!c. c IN hyps ==> clause c) ==> !c. spresproof hyps sos c ==> clause c`, REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC spresproof_INDUCT THEN ASM_SIMP_TAC[RESOLVE_CLAUSE; IN_DIFF] THEN ASM_MESON_TAC[RESOLVE_CLAUSE]);; let SPRESPROOF_MONO = prove (`!hyps1 hyps2 sos cl. spresproof hyps1 sos cl /\ hyps1 SUBSET hyps2 ==> spresproof hyps2 sos cl`, GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ_ALT] THEN REWRITE_TAC[SUBSET; RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN MATCH_MP_TAC spresproof_INDUCT THEN ASM_MESON_TAC[IN_DIFF; spresproof_RULES]);; let SPRESPROOF_MONO_SOS = prove (`!hyps1 hyps2 sos1 sos2 cl. spresproof hyps1 sos1 cl /\ hyps1 SUBSET hyps2 /\ sos1 SUBSET sos2 ==> spresproof hyps2 sos2 cl`, ONCE_REWRITE_TAC[TAUT `a /\ b /\ c ==> d <=> b /\ c ==> a ==> d`] THEN REWRITE_TAC[SUBSET; RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC spresproof_INDUCT THEN ASM_MESON_TAC[spresproof_RULES]);; (* ------------------------------------------------------------------------- *) (* Nicer statement of completeness. *) (* ------------------------------------------------------------------------- *) let TAUTOLOGOUS_SATISFIED = prove (`!c d. clause c /\ tautologous c ==> pholds d (interp c)`, SIMP_TAC[clause; tautologous; PHOLDS_INTERP] THEN MESON_TAC[PHOLDS_NEGATE]);; let PRESPROOF_SOUND = prove (`!asm. (!c. c IN asm ==> clause c) /\ presproof asm {} ==> ~psatisfiable (IMAGE interp asm)`, MESON_TAC[PSATISFIABLE_MONO; PPRESPROOF_SOUND; IMAGE_SUBSET; PPRESPROOF]);; let SPRESPROOF_REFUTATION_COMPLETE = prove (`!hyps sos. (!c. c IN hyps ==> clause c) /\ ~(psatisfiable {interp cl | cl IN hyps}) /\ psatisfiable {interp cl | cl IN (hyps DIFF sos)} ==> spresproof hyps sos {}`, REPEAT STRIP_TAC THEN MP_TAC(SPECL [`sos:(form->bool)->bool`; `{c | c IN hyps /\ ~(tautologous c)}`; `{}:(form->bool)`] SUPPORT) THEN ANTS_TAC THENL [REPEAT CONJ_TAC THENL [ASM_SIMP_TAC[IN_ELIM_THM]; MATCH_MP_TAC PRESPROOF_REFUTATION_COMPLETE THEN CONJ_TAC THENL [ASM_SIMP_TAC[IN_ELIM_THM]; ALL_TAC] THEN UNDISCH_TAC `~psatisfiable {interp cl | cl IN hyps}` THEN REWRITE_TAC[TAUT `~b ==> ~a <=> a ==> b`; psatisfiable] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:form->bool` THEN SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `p:form` THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `cl:form->bool` THEN ASM_CASES_TAC `tautologous cl` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[TAUTOLOGOUS_SATISFIED]; REWRITE_TAC[tautologous; NOT_IN_EMPTY]]; ALL_TAC] THEN REWRITE_TAC[SUBSET_EMPTY; UNWIND_THM2] THEN STRIP_TAC THENL [FIRST_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] PRESPROOF_SOUND)) THEN UNDISCH_TAC `psatisfiable {interp cl | cl IN hyps DIFF sos}` THEN MATCH_MP_TAC(TAUT `(a ==> c) /\ b ==> a ==> (b ==> ~c) ==> d`) THEN CONJ_TAC THENL [ALL_TAC; ASM_SIMP_TAC[IN_ELIM_THM; IN_DIFF]] THEN MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ_ALT] PSATISFIABLE_MONO) THEN