(* ========================================================================= *) (* Theory of machine words using finite indexing types. *) (* *) (* Introduces a type `:N word` of N-bit words (N being a type of size N). *) (* Note that this builds in a priori the assumption the wordsize is nonzero. *) (* Some abbreviations like `:byte` = `8 word` are often used for brevity. *) (* *) (* Mappings `val:N word->num` and `word:num->N word` for unsigned values, *) (* and similar 2s-complement `ival:N word->int` and `iword:int->word`, cast *) (* (reducing modulo word in one direction) between words and numbers. *) (* The `bit` function gives a specific bit as a Boolean. *) (* *) (* The usual operations are provided like `word_add`, `word_xor`; currently *) (* for explicitness we don't overload the usual operators. Some have signed *) (* and unsigned variants (e.g. `word_ushr` is unsigned/logical shift right, *) (* while `word_ishr` is signed/arithmetical shift right). *) (* *) (* For some cases where the result is debatable or machine-dependent, we *) (* have versions that match the JVM tagged with a "j" (e.g. `word_jshr` *) (* truncates shift counts modulo word size). *) (* *) (* There are conversions like WORD_REDUCE_CONV for reducing via proof *) (* expressions built up from concrete words like `word 255:byte`. *) (* *) (* Some simple decision procedures for proving basic equalities are here too *) (* and have limited and somewhat complementary scopes: *) (* - WORD_RULE for simple algebraic properties *) (* - WORD_BITWISE_RULE for bitwise-type properties of logical operations *) (* - WORD_ARITH for things involving numerical values *) (* *) (* (c) Copyright, John Harrison 2019-2020 *) (* (c) Copyright, Mario Carneiro 2020 *) (* ========================================================================= *) let HAS_SIZE_8 = HAS_SIZE_DIMINDEX_RULE `:8`;; let HAS_SIZE_16 = HAS_SIZE_DIMINDEX_RULE `:16`;; let HAS_SIZE_32 = HAS_SIZE_DIMINDEX_RULE `:32`;; let HAS_SIZE_64 = HAS_SIZE_DIMINDEX_RULE `:64`;; let HAS_SIZE_128 = HAS_SIZE_DIMINDEX_RULE `:128`;; let HAS_SIZE_256 = HAS_SIZE_DIMINDEX_RULE `:256`;; let HAS_SIZE_512 = HAS_SIZE_DIMINDEX_RULE `:512`;; let DIMINDEX_8 = MATCH_MP DIMINDEX_UNIQUE HAS_SIZE_8;; let DIMINDEX_16 = MATCH_MP DIMINDEX_UNIQUE HAS_SIZE_16;; let DIMINDEX_32 = MATCH_MP DIMINDEX_UNIQUE HAS_SIZE_32;; let DIMINDEX_64 = MATCH_MP DIMINDEX_UNIQUE HAS_SIZE_64;; let DIMINDEX_128 = MATCH_MP DIMINDEX_UNIQUE HAS_SIZE_128;; let DIMINDEX_256 = MATCH_MP DIMINDEX_UNIQUE HAS_SIZE_256;; let DIMINDEX_512 = MATCH_MP DIMINDEX_UNIQUE HAS_SIZE_512;; (* ------------------------------------------------------------------------- *) (* Pre-cache some sizes to speed up computation (only affects efficiency). *) (* ------------------------------------------------------------------------- *) let word_sizes = ref ([]:thm list);; let word_pow2sizes = ref ([]:thm list);; let word_SIZE_CONV = ref NO_CONV;; let word_POW2SIZE_CONV = ref NO_CONV;; let add_word_sizes = let ptm = `(EXP) 2` in let sumconv = GEN_REWRITE_CONV I [DIMINDEX_FINITE_SUM] in let rec conv tm = ((sumconv THENC BINOP_CONV conv THENC NUM_ADD_CONV) ORELSEC DIMINDEX_CONV) tm in let conv2 tm = match tm with Comb(t,d) when t = ptm -> (RAND_CONV conv THENC NUM_EXP_CONV) tm | _ -> failwith "conv2" in let _ = (word_SIZE_CONV := conv; word_POW2SIZE_CONV := conv2) in fun l -> let m = !word_sizes and m2 = !word_pow2sizes and l2 = map (CONV_RULE(RAND_CONV NUM_EXP_CONV) o AP_TERM ptm) l in if subset l m then () else (word_sizes := union l m; word_pow2sizes := union l2 m2; word_SIZE_CONV := (GEN_REWRITE_CONV I (!word_sizes) ORELSEC conv); word_POW2SIZE_CONV := (GEN_REWRITE_CONV I (!word_pow2sizes) ORELSEC conv2));; add_word_sizes [DIMINDEX_1; DIMINDEX_2; DIMINDEX_3; DIMINDEX_4];; add_word_sizes [DIMINDEX_8; DIMINDEX_16; DIMINDEX_32; DIMINDEX_64];; add_word_sizes [DIMINDEX_128; DIMINDEX_256; DIMINDEX_512];; (* ------------------------------------------------------------------------- *) (* Some generic lemmas about digit sums. *) (* ------------------------------------------------------------------------- *) let DIGITSUM_WORKS_GEN = prove (`!B n k. nsum {i | i < k} (\i. B EXP i * n DIV (B EXP i) MOD B) = n MOD (B EXP k)`, GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC num_INDUCTION THEN SIMP_TAC[NUMSEG_CLAUSES_LT; NSUM_CLAUSES; MOD_1; EXP; FINITE_NUMSEG_LT] THEN X_GEN_TAC `k:num` THEN DISCH_TAC THEN REWRITE_TAC[IN_ELIM_THM; LT_REFL] THEN MESON_TAC[MOD_MULT_MOD; MULT_SYM]);; let DIGITSUM_WORKS = prove (`!B n k. n < B EXP k ==> nsum {i | i < k} (\i. B EXP i * n DIV (B EXP i) MOD B) = n`, SIMP_TAC[DIGITSUM_WORKS_GEN; MOD_LT]);; let DIGITSUM_BOUND = prove (`!B b k. (!i. i < k ==> b i < B) ==> nsum {i | i < k} (\i. B EXP i * b i) < B EXP k`, GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[NSUM_CLAUSES_NUMSEG_LT; EXP; ARITH] THEN REWRITE_TAC[LT] THEN DISCH_TAC THEN MATCH_MP_TAC(ARITH_RULE `s < e /\ e * (x + 1) <= e * b ==> s + e * x < b * e`) THEN ASM_SIMP_TAC[LE_MULT_LCANCEL; ARITH_RULE `b + 1 <= c <=> b < c`]);; let DIGITSUM_SPLIT = prove (`!B b s n. FINITE s ==> B EXP n * nsum {i | i IN s /\ n <= i} (\i. B EXP (i - n) * b i) + nsum {i | i IN s /\ i < n} (\i. B EXP i * b i) = nsum s (\i. B EXP i * b i)`, REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM NSUM_LMUL; MULT_ASSOC; GSYM EXP_ADD] THEN SIMP_TAC[ARITH_RULE `n:num <= i ==> n + i - n = i`] THEN MATCH_MP_TAC NSUM_UNION_EQ THEN ASM_REWRITE_TAC[GSYM NOT_LT] THEN SET_TAC[]);; let DIGITSUM_DIV,DIGITSUM_MOD = (CONJ_PAIR o prove) (`(!B b s n. FINITE s /\ (!i. i IN s ==> b i < B) ==> nsum s (\i. B EXP i * b i) DIV (B EXP n) = nsum {i | i IN s /\ n <= i} (\i. B EXP (i - n) * b i)) /\ (!B b s n. FINITE s /\ (!i. i IN s ==> b i < B) ==> nsum s (\i. B EXP i * b i) MOD (B EXP n) = nsum {i | i IN s /\ i < n} (\i. B EXP i * b i))`, REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN ASM_CASES_TAC `B = 0` THENL [ASM_REWRITE_TAC[CONJUNCT1 LT; SET_RULE `(!x. ~(x IN s)) <=> s = {}`] THEN SIMP_TAC[EMPTY_GSPEC; NOT_IN_EMPTY; CONJUNCT1 NSUM_CLAUSES] THEN REWRITE_TAC[DIV_0; MOD_0]; ALL_TAC] THEN REWRITE_TAC[TAUT `(p ==> q) /\ (p ==> r) <=> p ==> q /\ r`] THEN STRIP_TAC THEN MATCH_MP_TAC DIVMOD_UNIQ THEN CONJ_TAC THENL [GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [MULT_SYM] THEN MATCH_MP_TAC(GSYM DIGITSUM_SPLIT) THEN ASM_REWRITE_TAC[]; ONCE_REWRITE_TAC[SET_RULE `{x | x IN s /\ P x} = {x | x IN {y | P y} /\ x IN s}`] THEN REWRITE_TAC[NSUM_RESTRICT_SET; MESON[MULT_CLAUSES] `(if p then a * b else 0) = a * (if p then b else 0)`] THEN MATCH_MP_TAC DIGITSUM_BOUND THEN ASM_MESON_TAC[LE_1]]);; let DIGITSUM_MOD_NUMSEG = prove (`!B b m n. (!i. i < m ==> b i < B) ==> nsum {i | i < m} (\i. B EXP i * b i) MOD (B EXP n) = nsum {i | i < MIN m n} (\i. B EXP i * b i)`, SIMP_TAC[DIGITSUM_MOD; FINITE_NUMSEG_LT; IN_ELIM_THM] THEN REWRITE_TAC[ARITH_RULE `i < MIN m n <=> i < m /\ i < n`]);; let DIGITSUM_DIV_NUMSEG = prove (`!B b m n. (!i. i < m ==> b i < B) ==> nsum {i | i < m} (\i. B EXP i * b i) DIV (B EXP n) = nsum {i | i < m - n} (\i. B EXP i * b(i + n))`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[DIGITSUM_DIV; FINITE_NUMSEG_LT; IN_ELIM_THM] THEN SUBGOAL_THEN `{i:num | i < m /\ n <= i} = IMAGE (\i. i + n) {i | i < m - n}` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM; ARITH_RULE `x:num = y + n <=> y = x - n /\ n <= x`] THEN REWRITE_TAC[GSYM CONJ_ASSOC; UNWIND_THM2] THEN ARITH_TAC; SIMP_TAC[NSUM_IMAGE; EQ_ADD_RCANCEL; o_DEF; ADD_SUB]]);; let DIGITSUM_DIV_MOD = prove (`!B b s n. FINITE s /\ (!i. i IN s ==> b i < B) ==> nsum s (\i. B EXP i * b i) DIV (B EXP n) MOD B = if n IN s then b n else 0`, REPEAT STRIP_TAC THEN REWRITE_TAC[DIV_MOD] THEN REWRITE_TAC[MESON[EXP; MULT_SYM] `B EXP n * B = B EXP SUC n`] THEN ASM_SIMP_TAC[DIGITSUM_MOD] THEN ASM_SIMP_TAC[DIGITSUM_DIV; FINITE_RESTRICT; IN_ELIM_THM] THEN REWRITE_TAC[GSYM CONJ_ASSOC; ARITH_RULE `i < SUC n /\ n <= i <=> i = n`] THEN REWRITE_TAC[MESON[] `i IN s /\ i = n <=> n IN s /\ i = n`] THEN ASM_CASES_TAC `(n:num) IN s` THEN ASM_REWRITE_TAC[EMPTY_GSPEC; NSUM_CLAUSES] THEN REWRITE_TAC[SING_GSPEC; NSUM_SING; SUB_REFL; MULT_CLAUSES; EXP]);; (* ------------------------------------------------------------------------- *) (* Mapping a Boolean to the natural number 1 (true) or 0 (false) *) (* ------------------------------------------------------------------------- *) let bitval = new_definition `bitval b = if b then 1 else 0`;; let BITVAL_CLAUSES = prove (`bitval F = 0 /\ bitval T = 1`, REWRITE_TAC[bitval]);; let BITVAL_BOUND = prove (`!b. bitval b <= 1`, REWRITE_TAC[bitval] THEN ARITH_TAC);; let BITVAL_BOUND_ALT = prove (`!b. bitval b < 2`, REWRITE_TAC[bitval] THEN ARITH_TAC);; let ODD_BITVAL = prove (`!b. ODD(bitval b) <=> b`, REWRITE_TAC[FORALL_BOOL_THM; BITVAL_CLAUSES; ARITH]);; let EVEN_BITVAL = prove (`!b. EVEN(bitval b) <=> ~b`, REWRITE_TAC[FORALL_BOOL_THM; BITVAL_CLAUSES; ARITH]);; let NUM_AS_BITVAL = prove (`!n. n <= 1 <=> ?b. n = bitval b`, REWRITE_TAC[EXISTS_BOOL_THM; BITVAL_CLAUSES] THEN ARITH_TAC);; let NUM_AS_BITVAL_ALT = prove (`!n. n < 2 <=> ?b. n = bitval b`, REWRITE_TAC[EXISTS_BOOL_THM; BITVAL_CLAUSES] THEN ARITH_TAC);; let BITVAL_EQ_0 = prove (`!b. bitval b = 0 <=> ~b`, GEN_TAC THEN REWRITE_TAC[bitval] THEN ASM_CASES_TAC `b:bool` THEN ASM_REWRITE_TAC[] THEN CONV_TAC NUM_REDUCE_CONV);; let BITVAL_EQ_1 = prove (`!b. bitval b = 1 <=> b`, GEN_TAC THEN REWRITE_TAC[bitval] THEN ASM_CASES_TAC `b:bool` THEN ASM_REWRITE_TAC[] THEN CONV_TAC NUM_REDUCE_CONV);; let BITVAL_POS = prove (`!b. 0 < bitval b <=> b`, REWRITE_TAC[ARITH_RULE `0 < a <=> ~(a = 0)`; BITVAL_EQ_0]);; let BITVAL_NOT = prove (`!b. bitval(~b) = 1 - bitval b`, REWRITE_TAC[FORALL_BOOL_THM; BITVAL_CLAUSES] THEN CONV_TAC NUM_REDUCE_CONV);; let BITVAL_AND = prove (`!b c. bitval(b /\ c) = bitval b * bitval c`, REWRITE_TAC[FORALL_BOOL_THM; BITVAL_CLAUSES] THEN CONV_TAC NUM_REDUCE_CONV);; let BITVAL_OR = prove (`!b c. bitval(b \/ c) = (bitval b + bitval c) - bitval b * bitval c`, REWRITE_TAC[FORALL_BOOL_THM; BITVAL_CLAUSES] THEN CONV_TAC NUM_REDUCE_CONV);; let BITVAL_IFF = prove (`!b c. bitval(b <=> c) = (1 + 2 * bitval b * bitval c) - (bitval b + bitval c)`, REWRITE_TAC[FORALL_BOOL_THM; BITVAL_CLAUSES] THEN CONV_TAC NUM_REDUCE_CONV);; let BITVAL_XOR = prove (`!b c. bitval(~(b <=> c)) = (bitval b + bitval c) - 2 * bitval b * bitval c`, REWRITE_TAC[FORALL_BOOL_THM; BITVAL_CLAUSES] THEN CONV_TAC NUM_REDUCE_CONV);; let INT_BITVAL_NOT = prove (`!b. &(bitval(~b)):int = &1 - &(bitval b)`, SIMP_TAC[BITVAL_NOT; GSYM INT_OF_NUM_SUB; BITVAL_BOUND]);; let REAL_BITVAL_NOT = prove (`!b. &(bitval(~b)):real = &1 - &(bitval b)`, SIMP_TAC[BITVAL_NOT; GSYM REAL_OF_NUM_SUB; BITVAL_BOUND]);; let BITVAL_ODD = prove (`!n. bitval(ODD n) = n MOD 2`, REWRITE_TAC[bitval; GSYM NOT_EVEN; MOD_2_CASES; COND_SWAP]);; let LE_BITVAL = prove (`!b c. bitval b <= bitval c <=> b ==> c`, REPEAT GEN_TAC THEN REWRITE_TAC[bitval] THEN REPEAT COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC NUM_REDUCE_CONV);; let INT_LE_BITVAL = prove (`!b c. &(bitval b):int <= &(bitval c) <=> b ==> c`, REWRITE_TAC[INT_OF_NUM_LE; LE_BITVAL]);; let REAL_LE_BITVAL = prove (`!b c. &(bitval b):real <= &(bitval c) <=> b ==> c`, REWRITE_TAC[REAL_OF_NUM_LE; LE_BITVAL]);; let EQ_BITVAL = prove (`!b c. (bitval b = bitval c) <=> (b <=> c)`, REWRITE_TAC[GSYM LE_ANTISYM; LE_BITVAL] THEN CONV_TAC TAUT);; let INT_EQ_BITVAL = prove (`!b c. &(bitval b):int = &(bitval c) <=> (b <=> c)`, REWRITE_TAC[INT_OF_NUM_EQ; EQ_BITVAL]);; let REAL_EQ_BITVAL = prove (`!b c. &(bitval b):real = &(bitval c) <=> (b <=> c)`, REWRITE_TAC[REAL_OF_NUM_EQ; EQ_BITVAL]);; (* ------------------------------------------------------------------------- *) (* Some more binary-specific lemmas. *) (* ------------------------------------------------------------------------- *) let ODD_MOD_POW2 = prove (`!n k. ODD(n MOD 2 EXP k) <=> ~(k = 0) /\ ODD n`, REPEAT GEN_TAC THEN ASM_CASES_TAC `k = 0` THEN ASM_REWRITE_TAC[MOD_1; EXP; ODD] THEN ASM_SIMP_TAC[ODD_MOD_EVEN; EVEN_EXP; ARITH]);; let BINARY_DIGITSUM_BOUND = prove (`!b k. nsum {i | i < k} (\i. 2 EXP i * bitval(b i)) < 2 EXP k`, REPEAT GEN_TAC THEN MATCH_MP_TAC DIGITSUM_BOUND THEN REWRITE_TAC[BITVAL_BOUND_ALT]);; let BINARY_DIGITSUM_SPLIT = prove (`!b s n. FINITE s ==> 2 EXP n * nsum {i | i IN s /\ n <= i} (\i. 