(* ========================================================================= *) (* Canonical models in FOL and their use to derive classic metatheorems. *) (* ========================================================================= *) (* ------------------------------------------------------------------------- *) (* Domain of a canonical model for given language. *) (* ------------------------------------------------------------------------- *) let terms_RULES,terms_INDUCT,terms_CASES = new_inductive_definition `(!x. terms fns (V x)) /\ (!f l. (f,LENGTH l) IN fns /\ ALL (terms fns) l ==> terms fns (Fn f l))`;; (* ------------------------------------------------------------------------- *) (* A few obvious lemmas. *) (* ------------------------------------------------------------------------- *) let STUPID_CANONDOM_LEMMA = prove (`!t. t IN terms(FST L) ==> functions_term t SUBSET (FST L)`, let lemma0 = prove (`a SUBSET s /\ b SUBSET s ==> (a UNION b) SUBSET s`,SET_TAC[]) in let lemma1 = prove (`a IN s /\ b SUBSET s ==> (a INSERT b) SUBSET s`,SET_TAC[]) in let lemma2 = prove (`!l. ALL (\x. x SUBSET s) l ==> LIST_UNION l SUBSET s`, LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; LIST_UNION; EMPTY_SUBSET] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC lemma0 THEN ASM_MESON_TAC[]) in REWRITE_TAC[IN] THEN MATCH_MP_TAC terms_INDUCT THEN REWRITE_TAC[functions_term; EMPTY_SUBSET] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC lemma1 THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC lemma2 THEN ASM_REWRITE_TAC[ALL_MAP; o_DEF]);; let FINITE_SUBSET_INSTANCE = prove (`!t'. FINITE(t') ==> t' SUBSET { formsubst v p | P(v) /\ p IN s} ==> ?t. FINITE(t) /\ t SUBSET s /\ t' SUBSET {formsubst v p | P(v) /\ p IN t}`, let lemma = prove (`(a INSERT s) SUBSET t <=> a IN t /\ s SUBSET t`,SET_TAC[]) in MATCH_MP_TAC FINITE_INDUCT THEN CONJ_TAC THENL [REWRITE_TAC[EMPTY_SUBSET] THEN EXISTS_TAC `EMPTY:form->bool` THEN REWRITE_TAC[FINITE_RULES; EMPTY_SUBSET]; REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[lemma] THEN DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN ANTE_RES_THEN MP_TAC (CONJUNCT2 th)) THEN DISCH_THEN(X_CHOOSE_THEN `t0:form->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(@p. ?v. (P v /\ p IN s) /\ (x = formsubst v p)) INSERT t0` THEN ASM_REWRITE_TAC[FINITE_INSERT; lemma] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN]) THEN DISCH_THEN(MP_TAC o REWRITE_RULE[IN_ELIM_THM]) THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SELECT_RULE) THEN DISCH_THEN(X_CHOOSE_THEN `v:num->term` MP_TAC) THEN SPEC_TAC(`@p. ?v. (P v /\ p IN s) /\ (x = formsubst v p)`,`q:form`) THEN UNDISCH_TAC `s' SUBSET {formsubst v p | P v /\ p IN t0}` THEN UNDISCH_TAC `x IN {formsubst v p | P v /\ p IN s}` THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_INSERT] THEN MESON_TAC[]]);; let FINITE_SUBSET_SKOLEM = prove (`!s u. FINITE(u) ==> u SUBSET { SKOLEM p | p IN s} ==> ?t. FINITE(t) /\ t SUBSET s /\ (u = {SKOLEM p | p IN t})`, let lemma = prove (`(a INSERT s) SUBSET t <=> a IN t /\ s SUBSET t`,SET_TAC[]) in let lemma2 = prove (`{SKOLEM p | p IN x INSERT s} = (SKOLEM x) INSERT {SKOLEM p | p IN s}`, REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT] THEN SET_TAC[]) in GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT THEN CONJ_TAC THENL [REWRITE_TAC[EMPTY_SUBSET] THEN EXISTS_TAC `EMPTY:form->bool` THEN REWRITE_TAC[FINITE_RULES; EMPTY_SUBSET; NOT_IN_EMPTY] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY]; ALL_TAC] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[lemma] THEN DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN ANTE_RES_THEN MP_TAC (CONJUNCT2 th)) THEN DISCH_THEN(X_CHOOSE_THEN `t0:form->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(@p. p IN s /\ (x = SKOLEM p)) INSERT t0` THEN ASM_REWRITE_TAC[FINITE_INSERT; lemma] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN]) THEN DISCH_THEN(MP_TAC o REWRITE_RULE[IN_ELIM_THM]) THEN DISCH_THEN(MP_TAC o SELECT_RULE) THEN STRIP_TAC THEN ASM_REWRITE_TAC[lemma2] THEN REPEAT(FIRST_X_ASSUM(SUBST_ALL_TAC o SYM)) THEN REFL_TAC);; let VALUATION_EXISTS = prove (`!M. ~(Dom(M) = EMPTY) ==> ?v:num->A. valuation(M) v`, GEN_TAC THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN DISCH_THEN(X_CHOOSE_TAC `a:A`) THEN EXISTS_TAC `\x:num. a:A` THEN ASM_REWRITE_TAC[valuation]);; let HOLDS_ITLIST_EXISTS = prove (`!M xs v. holds M v (ITLIST ?? xs p) <=> ?as. (LENGTH as = LENGTH xs) /\ ALL (Dom M) as /\ holds M (ITLIST valmod (REVERSE (MAP2 (\x a:A. (x,a)) xs as)) v) p`, GEN_TAC THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[HOLDS; LENGTH; ITLIST; MAP2_DEF; HD; TL; REVERSE; APPEND] THENL [MESON_TAC[ALL; LENGTH]; REWRITE_TAC[ITLIST_EXTRA; IN]] THEN GEN_TAC THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_THEN `a:A` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(X_CHOOSE_THEN `as:A list` STRIP_ASSUME_TAC) THEN EXISTS_TAC `CONS (a:A) as` THEN ASM_REWRITE_TAC[ALL; TL; HD; LENGTH]; REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN LIST_INDUCT_TAC THEN REWRITE_TAC[LENGTH; NOT_SUC] THEN REWRITE_TAC[ALL; SUC_INJ; HD; TL] THEN MESON_TAC[]]);; (* ------------------------------------------------------------------------- *) (* Canonical model based on the language of a set of formulas. *) (* ------------------------------------------------------------------------- *) let canonical = new_definition `canonical (L:(num#num->bool)#(num#num->bool)) M <=> (Dom M = terms (FST L)) /\ (!f. Fun(M) f = Fn f)`;; (* ------------------------------------------------------------------------- *) (* Mappings between models and propositional valuations. *) (* ------------------------------------------------------------------------- *) let prop_of_model = new_definition `prop_of_model M v (Atom p l) <=> holds M v (Atom p l)`;; let canon_of_prop = new_definition `canon_of_prop (L:((num#num)->bool)#((num#num)->bool)) (d:form->bool) = terms(FST L),Fn,\p l. d(Atom p l)`;; let PHOLDS_PROP_OF_MODEL = prove (`!p. qfree(p) ==> (pholds (prop_of_model M v) p <=> holds M v p)`, MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[qfree; holds; pholds] THEN CONJ_TAC THENL [REWRITE_TAC[prop_of_model; holds]; REPEAT GEN_TAC THEN STRIP_TAC THEN DISCH_THEN(CONJUNCTS_THEN (ANTE_RES_THEN SUBST1_TAC)) THEN REFL_TAC]);; let PROP_OF_CANON_OF_PROP = prove (`!p l. prop_of_model (canon_of_prop L d) V (Atom p l) = d (Atom p l)`, REWRITE_TAC[prop_of_model; canon_of_prop; holds; Pred_DEF] THEN REPEAT GEN_TAC THEN REPEAT AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ_DEGEN THEN SPEC_TAC(`l:term list`,`l:term list`) THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL] THEN SPEC_TAC(`h:term`,`t:term`) THEN MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termval; Fun_DEF] THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ_DEGEN THEN ASM_REWRITE_TAC[]);; let HOLDS_CANON_OF_PROP = prove (`!p. qfree p ==> (holds (canon_of_prop L d) V p <=> pholds d p)`, GEN_TAC THEN DISCH_THEN(fun th -> MP_TAC th THEN REWRITE_TAC[GSYM(MATCH_MP PHOLDS_PROP_OF_MODEL th)]) THEN SPEC_TAC(`p:form`,`p:form`) THEN MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[pholds; qfree; PROP_OF_CANON_OF_PROP] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN DISCH_THEN(CONJUNCTS_THEN (ANTE_RES_THEN SUBST1_TAC)) THEN REFL_TAC);; let HOLDS_CANON_OF_PROP_GENERAL = prove (`qfree p ==> (holds (canon_of_prop L d) v p <=> pholds d (formsubst v p))`, DISCH_THEN(fun th -> MP_TAC th THEN REWRITE_TAC[GSYM(MATCH_MP PHOLDS_PROP_OF_MODEL th)]) THEN SPEC_TAC(`p:form`,`p:form`) THEN MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[formsubst; pholds; qfree; PROP_OF_CANON_OF_PROP] THEN REPEAT GEN_TAC THEN STRIP_TAC THENL [ALL_TAC; REPEAT GEN_TAC THEN STRIP_TAC THEN DISCH_THEN(CONJUNCTS_THEN (ANTE_RES_THEN SUBST1_TAC)) THEN REFL_TAC] THEN REPEAT GEN_TAC THEN REWRITE_TAC[prop_of_model; canon_of_prop; holds] THEN REWRITE_TAC[Pred_DEF] THEN AP_TERM_TAC THEN AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN SIMP_TAC[GSYM TERMSUBST_TERMVAL; Fun_DEF]);; let CANONICAL_CANON_OF_PROP = prove (`!d. canonical L (canon_of_prop L d)`, REWRITE_TAC[canonical; canon_of_prop; Dom_DEF; Fun_DEF; FUN_EQ_THM]);; let INTERPRETATION_CANON_OF_PROP = prove (`!L d. interpretation L (canon_of_prop L d)`, REWRITE_TAC[FORALL_PAIR_THM; IN; ETA_AX; interpretation; canon_of_prop; Fun_DEF; Dom_DEF] THEN MESON_TAC[terms_RULES; IN]);; (* ------------------------------------------------------------------------- *) (* Equivalence theorems for tautologies. *) (* ------------------------------------------------------------------------- *) let PROP_VALID_IMP_FOL_VALID = prove (`!p. qfree(p) /\ (!d. pholds d p) ==> !M v. holds M v p`, MESON_TAC[PHOLDS_PROP_OF_MODEL]);; let FOL_VALID_IMP_PROP_VALID = prove (`!p. qfree(p) /\ (!C (v:num->term). canonical(language {p}) C ==> holds C v p) ==> !d. pholds d p`, MESON_TAC[CANONICAL_CANON_OF_PROP; HOLDS_CANON_OF_PROP]);; (* ------------------------------------------------------------------------- *) (* Same thing for satisfiability. *) (* ------------------------------------------------------------------------- *) let SATISFIES_PSATISFIES = prove (`(!p. p IN s ==> qfree p) /\ M satisfies s /\ valuation(M) v ==> (prop_of_model M v) psatisfies s`, REWRITE_TAC[satisfies; psatisfies] THEN MESON_TAC[PHOLDS_PROP_OF_MODEL]);; let PSATISFIES_INSTANCES = prove (`(!p. p IN s ==> qfree p) /\ d psatisfies {formsubst v p | (!x. v x IN terms(FST L)) /\ p IN s} ==> (canon_of_prop L d) satisfies s`, REWRITE_TAC[satisfies; psatisfies; IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN STRIP_TAC THEN REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [canon_of_prop; Dom_DEF; valuation] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL[`formsubst v p`; `v:num->term`; `p:form`]) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN SUBGOAL_THEN `holds (canon_of_prop L d) V (formsubst v p)` MP_TAC THENL [ASM_MESON_TAC[HOLDS_CANON_OF_PROP; QFREE_FORMSUBST]; ALL_TAC] THEN SUBGOAL_THEN `holds (canon_of_prop L d) V (formsubst v p) <=> holds (canon_of_prop L d) (termval (canon_of_prop L d) V o v) p` SUBST1_TAC THENL [REWRITE_TAC[HOLDS_FORMSUBST] THEN ASM_MESON_TAC[INTER_EMPTY; QFREE_BV_EMPTY]; MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM; o_THM] THEN GEN_TAC THEN SPEC_TAC(`(v:num->term) x`,`t:term`) THEN MATCH_MP_TAC TERMVAL_TRIV THEN REWRITE_TAC[canon_of_prop; Fun_DEF]]);; let SATISFIES_INSTANCES = prove (`!M:(A->bool)#(num->A list->A)#(num->A list->bool) s t. interpretation(language t) M ==> (M satisfies {formsubst i p | p IN s /\ (!x. i x IN terms(FST(language t)))} <=> M satisfies s)`, REPEAT STRIP_TAC THEN REWRITE_TAC[satisfies; IN_ELIM_THM] THEN EQ_TAC THEN REPEAT STRIP_TAC THENL [ASM_MESON_TAC[FORMSUBST_TRIV; terms_RULES; IN]; ALL_TAC] THEN ASM_REWRITE_TAC[HOLDS_FORMSUBST] THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[valuation; o_THM] THEN