(* ========================================================================= *) (* Formalization of semantics and basic model theory of first order logic. *) (* ========================================================================= *) let EXPAND_TAC s = FIRST_ASSUM(SUBST1_TAC o SYM o check((=) s o fst o dest_var o rhs o concl)) THEN BETA_TAC;; let LIST_UNION = new_recursive_definition list_RECURSION `(LIST_UNION [] = {}) /\ (LIST_UNION (CONS h t) = h UNION (LIST_UNION t))`;; let LIST_UNION_FINITE = prove (`!l. ALL FINITE l ==> FINITE(LIST_UNION l)`, LIST_INDUCT_TAC THEN REWRITE_TAC[LIST_UNION; FINITE_RULES] THEN REWRITE_TAC[FINITE_UNION; ALL] THEN ASM_MESON_TAC[]);; let IN_LIST_UNION = prove (`!x l. x IN (LIST_UNION l) <=> EX (\s. x IN s) l`, GEN_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[LIST_UNION; EX; NOT_IN_EMPTY; IN_UNION]);; let LIST_UNION_APPEND = prove (`!l1 l2. LIST_UNION(APPEND l1 l2) = (LIST_UNION l1) UNION (LIST_UNION l2)`, LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[LIST_UNION; APPEND; UNION_EMPTY; GSYM UNION_ASSOC]);; (* ------------------------------------------------------------------------- *) (* Nested type of terms. *) (* ------------------------------------------------------------------------- *) let term_raw_INDUCT,term_raw_RECURSION = define_type "term = V num | Fn num (term list)";; (* ------------------------------------------------------------------------- *) (* Manually extract "nested" version of induction and recursion. *) (* One day, this will be automated; it's really pretty trivial. *) (* ------------------------------------------------------------------------- *) let term_INDUCT = prove (`!P. (!v. P(V v)) /\ (!s l. ALL P l ==> P(Fn s l)) ==> !t. P t`, REPEAT STRIP_TAC THEN MP_TAC(SPECL [`P:term->bool`; `ALL(P:term->bool)`] term_raw_INDUCT) THEN ASM_SIMP_TAC[ALL]);; let term_RECURSION = prove (`!f h. ?fn:term->Z. (!v. fn(V v) = f v) /\ (!s l. fn(Fn s l) = h s l (MAP fn l))`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`f:num->Z`; `h:num->(term)list->(Z)list->Z`; `[]:(Z)list`; `\(x:term) (y:term list) (z:Z) (w:Z list). CONS z w`] term_raw_RECURSION) THEN REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `mf:(term)list->(Z)list` (X_CHOOSE_THEN `fn:term ->Z` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `fn:term ->Z` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN X_GEN_TAC `l:term list` THEN AP_TERM_TAC THEN SPEC_TAC(`l:term list`,`l:term list`) THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[MAP]);; (* ------------------------------------------------------------------------- *) (* General Skolemizing hack to allow fixed initial parameters in nested *) (* recursive defs. Note that (prima facie) variable ones aren't justified. *) (* ------------------------------------------------------------------------- *) let new_nested_recursive_definition ax tm = let expat = lhand(snd(strip_forall(hd(conjuncts tm)))) in let ev,allargs = strip_comb expat in let pargs = butlast allargs in let tm' = mk_exists(ev,list_mk_forall(pargs,tm)) in let rawprover = prove_recursive_functions_exist ax in let eth = prove(tm', REWRITE_TAC[GSYM SKOLEM_THM] THEN REPEAT GEN_TAC THEN W(ACCEPT_TAC o rawprover o snd o dest_exists o snd)) in SPECL pargs (new_specification [fst(dest_var ev)] eth);; (* ------------------------------------------------------------------------- *) (* Standard consequences. *) (* ------------------------------------------------------------------------- *) let term_INJ = prove_constructors_injective term_RECURSION;; let term_DISTINCT = prove_constructors_distinct term_RECURSION;; let term_CASES = prove_cases_thm term_INDUCT;; (* ------------------------------------------------------------------------- *) (* Definition of formulas. *) (* ------------------------------------------------------------------------- *) parse_as_infix("-->",(13,"right"));; let form_INDUCTION,form_RECURSION = define_type "form = False | Atom num (term list) | --> form form | !! num form";; let form_INJ = prove_constructors_injective form_RECURSION;; let form_DISTINCT = prove_constructors_distinct form_RECURSION;; let form_CASES = prove_cases_thm form_INDUCTION;; (* ------------------------------------------------------------------------- *) (* Definitions of other connectives. *) (* ------------------------------------------------------------------------- *) parse_as_infix("&&",(16,"right"));; parse_as_infix("||",(14,"right"));; parse_as_infix("<->",(12,"right"));; let Not_DEF = new_definition `Not p = p --> False`;; let True_DEF = new_definition `True = Not False`;; let Or_DEF = new_definition `p || q = (p --> q) --> q`;; let And_DEF = new_definition `p && q = Not (Not p || Not q)`;; let Iff_DEF = new_definition `(p <-> q) = (p --> q) && (q --> p)`;; let Exists_DEF = new_definition `?? x p = Not(!!x (Not p))`;; (* ------------------------------------------------------------------------- *) (* The language of a term, formula and set of formulas. *) (* ------------------------------------------------------------------------- *) let functions_term = new_recursive_definition term_RECURSION `(!v. functions_term (V v) = {}) /\ (!f l. functions_term (Fn f l) = (f,LENGTH l) INSERT (LIST_UNION (MAP functions_term l)))`;; let functions_form = new_recursive_definition form_RECURSION `(functions_form False = {}) /\ (functions_form (Atom a l) = LIST_UNION (MAP functions_term