2 EXP (i - n) * bitval(b i)) + nsum {i | i IN s /\ i < n} (\i. 2 EXP i * bitval(b i)) = nsum s (\i. 2 EXP i * bitval(b i))`, MATCH_ACCEPT_TAC DIGITSUM_SPLIT);; let BINARY_DIGITSUM_DIV = prove (`!b s n. FINITE s ==> nsum s (\i. 2 EXP i * bitval(b i)) DIV (2 EXP n) = nsum {i | i IN s /\ n <= i} (\i. 2 EXP (i - n) * bitval(b i))`, SIMP_TAC[DIGITSUM_DIV; BITVAL_BOUND_ALT]);; let BINARY_DIGITSUM_MOD = prove (`!b s n. FINITE s ==> nsum s (\i. 2 EXP i * bitval(b i)) MOD (2 EXP n) = nsum {i | i IN s /\ i < n} (\i. 2 EXP i * bitval(b i))`, SIMP_TAC[DIGITSUM_MOD; BITVAL_BOUND_ALT]);; (* ------------------------------------------------------------------------- *) (* The type "N word" is in bijection with "bool^N" *) (* ------------------------------------------------------------------------- *) let word_tybij = let th = prove (`?x:bool^N. T`,REWRITE_TAC[]) in REWRITE_RULE[] (new_type_definition "word" ("mk_word","bitvector") th);; let WORD_EQ_BITVECTOR = prove (`!v w:N word. v = w <=> bitvector v = bitvector w`, MESON_TAC[word_tybij]);; (* ------------------------------------------------------------------------- *) (* Set up some specific sizes that we want. *) (* ------------------------------------------------------------------------- *) new_type_abbrev("nybble",`:(4)word`);; new_type_abbrev("byte",`:(8)word`);; new_type_abbrev("int16",`:(16)word`);; new_type_abbrev("int32",`:(32)word`);; new_type_abbrev("int64",`:(64)word`);; new_type_abbrev("int128",`:(128)word`);; (* ------------------------------------------------------------------------- *) (* Individual selection of bits, indexing from 0 as usual. *) (* ------------------------------------------------------------------------- *) let bit = new_definition `bit i (w:N word) = if i < dimindex(:N) then (bitvector w)$(i + 1) else F`;; let WORD_EQ_BITS_ALT = prove (`!v w:N word. v = w <=> !i. i < dimindex(:N) ==> bit i v = bit i w`, REPEAT GEN_TAC THEN SIMP_TAC[WORD_EQ_BITVECTOR; bit; CART_EQ] THEN MESON_TAC[ARITH_RULE `i < n ==> 1 <= i + 1 /\ i + 1 <= n`; ARITH_RULE `1 <= i /\ i <= n ==> i = (i - 1) + 1 /\ i - 1 < n`]);; let WORD_EQ_BITS = prove (`!v w:N word. v = w <=> !i. bit i v = bit i w`, MESON_TAC[bit; WORD_EQ_BITS_ALT]);; let BIT_TRIVIAL = prove (`!w:(N)word i. dimindex(:N) <= i ==> (bit i w <=> F)`, SIMP_TAC[GSYM NOT_LT; bit]);; let BIT_GUARD = prove (`!(x:N word) i. bit i x <=> i < dimindex(:N) /\ bit i x`, MESON_TAC[NOT_LT; BIT_TRIVIAL]);; (* ------------------------------------------------------------------------- *) (* Mappings to and from sets of bits. *) (* ------------------------------------------------------------------------- *) let bits_of_word = new_definition `bits_of_word (w:N word) = {i | bit i w}`;; let word_of_bits = new_definition `word_of_bits s:N word = mk_word(lambda i. (i - 1) IN s)`;; let IN_BITS_OF_WORD = prove (`!(w:N word) i. i IN bits_of_word w <=> bit i w`, REWRITE_TAC[bits_of_word; IN_ELIM_THM]);; let BIT_WORD_OF_BITS = prove (`!s i. bit i (word_of_bits s:N word) <=> i < dimindex(:N) /\ i IN s`, REPEAT GEN_TAC THEN REWRITE_TAC[bit; word_of_bits] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[word_tybij] THEN FIRST_X_ASSUM(STRIP_ASSUME_TAC o MATCH_MP (ARITH_RULE `i < n ==> 1 <= i + 1 /\ i + 1 <= n`)) THEN ASM_SIMP_TAC[LAMBDA_BETA; ADD_SUB]);; let WORD_OF_BITS_EQ = prove (`!s t. word_of_bits s:N word = word_of_bits t <=> !i. i < dimindex(:N) ==> (i IN s <=> i IN t)`, SIMP_TAC[WORD_EQ_BITS; BIT_WORD_OF_BITS] THEN MESON_TAC[]);; let WORD_OF_BITS_OF_WORD = prove (`!w:N word. word_of_bits(bits_of_word w) = w`, SIMP_TAC[WORD_EQ_BITS_ALT; BIT_WORD_OF_BITS; bits_of_word; IN_ELIM_THM]);; let BITS_OF_WORD_OF_BITS = prove (`!s. bits_of_word(word_of_bits s:N word) = s INTER {i | i < dimindex(:N)}`, GEN_TAC THEN REWRITE_TAC[bits_of_word] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INTER; BIT_WORD_OF_BITS] THEN CONV_TAC TAUT);; let BITS_OF_WORD_EQ = prove (`!v w:N word. bits_of_word v = bits_of_word w <=> v = w`, MESON_TAC[WORD_OF_BITS_OF_WORD]);; let WORD_OF_BITS = prove (`!w:N word. w = word_of_bits {i | bit i w}`, REWRITE_TAC[GSYM bits_of_word; WORD_OF_BITS_OF_WORD]);; let WORD_OF_BITS_ALT = prove (`!w:N word. w = word_of_bits {i | i < dimindex(:N) /\ bit i w}`, SIMP_TAC[WORD_EQ_BITS; BIT_WORD_OF_BITS; IN_ELIM_THM] THEN MESON_TAC[BIT_TRIVIAL; NOT_LE]);; let FINITE_BITS_OF_WORD = prove (`!w:N word. FINITE(bits_of_word w)`, GEN_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{i | i < dimindex(:N)}` THEN REWRITE_TAC[bits_of_word; FINITE_NUMSEG_LT; SUBSET; IN_ELIM_THM] THEN MESON_TAC[BIT_TRIVIAL; NOT_LT]);; (* ------------------------------------------------------------------------- *) (* Mapping to and from natural number values (treating as unsigned word). *) (* ------------------------------------------------------------------------- *) let val_def = new_definition `val (w:N word) = nsum {i | i < dimindex(:N)} (\i. 2 EXP i * bitval(bit i w))`;; let word = new_definition `(word:num->N word) n = mk_word(lambda i. ODD(n DIV (2 EXP (i - 1))))`;; let BIT_WORD = prove (`!i n. bit i (word n:N word) <=> i < dimindex(:N) /\ ODD(n DIV (2 EXP i))`, REPEAT GEN_TAC THEN REWRITE_TAC[bit] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[word; word_tybij] THEN ASM_SIMP_TAC[LAMBDA_BETA; ADD_SUB; ARITH_RULE `1 <= i + 1`; ARITH_RULE `i < n ==> i + 1 <= n`]);; let BIT_LSB_WORD = prove (`!n. bit 0 (word n) <=> ODD n`, SIMP_TAC[BIT_WORD; DIV_1; EXP; DIMINDEX_GE_1; LE_1]);; let BIT_WORD_0 = prove (`!i. bit i (word 0:N word) <=> F`, REWRITE_TAC[BIT_WORD; DIV_0; ODD]);; let BITS_OF_WORD_0 = prove (`bits_of_word(word 0:N word) = {}`, REWRITE_TAC[bits_of_word; BIT_WORD_0; EMPTY_GSPEC]);; let BITS_OF_WORD_EQ_EMPTY = prove (`!w:N word. bits_of_word w = {} <=> w = word 0`, REWRITE_TAC[GSYM BITS_OF_WORD_EQ; BITS_OF_WORD_0]);; let BITVAL_BIT_WORD = prove (`!i n. bitval(bit i (word n:N word)) = if i < dimindex(:N) then (n DIV (2 EXP i)) MOD 2 else 0`, REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[BIT_WORD; bitval; ODD_MOD] THEN ARITH_TAC);; let WORD_VAL = prove (`!w:N word. word(val w) = w`, GEN_TAC THEN SIMP_TAC[WORD_EQ_BITS_ALT; val_def; BIT_WORD] THEN X_GEN_TAC `k:num` THEN DISCH_TAC THEN SIMP_TAC[BINARY_DIGITSUM_DIV; FINITE_NUMSEG_LT] THEN ASM_SIMP_TAC[IN_ELIM_THM; GSYM numseg; ARITH_RULE `k < n ==> (i < n /\ k <= i <=> k <= i /\ i <= n - 1)`] THEN ASM_SIMP_TAC[NSUM_CLAUSES_LEFT; ARITH_RULE `k < n ==> k <= n - 1`] THEN MATCH_MP_TAC(MESON[ODD; ODD_ADD] `~ODD n /\ (ODD m <=> p) ==> (ODD(m + n) <=> p)`) THEN REWRITE_TAC[SUB_REFL; EXP; NOT_ODD; MULT_CLAUSES] THEN CONJ_TAC THENL [MATCH_MP_TAC NSUM_CLOSED THEN SIMP_TAC[EVEN; EVEN_ADD; EVEN_MULT; EVEN_EXP; IN_NUMSEG] THEN ASM_ARITH_TAC; REWRITE_TAC[bitval] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC NUM_REDUCE_CONV]);; let VAL_WORD = prove (`!n. val(word n:N word) = n MOD (2 EXP (dimindex(:N)))`, GEN_TAC THEN SIMP_TAC[val_def; BITVAL_BIT_WORD] THEN SPEC_TAC(`dimindex(:N)`,`k:num`) THEN INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG_LT; EXP; MOD_1] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[MOD_MULT_MOD] THEN ARITH_TAC);; let VAL_WORD_LE = prove (`!n k. n <= k ==> val(word n:N word) <= k`, REWRITE_TAC[VAL_WORD] THEN MESON_TAC[LE_TRANS; MOD_LE]);; let VAL_WORD_LT = prove (`!n k. n < k ==> val(word n:N word) < k`, REWRITE_TAC[VAL_WORD] THEN MESON_TAC[LET_TRANS; MOD_LE]);; let FORALL_WORD = prove (`!P. (!x:N word. P x) <=> (!n. P(word n))`, MESON_TAC[WORD_VAL]);; let EXISTS_WORD = prove (`!P. (?x:N word. P x) <=> (?n. P(word n))`, MESON_TAC[WORD_VAL]);; let VAL_WORD_0 = prove (`val(word 0:(N)word) = 0`, SIMP_TAC[VAL_WORD; MOD_0; EXP_EQ_0; ARITH_EQ]);; let VAL_WORD_1 = prove (`val(word 1:(N)word) = 1`, REWRITE_TAC[VAL_WORD] THEN MATCH_MP_TAC MOD_LT THEN GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `1 = 2 EXP 0`] THEN SIMP_TAC[LT_EXP; LE_1; DIMINDEX_GE_1] THEN ARITH_TAC);; let WORD_BITVAL = prove (`!b. word(bitval b) = if b then word 1 else word 0`, REWRITE_TAC[bitval] THEN MESON_TAC[]);; let VAL_WORD_BITVAL = prove (`!b. val(word(bitval b)) = bitval b`, MATCH_MP_TAC bool_INDUCT THEN REWRITE_TAC[VAL_WORD_1; VAL_WORD_0; BITVAL_CLAUSES]);; let VAL_WORD_EQ = prove (`!n. n < 2 EXP dimindex(:N) ==> val(word n :(N)word) = n`, SIMP_TAC[VAL_WORD; MOD_LT]);; let VAL_EQ = prove (`!(v:N word) (w:N word). val v = val w <=> v = w`, MESON_TAC[WORD_VAL]);; let VAL_EQ_0 = prove (`!w:(N)word. val w = 0 <=> w = word 0`, MESON_TAC[VAL_WORD_0; VAL_EQ]);; let VAL_EQ_1 = prove (`!w:(N)word. val w = 1 <=> w = word 1`, MESON_TAC[VAL_WORD_1; VAL_EQ]);; let VAL_EQ_BITVAL = prove (`!w:(N)word b. val w = bitval b <=> w = word(bitval b)`, REWRITE_TAC[FORALL_BOOL_THM; BITVAL_CLAUSES; VAL_EQ_0; VAL_EQ_1]);; let WORD_BITVAL_EQ_0 = prove (`!b. word(bitval b):N word = word 0 <=> ~b`, REWRITE_TAC[GSYM VAL_EQ_0; VAL_WORD_BITVAL; BITVAL_EQ_0]);; let WORD_BITVAL_EQ_1 = prove (`!b. word(bitval b):N word = word 1 <=> b`, REWRITE_TAC[GSYM VAL_EQ_1; VAL_WORD_BITVAL; BITVAL_EQ_1]);; let WORD_NE_10 = prove (`~(word 1:N word = word 0)`, REWRITE_TAC[GSYM VAL_EQ_0; VAL_WORD_1] THEN CONV_TAC NUM_REDUCE_CONV);; let WORD_EQ = prove (`!x y. word x:(N)word = word y <=> (x == y) (mod (2 EXP dimindex(:N)))`, MESON_TAC[VAL_WORD; WORD_VAL; CONG]);; let WORD_EQ_IMP = prove (`!m n. m < 2 EXP dimindex(:N) /\ n < 2 EXP dimindex(:N) ==> (word m:N word = word n <=> m = n)`, REWRITE_TAC[WORD_EQ; CONG] THEN SIMP_TAC[MOD_LT]);; let WORD_EQ_0 = prove (`!m. m < 2 EXP dimindex(:N) ==> (word m:N word = word 0 <=> m = 0)`, SIMP_TAC[WORD_EQ_IMP; EXP_LT_0; ARITH_EQ]);; let VAL_BOUND = prove (`!w:N word. val w < 2 EXP dimindex(:N)`, REWRITE_TAC[val_def; BINARY_DIGITSUM_BOUND]);; let INT_VAL_BOUND = prove (`!w:N word. &(val w):int < &2 pow dimindex(:N)`, REWRITE_TAC[INT_OF_NUM_POW; INT_OF_NUM_LT; VAL_BOUND]);; let VAL_MOD_REFL = prove (`!x:(N)word. (val x) MOD (2 EXP dimindex(:N)) = val x`, MESON_TAC[MOD_LT; VAL_BOUND]);; let VAL_WORD_EQ_EQ = prove (`!n. val(word n:N word) = n <=> n < 2 EXP dimindex(:N)`, MESON_TAC[VAL_WORD_EQ; VAL_BOUND]);; let FORALL_VAL_GEN = prove (`!P. (!x:N word. P (val x) x) <=> !n. n < 2 EXP dimindex(:N) ==> P n (word n)`, MESON_TAC[VAL_WORD_EQ; WORD_VAL; VAL_BOUND]);; let FORALL_VAL = prove (`!P. (!x:N word. P(val x)) <=> (!n. n < 2 EXP dimindex(:N) ==> P n)`, REWRITE_TAC[FORALL_VAL_GEN]);; let VAL_CONG = prove (`!(v:N word) (w:N word). (val v == val w) (mod (2 EXP dimindex(:N))) <=> v = w`, REWRITE_TAC[GSYM VAL_EQ; CONG; MOD_MOD_REFL; VAL_MOD_REFL]);; let WORD_MOD_SIZE = prove (`!n. word(n MOD (2 EXP dimindex(:N))):N word = word n`, REWRITE_TAC[WORD_EQ; CONG; MOD_MOD_REFL]);; let VAL_WORD_CONG = prove (`!x. (val(word x:N word) == x) (mod (2 EXP (dimindex(:N))))`, REWRITE_TAC[VAL_WORD; CONG; MOD_MOD_REFL]);; let VAL_WORD_GALOIS = prove (`!(w:N word) n. val w = n <=> n < 2 EXP dimindex(:N) /\ w = word n`, MESON_TAC[WORD_VAL; VAL_WORD_EQ; VAL_BOUND]);; let WORD_VAL_GALOIS = prove (`!(w:N word) n. word n = w <=> n MOD 2 EXP dimindex(:N) = val w`, MESON_TAC[VAL_WORD; WORD_MOD_SIZE; WORD_VAL]);; let BIT_VAL = prove (`!(x:N word) i. bit i x <=> ODD(val x DIV (2 EXP i))`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM WORD_VAL] THEN REWRITE_TAC[BIT_WORD; TAUT `(p /\ q <=> q) <=> (~p ==> ~q)`] THEN REWRITE_TAC[NOT_LT] THEN DISCH_TAC THEN MATCH_MP_TAC(MESON[ODD] `n = 0 ==> ~ODD n`) THEN ASM_SIMP_TAC[DIV_EQ_0; EXP_EQ_0; ARITH_EQ] THEN TRANS_TAC LTE_TRANS `2 EXP dimindex(:N)` THEN ASM_REWRITE_TAC[VAL_BOUND; LE_EXP; DIMINDEX_NONZERO; COND_ID]);; let BIT_VAL_MOD = prove (`!(x:N word) k. bit k x <=> 2 EXP k <= val(x) MOD 2 EXP (k + 1)`, REWRITE_TAC[BIT_VAL; GSYM NOT_EVEN; EVEN_MOD; EXP_ADD; EXP_1; DIV_MOD] THEN SIMP_TAC[DIV_EQ_0; NOT_LT; EXP_EQ_0; ARITH_EQ]);; let BIT_LSB = prove (`!x:N word. bit 0 x <=> ODD(val x)`, REWRITE_TAC[BIT_VAL; EXP; DIV_1]);; let TWICE_MSB = prove (`2 EXP dimindex(:N) = 2 * 2 EXP (dimindex(:N) - 1) /\ (&2:int) pow dimindex(:N) = &2 * &2 pow (dimindex(:N) - 1)`, REWRITE_TAC[GSYM(CONJUNCT2 EXP); GSYM(CONJUNCT2 INT_POW)] THEN SIMP_TAC[DIMINDEX_GE_1; ARITH_RULE `1 <= n ==> SUC(n - 1) = n`]);; let MSB_VAL = prove (`!w:N word. bit (dimindex(:N) - 1) w <=> 2 EXP (dimindex(:N) - 1) <= val w`, SIMP_TAC[BIT_VAL_MOD; SUB_ADD; DIMINDEX_GE_1; VAL_MOD_REFL]);; let MSB_INT_VAL = prove (`!w:N word. bit (dimindex(:N) - 1) w <=> (&2 pow (dimindex(:N) - 1)):int <= &(val w)`, REWRITE_TAC[INT_OF_NUM_POW; INT_OF_NUM_LE; MSB_VAL]);; let BLOCK_BITS_ZERO_ALT = prove (`!