REWRITE_TAC[SUBSET; IN_IMAGE; IN_ELIM_THM; IN_DIFF] THEN MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `spresproof {c | c IN hyps /\ ~tautologous c} sos {}` MP_TAC THENL [UNDISCH_TAC `psresproof {c | c IN hyps /\ ~tautologous c} sos T {}` THEN MATCH_MP_TAC(TAUT `(b <=> a) ==> a ==> b`) THEN SPEC_TAC(`{}:form->bool`,`cl:form->bool`) THEN MATCH_MP_TAC SPRESPROOF_PSRESPROOF THEN ASM_SIMP_TAC[IN_ELIM_THM]; ALL_TAC] THEN MATCH_MP_TAC(ONCE_REWRITE_RULE[TAUT `(a /\ b ==> c) <=> b ==> a ==> c`] SPRESPROOF_MONO) THEN SIMP_TAC[IN_ELIM_THM; SUBSET]);; (* ------------------------------------------------------------------------- *) (* First order set-of-support resolution with no tautologies. *) (* ------------------------------------------------------------------------- *) let sresproof_RULES,sresproof_INDUCT,sresproof_CASES = new_inductive_definition `(!c. c IN hyps /\ c IN sos /\ ~(tautologous c) ==> sresproof hyps sos c) /\ (!cl1 cl2 cl2' ps1 ps2 i. sresproof hyps sos cl1 /\ (sresproof hyps sos cl2 \/ cl2 IN hyps) /\ (IMAGE (formsubst (rename cl2 (FVS cl1))) cl2 = cl2') /\ ps1 SUBSET cl1 /\ ps2 SUBSET cl2' /\ ~(ps1 = {}) /\ ~(ps2 = {}) /\ (?i. Unifies i (ps1 UNION {~~ p | p IN ps2})) /\ (mgu (ps1 UNION {~~ p | p IN ps2}) = i) /\ ~(tautologous(IMAGE (formsubst i) (cl1 DIFF ps1 UNION cl2' DIFF ps2))) ==> sresproof hyps sos (IMAGE (formsubst i) (cl1 DIFF ps1 UNION cl2' DIFF ps2)))`;; let SRESPROOF_CLAUSE = prove (`!hyps sos. (!c. c IN hyps ==> clause c) ==> !c. sresproof hyps sos c ==> clause c`, REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC sresproof_INDUCT THEN ASM_MESON_TAC[CLAUSE_UNION; CLAUSE_DIFF; IMAGE_FORMSUBST_CLAUSE]);; (* ------------------------------------------------------------------------- *) (* Lifting to first order level. *) (* ------------------------------------------------------------------------- *) let PSATISFIES_IMAGE_LEMMA = prove (`(!c. c IN s ==> clause c) ==> !d. d psatisfies {formsubst v p | prop v /\ p IN IMAGE interp s} <=> d psatisfies {interp cl | cl IN {IMAGE (formsubst v) c | prop v /\ c IN s}}`, STRIP_TAC THEN REWRITE_TAC[psatisfies; IN_ELIM_THM] THEN GEN_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[IN_IMAGE; PHOLDS_INTERP_IMAGE]);; let SOS_RESOLUTION_COMPLETE = prove (`(!cl. cl IN hyps ==> clause cl) /\ sos SUBSET hyps /\ ~(?M:(term->bool)#(num->term list->term)#(num->term list->bool). interpretation (language(IMAGE interp hyps)) M /\ ~(Dom M = {}) /\ M satisfies (IMAGE interp hyps)) /\ (?M:(A->bool)#(num->A list->A)#(num->A list->bool). interpretation (language(IMAGE interp hyps)) M /\ ~(Dom M = {}) /\ M satisfies (IMAGE interp (hyps DIFF sos))) ==> sresproof hyps sos {}`, REWRITE_TAC[SUBSET] THEN REPEAT STRIP_TAC THEN MP_TAC(SPEC `IMAGE interp hyps` HERBRAND_THEOREM) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [REWRITE_TAC[IN_IMAGE] THEN ASM_MESON_TAC[QFREE_INTERP]; ALL_TAC] THEN SUBGOAL_THEN `?d. d psatisfies {formsubst v p | v,p | (!x. v x IN herbase (functions (IMAGE interp hyps))) /\ p IN IMAGE interp (hyps DIFF sos)}` MP_TAC THENL [FIRST_ASSUM(MP_TAC o MATCH_MP SATISFIES_INSTANCES) THEN DISCH_THEN(MP_TAC o SPEC `IMAGE interp (hyps DIFF sos)`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE [TAUT `a /\ b /\ c ==> d <=> b ==> a /\ c ==> d`] (GEN_ALL SATISFIES_PSATISFIES))) THEN FIRST_ASSUM(X_CHOOSE_TAC `v:num->A` o MATCH_MP VALUATION_EXISTS) THEN DISCH_THEN(MP_TAC o SPEC `v:num->A`) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [REWRITE_TAC[IN_ELIM_THM; IN_IMAGE; IN_DIFF] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[QFREE_FORMSUBST; QFREE_INTERP; clause]; ALL_TAC] THEN DISCH_THEN(fun th -> EXISTS_TAC (lhand(concl th)) THEN MP_TAC th) THEN REWRITE_TAC[psatisfies] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `p:form` THEN MATCH_MP_TAC(TAUT `(a ==> b) ==> (b ==> c) ==> (a ==> c)`) THEN REWRITE_TAC[IN_ELIM_THM; IN_IMAGE; language] THEN MESON_TAC[HERBASE_SUBSET_TERMS]; ALL_TAC] THEN ASM_SIMP_TAC[PSATISFIES_IMAGE_LEMMA; IMAGE_FORMSUBST_CLAUSE; IN_DIFF] THEN REWRITE_TAC[GSYM IN_DIFF; psatisfies; GSYM psatisfiable] THEN DISCH_TAC THEN DISCH_TAC THEN SUBGOAL_THEN `spresproof {IMAGE (formsubst v) cl | v,cl | cl IN hyps} {IMAGE (formsubst v) cl | v,cl | cl IN sos} {}` MP_TAC THENL [MATCH_MP_TAC SPRESPROOF_MONO_SOS THEN EXISTS_TAC `{IMAGE (formsubst v) c | v,c | (!x. v x IN herbase(functions(IMAGE interp hyps))) /\ c IN hyps}` THEN EXISTS_TAC `{IMAGE (formsubst v) c | v,c | (!x. v x IN herbase(functions(IMAGE interp hyps))) /\ c IN sos}` THEN REPEAT CONJ_TAC THENL [ALL_TAC; REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN MESON_TAC[]; REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN MESON_TAC[]] THEN MATCH_MP_TAC SPRESPROOF_REFUTATION_COMPLETE THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[IN_IMAGE; IN_ELIM_THM] THEN ASM_MESON_TAC[IMAGE_FORMSUBST_CLAUSE]; ASM_REWRITE_TAC[]; ALL_TAC] THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (ONCE_REWRITE_RULE [IMP_CONJ] PSATISFIABLE_MONO)) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_DIFF] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!cl0. spresproof {IMAGE (formsubst v) cl | v,cl | cl IN hyps} {IMAGE (formsubst v) cl | v,cl | cl IN sos} cl0 ==> ?cl. sresproof hyps sos cl /\ cl0 instance_of cl` MP_TAC THENL [ALL_TAC; DISCH_THEN(MP_TAC o SPEC `{}:form->bool`) THEN MATCH_MP_TAC(TAUT `(b ==> c) ==> (a ==> b) ==> (a ==> c)`) THEN MESON_TAC[INSTANCE_OF_EMPTY]] THEN MATCH_MP_TAC spresproof_INDUCT THEN CONJ_TAC THENL [REWRITE_TAC[IN_IMAGE; instance_of; IN_ELIM_THM] THEN ASM_MESON_TAC[sresproof_RULES; TAUTOLOGOUS_INSTANCE]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`A':form->bool`; `B':form->bool`; `p:form`] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `A:form->bool` STRIP_ASSUME_TAC) MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN REWRITE_TAC[IN_ELIM_THM] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [SWAP_EXISTS_THM] THEN REWRITE_TAC[OR_EXISTS_THM] THEN DISCH_THEN(X_CHOOSE_THEN `B:form->bool` MP_TAC) THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN REWRITE_TAC[GSYM instance_of] THEN REWRITE_TAC[TAUT `a /\ c \/ b /\ c <=> (a \/ b) /\ c`] THEN DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN MP_TAC(SPECL [`A:form->bool`; `IMAGE (formsubst (rename B (FVS A))) B`; `A':form->bool`; `B':form->bool`; `resolve p A' B'`; `p:form`] LIFTING_LEMMA) THEN ABBREV_TAC `C = IMAGE (formsubst (rename B (FVS A))) B` THEN MP_TAC(SPECL [`B:form->bool`; `FVS(A)`] rename) THEN ANTS_TAC THENL [ASM_MESON_TAC[FVS_CLAUSE_FINITE; SRESPROOF_CLAUSE]; ALL_TAC] THEN ASM_REWRITE_TAC[renaming] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [FUN_EQ_THM; o_THM; I_DEF; BETA_THM] THEN DISCH_THEN(X_CHOOSE_THEN `j:num->term` (ASSUME_TAC o CONJUNCT1)) THEN ANTS_TAC THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[SRESPROOF_CLAUSE]; ASM_MESON_TAC[IMAGE_FORMSUBST_CLAUSE; SRESPROOF_CLAUSE]; ONCE_REWRITE_TAC[INTER_COMM] THEN ASM_REWRITE_TAC[]; UNDISCH_TAC `B' instance_of B` THEN REWRITE_TAC[instance_of] THEN DISCH_THEN(X_CHOOSE_THEN `k:num->term` SUBST1_TAC) THEN EXPAND_TAC "C" THEN REWRITE_TAC[GSYM IMAGE_o] THEN EXISTS_TAC `termsubst k o (j:num->term)` THEN SUBGOAL_THEN `termsubst k = termsubst (termsubst k o j) o termsubst (rename B (FVS A))` MP_TAC THENL [REWRITE_TAC[FUN_EQ_THM] THEN MATCH_MP_TAC term_INDUCT THEN CONJ_TAC THENL [ASM_REWRITE_TAC[termsubst; GSYM TERMSUBST_TERMSUBST; o_THM]; SIMP_TAC[termsubst; term_INJ; o_THM; GSYM MAP_o] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC MAP_EQ THEN ASM_REWRITE_TAC[o_THM]]; ALL_TAC] THEN REWRITE_TAC[GSYM FORMSUBST_TERMSUBST_LEMMA] THEN REWRITE_TAC[EXTENSION; IN_IMAGE; o_THM] THEN ASM_MESON_TAC[SRESPROOF_CLAUSE; clause; QFREE_LITERAL]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `A1:form->bool` (X_CHOOSE_THEN `B1:form->bool` MP_TAC)) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(MP_TAC o SPEC `mgu (A1 UNION {~~ l | l IN B1})`) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [MATCH_MP_TAC ISMGU_MGU THEN ASM_REWRITE_TAC[FINITE_UNION] THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[SRESPROOF_CLAUSE; clause; FINITE_SUBSET]; SUBGOAL_THEN `{~~l | l IN B1} = IMAGE (~~) B1` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN MESON_TAC[]; ALL_TAC] THEN ASM_MESON_TAC[SRESPROOF_CLAUSE; clause; FINITE_SUBSET; FINITE_IMAGE]; REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN ASM_MESON_TAC[SRESPROOF_CLAUSE; clause; QFREE_LITERAL; SUBSET; IMAGE_FORMSUBST_CLAUSE; QFREE_NEGATE]]; ALL_TAC] THEN DISCH_THEN(fun th -> ASSUME_TAC th THEN EXISTS_TAC (rand(concl th))) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(CONJUNCT2(SPEC_ALL sresproof_RULES)) THEN EXISTS_TAC `B:form->bool` THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP TAUTOLOGOUS_INSTANCE) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [instance_of]) THEN REWRITE_TAC[NOT_IMP; NOT_FORALL_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_REWRITE_TAC[]);; (* ------------------------------------------------------------------------- *) (* Hence show that the given clause algorithm will find refutations. *) (* ------------------------------------------------------------------------- *) let SOS_GIVEN_GENERAL = prove (`!used unused cl. (!c. MEM c used ==> clause c) /\ (!c. MEM c unused ==> clause c) /\ sresproof (set_of_list(used) UNION set_of_list(unused)) (set_of_list unused) cl ==> clause cl /\ ?n cl'. cl' subsumes cl /\ cl' IN level(used,unused) n`, GEN_TAC THEN GEN_TAC THEN ONCE_REWRITE_TAC[TAUT `a /\ b /\ c ==> d <=> a /\ b ==> c ==> d`] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN MATCH_MP_TAC sresproof_INDUCT THEN CONJ_TAC THENL [X_GEN_TAC `c:form->bool` THEN STRIP_TAC THEN CONJ_TAC THENL [ASM_MESON_TAC[IN_SET_OF_LIST]; ALL_TAC] THEN EXISTS_TAC `0` THEN FIRST_ASSUM(MP_TAC o MATCH_MP LEVEL_0) THEN REWRITE_TAC[SUBSUMES; IN_UNION] THEN ASM_MESON_TAC[]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`c1:form->bool`; `c2:form->bool`; `c2':form->bool`; `ps1:form->bool`; `ps2:form->bool`; `i:num->term`] THEN DISCH_THEN(CONJUNCTS_THEN2 (CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_TAC `n1:num`)) MP_TAC) THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN SUBGOAL_THEN `?n2. c2 IN set_of_list(used) \/ ?cl'. cl' subsumes c2 /\ (cl' IN level (used,unused) n2)` MP_TAC THENL [FIRST_X_ASSUM(DISJ_CASES_THEN MP_TAC) THENL [REWRITE_TAC[IN_UNION] THEN MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[IN_UNION] THEN DISCH_THEN DISJ_CASES_TAC THENL [ASM_MESON_TAC[subsumes_REFL]; ALL_TAC] THEN EXISTS_TAC `0` THEN FIRST_ASSUM(MP_TAC o MATCH_MP LEVEL_0) THEN REWRITE_TAC[SUBSUMES] THEN ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_TAC `n2:num`) THEN SUBGOAL_THEN `?n cl1 cl2. cl1 subsumes c1 /\ cl2 subsumes c2 /\ cl1 IN level(used,unused) n /\ ((cl2 = c2) /\ c2 IN set_of_list(used) \/ cl2 IN level(used,unused) n)` MP_TAC THENL [EXISTS_TAC `n1 + n2:num` THEN REWRITE_TAC[IN_UNION] THEN ONCE_REWRITE_TAC[TAUT `a /\ b /\ c /\ d <=> (a /\ c) /\ (b /\ d)`] THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM] THEN CONJ_TAC THENL [ASM_MESON_TAC[level_MONO_SUBSET; SUBSET; LE_ADD]; ALL_TAC] THEN UNDISCH_TAC `c2 IN set_of_list used \/ (?cl'. cl' subsumes c2 /\ cl' IN level (used,unused) n2)` THEN REWRITE_TAC[IN_UNION] THEN STRIP_TAC THEN ASM_MESON_TAC[subsumes_REFL; level_MONO_SUBSET; SUBSET; ARITH_RULE `n <= m + n:num`]; ALL_TAC] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`n:num`; `cl1:form->bool`; `cl2:form->bool`] THEN SUBGOAL_THEN `clause c2` ASSUME_TAC THENL [ASM_MESON_TAC[IN_SET_OF_LIST; IN_UNION]; ALL_TAC] THEN MATCH_MP_TAC(TAUT `a /\ (a ==> c ==> b) ==> c ==> a /\ b`) THEN CONJ_TAC THENL [ASM_MESON_TAC[IMAGE_FORMSUBST_CLAUSE; CLAUSE_UNION; CLAUSE_DIFF]; ALL_TAC] THEN DISCH_TAC THEN STRIP_TAC THENL [MP_TAC(SPECL [`c1:form->bool`; `cl1:form->bool`; `c2:form->bool`; `IMAGE (formsubst i) (c1 DIFF ps1 UNION c2' DIFF ps2)`] ISARESOLVENT_SUBSUME_L) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[level_CLAUSE]; ALL_TAC] THEN ASM_REWRITE_TAC[isaresolvent] THEN CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN MAP_EVERY EXISTS_TAC [`ps1:form->bool`; `ps2:form->bool`] THEN CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN DISCH_THEN(DISJ_CASES_THEN2 ASSUME_TAC MP_TAC) THENL [ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `r:form->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `SUC n` THEN FIRST_ASSUM(MP_TAC o SPEC `n:num` o MATCH_MP LEVEL_STEP) THEN REWRITE_TAC[SUBSUMES; allntresolvents; IN_ELIM_THM; allresolvents] THEN DISCH_THEN(MP_TAC o SPEC `r:form->bool`) THEN ANTS_TAC THENL [CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[TAUTOLOGOUS_INSTANCE; SUBSET_TAUT; subsumes]] THEN MAP_EVERY EXISTS_TAC [`cl1:form->bool`; `c2:form->bool`] THEN ASM_REWRITE_TAC[IN_UNION]; ALL_TAC] THEN ASM_MESON_TAC[subsumes_TRANS; level_CLAUSE]; ALL_TAC] THEN MP_TAC(SPECL [`c1:form->bool`; `cl1:form->bool`; `c2:form->bool`; `cl2:form->bool`; `IMAGE (formsubst i) (c1 DIFF ps1 UNION c2' DIFF ps2)`] ISARESOLVENT_SUBSUME) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[level_CLAUSE]; ALL_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[level_CLAUSE]; ALL_TAC] THEN ASM_REWRITE_TAC[isaresolvent] THEN CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN MAP_EVERY EXISTS_TAC [`ps1:form->bool`; `ps2:form->bool`] THEN CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN DISCH_THEN(DISJ_CASES_THEN2 ASSUME_TAC MP_TAC) THENL [ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(DISJ_CASES_THEN2 ASSUME_TAC MP_TAC) THENL [ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `r:form->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `SUC n` THEN FIRST_ASSUM(MP_TAC o SPEC `n:num` o MATCH_MP LEVEL_STEP) THEN REWRITE_TAC[SUBSUMES; allntresolvents; IN_ELIM_THM; allresolvents] THEN DISCH_THEN(MP_TAC o SPEC `r:form->bool`) THEN ANTS_TAC THENL [CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[TAUTOLOGOUS_INSTANCE; SUBSET_TAUT; subsumes]] THEN MAP_EVERY EXISTS_TAC [`cl1:form->bool`; `cl2:form->bool`] THEN ASM_REWRITE_TAC[IN_UNION]; ALL_TAC] THEN ASM_MESON_TAC[subsumes_TRANS; level_CLAUSE]);; let SUBSUMES_EMPTY = prove (`!c. (c subsumes {}) = (c = {})`, REWRITE_TAC[subsumes; IN_IMAGE; NOT_IN_EMPTY; EXTENSION; SUBSET] THEN MESON_TAC[]);; let SOS_GIVEN = prove (`!used unused. (!c. MEM c used ==> clause c) /\ (!c. MEM c unused ==> clause c) /\ sresproof (set_of_list(used) UNION set_of_list(unused)) (set_of_list unused) {} ==> ?n. {} IN level(used,unused) n`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP SOS_GIVEN_GENERAL) THEN SIMP_TAC[SUBSUMES_EMPTY; UNWIND_THM2]);;