GEN_TAC THEN MATCH_MP_TAC INTERPRETATION_TERMVAL THEN EXISTS_TAC `predicates t` THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `interpretation (language t) (M:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN REWRITE_TAC[language] THEN MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN SUBGOAL_THEN `functions t = FST(language t)` SUBST1_TAC THENL [REWRITE_TAC[language]; ALL_TAC] THEN MATCH_MP_TAC STUPID_CANONDOM_LEMMA THEN ASM_REWRITE_TAC[]);; (* ------------------------------------------------------------------------- *) (* So we have compactness in a strong form. *) (* ------------------------------------------------------------------------- *) let COMPACT_CANON_QFREE = prove (`(!p. p IN s ==> qfree p) /\ (!t. FINITE t /\ t SUBSET s ==> ?M. interpretation(language ss) M /\ ~(Dom(M):A->bool = EMPTY) /\ M satisfies t) ==> ?C. interpretation (language ss) C /\ canonical (language ss) C /\ C satisfies s`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `psatisfiable {formsubst v p | (!x. v x IN terms(FST(language ss))) /\ p IN s}` MP_TAC THENL [REWRITE_TAC[psatisfiable] THEN MATCH_MP_TAC COMPACT_PROP THEN REWRITE_TAC[GSYM psatisfiable] THEN X_GEN_TAC `u:form->bool` THEN STRIP_TAC THEN SUBGOAL_THEN `?t. FINITE(t) /\ t SUBSET s /\ u SUBSET {formsubst v p | (!x. v x IN terms (FST (language ss))) /\ p IN t}` STRIP_ASSUME_TAC THENL [MATCH_MP_TAC(REWRITE_RULE[TAUT `(a ==> b ==> c) <=> a /\ b ==> c`] (GEN_ALL FINITE_SUBSET_INSTANCE)) THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN MATCH_MP_TAC SATISFIABLE_MONO THEN EXISTS_TAC `{formsubst v p | (!x. v x IN terms (FST (language ss))) /\ p IN t}` THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o SPEC `t:form->bool`) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN FIRST_ASSUM(CHOOSE_TAC o MATCH_MP VALUATION_EXISTS) THEN MP_TAC(SPEC `ss:form->bool` (SPEC `t:form->bool` (snd(SPEC_VAR SATISFIES_INSTANCES)))) THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `!p. p IN t ==> qfree p` (fun th -> REWRITE_TAC[th]) THENL [ASM_MESON_TAC[SUBSET]; ALL_TAC] THEN DISCH_TAC THEN REWRITE_TAC[psatisfiable] THEN EXISTS_TAC `prop_of_model M (v:num->A)` THEN REWRITE_TAC[GSYM psatisfies] THEN MATCH_MP_TAC SATISFIES_PSATISFIES THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [REWRITE_TAC[IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[QFREE_FORMSUBST] THEN ASM_MESON_TAC[SUBSET]; RULE_ASSUM_TAC(REWRITE_RULE[CONJ_ACI]) THEN ASM_REWRITE_TAC[CONJ_ACI]]; ALL_TAC] THEN REWRITE_TAC[psatisfiable; GSYM psatisfies] THEN DISCH_THEN(X_CHOOSE_THEN `d:form->bool` ASSUME_TAC) THEN EXISTS_TAC `canon_of_prop (language ss) d` THEN REWRITE_TAC[CANONICAL_CANON_OF_PROP; INTERPRETATION_CANON_OF_PROP] THEN MATCH_MP_TAC PSATISFIES_INSTANCES THEN ASM_REWRITE_TAC[]);; (* ------------------------------------------------------------------------- *) (* Tedious lemma about sublanguage. *) (* ------------------------------------------------------------------------- *) let INTERPRETATION_RESTRICTLANGUAGE = prove (`!M s t. t SUBSET s /\ interpretation(language s) M ==> interpretation(language t) M`, REPEAT GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN DISCH_TAC THEN REWRITE_TAC[language] THEN MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN REWRITE_TAC[functions] THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_UNIONS] THEN MESON_TAC[]);; let INTERPRETATION_EXTENDLANGUAGE = prove (`!M s t. interpretation (language t) M /\ ~(Dom M :A->bool = EMPTY) /\ M satisfies t ==> ?M'. (Dom M' = Dom M) /\ (Pred M' = Pred M) /\ interpretation(language s) M' /\ M' satisfies