(x:N word) m n. (!i. m <= i /\ i < n ==> ~bit i x) <=> (val x MOD 2 EXP n) DIV 2 EXP m = 0`, SIMP_TAC[val_def; BINARY_DIGITSUM_DIV; BINARY_DIGITSUM_MOD; FINITE_NUMSEG_LT; FINITE_RESTRICT; NSUM_EQ_0_IFF] THEN REWRITE_TAC[MULT_EQ_0; EXP_EQ_0; ARITH_EQ; BITVAL_EQ_0; IN_ELIM_THM] THEN MESON_TAC[NOT_LT; BIT_TRIVIAL]);; let BLOCK_BITS_ZERO = prove (`!(x:N word) m n. (!i. m <= i /\ i < n ==> ~bit i x) <=> val x MOD 2 EXP n < 2 EXP m`, SIMP_TAC[BLOCK_BITS_ZERO_ALT; DIV_EQ_0; EXP_EQ_0; ARITH_EQ]);; let LOWER_BITS_ZERO = prove (`!(x:N word) n. (!i. i < n ==> ~bit i x) <=> val x MOD 2 EXP n = 0`, ONCE_REWRITE_TAC[ARITH_RULE `i < n <=> 0 <= i /\ i < n`] THEN REWRITE_TAC[BLOCK_BITS_ZERO_ALT; EXP; DIV_1]);; let UPPER_BITS_ZERO = prove (`!(x:N word) n. (!i. n <= i ==> ~bit i x) <=> val x < 2 EXP n`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`x:N word`; `n:num`; `dimindex(:N)`] BLOCK_BITS_ZERO) THEN REWRITE_TAC[VAL_MOD_REFL] THEN MESON_TAC[NOT_LT; BIT_TRIVIAL]);; let UPPER_BITS_ZERO_ALT = prove (`!(x:N word) n. (!i. n <= i ==> ~bit i x) <=> val x DIV 2 EXP n = 0`, SIMP_TAC[UPPER_BITS_ZERO; DIV_EQ_0; EXP_EQ_0; ARITH_EQ]);; let VAL_WORD_OF_BITS = prove (`!s. val(word_of_bits s:N word) = nsum {i | i < dimindex(:N) /\ i IN s} (\i. 2 EXP i)`, GEN_TAC THEN SIMP_TAC[val_def; BIT_WORD_OF_BITS; bitval] THEN REWRITE_TAC[COND_RAND; MULT_CLAUSES; GSYM NSUM_RESTRICT_SET] THEN AP_THM_TAC THEN AP_TERM_TAC THEN SET_TAC[]);; let WORD_OF_BITS_AS_WORD = prove (`!s. word_of_bits s:N word = word(nsum {i | i < dimindex(:N) /\ i IN s} (\i. 2 EXP i))`, GEN_TAC THEN REWRITE_TAC[GSYM VAL_EQ; VAL_WORD_OF_BITS; VAL_WORD] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC MOD_LT THEN REWRITE_TAC[GSYM VAL_WORD_OF_BITS; VAL_BOUND]);; let WORD_OF_BITS_AS_WORD_FINITE = prove (`!s. FINITE s ==> word_of_bits s:N word = word(nsum s (\i. 2 EXP i))`, REPEAT STRIP_TAC THEN REWRITE_TAC[WORD_EQ; WORD_OF_BITS_AS_WORD] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[NSUM_RESTRICT_SET] THEN MATCH_MP_TAC CONG_NSUM THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `i:num` THEN DISCH_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[NUMBER_RULE `(n:num == n) (mod p)`] THEN REWRITE_TAC[NUMBER_RULE `(0 == n) (mod p) <=> p divides n`] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_LT]) THEN SIMP_TAC[LE_EXISTS; EXP_ADD; LEFT_IMP_EXISTS_THM] THEN REPEAT STRIP_TAC THEN CONV_TAC NUMBER_RULE);; let WORD_OF_BITS_SING_AS_WORD = prove (`!i. word_of_bits {i}:N word = word(2 EXP i)`, SIMP_TAC[WORD_OF_BITS_AS_WORD_FINITE; FINITE_SING; NSUM_SING]);; let VAL_WORD_OF_BITS_SING = prove (`!i. val(word_of_bits {i}:N word) = if i < dimindex(:N) then 2 EXP i else 0`, GEN_TAC THEN SIMP_TAC[val_def; BIT_WORD_OF_BITS; IN_SING; bitval] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [COND_RAND] THEN SIMP_TAC[MULT_CLAUSES; NSUM_DELTA; IN_ELIM_THM]);; let WORD_OF_BITS_MASK = prove (`!n. word_of_bits {i | i < n}:N word = word(2 EXP n - 1)`, GEN_TAC THEN SIMP_TAC[WORD_OF_BITS_AS_WORD_FINITE; FINITE_NUMSEG_LT] THEN AP_TERM_TAC THEN MATCH_MP_TAC(ARITH_RULE `n + 1 = m ==> n = m - 1`) THEN SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG_LT; EXP] THEN ASM_ARITH_TAC);; let BIT_MASK_WORD = prove (`!k i. bit i (word(2 EXP k - 1):N word) <=> i < dimindex(:N) /\ i < k`, REWRITE_TAC[GSYM WORD_OF_BITS_MASK; IN_ELIM_THM; BIT_WORD_OF_BITS]);; let BIT_WORD_POW2 = prove (`!k i. bit i (word (2 EXP k):N word) <=> i = k /\ k < dimindex(:N)`, REWRITE_TAC[GSYM WORD_OF_BITS_SING_AS_WORD; BIT_WORD_OF_BITS] THEN SET_TAC[]);; let BIT_WORD_1 = prove (`!i. bit i (word 1:N word) <=> i = 0`, GEN_TAC THEN REWRITE_TAC[ARITH_RULE `1 = 2 EXP 0`] THEN SIMP_TAC[BIT_WORD_POW2; LE_1; DIMINDEX_GE_1]);; let BIT_WORD_BITVAL = prove (`!b i. bit i (word(bitval b):N word) <=> i = 0 /\ b`, REPEAT GEN_TAC THEN REWRITE_TAC[bitval] THEN COND_CASES_TAC THEN REWRITE_TAC[BIT_WORD_0; BIT_WORD_1]);; let WORD_OF_BITS_SING_AS_WORD_1 = prove (`!s i. word_of_bits {0}:N word = word 1`, REWRITE_TAC[WORD_OF_BITS_SING_AS_WORD; EXP]);; let BITS_OF_WORD_1 = prove (`bits_of_word (word 1:N word) = {0}`, REWRITE_TAC[bits_of_word; BIT_WORD_1] THEN SET_TAC[]);; let BIT_WORD_OF_BITS_SING = prove (`!k i. bit i (word_of_bits {k}:N word) <=> k < dimindex(:N) /\ i = k`, REWRITE_TAC[BIT_WORD_OF_BITS; IN_SING] THEN MESON_TAC[]);; let VAL_MOD = prove (`!(x:N word) k. val x MOD 2 EXP k = nsum {i | i < k} (\i. 2 EXP i * bitval(bit i x))`, REPEAT GEN_TAC THEN REWRITE_TAC[val_def] THEN SIMP_TAC[BINARY_DIGITSUM_MOD; FINITE_NUMSEG_LT] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC NSUM_SUPERSET THEN SIMP_TAC[SUBSET; IN_ELIM_THM; IMP_CONJ; MULT_EQ_0; BITVAL_EQ_0; NOT_LT] THEN MESON_TAC[BIT_TRIVIAL]);; let VAL_MOD_2 = prove (`!x:N word. val x MOD 2 = bitval(bit 0 x)`, ONCE_REWRITE_TAC[ARITH_RULE `2 = 2 EXP 1`] THEN REWRITE_TAC[VAL_MOD; ARITH_RULE `i < 1 <=> i = 0`; SING_GSPEC] THEN REWRITE_TAC[NSUM_SING; EXP; MULT_CLAUSES]);; let VAL_MOD_STEP = prove (`!(x:N word) k. val x MOD 2 EXP (k + 1) = 2 EXP k * bitval(bit k x) + val x MOD 2 EXP k`, REPEAT STRIP_TAC THEN REWRITE_TAC[VAL_MOD; ARITH_RULE `i < k + 1 <=> i = k \/ i < k`] THEN REWRITE_TAC[SET_RULE `{x | x = a \/ P x} = a INSERT {x | P x}`] THEN SIMP_TAC[NSUM_CLAUSES; FINITE_NUMSEG_LT; IN_ELIM_THM; LT_REFL]);; let VAL_DIV = prove (`!(x:N word) k. val x DIV 2 EXP k = nsum {i | k <= i /\ i < dimindex(:N)} (\i. 2 EXP (i - k) * bitval(bit i x))`, REPEAT GEN_TAC THEN REWRITE_TAC[val_def] THEN SIMP_TAC[BINARY_DIGITSUM_DIV; FINITE_NUMSEG_LT] THEN REWRITE_TAC[IN_ELIM_THM] THEN REWRITE_TAC[CONJ_SYM]);; let VAL_DIV_ALT = prove (`!(x:N word) k. val x DIV 2 EXP k = nsum {i | i < dimindex(:N) - k} (\i. 2 EXP i * bitval(bit (i + k) x))`, REPEAT GEN_TAC THEN REWRITE_TAC[VAL_DIV] THEN MATCH_MP_TAC NSUM_EQ_GENERAL_INVERSES THEN EXISTS_TAC `\i:num. i - k` THEN EXISTS_TAC `\i:num. i + k` THEN SIMP_TAC[IN_ELIM_THM; SUB_ADD] THEN ARITH_TAC);; let VAL_LE_BITS = prove (`!(x:N word) (y:N word). (!i. i < dimindex(:N) /\ bit i x ==> bit i y) ==> val x <= val y`, REPEAT STRIP_TAC THEN REWRITE_TAC[val_def] THEN MATCH_MP_TAC NSUM_LE THEN REWRITE_TAC[FINITE_NUMSEG_LT; IN_ELIM_THM] THEN ASM_SIMP_TAC[LE_MULT_LCANCEL; LE_BITVAL]);; (* ------------------------------------------------------------------------- *) (* Corresponding signed 2s-complement mappings to and from integers. *) (* ------------------------------------------------------------------------- *) let ival = new_definition `(ival:N word->int) w = if val(w) < 2 EXP (dimindex(:N) - 1) then &(val w) else &(val w) - &2 pow dimindex(:N)`;; let iword = new_definition `(iword:int->N word) x = word(num_of_int(x rem (&2 pow dimindex(:N))))`;; let word_sgn = new_definition `word_sgn (x:N word) = int_sgn(ival x)`;; let INT_IVAL = prove (`!w:N word. ival w = if &(val w):int < &2 pow (dimindex(:N) - 1) then &(val w) else &(val w) - &2 pow dimindex(:N)`, REWRITE_TAC[ival; INT_OF_NUM_POW; INT_OF_NUM_LT]);; let WORD_IWORD = prove (`!n. word n:N word = iword(&n)`, GEN_TAC THEN REWRITE_TAC[iword; WORD_EQ] THEN REWRITE_TAC[INT_OF_NUM_POW; INT_OF_NUM_REM; NUM_OF_INT_OF_NUM] THEN REWRITE_TAC[CONG; MOD_MOD_REFL]);; let IVAL_VAL = prove (`!w:N word. ival w = &(val w) - &2 pow dimindex(:N) * &(bitval(bit (dimindex(:N) - 1) w))`, GEN_TAC THEN REWRITE_TAC[ival; GSYM NOT_LE; GSYM MSB_VAL; COND_SWAP] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[bitval] THEN INT_ARITH_TAC);; let VAL_IVAL = prove (`!w:N word. &(val w) = ival w + &2 pow dimindex(:N) * &(bitval (bit (dimindex (:N) - 1) w))`, REWRITE_TAC[IVAL_VAL] THEN CONV_TAC INT_ARITH);; let MSB_IVAL = prove (`!(w:N word). bit (dimindex(:N) - 1) w <=> ival w < &0`, GEN_TAC THEN REWRITE_TAC[ival; MSB_VAL] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[GSYM NOT_LT] THEN REWRITE_TAC[INT_NOT_LT; INT_OF_NUM_LE; LE_0] THEN REWRITE_TAC[INT_ARITH `a - b:int < &0 <=> a < b`] THEN REWRITE_TAC[INT_OF_NUM_LT; INT_OF_NUM_POW; VAL_BOUND]);; let IVAL_BOUND = prove (`!w:(N)word. --(&2 pow (dimindex(:N) - 1)) <= ival w /\ ival w < &2 pow (dimindex(:N) - 1)`, GEN_TAC THEN MP_TAC(ISPEC `w:N word` VAL_BOUND) THEN REWRITE_TAC[ival; GSYM INT_OF_NUM_LT; GSYM INT_OF_NUM_POW] THEN SUBGOAL_THEN `?n. dimindex(:N) = SUC n` (CHOOSE_THEN SUBST1_TAC) THENL [MESON_TAC[DIMINDEX_NONZERO; num_CASES]; ALL_TAC] THEN REWRITE_TAC[SUC_SUB1; INT_POW] THEN INT_ARITH_TAC);; let IVAL_WORD_0 = prove (`ival(word 0) = &0`, REWRITE_TAC[ival; VAL_WORD_0; EXP_LT_0] THEN CONV_TAC NUM_REDUCE_CONV);; let IVAL_WORD_1 = prove (`ival(word 1:N word) = if dimindex(:N) = 1 then -- &1 else &1`, REWRITE_TAC[ival; VAL_WORD_1] THEN ONCE_REWRITE_TAC[ARITH_RULE `1 < x <=> 2 EXP 1 <= x`] THEN REWRITE_TAC[LE_EXP] THEN CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[DIMINDEX_NONZERO; ARITH_RULE `1 <= n - 1 <=> ~(n = 0 \/ n = 1)`] THEN ASM_CASES_TAC `dimindex(:N) = 1` THEN ASM_REWRITE_TAC[] THEN CONV_TAC INT_REDUCE_CONV);; let IVAL_VAL_CONG = prove (`!(w:N word). (ival w == &(val w)) (mod (&2 pow (dimindex(:N))))`, GEN_TAC THEN REWRITE_TAC[ival] THEN COND_CASES_TAC THEN CONV_TAC INTEGER_RULE);; let IVAL_CONG = prove (`!(v:N word) (w:N word). (ival v == ival w) (mod (&2 pow (dimindex(:N)))) <=> v = w`, REWRITE_TAC[GSYM VAL_CONG; num_congruent; GSYM INT_OF_NUM_POW] THEN REPEAT GEN_TAC THEN MATCH_MP_TAC(INTEGER_RULE `(x:int == x') (mod n) /\ (y == y') (mod n) ==> ((x == y) (mod n) <=> (x' == y') (mod n))`) THEN REWRITE_TAC[IVAL_VAL_CONG]);; let IVAL_EQ = prove (`!(v:N word) (w:N word). ival v = ival w <=> v = w`, MESON_TAC[NUMBER_RULE `(x:int == x) (mod n)`; IVAL_CONG]);; let IVAL_EQ_0 = prove (`!(w:N word). ival w = &0 <=> w = word 0`, REWRITE_TAC[GSYM IVAL_EQ; IVAL_WORD_0]);; let IVAL_EQ_1 = prove (`!w:N word. ival w = &1 <=> 2 <= dimindex(:N) /\ w = word 1`, GEN_TAC THEN REWRITE_TAC[GSYM IVAL_EQ; IVAL_WORD_1] THEN SIMP_TAC[DIMINDEX_GE_1; ARITH_RULE `1 <= n ==> (2 <= n <=> ~(n = 1))`] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN MP_TAC(SPEC `w:N word` IVAL_BOUND) THEN ASM_REWRITE_TAC[] THEN CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC INT_REDUCE_CONV);; let IWORD_EQ = prove (`!x y. iword x:N word = iword y <=> (x == y) (mod (&2 pow (dimindex(:N))))`, REWRITE_TAC[iword; WORD_EQ; num_congruent; GSYM INT_OF_NUM_POW] THEN SIMP_TAC[INT_OF_NUM_OF_INT; INT_DIVISION; INT_POW_EQ_0; INT_OF_NUM_EQ; ARITH_EQ] THEN REWRITE_TAC[GSYM INT_REM_EQ; INT_REM_REM]);; let IWORD_REM_SIZE = prove (`!n. iword(n rem (&2 pow dimindex(:N))):N word = iword n`, REWRITE_TAC[IWORD_EQ; INT_REM_MOD_SELF]);; let IVAL_IWORD_CONG = prove (`!x. (ival(iword x:N word) == x) (mod (&2 pow (dimindex(:N))))`, GEN_TAC THEN MP_TAC(SPEC `iword x:N word` IVAL_VAL_CONG) THEN MATCH_MP_TAC(INTEGER_RULE `(y:int == z) (mod n) ==> (x == y) (mod n) ==> (x == z) (mod n)`) THEN REWRITE_TAC[iword] THEN MATCH_MP_TAC(INTEGER_RULE `(&(val(word w:N word)):int == &w) (mod n) /\ (&w:int == z) (mod n) ==> (&(val(word w:N word)) == z) (mod n)`) THEN CONJ_TAC THENL [REWRITE_TAC[INT_OF_NUM_POW; GSYM num_congruent] THEN REWRITE_TAC[VAL_WORD; CONG; MOD_MOD_REFL]; SIMP_TAC[INT_OF_NUM_OF_INT; INT_DIVISION; INT_POW_EQ_0; INT_OF_NUM_EQ; ARITH_EQ] THEN REWRITE_TAC[GSYM INT_REM_EQ; INT_REM_REM]]);; let VAL_IWORD_CONG = prove (`!x. (&(val(iword x:N word)) == x) (mod (&2 pow dimindex(:N)))`, REWRITE_TAC[GSYM INT_REM_EQ] THEN REWRITE_TAC[GSYM(REWRITE_RULE[GSYM INT_REM_EQ] IVAL_VAL_CONG)] THEN REWRITE_TAC[INT_REM_EQ; IVAL_IWORD_CONG]);; let IVAL_WORD_CONG = prove (`!n. (ival(word n:N word) == &n) (mod (&2 pow dimindex(:N)))`, MESON_TAC[IVAL_VAL_CONG; VAL_WORD_CONG; INT_OF_NUM_POW; num_congruent; INTEGER_RULE `(x:int == y) (mod n) /\ (y == z) (mod n) ==> (x == z) (mod n)`]);; let IVAL_IWORD = prove (`!n. --(&2 pow (dimindex (:N) - 1)) <= n /\ n < &2 pow (dimindex (:N) - 1) ==> ival(iword n:N word) = n`, REPEAT STRIP_TAC THEN MP_TAC(ISPEC `n:int` IVAL_IWORD_CONG) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] INT_CONG_IMP_EQ) THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (INT_ARITH `n:int < e1 ==> --e1 <= n /\ --e1 <= n' /\ n' < e1 /\ &2 * e1 = e ==> abs(n' - n) < e`)) THEN ASM_REWRITE_TAC[IVAL_BOUND; GSYM(CONJUNCT2 INT_POW)] THEN SIMP_TAC[DIMINDEX_GE_1; ARITH_RULE `1 <= n ==> SUC(n - 1) = n`]);; let IWORD_IVAL = prove (`!w:N word. iword(ival w) = w`, REWRITE_TAC[GSYM IVAL_CONG; IVAL_IWORD_CONG]);; let IVAL_IWORD_GALOIS = prove (`!