l)) /\ (functions_form (p --> q) = (functions_form p) UNION (functions_form q)) /\ (functions_form (!! x p) = functions_form p)`;; let predicates_form = new_recursive_definition form_RECURSION `(predicates_form False = {}) /\ (predicates_form (Atom a l) = {(a,LENGTH l)}) /\ (predicates_form (p --> q) = (predicates_form p) UNION (predicates_form q)) /\ (predicates_form (!! x p) = predicates_form p)`;; let functions = new_definition `functions fms = UNIONS {functions_form f | f IN fms}`;; let predicates = new_definition `predicates fms = UNIONS {predicates_form f | f IN fms}`;; let language = new_definition `language fms = functions fms, predicates fms`;; let FUNCTIONS_SING = prove (`functions {p} = functions_form p`, REWRITE_TAC[EXTENSION; IN_INSERT; NOT_IN_EMPTY; functions; IN_ELIM_THM; IN_UNIONS] THEN MESON_TAC[]);; let LANGUAGE_1 = prove (`language {p} = functions_form p,predicates_form p`, REWRITE_TAC[language; functions; predicates; PAIR_EQ] THEN CONJ_TAC THEN ONCE_REWRITE_TAC[EXTENSION] THEN REWRITE_TAC[IN_UNIONS; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Selecting the bits of an interpretation: domain, functions and relations. *) (* ------------------------------------------------------------------------- *) let Dom_DEF = new_definition `Dom (D:A->bool,Funs:num->(A list)->A,Preds:num->(A list)->bool) = D`;; let Fun_DEF = new_definition `Fun (D:A->bool,Funs:num->(A list)->A,Preds:num->(A list)->bool) = Funs`;; let Pred_DEF = new_definition `Pred (D:A->bool,Funs:num->(A list)->A,Preds:num->(A list)->bool) = Preds`;; let MODEL_EQ = prove (`(M = M') <=> (Dom M = Dom M') /\ (Fun M = Fun M') /\ (Pred M = Pred M')`, let detrip = prove(`p = FST(p),FST(SND p),SND(SND p)`,REWRITE_TAC[]) in ONCE_REWRITE_TAC[detrip] THEN PURE_REWRITE_TAC[PAIR_EQ; Dom_DEF; Fun_DEF; Pred_DEF] THEN REWRITE_TAC[]);; let MODEL_DECOMP = prove (`M = Dom M,Fun M,Pred M`, REWRITE_TAC[MODEL_EQ] THEN REWRITE_TAC[Dom_DEF; Fun_DEF; Pred_DEF]);; (* ------------------------------------------------------------------------- *) (* Free variables and bound variables. *) (* ------------------------------------------------------------------------- *) let FVT = new_recursive_definition term_RECURSION `(!x. FVT (V x) = {x}) /\ (!f l. FVT (Fn f l) = LIST_UNION (MAP FVT l))`;; let FV = new_recursive_definition form_RECURSION `(FV False = {}) /\ (!a l. FV (Atom a l) = LIST_UNION (MAP FVT l)) /\ (!p q. FV (p --> q) = FV p UNION FV q) /\ (!x p. FV (!! x p) = FV p DELETE x)`;; let BV = new_recursive_definition form_RECURSION `(BV False = {}) /\ (!a l. BV (Atom a l) = {}) /\ (!p q. BV (p --> q) = BV p UNION BV q) /\ (!x p. BV (!! x p) = x INSERT BV p)`;; let FVT_FINITE = prove (`!t. FINITE(FVT t)`, MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[FVT; FINITE_RULES; FINITE_INSERT] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC LIST_UNION_FINITE THEN ASM_REWRITE_TAC[ALL_MAP; o_DEF]);; let FV_FINITE = prove (`!p. FINITE(FV p)`, MATCH_MP_TAC form_INDUCTION THEN ASM_REWRITE_TAC[FV; FINITE_RULES; FINITE_UNION; FINITE_DELETE] THEN GEN_TAC THEN MATCH_MP_TAC LIST_UNION_FINITE THEN REWRITE_TAC[ALL_MAP; FVT_FINITE; o_DEF; ALL_T]);; let BV_FINITE = prove (`!p. FINITE(BV p)`, MATCH_MP_TAC form_INDUCTION THEN ASM_REWRITE_TAC[BV; FINITE_RULES; FINITE_UNION; FINITE_INSERT]);; let FV_EXISTS = prove (`FV(??x p) = FV(p) DELETE x`, REWRITE_TAC[Exists_DEF; Not_DEF; FV] THEN SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* Modifier for a valuation. *) (* ------------------------------------------------------------------------- *) let valmod = new_definition `valmod (x,a) v = \y. if y = x then a else v y`;; let VALMOD_CLAUSES = prove (`(!v a k. valmod (k,a) v k = a) /\ (!v a k x. ~(x = k) ==> (valmod (k,a) v x = v x))`, REWRITE_TAC[valmod] THEN REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_MESON_TAC[]);; let VALMOD_TRIV = prove (`!v x. valmod (x,v x) v = v`, REWRITE_TAC[valmod; FUN_EQ_THM] THEN REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]);; let VALMOD_VALMOD = prove (`!v a x b. valmod (x,a) (valmod (x,b) v) = valmod (x,a) v`, REPEAT GEN_TAC THEN REWRITE_TAC[valmod] THEN REPEAT COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[FUN_EQ_THM] THEN GEN_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]));; (* ------------------------------------------------------------------------- *) (* Acceptability of a valuation. *) (* ------------------------------------------------------------------------- *) let valuation = new_definition `valuation(M) v <=> !x:num. v(x) IN Dom(M)`;; let VALUATION_VALMOD = prove (`!M a v. valuation(M) v /\ a IN Dom(M) ==> valuation(M) (valmod (x,a) v)`, REPEAT GEN_TAC THEN REWRITE_TAC[valuation; valmod] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]);; let VALUATION_IS_VALMOD = prove (`!v x. valmod(x,v x) v = v`, REWRITE_TAC[valmod; FUN_EQ_THM] THEN REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]);; (* ------------------------------------------------------------------------- *) (* Interpretation of terms and formulas w.r.t. interpretation and valuation. *) (* ------------------------------------------------------------------------- *) parse_as_infix("satisfies",(10,"right"));; let termval = new_nested_recursive_definition term_RECURSION `(!x. termval M v (V x) = v(x)) /\ (!f l. termval M v (Fn f l) = Fun(M) f (MAP (termval M v) l))`;; let holds = new_recursive_definition form_RECURSION `(holds