t`, REPEAT STRIP_TAC THEN EXISTS_TAC `Dom(M):A->bool, (\g zs. if (g,LENGTH zs) IN functions t then Fun(M) g zs else @a. a IN Dom(M)), Pred(M)` THEN REWRITE_TAC[Dom_DEF; Fun_DEF; Pred_DEF; interpretation; language] THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL [FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE [language; interpretation]) THEN ASM_REWRITE_TAC[]; CONV_TAC SELECT_CONV THEN ASM_REWRITE_TAC[MEMBER_NOT_EMPTY]]; FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [satisfies]) THEN REWRITE_TAC[satisfies] THEN REWRITE_TAC[valuation; Dom_DEF] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> ((a ==> b) <=> (a ==> c))`) THEN STRIP_TAC THEN SPEC_TAC(`v:num->A`,`v:num->A`) THEN MATCH_MP_TAC HOLDS_FUNCTIONS THEN REWRITE_TAC[Dom_DEF; Fun_DEF; Pred_DEF] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[functions; IN_UNIONS; IN_ELIM_THM]) THEN ASM_MESON_TAC[]]);; (* ------------------------------------------------------------------------- *) (* Generalize to any formulas, via Skolemization. *) (* ------------------------------------------------------------------------- *) let COMPACT_LS = prove (`(!t. FINITE t /\ t SUBSET s ==> ?M. interpretation(language s) M /\ ~(Dom(M):A->bool = EMPTY) /\ M satisfies t) ==> ?C. interpretation (language s) C /\ ~(Dom(C):term->bool = EMPTY) /\ C satisfies s`, let lemma = prove (`(!y. p y ==> p' y) ==> (?x. p x) ==> (?x. p' x)`, MESON_TAC[]) in REPEAT STRIP_TAC THEN SUBGOAL_THEN `!u. FINITE u /\ u SUBSET {SKOLEM p | p IN s} ==> ?M. interpretation(language {SKOLEM p | p IN s}) M /\ ~(Dom(M):A->bool = EMPTY) /\ M satisfies u` ASSUME_TAC THENL [REPEAT STRIP_TAC THEN SUBGOAL_THEN `?t. (u = {SKOLEM p | p IN t}) /\ FINITE t /\ t SUBSET s` (CHOOSE_THEN (CONJUNCTS_THEN2 SUBST_ALL_TAC STRIP_ASSUME_TAC)) THENL [MP_TAC(SPECL [`s:form->bool`; `u:form->bool`] FINITE_SUBSET_SKOLEM) THEN ASM_REWRITE_TAC[CONJ_ACI]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `t:form->bool`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `M:(A->bool)#(num->A list->A)#(num->A list->bool)` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `(?M. ~(Dom M:A->bool = EMPTY) /\ interpretation(language t) M /\ M satisfies t)` (MP_TAC o GEN_REWRITE_RULE I [SKOLEM_SATISFIABLE]) THENL [EXISTS_TAC `M:(A->bool)#(num->A list->A)#(num->A list->bool)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC INTERPRETATION_RESTRICTLANGUAGE THEN EXISTS_TAC `s:form->bool` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `M0:(A->bool)#(num->A list->A)#(num->A list->bool)` STRIP_ASSUME_TAC) THEN MP_TAC(ISPEC `M0:(A->bool)#(num->A list->A)#(num->A list->bool)` INTERPRETATION_EXTENDLANGUAGE) THEN DISCH_THEN(MP_TAC o SPECL [`{SKOLEM p | p IN s}`; `{SKOLEM p | p IN t}`]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `M1:(A->bool)#(num->A list->A)#(num->A list->bool)` STRIP_ASSUME_TAC) THEN EXISTS_TAC `M1:(A->bool)#(num->A list->A)#(num->A list->bool)` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN MP_TAC(INST [`{SKOLEM p | p IN s}`,`s:form->bool`; `{SKOLEM p | p IN s}`,`ss:form->bool`] COMPACT_CANON_QFREE) THEN ASM_REWRITE_TAC[] THEN W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL [REWRITE_TAC[IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[SKOLEM_QFREE]; ALL_TAC] THEN ONCE_REWRITE_TAC[AC CONJ_ACI `a /\ b /\ c <=> b /\ a /\ c`] THEN GEN_REWRITE_TAC RAND_CONV [SKOLEM_SATISFIABLE] THEN MATCH_MP_TAC lemma THEN REWRITE_TAC[canonical] THEN GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN] THEN MESON_TAC[terms_RULES]);; (* ------------------------------------------------------------------------- *) (* Split away the