(w:N word) n. ival w = n <=> --(&2 pow (dimindex(:N) - 1)) <= n /\ n < &2 pow (dimindex(:N) - 1) /\ w = iword n`, MESON_TAC[IVAL_IWORD; IWORD_IVAL; IVAL_BOUND]);; let BIT_IVAL = prove (`!(x:N word) i. bit i x <=> i < dimindex(:N) /\ ~(&2 divides (ival x div &2 pow i))`, REPEAT GEN_TAC THEN REWRITE_TAC[BIT_VAL] THEN ASM_CASES_TAC `i < dimindex(:N)` THEN ASM_REWRITE_TAC[] THENL [REWRITE_TAC[GSYM NOT_EVEN; EVEN_EXISTS; GSYM divides] THEN AP_TERM_TAC THEN REWRITE_TAC[num_divides] THEN MATCH_MP_TAC(INTEGER_RULE `(x:int == y) (mod n) ==> (n divides x <=> n divides y)`) THEN REWRITE_TAC[GSYM INT_OF_NUM_DIV; GSYM INT_OF_NUM_POW] THEN MATCH_MP_TAC INT_CONG_DIV2 THEN SIMP_TAC[INT_POW_LE; INT_POS] THEN MATCH_MP_TAC(INTEGER_RULE `!m. (x:int == y) (mod m) /\ n divides m ==> (y == x) (mod n)`) THEN EXISTS_TAC `(&2:int) pow dimindex(:N)` THEN REWRITE_TAC[IVAL_VAL_CONG] THEN ONCE_REWRITE_TAC[INT_MUL_SYM] THEN REWRITE_TAC[GSYM(CONJUNCT2 INT_POW)] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LT_EXISTS]) THEN STRIP_TAC THEN ASM_REWRITE_TAC[INT_POW_ADD; INT_POW] THEN CONV_TAC INTEGER_RULE; RULE_ASSUM_TAC(REWRITE_RULE[NOT_LT]) THEN MATCH_MP_TAC(MESON[ODD] `n = 0 ==> ~ODD n`) THEN SIMP_TAC[DIV_EQ_0; ARITH_EQ; EXP_EQ_0] THEN TRANS_TAC LTE_TRANS `2 EXP dimindex(:N)` THEN ASM_REWRITE_TAC[VAL_BOUND; LE_EXP; DIMINDEX_NONZERO; COND_ID]]);; let BIT_IWORD = prove (`!i x. bit i (iword x:N word) <=> i < dimindex(:N) /\ ~(&2 divides (x div (&2 pow i)))`, REPEAT GEN_TAC THEN REWRITE_TAC[BIT_IVAL] THEN ASM_CASES_TAC `i < dimindex(:N)` THEN ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN MATCH_MP_TAC(INTEGER_RULE `(x:int == y) (mod n) ==> (n divides x <=> n divides y)`) THEN MATCH_MP_TAC INT_CONG_DIV2 THEN SIMP_TAC[INT_POW_LE; INT_POS] THEN MATCH_MP_TAC(INTEGER_RULE `!m. (x:int == y) (mod m) /\ n divides m ==> (x == y) (mod n)`) THEN EXISTS_TAC `(&2:int) pow dimindex(:N)` THEN REWRITE_TAC[IVAL_IWORD_CONG] THEN ONCE_REWRITE_TAC[INT_MUL_SYM] THEN REWRITE_TAC[GSYM(CONJUNCT2 INT_POW)] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LT_EXISTS]) THEN STRIP_TAC THEN ASM_REWRITE_TAC[INT_POW_ADD; INT_POW] THEN CONV_TAC INTEGER_RULE);; let INT_REM_IVAL = prove (`!(w:N word) k. k <= dimindex(:N) ==> (ival w) rem (&2 pow k) = &(val w MOD 2 EXP k)`, REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM INT_OF_NUM_REM] THEN REWRITE_TAC[GSYM INT_OF_NUM_POW; INT_REM_EQ] THEN MATCH_MP_TAC(INTEGER_RULE `!n:int. (x == y) (mod n) /\ m divides n ==> (x == y) (mod m)`) THEN EXISTS_TAC `(&2:int) pow dimindex(:N)` THEN REWRITE_TAC[IVAL_VAL_CONG] THEN POP_ASSUM MP_TAC THEN SIMP_TAC[LE_EXISTS; INT_POW_ADD; LEFT_IMP_EXISTS_THM] THEN REPEAT STRIP_TAC THEN CONV_TAC INTEGER_RULE);; (* ------------------------------------------------------------------------- *) (* Bit operations on `num`. *) (* ------------------------------------------------------------------------- *) let numbit = new_definition `numbit i n = ODD(n DIV (2 EXP i))`;; let NUMBIT_VAL = prove (`numbit i (val (e:N word)) = bit i e`, REWRITE_TAC [numbit; BIT_VAL]);; (* * BIT_PRED `i` returns (None, `|- i = _0`) or (Some(`j`), `|- i = SUC j`) if `i` is a raw numeral (a numeral without the initial `NUMERAL`). * NUMBIT_CONV `numbit n i` proves `numbit n i = T` or `numbit n i = F` if `n` and `i` are numerals or raw numerals. *) let BIT_PRED, NUMBIT_CONV = let i,j,n,B0,B1 = `i:num`,`j:num`,`n:num`,`BIT0`,`BIT1` in let B00 = CONJUNCT2 ARITH_ZERO in let th_0 = (PURE_REWRITE_RULE [NUMERAL] o prove) (`numbit i 0 = F`, REWRITE_TAC [numbit; DIV_0; ODD]) in let th00,th01 = (CONJ_PAIR o PURE_REWRITE_RULE [NUMERAL] o prove) (`numbit 0 (BIT0 n) = F /\ numbit 0 (BIT1 n) = T`, REWRITE_TAC [numbit; EXP; DIV_1; ARITH_ODD]) in let thS0,thS1 = (CONJ_PAIR o UNDISCH o prove) (`i = SUC j ==> numbit i (BIT0 n) = numbit j n /\ numbit i (BIT1 n) = numbit j n`, DISCH_THEN SUBST1_TAC THEN CONV_TAC BITS_ELIM_CONV THEN REWRITE_TAC [numbit; EXP; GSYM DIV_DIV; ARITH_RULE `(2 * n + 1) DIV 2 = n /\ (2 * n) DIV 2 = n`]) in let thB1S = prove (`BIT1 i = SUC (BIT0 i)`, REWRITE_TAC [ARITH_SUC]) in let thB10 = MATCH_MP (DISCH_ALL thS0) thB1S and thB11 = MATCH_MP (DISCH_ALL thS1) thB1S in let thSB1 = (UNDISCH o prove) (`i = SUC j ==> BIT0 i = SUC (BIT1 j)`, DISCH_THEN SUBST1_TAC THEN REWRITE_TAC [ARITH_SUC]) in let thB00 = PROVE_HYP thSB1 (INST [`BIT0 i`,i;`BIT1 j`,j] thS0) and thB01 = PROVE_HYP thSB1 (INST [`BIT0 i`,i;`BIT1 j`,j] thS1) in let th0B00,th0B01 = let th = AP_TERM `numbit` (TRANS (AP_TERM `BIT0` (ASSUME `i = _0`)) B00) in TRANS (AP_THM th `BIT0 n`) th00, TRANS (AP_THM th `BIT1 n`) th01 in let thN = prove (`numbit (NUMERAL i) (NUMERAL n) = numbit i n`, REWRITE_TAC [NUMERAL]) in let get_suc th = Some (rand (rhs (concl th))), th in let rec mk_pred = function | Comb(Const("BIT0",_),i') -> (match mk_pred i' with | Some j', th -> get_suc (PROVE_HYP th (INST [i',i; j',j] thSB1)) | None, th -> None, TRANS (AP_TERM B0 th) B00) | Comb(Const("BIT1",_),i') -> get_suc (INST [i',i] thB1S) | Const("_0",_) as i' -> None, REFL i' | _ -> failwith "BIT_PRED" in let rec go = function | i',Const("_0",_) -> INST [i',i] th_0 | Const("_0",_),Comb(Const("BIT0",_),n') -> INST [n',n] th00 | Const("_0",_),Comb(Const("BIT1",_),n') -> INST [n',n] th01 | Comb(Const("BIT0",_),i'),Comb(Const("BIT0",_),n') -> go_B0 th0B00 thB00 i' n' | Comb(Const("BIT0",_),i'),Comb(Const("BIT1",_),n') -> go_B0 th0B01 thB01 i' n' | Comb(Const("BIT1",_),i'),Comb(Const("BIT0",_),n') -> TRANS (INST [i',i; n',n] thB10) (go (mk_comb (B0,i'),n')) | Comb(Const("BIT1",_),i'),Comb(Const("BIT1",_),n') -> TRANS (INST [i',i; n',n] thB11) (go (mk_comb (B0,i'),n')) | _ -> failwith "NUMBIT_CONV" and go_B0 th0 thS i' n' = match mk_pred i' with | Some j',th -> let th' = PROVE_HYP th (INST [i',i; j',j; n',n] thS) in TRANS th' (go (mk_comb (B1,j'), n')) | None, th -> PROVE_HYP th (INST [i',i; n',n] th0) in mk_pred, function | Comb(Comb(Const("numbit",_), Comb(Const("NUMERAL",_),i')),Comb(Const("NUMERAL",_),n')) -> TRANS (INST [i',i;n',n] thN) (go (i',n')) | Comb(Comb(Const("numbit",_),i'),n') -> go (i',n') | _ -> failwith "NUMBIT_CONV";; let bits_of_num = new_definition `bits_of_num n = {i | numbit i n}`;; let IN_BITS_OF_NUM = prove (`!n i. i IN bits_of_num n <=> ODD(n DIV 2 EXP i)`, REWRITE_TAC[bits_of_num; numbit; IN_ELIM_THM]);; let BITS_OF_NUM_SUBSET_NUMSEG_LT = prove (`!n. bits_of_num n SUBSET {i | i < n}`, REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_BITS_OF_NUM] THEN MESON_TAC[DIV_LT; EVEN; LT_POW2_REFL; LET_TRANS; NOT_LE; NOT_EVEN]);; let FINITE_BITS_OF_NUM = prove (`!n. FINITE(bits_of_num n)`, MESON_TAC[BITS_OF_NUM_SUBSET_NUMSEG_LT; FINITE_NUMSEG_LT; FINITE_SUBSET]);; let NSUM_BITS_OF_NUM = prove (`!n. nsum (bits_of_num n) (\i. 2 EXP i) = n`, GEN_TAC THEN MP_TAC(SPECL [`2`; `n:num`; `n:num`] DIGITSUM_WORKS_GEN) THEN REWRITE_TAC[MOD_2_CASES; COND_RAND; MULT_CLAUSES] THEN REWRITE_TAC[GSYM NOT_ODD; COND_SWAP; GSYM NSUM_RESTRICT_SET] THEN SIMP_TAC[MOD_LT; LT_POW2_REFL] THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN MP_TAC(SPEC `n:num` BITS_OF_NUM_SUBSET_NUMSEG_LT) THEN REWRITE_TAC[bits_of_num; numbit] THEN SET_TAC[]);; let BITS_OF_NUM_NSUM = prove (`!s. FINITE s ==> bits_of_num (nsum s (\i. 2 EXP i)) = s`, REPEAT STRIP_TAC THEN REWRITE_TAC[EXTENSION; IN_BITS_OF_NUM; ODD_MOD] THEN X_GEN_TAC `k:num` THEN MP_TAC(SPECL [`2`; `\i:num. 1`; `s:num->bool`; `k:num`] DIGITSUM_DIV_MOD) THEN ASM_SIMP_TAC[ARITH_RULE `1 < 2`; MULT_CLAUSES] THEN ARITH_TAC);; let BITS_OF_NUM_EQ = prove (`!m n. bits_of_num m = bits_of_num n <=> m = n`, MESON_TAC[NSUM_BITS_OF_NUM]);; let BITS_OF_NUM_GALOIS = prove (`!n s. bits_of_num n = s <=> FINITE s /\ nsum s (\i. 2 EXP i) = n`, MESON_TAC[FINITE_BITS_OF_NUM; BITS_OF_NUM_NSUM; NSUM_BITS_OF_NUM]);; let NSUM_BITS_DIV = prove (`!s k. FINITE s ==> nsum s (\i. 2 EXP i) DIV 2 EXP k = nsum {i | i IN s /\ k <= i} (\i. 2 EXP (i - k))`, REPEAT STRIP_TAC THEN MP_TAC(SPECL [`2`; `\i:num. 1`; `s:num->bool`; `k:num`] DIGITSUM_DIV) THEN ASM_REWRITE_TAC[ARITH_RULE `1 < 2`; MULT_CLAUSES]);; let NSUM_BITS_MOD = prove (`!s k. FINITE s ==> nsum s (\i. 2 EXP i) MOD 2 EXP k = nsum {i | i IN s /\ i < k} (\i. 2 EXP i)`, REPEAT STRIP_TAC THEN MP_TAC(SPECL [`2`; `\i:num. 1`; `s:num->bool`; `k:num`] DIGITSUM_MOD) THEN ASM_REWRITE_TAC[ARITH_RULE `1 < 2`; MULT_CLAUSES]);; let NSUM_BITS_EQ = prove (`!s t. FINITE s /\ FINITE t ==> (nsum s (\i. 2 EXP i) = nsum t (\i. 2 EXP i) <=> s = t)`, MESON_TAC[BITS_OF_NUM_NSUM]);; let BITSUM_BOUND = prove (`!s k. FINITE s ==> (nsum s (\i. 2 EXP i) < 2 EXP k <=> s SUBSET {i | i < k})`, SIMP_TAC[CONV_RULE(RAND_CONV SYM_CONV) (SPEC_ALL DIV_EQ_0); FINITE_RESTRICT; EXP_EQ_0; ARITH_EQ; NSUM_BITS_DIV; NSUM_EQ_0_IFF] THEN REWRITE_TAC[GSYM NOT_LE] THEN SET_TAC[]);; let BITS_OF_NUM_SUBSET_NUMSEG_EQ = prove (`!n k. bits_of_num n SUBSET {i | i < k} <=> n < 2 EXP k`, SIMP_TAC[GSYM BITSUM_BOUND; FINITE_BITS_OF_NUM; NSUM_BITS_OF_NUM]);; let BITSUM_DIVIDES = prove (`!s k. FINITE s ==> (2 EXP k divides nsum s (\i. 2 EXP i) <=> DISJOINT {i | i < k} s)`, SIMP_TAC[DIVIDES_DIV_MULT; NSUM_BITS_DIV; GSYM NSUM_RMUL; GSYM EXP_ADD] THEN SIMP_TAC[SUB_ADD; NSUM_BITS_EQ; FINITE_RESTRICT; FINITE_NUMSEG_LT] THEN REWRITE_TAC[GSYM NOT_LE] THEN SET_TAC[]);; let BITS_OF_NUM_DISJOINT_NUMSEG_EQ = prove (`!n k. DISJOINT {i | i < k} (bits_of_num n) <=> 2 EXP k divides n`, SIMP_TAC[GSYM BITSUM_DIVIDES; FINITE_BITS_OF_NUM; NSUM_BITS_OF_NUM]);; let BITS_OF_NUM_0 = prove (`bits_of_num 0 = {}`, REWRITE_TAC[IN_BITS_OF_NUM; EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN REWRITE_TAC[DIV_0; ODD]);; let BITS_OF_NUM_POW2 = prove (`!k. bits_of_num(2 EXP k) = {k}`, REWRITE_TAC[IN_BITS_OF_NUM; EXTENSION; IN_ELIM_THM; IN_SING] THEN REPEAT GEN_TAC THEN SIMP_TAC[DIV_EXP; ARITH_EQ] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[ODD_EXP; ARITH] THEN ASM_ARITH_TAC);; let BITS_OF_NUM_1 = prove (`bits_of_num 1 = {0}`, REWRITE_TAC[GSYM BITS_OF_NUM_POW2; EXP]);; let BITS_OF_NUM_DIV = prove (`!n k. bits_of_num (n DIV 2 EXP k) = {i | (k + i) IN bits_of_num n}`, REWRITE_TAC[bits_of_num; numbit; IN_ELIM_THM; DIV_DIV; EXP_ADD]);; let BITS_OF_NUM_MOD = prove (`!n k. bits_of_num (n MOD 2 EXP k) = {i | i IN bits_of_num n /\ i < k}`, SIMP_TAC[BITS_OF_NUM_GALOIS; FINITE_RESTRICT; FINITE_BITS_OF_NUM; GSYM NSUM_BITS_MOD; NSUM_BITS_OF_NUM]);; let BITS_OF_NUM_MUL_ALT = prove (`(!n k. bits_of_num(2 EXP k * n) = {i | k <= i /\ i - k IN bits_of_num n}) /\ (!n k. bits_of_num(n * 2 EXP k) = {i | k <= i /\ i - k IN bits_of_num n})`, GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN REWRITE_TAC[] THEN REPEAT GEN_TAC THEN MATCH_MP_TAC(SET_RULE `DISJOINT {i | ~P i} s /\ (!i. P i ==> (i IN s <=> Q i)) ==> s = {i | P i /\ Q i}`) THEN REWRITE_TAC[NOT_LE; BITS_OF_NUM_DISJOINT_NUMSEG_EQ] THEN SIMP_TAC[LE_EXISTS; LEFT_IMP_EXISTS_THM; IN_BITS_OF_NUM; EXP_ADD] THEN SIMP_TAC[ADD_SUB2; DIV_MULT2; EXP_EQ_0; ARITH_EQ] THEN CONV_TAC NUMBER_RULE);; let BITS_OF_NUM_MUL = prove (`(!n k. bits_of_num(2 EXP k * n) = IMAGE (\i. k + i) (bits_of_num n)) /\ (!n k. bits_of_num(n * 2 EXP k) = IMAGE (\i. k + i) (bits_of_num n))`, REWRITE_TAC[BITS_OF_NUM_MUL_ALT] THEN REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN MESON_TAC[LE_EXISTS; ADD_SUB2]);; let BITS_OF_NUM_ADD = prove (`!m n. DISJOINT (bits_of_num m) (bits_of_num n) ==> bits_of_num(m + n) = (bits_of_num m) UNION (bits_of_num n)`, REPEAT STRIP_TAC THEN REWRITE_TAC[BITS_OF_NUM_GALOIS; FINITE_UNION; FINITE_BITS_OF_NUM] THEN ASM_SIMP_TAC[NSUM_UNION; FINITE_BITS_OF_NUM; NSUM_BITS_OF_NUM]);; let DISJOINT_BITS_HILO = prove (`!k h l. l < 2 EXP k ==> DISJOINT (bits_of_num(2 EXP k * h)) (bits_of_num l)`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM BITS_OF_NUM_SUBSET_NUMSEG_EQ] THEN MATCH_MP_TAC(SET_RULE `DISJOINT t u ==> s SUBSET t ==> DISJOINT u s`) THEN REWRITE_TAC[BITS_OF_NUM_DISJOINT_NUMSEG_EQ] THEN CONV_TAC NUMBER_RULE);; let DISJOINT_BITS_CLAUSES = prove (`(!k h l. l < 2 EXP k ==> DISJOINT (bits_of_num(2 EXP k * h)) (bits_of_num l)) /\ (!k h l. l < 2 EXP k ==> DISJOINT (bits_of_num(h * 2 EXP k)) (bits_of_num l)) /\ (!k h l. l < 2 EXP k ==> DISJOINT (bits_of_num l) (bits_of_num(2 EXP k * h))) /\ (!k h l. l < 2 EXP k ==> DISJOINT (bits_of_num l) (bits_of_num(h * 2 EXP k))) /\ (!m n k. DISJOINT (bits_of_num m) (bits_of_num