M v False <=> F) /\ (!a l. holds M v (Atom a l) <=> Pred(M) a (MAP (termval M v) l)) /\ (!p q. holds M v (p --> q) <=> holds M v p ==> holds M v q) /\ (!x p. holds M v (!! x p) <=> !a. a IN Dom(M) ==> holds M (valmod (x,a) v) p)`;; let hold = new_definition `hold M v fms <=> !p. p IN fms ==> holds M v p`;; let satisfies = new_definition `M satisfies fms <=> !v p. valuation(M) v /\ p IN fms ==> holds M v p`;; let SATISFIES_1 = prove (`M satisfies {p} <=> !v. valuation(M) v ==> holds M v p`, REWRITE_TAC[satisfies; IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Clauses for derived constructs. *) (* ------------------------------------------------------------------------- *) let HOLDS = prove (`(holds M v False <=> F) /\ (holds M v True <=> T) /\ (!a l. holds M v (Atom a l) <=> Pred(M) a (MAP (termval M v) l)) /\ (!p. holds M v (Not p) <=> ~(holds M v p)) /\ (!p q. holds M v (p || q) <=> holds M v p \/ holds M v q) /\ (!p q. holds M v (p && q) <=> holds M v p /\ holds M v q) /\ (!p q. holds M v (p --> q) <=> holds M v p ==> holds M v q) /\ (!p q. holds M v (p <-> q) <=> (holds M v p = holds M v q)) /\ (!x p. holds M v (!! x p) <=> !a. a IN Dom(M) ==> holds M (valmod (x,a) v) p) /\ (!x p. holds M v (?? x p) <=> ?a. a IN Dom(M) /\ holds M (valmod (x,a) v) p)`, REWRITE_TAC[Not_DEF; True_DEF; Or_DEF; And_DEF; Iff_DEF; Exists_DEF; holds] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Prove that only values given to free variables by the valuation matter. *) (* ------------------------------------------------------------------------- *) let TERMVAL_VALUATION = prove (`!M t (v:num->A) v'. (!x. x IN (FVT t) ==> (v'(x) = v(x))) ==> (termval M v' t = termval M v t)`, let lemma = prove (`!l t x. x IN FVT t /\ MEM t l ==> x IN LIST_UNION (MAP FVT l)`, LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; IN_UNION; MEM] THEN ASM_MESON_TAC[]) in GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[FVT; termval] THEN CONJ_TAC THENL [REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[]; GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; LIST_UNION; MAP; IN_UNION] THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[CONS_11] THEN CONJ_TAC THENL [FIRST_ASSUM MATCH_MP_TAC THEN REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC MAP_EQ THEN MATCH_MP_TAC ALL_IMP THEN EXISTS_TAC `\t. !(v:num->A) v'. (!x. x IN FVT t ==> (v' x = v x)) ==> (termval M v' t :A = termval M v t)` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[lemma]]]);; let HOLDS_VALUATION = prove (`!M p (v:num->A) v'. (!x. x IN (FV p) ==> (v'(x) = v(x))) ==> (holds M v' p <=> holds M v p)`, GEN_TAC THEN MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[FV; HOLDS; IN_UNION; IN_DELETE] THEN REPEAT CONJ_TAC THENL [GEN_TAC THEN X_GEN_TAC `l:term list` THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN POP_ASSUM MP_TAC THEN SPEC_TAC(`l:term list`,`l:term list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; IN_UNION] THEN ASM_MESON_TAC[TERMVAL_VALUATION]; MESON_TAC[]; X_GEN_TAC `p:num` THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN X_GEN_TAC `x:num` THEN ASM_CASES_TAC `x:num = p` THEN ASM_REWRITE_TAC[valmod] THEN ASM_MESON_TAC[]]);; (* ------------------------------------------------------------------------- *) (* Note that these are delicate given the fixed type of interpretations. *) (* ------------------------------------------------------------------------- *) let satisfiable = new_definition `satisfiable (U:A->bool) fms <=> ?M:(A->bool)#(num->A list->A)#(num->A list->bool). ~(Dom M = {}) /\ M satisfies fms`;; let valid = new_definition `valid (U:A->bool) fms <=> !M:(A->bool)#(num->A list->A)#(num->A list->bool). M satisfies fms`;; let entails = new_definition `entails (U:A->bool) A p <=> !(M:(A->bool)#(num->A list->A)#(num->A list->bool)) v. hold M v A ==> holds M v p`;; let equivalent = new_definition `equivalent (U:A->bool) p q <=> !(M:(A->bool)#(num->A list->A)#(num->A list->bool)) v. holds M v p <=> holds M v q`;; (* ------------------------------------------------------------------------- *) (* Quality of being an interpretation for a language. *) (* ------------------------------------------------------------------------- *) let interpretation = new_definition `interpretation (fns:(num#num)->bool,preds:(num#num)->bool) M <=> !f l. (f,LENGTH l) IN fns /\ ALL (\x. x IN Dom(M)) l ==> (Fun(M) f l) IN Dom(M)`;; let INTERPRETATION_TERMVAL = prove (`!any:num#num->bool M v t. interpretation (functions_term t,any) M /\ valuation(M) v ==> termval M v t IN Dom(M)`, GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[interpretation] THEN MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termval] THEN CONJ_TAC THENL [REWRITE_TAC[valuation] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]; REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[LENGTH_MAP; functions_term; IN_INSERT] THEN REWRITE_TAC[ALL_MAP] THEN REWRITE_TAC[o_DEF] THEN MATCH_MP_TAC ALL_IMP THEN FIRST_ASSUM(EXISTS_TAC o lhand o concl) THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MATCH_MP_TAC) THEN REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[functions_term] THEN REWRITE_TAC[IN_INSERT] THEN DISJ2_TAC THEN UNDISCH_TAC `MEM (x:term) l` THEN SPEC_TAC(`l:term list`,`l:term list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[MEM] THEN REWRITE_TAC[LIST_UNION; MAP; IN_UNION] THEN ASM_MESON_TAC[]]);; let INTERPRETATION_SUBLANGUAGE = prove (`!M funs1 funs2 preds1 preds2. funs2 SUBSET funs1 ==> interpretation (funs1,preds1) M ==> interpretation (funs2,preds2) M`, GEN_TAC THEN REWRITE_TAC[interpretation; SUBSET] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Substitution in terms. *) (* ------------------------------------------------------------------------- *) let termsubst = new_nested_recursive_definition term_RECURSION `(!x. termsubst v (V x) = v(x)) /\ (!f l. termsubst v (Fn f l) = Fn f (MAP (termsubst v) l))`;; let TERMSUBST_TERMVAL = prove (`!M. (Fun(M) = Fn) ==> !v t. termsubst v t = termval M v t`, GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN ASM_REWRITE_TAC[termsubst; termval] THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN ASM_REWRITE_TAC[]);; let TERMVAL_TRIV = prove (`!M. (Fun(M) = Fn) ==> !t. termval M V t = t`, GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC term_INDUCT THEN ASM_REWRITE_TAC[termval] THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ_DEGEN THEN ASM_REWRITE_TAC[]);; let TERMVAL_TERMSUBST = prove (`!M v i t. termval M v (termsubst i t) = termval M (termval M v o i) t`, GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termval; termsubst; o_THM] THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM MAP_o] THEN MATCH_MP_TAC MAP_EQ THEN ASM_REWRITE_TAC[o_THM]);; let TERMSUBST_TERMSUBST = prove (`!i j t. termsubst j (termsubst i t) = termsubst (termsubst j o i) t`, GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termsubst; o_THM] THEN REWRITE_TAC[GSYM MAP_o] THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN ASM_REWRITE_TAC[o_THM]);; let TERMSUBST_TRIV = prove (`!t. termsubst V t = t`, MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termsubst] THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ_DEGEN THEN ASM_REWRITE_TAC[]);; let TERMSUBST_VALUATION = prove (`!t v v'. (!x. x IN (FVT t) ==> (v'(x) = v(x))) ==> (termsubst v' t = termsubst v t)`, MP_TAC(ISPEC `Dom(a,Fn,b),Fn,Pred(a,Fn,b)` TERMSUBST_TERMVAL) THEN REWRITE_TAC[Fun_DEF] THEN DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN REWRITE_TAC[TERMVAL_VALUATION]);; let TERMSUBST_FVT = prove (`!t i. FVT(termsubst i t) = {x | ?y. y IN FVT(t) /\ x IN FVT(i y)}`, let lemma1 = prove (`{x | ?y. y IN (s UNION t) /\ P x y} = {x | ?y. y IN s /\ P x y} UNION {x | ?y. y IN t /\ P x y}`, REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM] THEN MESON_TAC[]) in MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[FVT; termsubst] THEN CONJ_TAC THENL [REWRITE_TAC[IN_INSERT; IN_ELIM_THM; NOT_IN_EMPTY; EXTENSION] THEN MESON_TAC[]; LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION] THENL [REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; SUBSET; IN_ELIM_THM]; ALL_TAC] THEN REWRITE_TAC[ALL] THEN STRIP_TAC THEN X_GEN_TAC `i:num->term` THEN REWRITE_TAC[lemma1] THEN BINOP_TAC THEN ASM_REWRITE_TAC[] THEN SPEC_TAC(`i:num->term`,`i:num->term`) THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]);; (* ------------------------------------------------------------------------- *) (* Choice of a new variable. *) (* ------------------------------------------------------------------------- *) let MAX_SYM = prove (`!x y. MAX x y = MAX y x`, ARITH_TAC);; let MAX_ASSOC = prove (`!x y z. MAX x (MAX y z) = MAX (MAX x y) z`, ARITH_TAC);; let SETMAX = new_definition `SETMAX s = ITSET MAX s 0`;; let VARIANT = new_definition `VARIANT s = SETMAX s + 1`;; let SETMAX_LEMMA = prove (`(SETMAX {} = 0) /\ (!x s. FINITE s ==> (SETMAX (x INSERT s) = if x IN s then SETMAX s else MAX x (SETMAX s)))`, REWRITE_TAC[SETMAX] THEN MATCH_MP_TAC FINITE_RECURSION THEN REWRITE_TAC[MAX] THEN REPEAT GEN_TAC THEN MAP_EVERY ASM_CASES_TAC [`x:num <= s`; `y:num <= s`; `x:num <= y`; `y <= x`] THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[LE_CASES; LE_TRANS; LE_ANTISYM]);; let SETMAX_MEMBER = prove (`!s. FINITE s ==> !x. x IN s ==> x <= SETMAX s`, MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[NOT_IN_EMPTY; IN_INSERT] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC [SETMAX_LEMMA] THEN ASM_REWRITE_TAC[MAX] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[LE_REFL] THEN ASM_MESON_TAC[LE_CASES; LE_TRANS]);; let SETMAX_THM = prove (`(SETMAX {} = 0) /\ (!x s. FINITE s ==> (SETMAX (x INSERT s) = MAX x (SETMAX s)))`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC [SETMAX_LEMMA] THEN COND_CASES_TAC THEN REWRITE_TAC[MAX] THEN COND_CASES_TAC THEN ASM_MESON_TAC[SETMAX_MEMBER]);; let SETMAX_UNION = prove (`!s t. FINITE(s UNION t) ==> (SETMAX(s UNION t) = MAX (SETMAX s) (SETMAX t))`, let lemma = prove(`(x INSERT s) UNION t = x INSERT (s UNION t)`,SET_TAC[]) in SUBGOAL_THEN `!t. FINITE(t) ==> !s. FINITE(s) ==> (SETMAX(s UNION t) = MAX (SETMAX s) (SETMAX t))` (fun th -> MESON_TAC[th; FINITE_UNION]) THEN GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[UNION_EMPTY; SETMAX_THM] THEN CONJ_TAC THENL [REWRITE_TAC[MAX; LE_0]; ALL_TAC] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[lemma] THEN ASM_SIMP_TAC [SETMAX_THM; FINITE_UNION] THEN REWRITE_TAC[MAX_ASSOC]);; let VARIANT_FINITE = prove (`!s:num->bool. FINITE(s) ==> ~(VARIANT(s) IN s)`, REWRITE_TAC[VARIANT] THEN MESON_TAC[SETMAX_MEMBER; ARITH_RULE `~(x + 1 <= x)`]);; let VARIANT_THM = prove (`!p. ~(VARIANT(FV p) IN FV(p))`, GEN_TAC THEN MATCH_MP_TAC VARIANT_FINITE THEN REWRITE_TAC[FV_FINITE]);; (* ------------------------------------------------------------------------- *) (* Substitution