compactness argument. *) (* ------------------------------------------------------------------------- *) let CANON = prove (`!M:(A->bool)#(num->A list->A)#(num->A list->bool) s. interpretation (language s) M /\ ~(Dom(M) = EMPTY) /\ (!p. p IN s ==> qfree p) /\ M satisfies s ==> ?C. interpretation (language s) C /\ ~(Dom C :term->bool = EMPTY) /\ C satisfies s`, REPEAT STRIP_TAC THEN MATCH_MP_TAC COMPACT_LS THEN ASM_MESON_TAC[satisfies; SUBSET]);; (* ------------------------------------------------------------------------- *) (* Conventional form of the LS theorem. *) (* ------------------------------------------------------------------------- *) let term_of_num = new_definition `term_of_num n = (@t. num_of_term t = n)`;; let TERM_OF_NUM = prove (`term_of_num(num_of_term t) = t`, REWRITE_TAC[term_of_num; NUM_OF_TERM_INJ]);; let LOWMOD = new_definition `LOWMOD M = {num_of_term t | t IN Dom(M)}, (\g zs. num_of_term (Fun(M) g (MAP term_of_num zs))), (\p zs. Pred(M) p (MAP term_of_num zs))`;; let LOWMOD_DOM_EMPTY = prove (`(Dom(LOWMOD M) = EMPTY) <=> (Dom(M) = EMPTY)`, REWRITE_TAC[Dom_DEF; LOWMOD; EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN MESON_TAC[]);; let LOWMOD_TERMVAL = prove (`!v. valuation (LOWMOD M) v ==> !t. termval (LOWMOD M) v t = num_of_term (termval M (term_of_num o v) t)`, GEN_TAC THEN DISCH_THEN (ASSUME_TAC o REWRITE_RULE[valuation; LOWMOD; Dom_DEF; IN_ELIM_THM]) THEN MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termval; o_THM] THEN CONJ_TAC THENL [ASM_MESON_TAC[TERM_OF_NUM]; ALL_TAC] THEN REWRITE_TAC[LOWMOD; Fun_DEF] THEN REWRITE_TAC[GSYM LOWMOD] THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM MAP_o] THEN MATCH_MP_TAC MAP_EQ THEN MATCH_MP_TAC ALL_IMP THEN FIRST_ASSUM(EXISTS_TAC o lhand o concl) THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[o_THM; TERM_OF_NUM]);; let LOWMOD_HOLDS = prove (`!p v. valuation (LOWMOD M) v ==> (holds (LOWMOD M) v p <=> holds M (term_of_num o v) p)`, MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[holds] THEN REPEAT CONJ_TAC THENL [REPEAT STRIP_TAC THEN REWRITE_TAC[LOWMOD; Pred_DEF] THEN REWRITE_TAC[GSYM LOWMOD] THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM MAP_o] THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM; o_THM] THEN ASM_SIMP_TAC[LOWMOD_TERMVAL; TERM_OF_NUM]; MESON_TAC[]; REPEAT STRIP_TAC THEN REWRITE_TAC[Dom_DEF; LOWMOD] THEN REWRITE_TAC[GSYM LOWMOD] THEN SUBGOAL_THEN `!a. a IN {num_of_term t | t IN Dom M} ==> valuation (LOWMOD M) (valmod (a0:num,a) v)` MP_TAC THENL [GEN_TAC THEN REWRITE_TAC[valuation; valmod; LOWMOD; Dom_DEF] THEN CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN REWRITE_TAC[IN_ELIM_THM] THEN RULE_ASSUM_TAC(REWRITE_RULE[valuation; LOWMOD; Dom_DEF; IN_ELIM_THM]) THEN ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(fun th -> ASM_SIMP_TAC[th]) THEN SUBGOAL_THEN `!P. (!a. a IN {num_of_term t | t IN Dom(M)} ==> P(a)) <=> (!a. a IN Dom(M) ==> P(num_of_term a))` (fun th -> REWRITE_TAC[th]) THENL [REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[]; ALL_TAC] THEN AP_TERM_TAC THEN ABS_TAC THEN MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> ((a ==> b) <=> (a ==> c))`) THEN DISCH_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[valmod; FUN_EQ_THM; o_THM] THEN GEN_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[TERM_OF_NUM]]);; let LOWMOD_INTERPRETATION = prove (`!L M. interpretation L (LOWMOD M) = interpretation L M`, REWRITE_TAC[FORALL_PAIR_THM; interpretation] THEN REWRITE_TAC[Fun_DEF; Dom_DEF; LOWMOD] THEN SUBGOAL_THEN `!P x. num_of_term x IN {num_of_term y | P y} <=> x IN P` (fun th -> REWRITE_TAC[th]) THENL [REWRITE_TAC[IN_ELIM_THM; IN; NUM_OF_TERM_INJ] THEN MESON_TAC[]; ALL_TAC] THEN REPEAT GEN_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN EQ_TAC THEN DISCH_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; MAP; LENGTH] THENL [DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `[] :num list`) THEN ASM_REWRITE_TAC[ALL; MAP; LENGTH] THEN REWRITE_TAC[IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV); STRIP_TAC THEN FIRST_X_ASSUM (MP_TAC o SPEC `CONS (num_of_term h) (MAP num_of_term t)`) THEN ASM_REWRITE_TAC[ALL; MAP; LENGTH; LENGTH_MAP] THEN REWRITE_TAC[ALL_MAP; IN_ELIM_THM] THEN W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL [CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN MATCH_MP_TAC ALL_IMP THEN FIRST_ASSUM(EXISTS_TAC o lhand o concl) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[o_THM; NUM_OF_TERM_INJ] THEN ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[TERM_OF_NUM; GSYM MAP_o; o_DEF] THEN SIMP_TAC[MAP_EQ_DEGEN; ALL_T]; DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `[] :term list`) THEN ASM_REWRITE_TAC[ALL; MAP; LENGTH] THEN REWRITE_TAC[IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV); STRIP_TAC THEN FIRST_X_ASSUM (MP_TAC o SPEC `CONS (term_of_num h) (MAP term_of_num t)`) THEN ASM_REWRITE_TAC[ALL; MAP; LENGTH; LENGTH_MAP] THEN W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL [CONJ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[IN_ELIM_THM]) THEN ASM_MESON_TAC[TERM_OF_NUM]; ALL_TAC] THEN REWRITE_TAC[ALL_MAP] THEN MATCH_MP_TAC ALL_IMP THEN FIRST_ASSUM(EXISTS_TAC o lhand o concl) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[IN_ELIM_THM; o_THM] THEN MESON_TAC[TERM_OF_NUM]; ALL_TAC] THEN REWRITE_TAC[IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV)]);; let LS = prove (`!M:(A->bool)#(num->A list->A)#(num->A list->bool) s. interpretation (language s) M /\ ~(Dom(M) = EMPTY) /\ (!p. p IN s ==> qfree p) /\ M satisfies s ==> ?N. interpretation (language s) N /\ ~(Dom N :num->bool = EMPTY) /\ N satisfies s`, REPEAT GEN_TAC THEN DISCH_THEN(STRIP_ASSUME_TAC o MATCH_MP CANON) THEN EXISTS_TAC `LOWMOD C` THEN ASM_REWRITE_TAC[LOWMOD_DOM_EMPTY; LOWMOD_INTERPRETATION] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [satisfies]) THEN REWRITE_TAC[satisfies] THEN SIMP_TAC[LOWMOD_HOLDS] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [valuation]) THEN ASM_REWRITE_TAC[valuation] THEN REWRITE_TAC[LOWMOD; Dom_DEF] THEN REWRITE_TAC[IN_ELIM_THM; o_THM] THEN MESON_TAC[TERM_OF_NUM]);; (* ------------------------------------------------------------------------- *) (* Now the Uniformity Lemma. *) (* ------------------------------------------------------------------------- *) let UNIFORMITY = prove (`qfree p /\ (!C v. ~(Dom C = EMPTY) /\ valuation(C) v ==> holds C (v:num->term) (ITLIST ?? xs p)) ==> ?is. (!i x. MEM i is ==> terms(FST(language {p})) (i x)) /\ !d. pholds(d) (ITLIST (||) (MAP (\i. formsubst i p) is) False)`, STRIP_TAC THEN MP_TAC(SPEC `{formsubst i q | q IN {p} /\ (!x. i x IN terms(FST(language {p})))}` COMPACT_DISJ) THEN W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL [ALL_TAC; REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; IN_ELIM_THM; GSYM CONJ_ASSOC] THEN REWRITE_TAC[UNWIND_THM2] THEN DISCH_THEN(X_CHOOSE_THEN `ps:form list` STRIP_ASSUME_TAC) THEN EXISTS_TAC `MAP (\q. @i. (!x. i x IN terms (FST (language {p}))) /\ (q = formsubst i p)) ps` THEN REWRITE_TAC[GSYM MAP_o; o_DEF] THEN CONJ_TAC THENL [REPEAT GEN_TAC THEN FIRST_ASSUM (UNDISCH_TAC o check ((=) `ps:form list` o rand) o concl) THEN SPEC_TAC(`ps:form list`,`ps:form