n) ==> DISJOINT (bits_of_num(2 EXP k * m)) (bits_of_num(2 EXP k * n))) /\ (!m n k. DISJOINT (bits_of_num m) (bits_of_num n) ==> DISJOINT (bits_of_num(m * 2 EXP k)) (bits_of_num(n * 2 EXP k))) /\ (!m n k. DISJOINT (bits_of_num m) (bits_of_num n) ==> DISJOINT (bits_of_num(m DIV 2 EXP k)) (bits_of_num(n DIV 2 EXP k))) /\ (!m n k. DISJOINT (bits_of_num m) (bits_of_num n) ==> DISJOINT (bits_of_num(m MOD 2 EXP k)) (bits_of_num(n MOD 2 EXP k)))`, REPLICATE_TAC 3 (GEN_REWRITE_TAC I [CONJ_ASSOC]) THEN CONJ_TAC THENL [MESON_TAC[DISJOINT_BITS_HILO; MULT_SYM; DISJOINT_SYM]; SIMP_TAC[BITS_OF_NUM_DIV; BITS_OF_NUM_MOD; BITS_OF_NUM_MUL_ALT] THEN SET_TAC[]]);; let DIV_MOD_DISJOINT_BITS = prove (`(!m n. DISJOINT (bits_of_num m) (bits_of_num n) ==> (m + n) DIV 2 EXP k = m DIV 2 EXP k + n DIV 2 EXP k) /\ (!m n. DISJOINT (bits_of_num m) (bits_of_num n) ==> (m + n) MOD 2 EXP k = m MOD 2 EXP k + n MOD 2 EXP k)`, SIMP_TAC[GSYM BITS_OF_NUM_EQ; BITS_OF_NUM_ADD; DISJOINT_BITS_CLAUSES; BITS_OF_NUM_DIV; BITS_OF_NUM_MOD] THEN SET_TAC[]);; let BITS_OF_WORD_WORD = prove (`!n. bits_of_word(word n:N word) = {i | i < dimindex(:N)} INTER bits_of_num n`, REWRITE_TAC[bits_of_num; bits_of_word; BIT_WORD; numbit] THEN SET_TAC[]);; let BITS_OF_NUM_VAL = prove (`!x:N word. bits_of_num(val x) = bits_of_word(x)`, REWRITE_TAC[bits_of_num; bits_of_word; NUMBIT_VAL]);; (* ------------------------------------------------------------------------- *) (* A primitive operation for splitting numerals along powers of 2. *) (* ------------------------------------------------------------------------- *) let num_shift_add = new_definition `num_shift_add a b n = a MOD 2 EXP n + b * 2 EXP n`;; let num_shift_add_0 = prove (`num_shift_add a b 0 = b`, REWRITE_TAC [num_shift_add; EXP; MOD_1; MULT_CLAUSES; ADD]);; let EXP_2_MOD_LT = GEN_ALL (REWRITE_RULE [GSYM (SPEC `a:num` MOD_LT_EQ)] EXP_2_NE_0);; let num_shift_add_SUC = prove (`num_shift_add (BIT0 a) b (SUC n) = BIT0 (num_shift_add a b n) /\ num_shift_add (BIT1 a) b (SUC n) = BIT1 (num_shift_add a b n)`, REWRITE_TAC [num_shift_add; EXP] THEN CONV_TAC BITS_ELIM_CONV THEN REWRITE_TAC [LEFT_ADD_DISTRIB; MOD_MULT2; MULT_AC] THEN REWRITE_TAC [ADD_AC; EQ_ADD_LCANCEL] THEN ONCE_REWRITE_TAC [SYM (MATCH_MP MOD_LT (MATCH_MP (ARITH_RULE `a < b ==> a * 2 + 1 < b * 2`) (SPECL [`a:num`;`n:num`] EXP_2_MOD_LT)))] THEN ONCE_REWRITE_TAC [GSYM MOD_ADD_MOD] THEN REWRITE_TAC [ONCE_REWRITE_RULE [MULT_SYM] MOD_MULT2; MOD_MOD_REFL]);; let num_shift_add_lt = prove (`!a b n i. b < 2 EXP i ==> num_shift_add a b n < 2 EXP (i + n)`, REPEAT GEN_TAC THEN REWRITE_TAC [num_shift_add; EXP_ADD] THEN DISCH_TAC THEN MATCH_MP_TAC LTE_TRANS THEN EXISTS_TAC `SUC b * 2 EXP n` THEN ASM_REWRITE_TAC [LE_MULT_RCANCEL; MULT_CLAUSES; ADD_SYM; LT_ADD_LCANCEL; EXP_2_MOD_LT; LE_SUC_LT]);; let num_shift_add_mod = prove (`num_shift_add a (b MOD 2 EXP i) n = num_shift_add a b n MOD 2 EXP (i + n)`, ONCE_REWRITE_TAC [(SYM o MATCH_MP MOD_LT o SPEC_ALL) (MATCH_MP num_shift_add_lt (SPECL [`b:num`; `i:num`] EXP_2_MOD_LT))] THEN REWRITE_TAC [num_shift_add; EXP_ADD] THEN ONCE_REWRITE_TAC [GSYM MOD_ADD_MOD] THEN REWRITE_TAC [GSYM (ONCE_REWRITE_RULE [MULT_SYM] MOD_MULT2); MOD_MOD_REFL]);; (* (NUM_SHIFT_ADD_CONV `num_shift_add a b i`), and (NUM_SHIFT_ADD_CORE `a` `b` `i`), will prove `|- num_shift_add a b i = n` where a,b,i,n are numerals or raw numerals. *) let NUM_SHIFT_ADD_CORE, NUM_SHIFT_ADD_CONV = let i,j,a,b,e = `i:num`,`j:num`,`a:num`,`b:num`,`e:num` in let i0 = (UNDISCH o prove) (`i = _0 ==> num_shift_add a b i = b`, DISCH_THEN SUBST1_TAC THEN CONV_TAC BITS_ELIM_CONV THEN ACCEPT_TAC num_shift_add_0) in let B0S,B1S = (CONJ_PAIR o UNDISCH_ALL o prove) (`num_shift_add a b j = e ==> i = SUC j ==> num_shift_add (BIT0 a) b i = BIT0 e /\ num_shift_add (BIT1 a) b i = BIT1 e`, DISCH_THEN (SUBST1_TAC o SYM) THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC [num_shift_add_SUC]) in let ZS = REWRITE_RULE [ARITH_ZERO] (INST [`_0`,a] B0S) and B00 = REWRITE_RULE [ARITH_ZERO] (INST [`_0`,e] B0S) in let Z0 = REWRITE_RULE [ARITH_ZERO] (INST [`_0`,e] ZS) in let rec go a' b' i' = match BIT_PRED i' with | None, th -> PROVE_HYP th (INST [i',i; a',a; b',b] i0) | Some j', th -> PROVE_HYP th (match a' with | Comb(Const("BIT0",_),a') -> let th' = go a' b' j' in PROVE_HYP th' (match rhs (concl th') with | Const("_0",_) -> INST [i',i; j',j; a',a; b',b] B00 | e' -> INST [e',e; i',i; j',j; a',a; b',b] B0S) | Comb(Const("BIT1",_),a') -> let th' = go a' b' j' in let e' = rhs (concl th') in PROVE_HYP th' (INST [e',e; i',i; j',j; a',a; b',b] B1S) | Const("_0",_) -> let th' = go a' b' j' in PROVE_HYP th' (match rhs (concl th') with | Const("_0",_) -> INST [i',i; j',j; a',a; b',b] Z0 | e' -> INST [e',e; i',i; j',j; a',a; b',b] ZS) | _ -> failwith "NUM_SHIFT_ADD_CORE") in let pthn = (UNDISCH o prove) (`num_shift_add a b i = e ==> num_shift_add (NUMERAL a) (NUMERAL b) (NUMERAL i) = NUMERAL e`, REWRITE_TAC [NUMERAL]) in go, function | Comb(Comb(Comb(Const("num_shift_add",_), Comb(Const("NUMERAL",_),a')), Comb(Const("NUMERAL",_),b')), Comb(Const("NUMERAL",_),i')) -> let th = go a' b' i' in PROVE_HYP th (INST [a',a; b',b; i',i; rhs (concl th),e] pthn) | Comb(Comb(Comb(Const("num_shift_add",_),a'),b'),i') -> go a' b' i' | _ -> failwith "NUM_SHIFT_ADD_CONV";; (* ------------------------------------------------------------------------- *) (* Some "limiting" values with names in the style of C's "limits.h" macros. *) (* ------------------------------------------------------------------------- *) let word_UINT_MAX = new_definition `word_UINT_MAX:N word = word(2 EXP dimindex(:N) - 1)`;; let word_INT_MIN = new_definition `word_INT_MIN:N word = iword(--(&2 pow (dimindex(:N) - 1)))`;; let word_INT_MAX = new_definition `word_INT_MAX:N word = iword(&2 pow (dimindex(:N) - 1) - &1)`;; let WORD_INT_MIN = prove (`word_INT_MIN:N word = word(2 EXP (dimindex(:N) - 1))`, REWRITE_TAC[word_INT_MIN; WORD_IWORD; IWORD_EQ; GSYM INT_OF_NUM_POW] THEN MATCH_MP_TAC(INTEGER_RULE `&2 * x:int = y ==> (--x == x) (mod y)`) THEN REWRITE_TAC[GSYM(CONJUNCT2 INT_POW)] THEN SIMP_TAC[DIMINDEX_NONZERO; ARITH_RULE `~(n = 0) ==> SUC(n - 1) = n`]);; let WORD_INT_MAX = prove (`word_INT_MAX:N word = word(2 EXP (dimindex(:N) - 1) - 1)`, REWRITE_TAC[word_INT_MAX; WORD_IWORD] THEN AP_TERM_TAC THEN SIMP_TAC[INT_OF_NUM_SUB; INT_OF_NUM_POW; LE_1; EXP_EQ_0; ARITH_EQ]);; let VAL_WORD_UINT_MAX = prove (`val(word_UINT_MAX:N word) = 2 EXP dimindex(:N) - 1`, REWRITE_TAC[word_UINT_MAX; VAL_WORD] THEN MATCH_MP_TAC MOD_LT THEN REWRITE_TAC[ARITH_RULE `n - 1 < n <=> ~(n = 0)`; EXP_EQ_0] THEN ARITH_TAC);; let IVAL_WORD_INT_MIN = prove (`ival(word_INT_MIN:N word) = --(&2 pow (dimindex(:N) - 1))`, REWRITE_TAC[word_INT_MIN] THEN MATCH_MP_TAC IVAL_IWORD THEN REWRITE_TAC[INT_LE_REFL; INT_ARITH `--a:int < a <=> &0 < a`] THEN SIMP_TAC[INT_LT_POW2]);; let IVAL_WORD_INT_MAX = prove (`ival(word_INT_MAX:N word) = &2 pow (dimindex(:N) - 1) - &1`, REWRITE_TAC[word_INT_MAX] THEN MATCH_MP_TAC IVAL_IWORD THEN REWRITE_TAC[INT_ARITH `x - &1:int < x`] THEN MATCH_MP_TAC(INT_ARITH `&0:int < x ==> --x <= x - &1`) THEN SIMP_TAC[INT_LT_POW2]);; let VAL_BOUND_ALT = prove (`!w:N word. val w <= val(word_UINT_MAX:N word)`, GEN_TAC THEN MP_TAC(ISPEC `w:N word` VAL_BOUND) THEN REWRITE_TAC[VAL_WORD_UINT_MAX] THEN ARITH_TAC);; let IVAL_BOUND_ALT = prove (`!w:N word. ival(word_INT_MIN:N word) <= ival w /\ ival w <= ival(word_INT_MAX:N word)`, GEN_TAC THEN MP_TAC(ISPEC `w:N word` IVAL_BOUND) THEN REWRITE_TAC[IVAL_WORD_INT_MAX; IVAL_WORD_INT_MIN] THEN INT_ARITH_TAC);; let VAL_WORD_INT_MIN = prove (`val(word_INT_MIN:N word) = 2 EXP (dimindex(:N) - 1)`, REWRITE_TAC[GSYM INT_OF_NUM_EQ; VAL_IVAL; GSYM INT_OF_NUM_POW] THEN REWRITE_TAC[MSB_IVAL; IVAL_WORD_INT_MIN] THEN SIMP_TAC[INT_NEG_LT0; INT_LT_POW2; BITVAL_CLAUSES; INT_MUL_RID] THEN REWRITE_TAC[INT_ARITH `--x + y:int = x <=> &2 * x = y`] THEN SIMP_TAC[GSYM(CONJUNCT2 INT_POW)] THEN AP_TERM_TAC THEN REWRITE_TAC[ARITH_RULE `SUC(n - 1) = n <=> ~(n = 0)`; DIMINDEX_NONZERO]);; let INT_VAL_WORD_INT_MIN = prove (`&(val(word_INT_MIN:N word)):int = &2 pow (dimindex(:N) - 1)`, REWRITE_TAC[INT_OF_NUM_POW; INT_OF_NUM_EQ; VAL_WORD_INT_MIN]);; let WORD_INT_MIN_ALT = prove (`word_INT_MIN:N word = word_of_bits {dimindex (:N) - 1}`, REWRITE_TAC[GSYM VAL_EQ; VAL_WORD_INT_MIN; VAL_WORD_OF_BITS_SING] THEN REWRITE_TAC[ARITH_RULE `n - 1 < n <=> 1 <= n`; DIMINDEX_GE_1]);; let BIT_WORD_INT_MIN = prove (`!i. bit i (word_INT_MIN:N word) <=> i = dimindex(:N) - 1`, REWRITE_TAC[WORD_INT_MIN_ALT; BIT_WORD_OF_BITS_SING] THEN REWRITE_TAC[DIMINDEX_GE_1; ARITH_RULE `n - 1 < n <=> 1 <= n`]);; (* ------------------------------------------------------------------------- *) (* Population count (= number of 1s in a word), as a mathematical number. *) (* ------------------------------------------------------------------------- *) let word_popcount = new_definition `word_popcount (x:N word) = CARD(bits_of_word x)`;; let HAS_SIZE_BITS_OF_WORD_POPCOUNT = prove (`!x:N word. (bits_of_word x) HAS_SIZE word_popcount x`, REWRITE_TAC[word_popcount; HAS_SIZE; FINITE_BITS_OF_WORD]);; let WORD_POPCOUNT_BOUND = prove (`!x:N word. word_popcount x <= dimindex(:N)`, GEN_TAC THEN REWRITE_TAC[word_popcount; bits_of_word] THEN GEN_REWRITE_TAC RAND_CONV [GSYM CARD_NUMSEG_LT] THEN MATCH_MP_TAC CARD_SUBSET THEN REWRITE_TAC[FINITE_NUMSEG_LT] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN MESON_TAC[BIT_TRIVIAL; NOT_LT]);; let WORD_POPCOUNT_EQ_0 = prove (`!x:N word. word_popcount x = 0 <=> x = word 0`, SIMP_TAC[CARD_EQ_0; word_popcount; FINITE_BITS_OF_WORD] THEN REWRITE_TAC[BITS_OF_WORD_EQ_EMPTY]);; let WORD_POPCOUNT_0 = prove (`word_popcount(word 0) = 0`, REWRITE_TAC[WORD_POPCOUNT_EQ_0]);; let WORD_POPCOUNT_1 = prove (`word_popcount(word 1) = 1`, REWRITE_TAC[word_popcount; BITS_OF_WORD_1; CARD_SING]);; (* ------------------------------------------------------------------------- *) (* Parity (= evenness or oddity of the popcount). *) (* ------------------------------------------------------------------------- *) let word_evenparity = new_definition `word_evenparity (x:N word) <=> EVEN(word_popcount x)`;; let word_oddparity = new_definition `word_oddparity (x:N word) <=> ODD(word_popcount x)`;; let NOT_WORD_EVENPARITY = prove (`!x:N word. ~(word_evenparity x) <=> word_oddparity x`, REWRITE_TAC[word_evenparity; word_oddparity; NOT_EVEN]);; let NOT_WORD_ODDPARITY = prove (`!x:N word. ~(word_oddparity x) <=> word_evenparity x`, REWRITE_TAC[word_evenparity; word_oddparity; NOT_ODD]);; let WORD_EVENPARITY_0 = prove (`word_evenparity(word 0:N word)`, REWRITE_TAC[word_evenparity; WORD_POPCOUNT_0; EVEN]);; let WORD_ODDPARITY_0 = prove (`~word_oddparity(word 0:N word)`, REWRITE_TAC[NOT_WORD_ODDPARITY; WORD_EVENPARITY_0]);; let WORD_EVENPARITY_1 = prove (`~word_evenparity(word 1:N word)`, REWRITE_TAC[word_evenparity; WORD_POPCOUNT_1] THEN CONV_TAC NUM_REDUCE_CONV);; let WORD_ODDPARITY_1 = prove (`word_oddparity(word 1:N word)`, REWRITE_TAC[GSYM NOT_WORD_EVENPARITY; WORD_EVENPARITY_1]);; (* ------------------------------------------------------------------------- *) (* Modular arithmetic operations in general, unsigned and signed. *) (* ------------------------------------------------------------------------- *) let modular = new_definition `modular op (x:(N)word) (y:(N)word) = word(op (val x) (val y)):(N)word`;; let VAL_MODULAR = prove (`!op x y:(N)word. val(modular op x y) = (op (val x) (val y)) MOD (2 EXP dimindex(:N))`, REWRITE_TAC[modular; VAL_WORD]);; let CONG_MODULAR = prove (`!op x y:(N)word. (val(modular op x y) == op (val x) (val y)) (mod (2 EXP dimindex(:N)))`, REWRITE_TAC[VAL_MODULAR; CONG_LMOD] THEN CONV_TAC NUMBER_RULE);; let imodular = new_definition `imodular op (x:(N)word) (y:(N)word) = iword(op (ival x) (ival y)):(N)word`;; let CONG_IMODULAR = prove (`!op x y:(N)word. (ival(imodular op x y) == op (ival x) (ival y)) (mod (&2 pow (dimindex(:N))))`, REWRITE_TAC[imodular; IVAL_IWORD_CONG]);; (* ------------------------------------------------------------------------- *) (* Relational operations in general w.r.t. unsigned or signed value. *) (* ------------------------------------------------------------------------- *) let relational2 = new_definition `relational2 r (x:(N)word) (y:(N)word) :bool = r (val x) (val y)`;; let irelational2 = new_definition `irelational2 r (x:(N)word) (y:(N)word) :bool = r (ival x) (ival y)`;; (* ------------------------------------------------------------------------- *) (* Bitwise operations in general. *) (* ------------------------------------------------------------------------- *) let bitwise1 = new_definition `(bitwise1 op:N word->N word) x = mk_word(lambda i. op(bitvector x$i))`;; let bitwise2 = new_definition `(bitwise2 op:N word->N word->N word) x y = mk_word(lambda i. op (bitvector x$i) (bitvector y$i))`;; let BIT_BITWISE1 = prove (`!op (x:N word) k. bit k (bitwise1 op x) <=> k < dimindex(:N) /\ op(bit k x)`, REPEAT GEN_TAC THEN REWRITE_TAC[bit] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[bitwise1; word_tybij] THEN MATCH_MP_TAC LAMBDA_BETA THEN ASM_ARITH_TAC);; let BIT_BITWISE2 = prove (`!op (x:N word) (y:N word) k. bit k (bitwise2 op x y) <=> k < dimindex(:N) /\ op (bit k x) (bit k y)`, REPEAT GEN_TAC THEN REWRITE_TAC[bit] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[bitwise2; word_tybij] THEN MATCH_MP_TAC LAMBDA_BETA THEN ASM_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* The main word operations. Where there is any meaningful difference *) (* between unsigned and signed we use a "u" or an "i" in the names. *) (* ------------------------------------------------------------------------- *) let word_not = new_definition `word_not = bitwise1 (~)`;; let BIT_WORD_NOT = prove (`!