in formulas. *) (* ------------------------------------------------------------------------- *) let formsubst = new_recursive_definition form_RECURSION `(formsubst v False = False) /\ (formsubst v (Atom p l) = Atom p (MAP (termsubst v) l)) /\ (formsubst v (q --> r) = (formsubst v q --> formsubst v r)) /\ (formsubst v (!!x q) = let v' = valmod (x,V x) v in let z = if ?y. y IN FV(!!x q) /\ x IN FVT(v'(y)) then VARIANT(FV(formsubst v' q)) else x in !!z (formsubst (valmod (x,V(z)) v) q))`;; let FORMSUBST_TRIV = prove (`!p. formsubst V p = p`, MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[formsubst] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL [AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ_DEGEN THEN REWRITE_TAC[TERMSUBST_TRIV; ALL_T]; REWRITE_TAC[VALMOD_TRIV; LET_DEF; LET_END_DEF] THEN REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY; FV; IN_DELETE] THEN REWRITE_TAC[GSYM CONJ_ASSOC; EQ_SYM_EQ; TAUT `~(~p /\ p)`] THEN ASM_REWRITE_TAC[VALMOD_TRIV]]);; let FORMSUBST_VALUATION = prove (`!p v v'. (!x. x IN (FV p) ==> (v'(x) = v(x))) ==> (formsubst v' p = formsubst v p)`, MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[FV; formsubst; IN_UNION; IN_DELETE] THEN REPEAT CONJ_TAC THENL [GEN_TAC THEN X_GEN_TAC `l:term list` THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN POP_ASSUM MP_TAC THEN SPEC_TAC(`l:term list`,`l:term list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; IN_UNION] THEN ASM_MESON_TAC[TERMSUBST_VALUATION]; MESON_TAC[]; X_GEN_TAC `p:num` THEN REPEAT STRIP_TAC THEN REWRITE_TAC[LET_DEF; LET_END_DEF] THEN SUBGOAL_THEN `(?y. (y IN FV a1 /\ ~(y = p)) /\ p IN FVT (valmod (p,V p) v' y)) <=> (?y. (y IN FV a1 /\ ~(y = p)) /\ p IN FVT (valmod (p,V p) v y))` SUBST1_TAC THENL [AP_TERM_TAC THEN ABS_TAC THEN MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a /\ b <=> a /\ c)`) THEN DISCH_THEN(ANTE_RES_THEN ASSUME_TAC) THEN REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[VALMOD_VALMOD] THENL [BINOP_TAC THENL [AP_TERM_TAC THEN AP_TERM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN GEN_TAC THEN REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; FIRST_ASSUM MATCH_MP_TAC THEN X_GEN_TAC `x:num` THEN DISCH_TAC THEN REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL [ALL_TAC; ASM_MESON_TAC[]] THEN AP_TERM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN X_GEN_TAC `y:num` THEN REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]]; AP_TERM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN GEN_TAC THEN REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]]]);; let FORMSUBST_FV = prove (`!p i. FV(formsubst i p) = {x | ?y. y IN FV(p) /\ x IN FVT(i y)}`, let lemma1 = prove (`{x | ?y. y IN (s UNION t) /\ P x y} = {x | ?y. y IN s /\ P x y} UNION {x | ?y. y IN t /\ P x y}`, REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM] THEN MESON_TAC[]) in MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[formsubst; FV] THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_ELIM_THM]; REWRITE_TAC[GSYM MAP_o; o_DEF; TERMSUBST_FVT] THEN LIST_INDUCT_TAC THEN REWRITE_TAC[LIST_UNION; MAP] THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; IN_UNION] THEN MESON_TAC[]; REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; IN_UNION] THEN MESON_TAC[]; REPEAT STRIP_TAC THEN REWRITE_TAC[LET_DEF; LET_END_DEF] THEN COND_CASES_TAC THEN REWRITE_TAC[FV; VALMOD_VALMOD] THENL [MP_TAC(SPEC `formsubst (valmod (a0,V a0) i) a1` VARIANT_THM) THEN ABBREV_TAC `a0' = VARIANT (FV (formsubst (valmod (a0,V a0) i) a1))`; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[EXTENSION; IN_DELETE; IN_ELIM_THM] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN DISCH_THEN(MP_TAC o SPEC `y:num`) THEN REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY; IN_DELETE] THEN MESON_TAC[]]);; (* ------------------------------------------------------------------------- *) (* Important lemmas about substitution and renaming. *) (* ------------------------------------------------------------------------- *) let HOLDS_FORMSUBST = prove (`!p i v. holds M (v:num->A) (formsubst i p) <=> holds M (termval M v o i) p`, MATCH_MP_TAC form_INDUCTION THEN ASM_REWRITE_TAC[formsubst; holds] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL [AP_TERM_TAC THEN REWRITE_TAC[GSYM MAP_o] THEN MATCH_MP_TAC MAP_EQ THEN REWRITE_TAC[o_THM; TERMVAL_TERMSUBST; ALL_T]; ALL_TAC] THEN REWRITE_TAC[LET_DEF; LET_END_DEF; HOLDS] THEN AP_TERM_TAC THEN ABS_TAC THEN MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a ==> b <=> a ==> c)`) THEN DISCH_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[VALMOD_VALMOD] THEN MATCH_MP_TAC HOLDS_VALUATION THEN X_GEN_TAC `x:num` THEN DISCH_TAC THEN REWRITE_TAC[o_THM; valmod] THEN (COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM valmod] THENL [REWRITE_TAC[termval; valmod]; ALL_TAC]) THEN MATCH_MP_TAC TERMVAL_VALUATION THEN X_GEN_TAC `y:num` THEN DISCH_TAC THEN ONCE_REWRITE_TAC[valmod] THEN ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN REWRITE_TAC[] THENL [FIRST_X_ASSUM(ASSUME_TAC o SYM) THEN SUBGOAL_THEN `~(y IN FV(formsubst (valmod (a0,V a0) i) a1))` MP_TAC THENL [EXPAND_TAC "y" THEN REWRITE_TAC[VARIANT_THM]; ALL_TAC] THEN REWRITE_TAC[FORMSUBST_FV] THEN REWRITE_TAC[IN_ELIM_THM] THEN REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SPEC `x:num`) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY] THEN