list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; MAP; MEM] THEN DISCH_TAC THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [ALL_TAC; FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]] THEN FIRST_ASSUM(ASSUME_TAC o SELECT_RULE o CONJUNCT1) THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[IN] THEN RULE_ASSUM_TAC(REWRITE_RULE[IN]) THEN FIRST_ASSUM(MATCH_ACCEPT_TAC o CONJUNCT1 o SPEC_ALL); X_GEN_TAC `d:form->bool` THEN FIRST_ASSUM(MP_TAC o SPEC `d:form->bool`) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC(GSYM MAP_EQ_DEGEN) THEN FIRST_ASSUM (UNDISCH_TAC o check ((=) `ps:form list` o rand) o concl) THEN SPEC_TAC(`ps:form list`,`ps:form list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; MAP; MEM] THEN DISCH_THEN(CONJUNCTS_THEN2 (ASSUME_TAC o SELECT_RULE) ASSUME_TAC) THEN CONJ_TAC THENL [FIRST_ASSUM(MATCH_ACCEPT_TAC o CONJUNCT2); ALL_TAC] THEN MATCH_MP_TAC ALL_IMP THEN FIRST_ASSUM(fun th -> EXISTS_TAC(lhand(concl th)) THEN CONJ_TAC THENL [ALL_TAC; FIRST_ASSUM ACCEPT_TAC]) THEN X_GEN_TAC `r:form` THEN REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SELECT_RULE o CONJUNCT2) THEN DISCH_THEN(ACCEPT_TAC o CONJUNCT2)]] THEN X_GEN_TAC `d:form->bool` THEN SUBGOAL_THEN `~((canon_of_prop (language {p}) d) satisfies {(Not p)})` ASSUME_TAC THENL [REWRITE_TAC[satisfies; IN_INSERT; NOT_IN_EMPTY] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `canon_of_prop (language {p}) d`) THEN REWRITE_TAC[HOLDS_ITLIST_EXISTS; NOT_FORALL_THM; NOT_IMP] THEN SUBGOAL_THEN `?v:num->term. valuation (canon_of_prop (language {p}) d) v` CHOOSE_TAC THENL [MATCH_MP_TAC VALUATION_EXISTS THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN REWRITE_TAC[Dom_DEF; canon_of_prop; IN] THEN MESON_TAC[terms_RULES]; ALL_TAC] THEN EXISTS_TAC `v:num->term` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [REWRITE_TAC[canon_of_prop; Dom_DEF] THEN REWRITE_TAC[language; EXTENSION; NOT_IN_EMPTY; NOT_FORALL_THM] THEN EXISTS_TAC `V 0` THEN REWRITE_TAC[IN] THEN MESON_TAC[terms_CASES]; ALL_TAC] THEN REWRITE_TAC[NOT_EXISTS_THM] THEN REWRITE_TAC[TAUT `~(a /\ b /\ c) <=> a /\ b ==> ~c`] THEN REWRITE_TAC[GSYM HOLDS] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[valuation; IN] THEN GEN_TAC THEN UNDISCH_TAC `valuation (canon_of_prop (language {p}) d) (v:num->term)` THEN SPEC_TAC(`v:num->term`,`v:num->term`) THEN UNDISCH_TAC `ALL (Dom (canon_of_prop (language {p}) d)) as` THEN UNDISCH_TAC `LENGTH (as:term list) = LENGTH (xs:num list)` THEN SPEC_TAC(`as:term list`,`as:term list`) THEN SPEC_TAC(`xs:num list`,`xs:num list`) THEN LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[LENGTH; NOT_SUC; MAP2; REVERSE; ITLIST; ALL] THENL [REWRITE_TAC[valuation; IN] THEN MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[SUC_INJ; ITLIST_EXTRA] THEN DISCH_THEN(ANTE_RES_THEN ASSUME_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(ANTE_RES_THEN ASSUME_TAC) THEN REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[valuation; valmod] THEN RULE_ASSUM_TAC(REWRITE_RULE[valuation]) THEN GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_REWRITE_TAC[IN]; ALL_TAC] THEN SUBGOAL_THEN `!q. q IN {(Not p)} ==> qfree q` ASSUME_TAC THENL [REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[QFREE]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o MATCH_MP (GEN_REWRITE_RULE I [GSYM CONTRAPOS_THM] PSATISFIES_INSTANCES)) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[psatisfies; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM; GSYM CONJ_ASSOC] THEN REWRITE_TAC[UNWIND_THM2] THEN REWRITE_TAC[Not_DEF; formsubst] THEN REWRITE_TAC[GSYM Not_DEF] THEN MESON_TAC[el 3 (CONJUNCTS PHOLDS)]);;