(x:N word) k. bit k (word_not x) <=> k < dimindex(:N) /\ ~bit k x`, REWRITE_TAC[word_not; BIT_BITWISE1]);; let BITS_OF_WORD_NOT = prove (`!w:N word. bits_of_word(word_not w) = {i | i < dimindex(:N)} DIFF bits_of_word w`, REWRITE_TAC[bits_of_word; BIT_WORD_NOT] THEN SET_TAC[]);; let WORD_OF_BITS_DIFF = prove (`!s t. {i | i < dimindex(:N)} SUBSET s ==> word_of_bits(s DIFF t):N word = word_not(word_of_bits t)`, REWRITE_TAC[GSYM BITS_OF_WORD_EQ; BITS_OF_WORD_NOT] THEN REWRITE_TAC[BITS_OF_WORD_OF_BITS] THEN SET_TAC[]);; let VAL_WORD_NOT = prove (`!w:N word. val(word_not w) = 2 EXP dimindex(:N) - 1 - val w`, GEN_TAC THEN MATCH_MP_TAC(ARITH_RULE `(m + n) + 1 = p ==> m = p - 1 - n`) THEN SIMP_TAC[val_def; GSYM NSUM_ADD; FINITE_NUMSEG_LT] THEN SIMP_TAC[GSYM LEFT_ADD_DISTRIB; BIT_WORD_NOT] THEN SIMP_TAC[BITVAL_NOT; BITVAL_BOUND; SUB_ADD; MULT_CLAUSES] THEN SPEC_TAC(`dimindex(:N)`,`k:num`) THEN INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG_LT; EXP; ADD_CLAUSES; MULT_CLAUSES] THEN ASM_ARITH_TAC);; let INT_VAL_WORD_NOT = prove (`!x:N word. &(val(word_not x)):int = &2 pow dimindex(:N) - &1 - &(val x)`, GEN_TAC THEN REWRITE_TAC[VAL_WORD_NOT; ARITH_RULE `n - 1 - m = n - (m + 1)`] THEN W(MP_TAC o PART_MATCH (rand o rand) INT_OF_NUM_SUB o lhand o snd) THEN REWRITE_TAC[VAL_BOUND; ARITH_RULE `x + 1 <= n <=> x < n`] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[GSYM INT_OF_NUM_ADD; GSYM INT_OF_NUM_POW] THEN INT_ARITH_TAC);; let REAL_VAL_WORD_NOT = prove (`!x:N word. &(val(word_not x)):real = &2 pow dimindex(:N) - &1 - &(val x)`, GEN_TAC THEN REWRITE_TAC[VAL_WORD_NOT; ARITH_RULE `n - 1 - m = n - (m + 1)`] THEN W(MP_TAC o PART_MATCH (rand o rand) REAL_OF_NUM_SUB o lhand o snd) THEN REWRITE_TAC[VAL_BOUND; ARITH_RULE `x + 1 <= n <=> x < n`] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_POW] THEN REAL_ARITH_TAC);; let WORD_POPCOUNT_NOT = prove (`!x:N word. word_popcount(word_not x) = dimindex(:N) - word_popcount x`, GEN_TAC THEN MATCH_MP_TAC(ARITH_RULE `x + y:num = z ==> x = z - y`) THEN GEN_REWRITE_TAC RAND_CONV [GSYM CARD_NUMSEG_LT] THEN REWRITE_TAC[word_popcount] THEN MATCH_MP_TAC CARD_UNION_EQ THEN REWRITE_TAC[FINITE_NUMSEG_LT; BITS_OF_WORD_NOT] THEN CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[SET_RULE `s DIFF t UNION t = s <=> t SUBSET s`] THEN REWRITE_TAC[bits_of_word; SUBSET; IN_ELIM_THM] THEN MESON_TAC[BIT_TRIVIAL; NOT_LT]);; let word_and = new_definition `word_and = bitwise2 (/\)`;; let BIT_WORD_AND = prove (`!(x:N word) (y:N word) k. bit k (word_and x y) <=> k < dimindex(:N) /\ bit k x /\ bit k y`, REWRITE_TAC[word_and; BIT_BITWISE2]);; let BIT_WORD_AND_ALT = prove (`!(x:N word) y k. bit k (word_and x y) <=> bit k x /\ bit k y`, MESON_TAC[BIT_WORD_AND; BIT_TRIVIAL; NOT_LT]);; let BITS_OF_WORD_AND = prove (`!v w:N word. bits_of_word(word_and v w) = bits_of_word v INTER bits_of_word w`, REWRITE_TAC[bits_of_word; BIT_WORD_AND] THEN REWRITE_TAC[EXTENSION; IN_INTER; IN_ELIM_THM] THEN MESON_TAC[BIT_TRIVIAL; NOT_LE]);; let WORD_AND_EQ_0 = prove (`!v w:N word. word_and v w = word 0 <=> DISJOINT (bits_of_word v) (bits_of_word w)`, REWRITE_TAC[GSYM BITS_OF_WORD_EQ; BITS_OF_WORD_AND; BITS_OF_WORD_0] THEN SET_TAC[]);; let WORD_OF_BITS_INTER = prove (`!s t. word_of_bits(s INTER t):N word = word_and (word_of_bits s) (word_of_bits t)`, REWRITE_TAC[GSYM BITS_OF_WORD_EQ; BITS_OF_WORD_AND] THEN REWRITE_TAC[BITS_OF_WORD_OF_BITS] THEN SET_TAC[]);; let WORD_AND_WORD_OF_BITS_SING = prove (`!(w:N word) k. word_and w (word_of_bits {k}) = if bit k w then word_of_bits {k} else word 0`, REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[WORD_EQ_BITS; BIT_WORD_AND; BIT_WORD_OF_BITS; BIT_WORD_0] THEN ASM SET_TAC[]);; let WORD_OF_BITS_SING_AND_WORD = prove (`!(w:N word) k. word_and (word_of_bits {k}) w = if bit k w then word_of_bits {k} else word 0`, REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[WORD_EQ_BITS; BIT_WORD_AND; BIT_WORD_OF_BITS; BIT_WORD_0] THEN ASM SET_TAC[]);; let WORD_AND_POW2 = prove (`(!(x:N word) k. word_and x (word(2 EXP k)) = word(2 EXP k * bitval(bit k x))) /\ (!(x:N word) k. word_and (word(2 EXP k)) x = word(2 EXP k * bitval(bit k x)))`, REWRITE_TAC[AND_FORALL_THM; bitval] THEN REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN REWRITE_TAC[WORD_EQ_BITS; BIT_WORD_AND; BIT_WORD_POW2; BIT_WORD_0] THEN ASM_MESON_TAC[]);; let VAL_WORD_AND_POW2 = prove (`(!(x:N word) k. val(word_and x (word(2 EXP k))) = 2 EXP k * bitval(bit k x)) /\ (!(x:N word) k. val(word_and (word(2 EXP k)) x) = 2 EXP k * bitval(bit k x))`, REWRITE_TAC[WORD_AND_POW2] THEN REPEAT GEN_TAC THEN MATCH_MP_TAC VAL_WORD_EQ THEN REWRITE_TAC[bitval] THEN COND_CASES_TAC THEN REWRITE_TAC[MULT_CLAUSES; LT_EXP; EXP_LT_0] THEN CONV_TAC NUM_REDUCE_CONV THEN ASM_MESON_TAC[BIT_TRIVIAL; NOT_LE]);; let VAL_WORD_AND_LE = prove (`(!x y:N word. val(word_and x y) <= val x) /\ (!x y:N word. val(word_and x y) <= val y)`, REPEAT STRIP_TAC THEN REWRITE_TAC[val_def] THEN MATCH_MP_TAC NSUM_LE THEN REWRITE_TAC[FINITE_NUMSEG_LT] THEN X_GEN_TAC `i:num` THEN SIMP_TAC[IN_ELIM_THM; BIT_WORD_AND; LE_MULT_LCANCEL; LE_BITVAL]);; let VAL_WORD_AND_LE_MIN = prove (`!x y:N word. val(word_and x y) <= MIN (val x) (val y)`, REWRITE_TAC[ARITH_RULE `x <= MIN y z <=> x <= y /\ x <= z`] THEN REWRITE_TAC[VAL_WORD_AND_LE]);; let VAL_WORD_AND_WORD_LE = prove (`(!(x:N word) n. val(word_and x (word n)) <= n) /\ (!(x:N word) n. val(word_and (word n) x) <= n)`, MESON_TAC[VAL_WORD_AND_LE; LE_TRANS; LE_REFL; VAL_WORD_LE]);; let word_or = new_definition `word_or = bitwise2 (\/)`;; let BIT_WORD_OR = prove (`!(x:N word) (y:N word) k. bit k (word_or x y) <=> k < dimindex(:N) /\ (bit k x \/ bit k y)`, REWRITE_TAC[word_or; BIT_BITWISE2]);; let BIT_WORD_OR_ALT = prove (`!(x:N word) y k. bit k (word_or x y) <=> bit k x \/ bit k y`, MESON_TAC[BIT_WORD_OR; BIT_TRIVIAL; NOT_LT]);; let BITS_OF_WORD_OR = prove (`!v w:N word. bits_of_word(word_or v w) = bits_of_word v UNION bits_of_word w`, REWRITE_TAC[bits_of_word; BIT_WORD_OR] THEN REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM] THEN MESON_TAC[BIT_TRIVIAL; NOT_LE]);; let WORD_OF_BITS_UNION = prove (`!s t. word_of_bits(s UNION t):N word = word_or (word_of_bits s) (word_of_bits t)`, REWRITE_TAC[GSYM BITS_OF_WORD_EQ; BITS_OF_WORD_OR] THEN REWRITE_TAC[BITS_OF_WORD_OF_BITS] THEN SET_TAC[]);; let VAL_WORD_OR_LE = prove (`(!x y:N word. val x <= val(word_or x y)) /\ (!x y:N word. val y <= val(word_or x y))`, REPEAT STRIP_TAC THEN MATCH_MP_TAC VAL_LE_BITS THEN SIMP_TAC[BIT_WORD_OR]);; let VAL_WORD_OR_LE_MAX = prove (`(!x y:N word. MAX (val x) (val y) <= val(word_or x y))`, REWRITE_TAC[ARITH_RULE `MAX y z <= x <=> y <= x /\ z <= x`] THEN REWRITE_TAC[VAL_WORD_OR_LE]);; let word_xor = new_definition `word_xor = bitwise2 (\x y. ~(x <=> y))`;; let BIT_WORD_XOR = prove (`!(x:N word) (y:N word) k. bit k (word_xor x y) <=> k < dimindex(:N) /\ ~(bit k x <=> bit k y)`, REWRITE_TAC[word_xor; BIT_BITWISE2]);; let BIT_WORD_XOR_ALT = prove (`!(x:N word) y k. bit k (word_xor x y) <=> ~(bit k x <=> bit k y)`, MESON_TAC[BIT_WORD_XOR; BIT_TRIVIAL; NOT_LT]);; let VAL_WORD_ADD_AND_XOR,VAL_WORD_ADD_AND_OR = (CONJ_PAIR o prove) (`(!x y:N word. val x + val y = 2 * val(word_and x y) + val(word_xor x y)) /\ (!x y:N word. val x + val y = val(word_and x y) + val(word_or x y))`, REPEAT STRIP_TAC THEN REWRITE_TAC[val_def; GSYM NSUM_LMUL] THEN SIMP_TAC[GSYM NSUM_ADD; FINITE_NUMSEG_LT] THEN MATCH_MP_TAC NSUM_EQ THEN REWRITE_TAC[IN_ELIM_THM; BIT_WORD_AND; BIT_WORD_XOR; BIT_WORD_OR] THEN X_GEN_TAC `i:num` THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN MAP_EVERY ASM_CASES_TAC [`bit i (x:N word)`; `bit i (y:N word)`] THEN ASM_REWRITE_TAC[BITVAL_CLAUSES] THEN ARITH_TAC);; let VAL_WORD_OR_DISJOINT = prove (`!x y:N word. word_and x y = word 0 ==> val(word_or x y) = val x + val y`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[VAL_WORD_ADD_AND_OR] THEN ASM_REWRITE_TAC[VAL_WORD_0; ADD_CLAUSES]);; let VAL_WORD_OR_AND_XOR = prove (`!x y:N word. val(word_or x y) = val(word_and x y) + val(word_xor x y)`, ONCE_REWRITE_TAC[ARITH_RULE `a = b + c <=> b + a = 2 * b + c`] THEN MESON_TAC[VAL_WORD_ADD_AND_XOR; VAL_WORD_ADD_AND_OR]);; let word_add = new_definition `word_add = modular (+)`;; let VAL_WORD_ADD = prove (`!x y:(N) word. val(word_add x y) = (val(x) + val(y)) MOD (2 EXP dimindex(:N))`, REWRITE_TAC[word_add; VAL_MODULAR]);; let VAL_WORD_ADD_CASES = prove (`!x y:(N) word. val(word_add x y) = if val x + val y < 2 EXP dimindex(:N) then val x + val y else (val x + val y) - 2 EXP dimindex(:N)`, SIMP_TAC[VAL_WORD_ADD; VAL_BOUND; MOD_ADD_CASES]);; let VAL_WORD_ADC_CASES = prove (`!c x y:(N) word. val(c) < 2 ==> val(word_add (word_add x y) c) = if val x + val y + val c < 2 EXP dimindex(:N) then val x + val y + val c else (val x + val y + val c) - 2 EXP dimindex(:N)`, REPEAT STRIP_TAC THEN REWRITE_TAC[VAL_WORD_ADD] THEN CONV_TAC MOD_DOWN_CONV THEN REWRITE_TAC[GSYM ADD_ASSOC] THEN MATCH_MP_TAC MOD_CASES THEN MATCH_MP_TAC(ARITH_RULE `x < n /\ y < n /\ c < 2 ==> x + y + c < 2 * n`) THEN ASM_REWRITE_TAC[VAL_BOUND]);; let INT_VAL_WORD_ADD_CASES = prove (`!x y:(N) word. &(val(word_add x y)):int = if &(val x) + &(val y):int < &2 pow dimindex(:N) then &(val x) + &(val y) else (&(val x) + &(val y)) - &2 pow dimindex(:N)`, REPEAT GEN_TAC THEN REWRITE_TAC[VAL_WORD_ADD_CASES] THEN REWRITE_TAC[INT_OF_NUM_ADD; INT_OF_NUM_POW; INT_OF_NUM_LT] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[NOT_LT; INT_OF_NUM_SUB]);; let CONG_WORD_ADD = prove (`!x y:(N)word. (val(word_add x y) == val x + val y) (mod (2 EXP dimindex(:N)))`, REWRITE_TAC[word_add; CONG_MODULAR]);; let INT_CONG_WORD_ADD = prove (`!x y:N word. (&(val(word_add x y)):int == &(val x) + &(val y)) (mod (&2 pow dimindex(:N)))`, REWRITE_TAC[INT_OF_NUM_CLAUSES; GSYM num_congruent; CONG_WORD_ADD]);; let WORD_ADD = prove (`!x y. word(x + y):N word = word_add (word x) (word y)`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM VAL_CONG] THEN MP_TAC(ISPECL [`word x:N word`; `word y:N word`] CONG_WORD_ADD) THEN MAP_EVERY (MP_TAC o C ISPEC VAL_WORD_CONG) [`x + y:num`; `y:num`; `x:num`] THEN CONV_TAC NUMBER_RULE);; let ICONG_WORD_ADD = prove (`!x y:(N)word. (ival(word_add x y) == ival x + ival y) (mod (&2 pow dimindex(:N)))`, REPEAT GEN_TAC THEN MAP_EVERY (MP_TAC o C SPEC IVAL_VAL_CONG) [`x:N word`; `y:N word`; `word_add x y:N word`] THEN MP_TAC(ISPECL [`x:N word`; `y:N word`] CONG_WORD_ADD) THEN REWRITE_TAC[num_congruent; GSYM INT_OF_NUM_POW; GSYM INT_OF_NUM_ADD] THEN CONV_TAC INTEGER_RULE);; let IWORD_INT_ADD = prove (`!x y. iword(x + y):N word = word_add (iword x) (iword y)`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM IVAL_CONG] THEN MP_TAC(ISPECL [`iword x:N word`; `iword y:N word`] ICONG_WORD_ADD) THEN MAP_EVERY (MP_TAC o C ISPEC IVAL_IWORD_CONG) [`x + y:int`; `y:int`; `x:int`] THEN CONV_TAC INTEGER_RULE);; let WORD_ADD_IMODULAR = prove (`(word_add:N word->N word->N