ASM_MESON_TAC[]; FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN DISCH_THEN(MP_TAC o SPEC `x:num`) THEN ASM_REWRITE_TAC[FV; IN_DELETE] THEN REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY] THEN ASM_MESON_TAC[]]);; let HOLDS_FORMSUBST1 = prove (`!x t p v. holds M (v:num->A) (formsubst (valmod (x,t) V) p) <=> holds M (valmod (x,termval M v t) v) p`, REPEAT GEN_TAC THEN REWRITE_TAC[HOLDS_FORMSUBST] THEN MATCH_MP_TAC HOLDS_VALUATION THEN X_GEN_TAC `y:num` THEN DISCH_TAC THEN REWRITE_TAC[valmod; o_THM] THEN COND_CASES_TAC THEN REWRITE_TAC[termval]);; let HOLDS_RENAME = prove (`!x y p v. holds M (v:num->A) (formsubst (valmod (x,V y) V) p) <=> holds M (valmod (x,v(y)) v) p`, REPEAT GEN_TAC THEN REWRITE_TAC[HOLDS_FORMSUBST1] THEN MATCH_MP_TAC HOLDS_VALUATION THEN REWRITE_TAC[termval]);; let HOLDS_ALPHA_FORALL = prove (`!x y p v. ~(y IN FV(!!x p)) ==> (holds M v (!!y (formsubst (valmod (x,V y) V) p)) <=> holds M (v:num->A) (!!x p))`, REWRITE_TAC[FV; IN_DELETE] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[HOLDS; HOLDS_FORMSUBST] THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC HOLDS_VALUATION THEN GEN_TAC THEN REWRITE_TAC[valmod; termval; o_THM] THEN COND_CASES_TAC THEN REWRITE_TAC[valmod; termval] THEN COND_CASES_TAC THEN REWRITE_TAC[] THEN ASM_MESON_TAC[]);; let HOLDS_ALPHA_EXISTS = prove (`!x y p v. ~(y IN FV(??x p)) ==> (holds M v (??y (formsubst (valmod (x,V y) V) p)) <=> holds M (v:num->A) (??x p))`, REWRITE_TAC[FV; Exists_DEF; Not_DEF; IN_DELETE; UNION_EMPTY] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[HOLDS; HOLDS_FORMSUBST] THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC HOLDS_VALUATION THEN GEN_TAC THEN REWRITE_TAC[valmod; termval; o_THM] THEN COND_CASES_TAC THEN REWRITE_TAC[valmod; termval] THEN COND_CASES_TAC THEN REWRITE_TAC[] THEN ASM_MESON_TAC[]);; let FORMSUBST_RENAME = prove (`!p x y. FV(formsubst (valmod (x,V y) V) p) DELETE y = (FV(p) DELETE x) DELETE y`, REPEAT STRIP_TAC THEN REWRITE_TAC[FORMSUBST_FV] THEN REWRITE_TAC[EXTENSION; IN_DELETE; IN_ELIM_THM] THEN GEN_TAC THEN REWRITE_TAC[valmod] THEN CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Analogous theorems for the logical language. *) (* ------------------------------------------------------------------------- *) let TERMSUBST_FUNCTIONS_TERM = prove (`!t i. functions_term(termsubst i t) = functions_term t UNION {x | ?y. y IN FVT(t) /\ x IN functions_term(i y)}`, let lemma1 = prove (`{x | ?y. y IN (s UNION t) /\ P x y} = {x | ?y. y IN s /\ P x y} UNION {x | ?y. y IN t /\ P x y}`, REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM] THEN MESON_TAC[]) in let lemma2 = prove (`(s = a UNION c) /\ (t = b UNION d) ==> (s UNION t = (a UNION b) UNION (c UNION d))`, SET_TAC[]) in MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[functions_term; termsubst; FVT] THEN CONJ_TAC THENL [REWRITE_TAC[IN_INSERT; IN_UNION; IN_ELIM_THM; NOT_IN_EMPTY; EXTENSION] THEN MESON_TAC[]; ALL_TAC] THEN GEN_TAC THEN SUBGOAL_THEN `!l. ALL (\t. !i. functions_term (termsubst i t) = functions_term t UNION {x | ?y. y IN FVT t /\ x IN functions_term (i y)}) l ==> (!i. LIST_UNION (MAP functions_term (MAP (termsubst i) l)) = LIST_UNION (MAP functions_term l) UNION {x | ?y. y IN LIST_UNION (MAP FVT l) /\ x IN functions_term (i y)})` ASSUME_TAC THENL [ALL_TAC; GEN_TAC THEN DISCH_THEN(ANTE_RES_THEN(fun th -> REWRITE_TAC[th])) THEN REWRITE_TAC[EXTENSION; IN_INSERT; IN_UNION; LENGTH_MAP; DISJ_ACI]] THEN LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION] THENL [REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_INSERT; SUBSET; IN_ELIM_THM; IN_UNION]; ALL_TAC] THEN REWRITE_TAC[ALL] THEN STRIP_TAC THEN X_GEN_TAC `i:num->term` THEN REWRITE_TAC[lemma1; LENGTH; LENGTH_MAP] THEN MATCH_MP_TAC lemma2 THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[LENGTH_MAP]) THEN SPEC_TAC(`i:num->term`,`i:num->term`) THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]);; let FORMSUBST_FUNCTIONS_FORM = prove (`!p i. functions_form(formsubst i p) = functions_form p UNION {x | ?y. y IN FV(p) /\ x IN functions_term(i y)}`, let lemma1 = prove (`{x | ?y. y IN (s UNION t) /\ P x y} = {x | ?y. y IN s /\ P x y} UNION {x | ?y. y IN t /\ P x y}`, REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM] THEN MESON_TAC[]) in let lemma2 = prove (`(a UNION b) UNION (c UNION d) = (a UNION c) UNION (b UNION d)`, REWRITE_TAC[EXTENSION; IN_UNION; DISJ_ACI]) in MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[formsubst; functions_form; FV] THEN REPEAT CONJ_TAC THENL [REPEAT STRIP_TAC THEN REWRITE_TAC[EXTENSION; IN_UNION; NOT_IN_EMPTY; IN_ELIM_THM]; LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION] THENL [REWRITE_TAC[NOT_IN_EMPTY; EXTENSION; IN_UNION; IN_ELIM_THM]; ALL_TAC] THEN X_GEN_TAC `i:num->term` THEN REWRITE_TAC[lemma1] THEN ONCE_REWRITE_TAC[lemma2] THEN BINOP_TAC THEN ASM_REWRITE_TAC[TERMSUBST_FUNCTIONS_TERM]; REWRITE_TAC[lemma1] THEN REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[lemma2] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN REWRITE_TAC[functions_form; LET_DEF; LET_END_DEF; VALMOD_VALMOD] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[valmod] THEN CONV_TAC(DEPTH_CONV COND_ELIM_CONV) THEN REWRITE_TAC[functions_term; NOT_IN_EMPTY; IN_INSERT; IN_DELETE] THEN REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM] THEN GEN_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN ASM_CASES_TAC `y:num = a0` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);; let FORMSUBST_FUNCTIONS_FORM_1 = prove (`!x t p. x IN FV(p) ==> (functions_form(formsubst (valmod (x,t) V) p) = functions_form p UNION functions_term t)`, REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[FORMSUBST_FUNCTIONS_FORM] THEN REWRITE_TAC[valmod] THEN CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN REWRITE_TAC[functions_term; NOT_IN_EMPTY] THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN ASM_MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* And of course we never change the predicates. *) (* ------------------------------------------------------------------------- *) let FORMSUBST_PREDICATES = prove (`!p i. predicates_form(formsubst i p) = predicates_form p`, MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[predicates_form; formsubst; LET_DEF; LET_END_DEF] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[LENGTH_MAP]);; (* ------------------------------------------------------------------------- *) (* Special case of renaming preserves language. *) (* ------------------------------------------------------------------------- *) let FORMSUBST_LANGUAGE_RENAME = prove (`language {(formsubst (valmod (x,V y) V) p)} = language {p}`, REWRITE_TAC[LANGUAGE_1; FORMSUBST_PREDICATES; FORMSUBST_FUNCTIONS_FORM] THEN REWRITE_TAC[PAIR_EQ] THEN REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM] THEN REWRITE_TAC[valmod] THEN CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN REWRITE_TAC[functions_term; NOT_IN_EMPTY] THEN REWRITE_TAC[TAUT `~p /\ p <=> F`]);; (* ------------------------------------------------------------------------- *) (* Invariance under change of language. *) (* ------------------------------------------------------------------------- *) let TERMVAL_FUNCTIONS = prove (`!M t. (!f zs. (f,LENGTH zs) IN functions_term t ==> (Fun(M) f zs = Fun(M') f zs)) ==> !v:num->A. termval M v t = termval M' v t`, GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termval; functions_term] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `MAP (termval M (v:num->A)) l = MAP (termval M' v) l` SUBST1_TAC THENL [MATCH_MP_TAC MAP_EQ THEN MATCH_MP_TAC ALL_IMP THEN FIRST_ASSUM(EXISTS_TAC o lhand o concl) THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(fun th -> SPEC_TAC(`v:num->A`,`v:num->A`) THEN MATCH_MP_TAC th) THEN REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[IN_INSERT] THEN DISJ2_TAC THEN UNDISCH_TAC `MEM (x:term) l` THEN SPEC_TAC(`l:term list`,`l:term list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[MEM] THEN REWRITE_TAC[LIST_UNION; MAP; IN_UNION] THEN ASM_MESON_TAC[]; FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[IN_INSERT] THEN REWRITE_TAC[LENGTH_MAP]]);; let HOLDS_FUNCTIONS = prove (`!M M' p. (Dom(M) = Dom(M')) /\ (!P zs. Pred(M) P zs = Pred(M') P zs) /\ (!f zs. (f,LENGTH zs) IN functions_form p ==> (Fun(M) f zs = Fun(M') f zs)) ==> !v:num->A. holds M v p <=> holds M' v p`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN DISCH_TAC THEN MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[holds] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL [AP_TERM_TAC THEN UNDISCH_TAC `!f zs. f,LENGTH zs IN functions_form (Atom a0 a1) ==> (Fun M f zs :A = Fun M' f zs)` THEN REWRITE_TAC[functions_form] THEN SPEC_TAC(`a1:term list`,`a1:term list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[LIST_UNION; MAP; NOT_IN_EMPTY] THEN REWRITE_TAC[IN_UNION; CONS_11] THEN REPEAT STRIP_TAC THENL [SPEC_TAC(`v:num->A`,`v:num->A`) THEN MATCH_MP_TAC TERMVAL_FUNCTIONS THEN REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; FIRST_ASSUM MATCH_MP_TAC THEN REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]; BINOP_TAC THEN SPEC_TAC(`v:num->A`,`v:num->A`) THEN FIRST_ASSUM MATCH_MP_TAC THEN REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[functions_form; IN_UNION]; AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN SPEC_TAC(`valmod (a0,a) (v:num->A)`,`v:num->A`) THEN FIRST_ASSUM MATCH_MP_TAC THEN REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[functions_form]]);; let HOLDS_PREDICATES = prove (`!M M' p. (Dom(M) = Dom(M')) /\ (!f zs. Fun(M) f zs = Fun(M') f zs) /\ (!P zs. (P,LENGTH zs) IN predicates_form p ==> (Pred(M) P zs = Pred(M') P zs)) ==> !v:num->A. holds M v p <=> holds M' v p`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN DISCH_TAC THEN MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[holds] THEN REWRITE_TAC[predicates_form; IN_INSERT; NOT_IN_EMPTY; IN_UNION] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL [SUBGOAL_THEN `MAP (termval M' (v:num->A)) a1 = MAP (termval M (v:num->A)) a1` SUBST1_TAC THENL [MATCH_MP_TAC MAP_EQ THEN SUBGOAL_THEN `!x. termval M' (v:num->A) x = termval M (v:num->A) x` (fun th -> REWRITE_TAC[th; ALL_T]) THEN GEN_TAC THEN SPEC_TAC(`v:num->A`,`v:num->A`) THEN MATCH_MP_TAC TERMVAL_FUNCTIONS THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[LENGTH_MAP]; ASM_MESON_TAC[]; AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN SPEC_TAC(`valmod (a0,a) (v:num->A)`,`v:num->A`) THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]);; (* ------------------------------------------------------------------------- *) (* Triviality of universal closure. *) (* ------------------------------------------------------------------------- *) let HOLDS_UCLOSE = prove (`!M x p. (!v:num->A. valuation(M) v ==> holds M v (!!x p)) <=> (Dom M = EMPTY) \/ !v. valuation(M) v ==> holds M v p`, REPEAT GEN_TAC THEN REWRITE_TAC[holds] THEN ASM_CASES_TAC `Dom(M):A->bool = EMPTY` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN ASM_MESON_TAC[VALUATION_IS_VALMOD; VALUATION_VALMOD; valuation]);; (* ------------------------------------------------------------------------- *) (* Sort of trivial upward LS theorem without equality. *) (* ------------------------------------------------------------------------- *) let MODEL_DUPLICATE = prove (`!M fns preds D. interpretation(fns,preds) M /\ (Dom(M) SUBSET D) /\ ~(Dom(M):A->bool = {}) ==> ?M'. interpretation(fns,preds) M' /\ (Dom(M') = D) /\ !s. functions s SUBSET fns /\ predicates s SUBSET preds ==> (M' satisfies s <=> M satisfies s)`, REPEAT STRIP_TAC THEN ABBREV_TAC `i = \x. if x IN Dom(M) then x else @z:A. z IN Dom(M)` THEN ABBREV_TAC `M' = (D:A->bool, (\f args. Fun(M) f (MAP (i:A->A) args)), (\P args. Pred(M) P (MAP i args)))` THEN W(EXISTS_TAC o fst o dest_exists o snd) THEN SUBGOAL_THEN `!x. (i:A->A) x IN Dom(M)` ASSUME_TAC THENL [X_GEN_TAC `x:A` THEN EXPAND_TAC "i" THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC SELECT_CONV THEN UNDISCH_TAC `~(Dom(M) = ({}:A->bool))` THEN REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; NOT_FORALL_THM]; ALL_TAC] THEN MATCH_MP_TAC(TAUT `b /\ (b ==> a /\ c) ==> a /\ b /\ c`) THEN CONJ_TAC THENL [EXPAND_TAC "M'" THEN REWRITE_TAC[Dom_DEF]; ALL_TAC] THEN DISCH_TAC THEN CONJ_TAC THENL [FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [interpretation]) THEN ASM_REWRITE_TAC[interpretation] THEN EXPAND_TAC "M'" THEN REWRITE_TAC[Fun_DEF] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[SUBSET]) THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[LENGTH_MAP] THEN UNDISCH_TAC `ALL (\x:A. x IN D) l` THEN REWRITE_TAC[ALL_MAP] THEN MATCH_MP_TAC MONO_ALL THEN ASM_REWRITE_TAC[o_THM]; ALL_TAC] THEN SUBGOAL_THEN `!t. functions_term t SUBSET fns ==> !v:num->A. (i:A->A) (termval M' v t) = termval M (i o v) t` ASSUME_TAC THENL [MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termval; o_THM] THEN EXPAND_TAC "M'" THEN REWRITE_TAC[Fun_DEF] THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM MAP_o] THEN MAP_EVERY X_GEN_TAC [`P:num`; `args:term list`] THEN REWRITE_TAC[functions_term; SUBSET; IN_LIST_UNION; IN_INSERT] THEN REWRITE_TAC[GSYM EX_MEM; GSYM ALL_MEM] THEN DISCH_TAC THEN DISCH_TAC THEN SUBGOAL_THEN `(P:num,LENGTH(args:term list)) IN fns` ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!t. MEM t args ==> functions_term t SUBSET fns` ASSUME_TAC THENL [REWRITE_TAC[SUBSET] THEN ASM_MESON_TAC[MEM_MAP]; ALL_TAC] THEN SUBGOAL_THEN `!t. MEM t args ==> !v:num->A. (i:A->A) (termval M' v t) = termval M (i o v) t` ASSUME_TAC THENL [ASM_MESON_TAC[SUBSET]; ALL_TAC] THEN X_GEN_TAC `v:num->A` THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `Fun M P (MAP ((i:A->A) o termval M' (v:num->A)) args)` THEN CONJ_TAC THENL [FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (LAND_CONV o RATOR_CONV) [SYM th]) THEN SUBGOAL_THEN `Fun M P (MAP ((i:A->A) o termval M' (v:num->A)) args) IN Dom(M)` (fun th -> REWRITE_TAC[th]) THEN FIRST_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [interpretation]) THEN ASM_REWRITE_TAC[LENGTH_MAP] THEN REWRITE_TAC[GSYM ALL_MEM] THEN REWRITE_TAC[MEM_MAP; o_THM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN REWRITE_TAC[GSYM ALL_MEM; o_THM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!p. functions_form p SUBSET fns ==> !v:num->A. holds M' v p <=> holds M ((i:A->A) o v) p` ASSUME_TAC THENL [MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[holds; functions_form] THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[SUBSET; IN_LIST_UNION; GSYM EX_MEM; MEM_MAP] THEN REPEAT STRIP_TAC THEN EXPAND_TAC "M'" THEN REWRITE_TAC[Pred_DEF] THEN ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM MAP_o] THEN MATCH_MP_TAC MAP_EQ THEN REWRITE_TAC[GSYM ALL_MEM] THEN REWRITE_TAC[o_THM] THEN ASM_MESON_TAC[SUBSET]; REWRITE_TAC[SUBSET; IN_UNION] THEN MESON_TAC[]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`x:num`; `p:form`] THEN DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `v:num->A` THEN SUBGOAL_THEN `!a. i o valmod (x,a) (v:num->A) = valmod (x,i(a)) ((i:A->A) o v)` (fun th -> REWRITE_TAC[th]) THENL [REWRITE_TAC[FUN_EQ_THM] THEN REPEAT GEN_TAC THEN REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[o_THM]; ALL_TAC] THEN SUBGOAL_THEN `!x:A. x IN Dom(M) ==> (i x = x)` MP_TAC THENL [EXPAND_TAC "i" THEN SIMP_TAC[]; ALL_TAC] THEN ASM_MESON_TAC[SUBSET]; ALL_TAC] THEN X_GEN_TAC `s:form->bool` THEN STRIP_TAC THEN REWRITE_TAC[satisfies] THEN REWRITE_TAC[valuation] THEN EXPAND_TAC "M'" THEN REWRITE_TAC[Dom_DEF] THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `p:form` THEN ASM_CASES_TAC `p:form IN s` THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `functions_form p SUBSET fns` ASSUME_TAC THENL [UNDISCH_TAC `functions s SUBSET fns` THEN REWRITE_TAC[functions; SUBSET; IN_UNIONS; IN_ELIM_THM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[] THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `v:num->A` THENL [DISCH_TAC THEN SUBGOAL_THEN `v:num->A = i o v` SUBST1_TAC THENL [EXPAND_TAC "i" THEN REWRITE_TAC[FUN_EQ_THM; o_THM] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN ASM_MESON_TAC[SUBSET]; DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[o_THM]]);;