word) = imodular ( + )`, REWRITE_TAC[FUN_EQ_THM; GSYM IVAL_CONG] THEN ASM_MESON_TAC[ICONG_WORD_ADD; CONG_IMODULAR; INTEGER_RULE `(a:int == b) (mod n) /\ (c == b) (mod n) ==> (a == c) (mod n)`]);; let ODD_VAL_WORD = prove (`!n. ODD(val(word n:N word)) <=> ODD n`, SIMP_TAC[VAL_WORD; ODD_MOD_EVEN; EVEN_EXP; ARITH; DIMINDEX_NONZERO]);; let EVEN_VAL_WORD = prove (`!n. EVEN(val(word n:N word)) <=> EVEN n`, REWRITE_TAC[GSYM NOT_ODD; ODD_VAL_WORD]);; let ODD_VAL_WORD_ADD = prove (`!x y:N word. ODD(val(word_add x y)) <=> ~(ODD(val x) <=> ODD(val y))`, SIMP_TAC[VAL_WORD_ADD; ODD_MOD_EVEN; EVEN_EXP; ARITH; DIMINDEX_NONZERO] THEN REWRITE_TAC[ODD_ADD]);; let EVEN_VAL_WORD_ADD = prove (`!x y:N word. EVEN(val(word_add x y)) <=> (EVEN(val x) <=> EVEN(val y))`, REWRITE_TAC[GSYM NOT_ODD; ODD_VAL_WORD_ADD] THEN CONV_TAC TAUT);; let word_sub = new_definition `(word_sub:(N)word->(N)word->(N)word) = modular (\x y. x + (2 EXP dimindex(:N) - y))`;; let VAL_WORD_SUB = prove (`!x y:(N) word. val(word_sub x y) = (val(x) + (2 EXP dimindex(:N) - val(y))) MOD (2 EXP dimindex(:N))`, REWRITE_TAC[word_sub; VAL_MODULAR]);; let VAL_WORD_SUB_CASES = prove (`!x y:(N) word. val(word_sub x y) = if val y <= val x then val(x) - val(y) else val(x) + (2 EXP dimindex(:N) - val(y))`, REPEAT GEN_TAC THEN REWRITE_TAC[VAL_WORD_SUB] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[MOD_LT] THENL [MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `1`; MATCH_MP_TAC MOD_LT] THEN MAP_EVERY (MP_TAC o C ISPEC VAL_BOUND) [`x:N word`; `y:N word`] THEN ASM_ARITH_TAC);; let INT_VAL_WORD_SUB_CASES = prove (`!x y:(N) word. &(val(word_sub x y)):int = if &(val y):int <= &(val x) then &(val x) - &(val y) else &(val x) + (&2 pow dimindex(:N) - &(val y))`, REPEAT GEN_TAC THEN REWRITE_TAC[VAL_WORD_SUB_CASES] THEN REWRITE_TAC[INT_OF_NUM_ADD; INT_OF_NUM_POW; INT_OF_NUM_LE] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[INT_OF_NUM_ADD; INT_OF_NUM_SUB; VAL_BOUND; LT_IMP_LE]);; let CONG_WORD_SUB = prove (`!x y:(N)word. (val(word_sub x y) + val y == val x) (mod (2 EXP dimindex(:N)))`, REPEAT GEN_TAC THEN REWRITE_TAC[CONG; VAL_MODULAR; word_sub] THEN CONV_TAC MOD_DOWN_CONV THEN SIMP_TAC[VAL_BOUND; ARITH_RULE `y:num < n ==> (x + n - y) + y = x + n`] THEN REWRITE_TAC[GSYM CONG] THEN CONV_TAC NUMBER_RULE);; let INT_CONG_WORD_SUB = prove (`!x y:N word. (&(val(word_sub x y)):int == &(val x) - &(val y)) (mod (&2 pow dimindex(:N)))`, REWRITE_TAC[INTEGER_RULE `(z:int == x - y) (mod n) <=> (z + y == x) (mod n)`] THEN REWRITE_TAC[INT_OF_NUM_CLAUSES; CONG_WORD_SUB; GSYM num_congruent]);; let ICONG_WORD_SUB = prove (`!x y:N word. (ival(word_sub x y) == ival x - ival y) (mod (&2 pow dimindex(:N)))`, REPEAT GEN_TAC THEN MAP_EVERY (MP_TAC o C SPEC IVAL_VAL_CONG) [`x:N word`; `y:N word`; `word_sub x y:N word`] THEN MP_TAC(ISPECL [`x:N word`; `y:N word`] CONG_WORD_SUB) THEN REWRITE_TAC[num_congruent; GSYM INT_OF_NUM_POW; GSYM INT_OF_NUM_ADD] THEN CONV_TAC INTEGER_RULE);; let IWORD_INT_SUB = prove (`!x y. iword(x - y):N word = word_sub (iword x) (iword y)`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM IVAL_CONG] THEN MP_TAC(ISPECL [`iword x:N word`; `iword y:N word`] ICONG_WORD_SUB) THEN MAP_EVERY (MP_TAC o C ISPEC IVAL_IWORD_CONG) [`x - y:int`; `y:int`; `x:int`] THEN CONV_TAC INTEGER_RULE);; let WORD_SUB_IMODULAR = prove (`(word_sub:N word->N word->N word) = imodular ( - )`, REWRITE_TAC[FUN_EQ_THM; GSYM IVAL_CONG] THEN ASM_MESON_TAC[ICONG_WORD_SUB; CONG_IMODULAR; INTEGER_RULE `(a:int == b) (mod n) /\ (c == b) (mod n) ==> (a == c) (mod n)`]);; let WORD_SUB = prove (`!x y. word(x - y):N word = if y <= x then word_sub (word x) (word y) else word 0`, REPEAT GEN_TAC THEN COND_CASES_TAC THENL [ASM_SIMP_TAC[WORD_IWORD; GSYM INT_OF_NUM_SUB; IWORD_INT_SUB]; ASM_MESON_TAC[SUB_EQ_0; LE_CASES]]);; let word_neg = new_definition `word_neg (a:N word) = word_sub (word 0) a`;; let ODD_VAL_WORD_SUB = prove (`!x y:N word. ODD(val(word_sub x y)) <=> ~(ODD(val x) <=> ODD(val y))`, SIMP_TAC[VAL_WORD_SUB; ODD_MOD_EVEN; EVEN_EXP; ARITH; DIMINDEX_NONZERO] THEN REWRITE_TAC[ODD_ADD; ODD_SUB; ODD_EXP; DIMINDEX_NONZERO; ARITH] THEN REWRITE_TAC[VAL_BOUND]);; let EVEN_VAL_WORD_SUB = prove (`!x y:N word. EVEN(val(word_sub x y)) <=> (EVEN(val x) <=> EVEN(val y))`, REWRITE_TAC[GSYM NOT_ODD; ODD_VAL_WORD_SUB] THEN CONV_TAC TAUT);; let VAL_WORD_NEG = prove (`!x:(N) word. val(word_neg x) = (2 EXP dimindex(:N) - val(x)) MOD (2 EXP dimindex(:N))`, REWRITE_TAC[word_neg; VAL_WORD_SUB; VAL_WORD_0; ADD_CLAUSES]);; let VAL_WORD_NEG_CASES = prove (`!x:(N) word. val(word_neg x) = if val x = 0 then 0 else 2 EXP dimindex(:N) - val(x)`, REWRITE_TAC[word_neg; VAL_WORD_SUB_CASES; VAL_WORD_0] THEN SIMP_TAC[LE; ADD_CLAUSES; SUB_REFL]);; let INT_VAL_WORD_NEG_CASES = prove (`!x:N word. &(val(word_neg x)):int = if &(val x):int = &0 then &0 else &2 pow dimindex(:N) - &(val x)`, SIMP_TAC[INT_OF_NUM_POW; INT_OF_NUM_SUB; LT_IMP_LE; VAL_BOUND] THEN REWRITE_TAC[VAL_WORD_NEG_CASES; INT_OF_NUM_EQ] THEN MESON_TAC[]);; let REAL_VAL_WORD_NEG_CASES = prove (`!x:N word. &(val(word_neg x)):real = if &(val x):real = &0 then &0 else &2 pow dimindex(:N) - &(val x)`, SIMP_TAC[REAL_OF_NUM_POW; REAL_OF_NUM_SUB; LT_IMP_LE; VAL_BOUND] THEN REWRITE_TAC[VAL_WORD_NEG_CASES; REAL_OF_NUM_EQ] THEN MESON_TAC[]);; let CONG_WORD_NEG = prove (`!x:(N)word. (val(word_neg x) + val x == 0) (mod (2 EXP dimindex(:N)))`, REWRITE_TAC[word_neg] THEN MESON_TAC[CONG_WORD_SUB; VAL_WORD_0]);; let INT_CONG_WORD_NEG = prove (`!x:N word. (&(val(word_neg x)):int == -- &(val x)) (mod (&2 pow dimindex(:N)))`, REWRITE_TAC[INTEGER_RULE `(z:int == --y) (mod n) <=> (z + y == &0) (mod n)`] THEN REWRITE_TAC[INT_OF_NUM_CLAUSES; CONG_WORD_NEG; GSYM num_congruent]);; let ICONG_WORD_NEG = prove (`!x:(N)word. (ival(word_neg x) == --(ival x)) (mod (&2 pow dimindex(:N)))`, REWRITE_TAC[word_neg] THEN MESON_TAC[ICONG_WORD_SUB; INT_SUB_LZERO; IVAL_WORD_0]);; let IWORD_INT_NEG = prove (`!x. iword(--x):N word = word_neg (iword x)`, REWRITE_TAC[GSYM INT_SUB_LZERO; word_neg] THEN REWRITE_TAC[IWORD_INT_SUB; GSYM WORD_IWORD]);; let WORD_NEG_AS_ADD = prove (`!x:N word. word_neg x = word_add (word_not x) (word 1)`, GEN_TAC THEN REWRITE_TAC[GSYM VAL_CONG; CONG; VAL_WORD_NEG] THEN REWRITE_TAC[MOD_MOD_REFL; VAL_WORD_ADD; VAL_WORD_1; VAL_WORD_NOT] THEN CONV_TAC MOD_DOWN_CONV THEN SIMP_TAC[VAL_BOUND; ARITH_RULE `n < e ==> (e - 1 - n) + 1 = e - n`]);; let WORD_NOT_AS_SUB = prove (`!x:N word. word_not x = word_sub (word_neg x) (word 1)`, GEN_TAC THEN REWRITE_TAC[GSYM VAL_CONG; CONG; VAL_WORD_SUB; VAL_WORD_NEG] THEN REWRITE_TAC[MOD_MOD_REFL; VAL_WORD_SUB; VAL_WORD_1; VAL_WORD_NOT] THEN CONV_TAC MOD_DOWN_CONV THEN SIMP_TAC[VAL_BOUND; ARITH_RULE `x < e ==> (e - x) + (e - 1) = e + (e - 1 - x)`] THEN REWRITE_TAC[GSYM CONG] THEN CONV_TAC NUMBER_RULE);; let VAL_WORD_NEG_1 = prove (`val(word_neg(word 1:N word)) = 2 EXP dimindex(:N) - 1`, REWRITE_TAC[VAL_WORD_NEG_CASES; VAL_WORD_1; ARITH_EQ]);; let IVAL_WORD_NEG_1 = prove (`ival(word_neg(word 1:N word)) = -- &1`, REWRITE_TAC[ival; VAL_WORD_NEG_1] THEN REWRITE_TAC[ARITH_RULE `m - 1 < n <=> ~(n = 0) /\ m <= n`] THEN SIMP_TAC[LE_EXP; EXP_EQ_0; ARITH_EQ; DIMINDEX_NONZERO; ARITH_RULE `n <= n - 1 <=> n = 0`; GSYM INT_OF_NUM_SUB; GSYM INT_OF_NUM_POW; LE_1] THEN INT_ARITH_TAC);; let IVAL_EQ_MINUS1 = prove (`!w:N word. ival w = -- &1 <=> w = word_neg(word 1)`, REWRITE_TAC[GSYM IVAL_EQ; IVAL_WORD_NEG_1]);; let WORD_NEG_1 = prove (`word_neg(word 1:N word) = word_not(word 0)`, REWRITE_TAC[WORD_NOT_AS_SUB; word_neg] THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM VAL_EQ; VAL_WORD_0; VAL_WORD_SUB_CASES] THEN CONV_TAC NUM_REDUCE_CONV);; let ODD_VAL_WORD_NEG = prove (`!x:N word. ODD(val(word_neg x)) <=> ODD(val x)`, SIMP_TAC[VAL_WORD_NEG; ODD_MOD_EVEN; EVEN_EXP; ARITH; DIMINDEX_NONZERO] THEN REWRITE_TAC[ODD_SUB; VAL_BOUND; ODD_EXP; DIMINDEX_NONZERO; ARITH]);; let EVEN_VAL_WORD_NEG = prove (`!x:N word. EVEN(val(word_neg x)) <=> EVEN(val x)`, REWRITE_TAC[GSYM NOT_ODD; ODD_VAL_WORD_NEG] THEN CONV_TAC TAUT);; let word_mul = new_definition `word_mul = modular ( * )`;; let VAL_WORD_MUL = prove (`!x y:(N)word. val(word_mul x y) = (val(x) * val(y)) MOD (2 EXP dimindex(:N))`, REWRITE_TAC[word_mul; VAL_MODULAR]);; let CONG_WORD_MUL = prove (`!x y:(N)word. (val(word_mul x y) == val x * val y) (mod (2 EXP dimindex(:N)))`, REWRITE_TAC[word_mul; CONG_MODULAR]);; let INT_CONG_WORD_MUL = prove (`!x y:N word. (&(val(word_mul x y)):int == &(val x) * &(val y)) (mod (&2 pow dimindex(:N)))`, REWRITE_TAC[INT_OF_NUM_CLAUSES; GSYM num_congruent; CONG_WORD_MUL]);; let WORD_MUL = prove (`!x y. word(x * y):N word = word_mul (word x) (word y)`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM VAL_CONG] THEN MP_TAC(ISPECL [`word x:N word`; `word y:N word`] CONG_WORD_MUL) THEN MAP_EVERY (MP_TAC o C ISPEC VAL_WORD_CONG) [`x * y:num`; `y:num`; `x:num`] THEN CONV_TAC NUMBER_RULE);; let ICONG_WORD_MUL = prove (`!x y:(N)word. (ival(word_mul x y) == ival x * ival y) (mod (&2 pow dimindex(:N)))`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`x:N word`; `y:N word`] CONG_WORD_MUL) THEN MAP_EVERY (MP_TAC o C SPEC IVAL_VAL_CONG) [`x:N word`; `y:N word`; `word_mul x y:N word`] THEN REWRITE_TAC[num_congruent; GSYM INT_OF_NUM_POW; GSYM INT_OF_NUM_MUL] THEN CONV_TAC INTEGER_RULE);; let IWORD_INT_MUL = prove (`!x y. iword(x * y):N word = word_mul (iword x) (iword y)`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM IVAL_CONG] THEN MP_TAC(ISPECL [`iword x:N word`; `iword y:N word`] ICONG_WORD_MUL) THEN MAP_EVERY (MP_TAC o C ISPEC IVAL_IWORD_CONG) [`x * y:int`; `y:int`; `x:int`] THEN CONV_TAC INTEGER_RULE);; let WORD_MUL_IMODULAR = prove (`(word_mul:N word->N word->N word) = imodular ( * )`, REWRITE_TAC[FUN_EQ_THM; GSYM IVAL_CONG] THEN ASM_MESON_TAC[ICONG_WORD_MUL; CONG_IMODULAR; INTEGER_RULE `(a:int == b) (mod n) /\ (c == b) (mod n) ==> (a == c) (mod n)`]);; let ODD_VAL_WORD_MUL = prove (`!x y:N word. ODD(val(word_mul x y)) <=> ODD(val x) /\ ODD(val y)`, SIMP_TAC[VAL_WORD_MUL; ODD_MOD_EVEN; EVEN_EXP; ARITH; DIMINDEX_NONZERO] THEN REWRITE_TAC[ODD_MULT]);; let EVEN_VAL_WORD_MUL = prove (`!x y:N word. EVEN(val(word_mul x y)) <=> EVEN(val x) \/ EVEN(val y)`, REWRITE_TAC[GSYM NOT_ODD; ODD_VAL_WORD_MUL] THEN CONV_TAC TAUT);; let word_udiv = new_definition `word_udiv = modular (DIV)`;; let VAL_WORD_UDIV = prove (`!x y:(N)word. val(word_udiv x y) = val(x) DIV val(y)`, REPEAT GEN_TAC THEN REWRITE_TAC[word_udiv; VAL_MODULAR] THEN MATCH_MP_TAC MOD_LT THEN MATCH_MP_TAC(ARITH_RULE `m DIV n <= m /\ m < p ==> m DIV n < p`) THEN REWRITE_TAC[VAL_BOUND; DIV_LE]);; let word_umod = new_definition `word_umod = modular (MOD)`;; let VAL_WORD_UMOD = prove (`!x y:(N)word. val(word_umod x y) = val(x) MOD val(y)`, REPEAT GEN_TAC THEN REWRITE_TAC[word_umod; VAL_MODULAR] THEN MATCH_MP_TAC MOD_LT THEN MATCH_MP_TAC(ARITH_RULE `m MOD n <= m /\ m < p ==> m MOD n < p`) THEN REWRITE_TAC[VAL_BOUND; MOD_LE]);; let word_umax = new_definition `word_umax = modular (MAX)`;; let word_imax = new_definition `word_imax = imodular (max)`;; let VAL_WORD_UMAX = prove (`!x y:(N)word. val(word_umax x y) = MAX (val x) (val y)`, REPEAT GEN_TAC THEN REWRITE_TAC[word_umax; VAL_MODULAR] THEN MATCH_MP_TAC MOD_LT THEN REWRITE_TAC[ARITH_RULE `MAX x y < n <=> x < n /\ y < n`] THEN REWRITE_TAC[VAL_BOUND]);; let WORD_UMAX = prove (`!x y:N word. word_umax x y = if val x <= val y then y else x`, REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[GSYM VAL_EQ; VAL_WORD_UMAX; MAX]);; let WORD_UMAX_SYM = prove (`!x y:N word. word_umax x y = word_umax y x`, REWRITE_TAC[GSYM VAL_EQ; VAL_WORD_UMAX] THEN ARITH_TAC);; let WORD_UMAX_ASSOC = prove (`!x y z:N word. word_umax x (word_umax y z) = word_umax (word_umax x y) z`, REWRITE_TAC[GSYM VAL_EQ; VAL_WORD_UMAX] THEN ARITH_TAC);; let IVAL_WORD_IMAX = prove (`!x y:(N)word. ival(word_imax x y) = max (ival x) (ival y)`, REPEAT GEN_TAC THEN REWRITE_TAC[word_imax; imodular] THEN REWRITE_TAC[INT_MAX] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[IWORD_IVAL]);; let word_umin = new_definition `word_umin = modular (MIN)`;; let word_imin = new_definition `word_imin = imodular (min)`;; let VAL_WORD_UMIN = prove (`!x y:(N)word. val(word_umin x y) = MIN (val x) (val y)`, REPEAT GEN_TAC THEN REWRITE_TAC[word_umin; VAL_MODULAR] THEN MATCH_MP_TAC MOD_LT THEN REWRITE_TAC[ARITH_RULE `MIN x y < n <=> x < n \/ y < n`] THEN REWRITE_TAC[VAL_BOUND]);; let WORD_UMIN = prove (`!x y:N word. word_umin x y = if val x <= val y then x else y`, REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[GSYM VAL_EQ; VAL_WORD_UMIN; MIN]);; let WORD_UMIN_SYM = prove (`!x y:N word. word_umin x y = word_umin y x`, REWRITE_TAC[GSYM VAL_EQ; VAL_WORD_UMIN] THEN ARITH_TAC);; let WORD_UMIN_ASSOC = prove (`!x y z:N word. word_umin x (word_umin y z) = word_umin (word_umin x y) z`, REWRITE_TAC[GSYM VAL_EQ; VAL_WORD_UMIN] THEN ARITH_TAC);; let IVAL_WORD_IMIN = prove (`!x y:(N)word. ival(word_imin x y) = min (ival x) (ival y)`, REPEAT GEN_TAC THEN REWRITE_TAC[word_imin; imodular] THEN REWRITE_TAC[INT_MIN] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[IWORD_IVAL]);; let word_shl = new_definition `word_shl (x:(N)word) n = word((val x) * 2 EXP n):(N)word`;; let VAL_WORD_SHL = prove (`!(x:N word) n. val(word_shl x n) = (2 EXP n * val x) MOD (2 EXP dimindex(:N))`, REPEAT GEN_TAC THEN REWRITE_TAC[word_shl; VAL_WORD; MULT_SYM]);; let CONG_WORD_SHL = prove (`!(x:N word) n. (val(word_shl x n) == 2 EXP n * val x) (mod (2 EXP dimindex(:N)))`, REPEAT GEN_TAC THEN REWRITE_TAC[VAL_WORD_SHL; CONG] THEN CONV_TAC MOD_DOWN_CONV THEN REFL_TAC);; let ICONG_WORD_SHL = prove (`!(x:N word) n. (ival(word_shl x n) == &2 pow n * ival x) (mod (&2 pow dimindex(:N)))`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`x:N word`; `n:num`] CONG_WORD_SHL) THEN MAP_EVERY (MP_TAC o C SPEC IVAL_VAL_CONG) [`x:N word`; `word_shl x n:N word`] THEN REWRITE_TAC[num_congruent; GSYM INT_OF_NUM_POW; GSYM INT_OF_NUM_MUL] THEN CONV_TAC INTEGER_RULE);; let BIT_WORD_SHL = prove (`!(x:N word) n i. bit i (word_shl x n) <=> n <= i /\ i < dimindex(:N) /\ bit (i - n) x`, REPEAT GEN_TAC THEN ASM_CASES_TAC `i < dimindex(:N)` THENL [ASM_REWRITE_TAC[]; ASM_REWRITE_TAC[bit]] THEN REWRITE_TAC[word_shl; BIT_VAL; VAL_WORD] THEN SUBGOAL_THEN `dimindex(:N) = i + (dimindex(:N) - i)` SUBST1_TAC THENL [ASM_ARITH_TAC; REWRITE_TAC[EXP_ADD; GSYM DIV_MOD]] THEN ASM_SIMP_TAC[ODD_MOD_POW2; ARITH_RULE `i < n ==> ~(n - i = 0)`] THEN ASM_CASES_TAC `n:num <= i` THEN ASM_REWRITE_TAC[] THENL [AP_TERM_TAC THEN SUBGOAL_THEN `i:num = (i - n) + n` (fun th -> GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o RAND_CONV) [th]) THENL [ASM_ARITH_TAC; REWRITE_TAC[EXP_ADD]] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN MATCH_MP_TAC DIV_MULT2 THEN REWRITE_TAC[EXP_EQ_0; ARITH_EQ]; SUBGOAL_THEN `n:num = i + (n - i)` SUBST1_TAC THENL [ASM_ARITH_TAC; ONCE_REWRITE_TAC[MULT_SYM]] THEN REWRITE_TAC[EXP_ADD; GSYM MULT_ASSOC] THEN SIMP_TAC[DIV_MULT; ARITH_EQ; EXP_EQ_0] THEN REWRITE_TAC[ODD_MULT; ODD_EXP] THEN ASM_ARITH_TAC]);; let WORD_SHL_WORD_OF_BITS = prove (`!(x:N word) n. word_shl x n = word_of_bits {i | n <= i /\ i < dimindex(:N) /\ bit (i - n) x}`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [WORD_OF_BITS_ALT] THEN AP_TERM_TAC THEN REWRITE_TAC[BIT_WORD_SHL] THEN SET_TAC[]);; let WORD_SHL_0 = prove (`!n. word_shl (word 0:N word) n = word 0`, REWRITE_TAC[word_shl; VAL_WORD_0; MULT_CLAUSES]);; let WORD_SHL_ZERO = prove (`!x:N word. word_shl x 0 = x`, REWRITE_TAC[GSYM VAL_EQ; VAL_WORD_SHL; EXP; MULT_CLAUSES] THEN SIMP_TAC[MOD_LT; VAL_BOUND]);; let WORD_SHL_COMPOSE = prove (`!(x:N word) m n. word_shl (word_shl x m) n = word_shl x (m + n)`, REPEAT GEN_TAC THEN REWRITE_TAC[word_shl; VAL_WORD; EXP_ADD] THEN REWRITE_TAC[WORD_EQ; CONG] THEN CONV_TAC MOD_DOWN_CONV THEN REWRITE_TAC[MULT_ASSOC]);; let word_ushr = new_definition `word_ushr (x:(N)word) n = word((val x) DIV (2 EXP n)):(N)word`;; let VAL_WORD_USHR = prove (`!(x:N word) n. val(word_ushr x n) = val x DIV (2 EXP n)`, REPEAT GEN_TAC THEN REWRITE_TAC[word_ushr; VAL_WORD] THEN MATCH_MP_TAC MOD_LT THEN MATCH_MP_TAC(ARITH_RULE `m DIV n <= m /\ m < p ==> m DIV n < p`) THEN REWRITE_TAC[VAL_BOUND; DIV_LE]);; let WORD_USHR_EQ_0 = prove (`!(x:N word) n. word_ushr x n = word 0 <=> val x < 2 EXP n`, REWRITE_TAC[GSYM VAL_EQ_0; VAL_WORD_USHR] THEN SIMP_TAC[DIV_EQ_0; EXP_EQ_0; ARITH_EQ]);; let BIT_WORD_USHR = prove (`!(x:N word) n i. bit i (word_ushr x n) <=> bit (i + n) x`, REPEAT GEN_TAC THEN REWRITE_TAC[word_ushr; BIT_VAL; VAL_WORD] THEN REWRITE_TAC[DIV_MOD; DIV_DIV] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM EXP_ADD] THEN AP_THM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC MOD_LT THEN TRANS_TAC LTE_TRANS `2 EXP dimindex(:N)` THEN ASM_REWRITE_TAC[VAL_BOUND; LE_EXP; DIMINDEX_NONZERO] THEN ARITH_TAC);; let WORD_USHR_WORD_OF_BITS = prove (`!(x:N word) n. word_ushr x n = word_of_bits {i | i < dimindex(:N) /\ bit (i + n) x}`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [WORD_OF_BITS_ALT] THEN AP_TERM_TAC THEN REWRITE_TAC[BIT_WORD_USHR] THEN SET_TAC[]);; let WORD_USHR_0 = prove (`!n. word_ushr (word 0:N word) n = word 0`, REWRITE_TAC[word_ushr; VAL_WORD_0; DIV_0]);; let WORD_USHR_ZERO = prove (`!x:N word. word_ushr x 0 = x`, REWRITE_TAC[GSYM VAL_EQ; VAL_WORD_USHR; EXP; DIV_1] THEN SIMP_TAC[MOD_LT; VAL_BOUND]);; let WORD_USHR_COMPOSE = prove (`!(x:N word) m n. word_ushr (word_ushr x m) n = word_ushr x (m + n)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[word_ushr] THEN REWRITE_TAC[VAL_WORD_USHR] THEN REWRITE_TAC[EXP_ADD; DIV_DIV]);; let WORD_USHR_MSB_ALT = prove (`!x:N word. word_ushr x (dimindex(:N) - 1) = if bit (dimindex(:N) - 1) x then word 1 else word 0`, GEN_TAC THEN REWRITE_TAC[WORD_EQ_BITS_ALT; BIT_WORD_USHR] THEN X_GEN_TAC `i:num` THEN DISCH_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[BIT_WORD_0; BIT_WORD_1] THEN ASM_CASES_TAC `i = 0` THEN ASM_REWRITE_TAC[ADD_CLAUSES] THEN MATCH_MP_TAC(REWRITE_RULE[] BIT_TRIVIAL) THEN ASM_ARITH_TAC);; let WORD_USHR_MSB = prove (`!x:N word. word_ushr x (dimindex(:N) - 1) = word(bitval(bit (dimindex(:N) - 1) x))`, REWRITE_TAC[WORD_USHR_MSB_ALT; WORD_BITVAL]);; let WORD_USHR_MSB_EQ = prove (`(!x:N word. word_ushr x (dimindex(:N) - 1) = word 1 <=> bit (dimindex(:N) - 1) x) /\ (!x:N word. word_ushr x (dimindex(:N) - 1) = word 0 <=> ~bit (dimindex(:N) - 1) x) /\ (!P (x:N word). (word_ushr x (dimindex(:N) - 1) = if P then word 1 else word 0) <=> (bit (dimindex(:N) - 1) x <=> P)) /\ (!P (x:N word). (word_ushr x (dimindex(:N) - 1) = if P then word 0 else word 1) <=> (bit (dimindex(:N) - 1) x <=> ~P))`, REPEAT STRIP_TAC THEN REWRITE_TAC[WORD_USHR_MSB_ALT] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[WORD_NE_10]));; let word_ishr = new_definition `(word_ishr:N word ->num->N word) x n = iword((ival x) div (&2 pow n))`;; let IVAL_WORD_ISHR = prove (`!(x:N word) n. ival(word_ishr x n) = (ival x) div (&2 pow n)`, REPEAT GEN_TAC THEN REWRITE_TAC[word_ishr] THEN MATCH_MP_TAC IVAL_IWORD THEN SIMP_TAC[INT_LE_DIV_EQ; INT_DIV_LT_EQ; INT_LT_POW2] THEN MP_TAC(ISPEC `x:N word` IVAL_BOUND) THEN MATCH_MP_TAC(INT_ARITH `&1 * a:int <= t * a ==> --a <= x /\ x < a ==> t * --a <= x /\ x < t * a`) THEN MATCH_MP_TAC INT_LE_RMUL THEN SIMP_TAC[INT_LE_POW2; INT_LT_IMP_LE; INT_LT_POW2]);; let WORD_ISHR_EQ_0 = prove (`!(x:N word) n. word_ishr x n = word 0 <=> &0 <= ival x /\ ival x < &2 pow n`, REWRITE_TAC[GSYM IVAL_EQ_0; IVAL_WORD_ISHR] THEN SIMP_TAC[INT_DIV_EQ_0; INT_POW_EQ_0; INT_OF_NUM_EQ; ARITH_EQ] THEN REWRITE_TAC[INT_ABS_POW; INT_ABS_NUM]);; let BIT_WORD_ISHR = prove (`!(w:N word) n i. bit i (word_ishr w n) <=> if i + n < dimindex(:N) then bit (i + n) w else i < dimindex(:N) /\ bit (dimindex(:N) - 1) w`, REPEAT GEN_TAC THEN ASM_CASES_TAC `i < dimindex(:N)` THENL [ALL_TAC; ASM_REWRITE_TAC[BIT_IVAL] THEN ASM_ARITH_TAC] THEN ASM_REWRITE_TAC[word_ishr; BIT_IWORD] THEN SIMP_TAC[INT_DIV_DIV; INT_POW_LE; INT_POS] THEN ONCE_REWRITE_TAC[INT_MUL_SYM] THEN REWRITE_TAC[GSYM INT_POW_ADD] THEN COND_CASES_TAC THENL [ASM_SIMP_TAC[BIT_IVAL]; ALL_TAC] THEN REWRITE_TAC[MSB_IVAL; GSYM INT_NOT_LE] THEN AP_TERM_TAC THEN SUBGOAL_THEN `--(&2 pow (i + n)) <= ival(w:N word) /\ ival w < &2 pow (i + n)` STRIP_ASSUME_TAC THENL [MP_TAC(ISPEC `w:N word` IVAL_BOUND) THEN MATCH_MP_TAC(INT_ARITH `a:int <= b ==> --a <= x /\ x < a ==> --b <= x /\ x < b`) THEN MATCH_MP_TAC INT_POW_MONO THEN REWRITE_TAC[INT_OF_NUM_LE] THEN ASM_ARITH_TAC; ALL_TAC] THEN MP_TAC(ISPECL [`ival(w:N word)`; `(&2:int) pow (i + n)`] INT_DIV_EQ_0) THEN ASM_REWRITE_TAC[INT_POW_EQ_0; INT_OF_NUM_EQ; ARITH_EQ; INT_ABS_POW; INT_ABS_NUM] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN SUBGOAL_THEN `-- &1 <= ival(w:N word) div &2 pow (i + n) /\ ival(w:N word) div &2 pow (i + n) < &1` MP_TAC THENL [ASM_SIMP_TAC[INT_DIV_LT_EQ; INT_LE_DIV_EQ; INT_LT_POW2] THEN ASM_REWRITE_TAC[INT_MUL_RNEG; INT_MUL_RID]; REWRITE_TAC[INT_ARITH `-- &1:int <= x /\ x < &1 <=> x = -- &1 \/ x = &0`] THEN STRIP_TAC THEN ASM_REWRITE_TAC[INTEGER_RULE `(p:int) divides &0`] THEN CONV_TAC INT_REDUCE_CONV THEN REWRITE_TAC[INTEGER_RULE `(x:int) divides --y <=> x divides y`] THEN REWRITE_TAC[GSYM num_divides; divides; GSYM EVEN_EXISTS] THEN CONV_TAC NUM_REDUCE_CONV]);; let WORD_ISHR_WORD_OF_BITS = prove (`!(x:N word) n. word_ishr x n = word_of_bits {i | if i < dimindex(:N) - n then bit (i + n) x else bit (dimindex(:N) - 1) x}`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [WORD_OF_BITS_ALT] THEN REWRITE_TAC[WORD_OF_BITS_EQ] THEN X_GEN_TAC `i:num` THEN DISCH_TAC THEN ASM_REWRITE_TAC[IN_ELIM_THM; BIT_WORD_ISHR] THEN REWRITE_TAC[ARITH_RULE `i + n:num < m <=> i < m - n`]);; let WORD_ISHR_0 = prove (`!n. word_ishr (word 0:N word) n = word 0`, REWRITE_TAC[word_ishr; IVAL_WORD_0; INT_DIV_ZERO; GSYM WORD_IWORD]);; let WORD_ISHR_ZERO = prove (`!x:N word. word_ishr x 0 = x`, REWRITE_TAC[GSYM IVAL_EQ; IVAL_WORD_ISHR; INT_POW; INT_DIV_1]);; let WORD_ISHR_COMPOSE = prove (`!(x:N word) m n. word_ishr (word_ishr x m) n = word_ishr x (m + n)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[word_ishr] THEN REWRITE_TAC[IVAL_WORD_ISHR; INT_POW_ADD] THEN SIMP_TAC[INT_DIV_DIV; INT_POW_LE; INT_POS]);; let word_ror = new_definition `(word_ror:N word->num->N word) w n = word_of_bits {i | bit ((i + n) MOD dimindex(:N)) w}`;; let word_rol = new_definition `(word_rol:N word->num->N word) w n = word_of_bits {i | bit (num_of_int((&i - &n) rem &(dimindex(:N)))) w}`;; let WORD_ROR_ROL_GEN = prove (`!(w:N word) n. word_ror w n = word_rol w (dimindex(:N) - n MOD dimindex(:N))`, REPEAT STRIP_TAC THEN REWRITE_TAC[word_ror; word_rol; WORD_OF_BITS_EQ] THEN X_GEN_TAC `i:num` THEN DISCH_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM INT_OF_NUM_EQ] THEN W(MP_TAC o PART_MATCH (lhand o rand) INT_OF_NUM_OF_INT o rand o snd) THEN ANTS_TAC THENL [SIMP_TAC[INT_DIVISION; DIMINDEX_NONZERO; INT_OF_NUM_EQ]; DISCH_THEN SUBST1_TAC] THEN SIMP_TAC[GSYM INT_OF_NUM_SUB; LT_IMP_LE; DIVISION; DIMINDEX_NONZERO] THEN REWRITE_TAC[GSYM INT_OF_NUM_REM; GSYM INT_OF_NUM_ADD; INT_REM_EQ] THEN MATCH_MP_TAC(INTEGER_RULE `(k:int == n) (mod d) ==> (i + n == i - (d - k)) (mod d)`) THEN REWRITE_TAC[INT_REM_MOD_SELF]);; let WORD_ROL_ROR_GEN = prove (`!(w:N word) n. word_rol w n = word_ror w (dimindex(:N) - n MOD dimindex(:N))`, REPEAT STRIP_TAC THEN REWRITE_TAC[word_ror; word_rol; WORD_OF_BITS_EQ] THEN X_GEN_TAC `i:num` THEN DISCH_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM INT_OF_NUM_EQ] THEN W(MP_TAC o PART_MATCH (lhand o rand) INT_OF_NUM_OF_INT o lhand o snd) THEN ANTS_TAC THENL [SIMP_TAC[INT_DIVISION; DIMINDEX_NONZERO; INT_OF_NUM_EQ]; DISCH_THEN SUBST1_TAC] THEN SIMP_TAC[GSYM INT_OF_NUM_SUB; LT_IMP_LE; DIVISION; DIMINDEX_NONZERO] THEN REWRITE_TAC[GSYM INT_OF_NUM_REM; INT_REM_EQ; GSYM INT_OF_NUM_ADD] THEN SIMP_TAC[GSYM INT_OF_NUM_SUB; LT_IMP_LE; DIVISION; DIMINDEX_NONZERO] THEN MATCH_MP_TAC(INTEGER_RULE `(k:int == n) (mod d) ==> (i - n == i + (d - k)) (mod d)`) THEN REWRITE_TAC[CONG_LMOD; INT_OF_NUM_REM; GSYM num_congruent] THEN CONV_TAC NUMBER_RULE);; let WORD_ROR_PERIODIC = prove (`!(w:N word) m n. (m == n) (mod dimindex(:N)) ==> word_ror w m = word_ror w n`, REPEAT STRIP_TAC THEN REWRITE_TAC[word_ror] THEN FIRST_ASSUM(MP_TAC o MATCH_MP (NUMBER_RULE `(m == n) (mod d) ==> !i:num. (i + m == i + n) (mod d)`)) THEN SIMP_TAC[CONG]);; let WORD_ROR_MOD = prove (`!(w:N word) n. word_ror w n = word_ror w (n MOD dimindex(:N))`, REPEAT GEN_TAC THEN MATCH_MP_TAC WORD_ROR_PERIODIC THEN REWRITE_TAC[CONG_RMOD] THEN CONV_TAC NUMBER_RULE);; let WORD_ROR_EQ_SELF = prove (`!(w:N word) n. dimindex(:N) divides n ==> word_ror w n = w`, SIMP_TAC[divides; LEFT_IMP_EXISTS_THM; word_ror] THEN ONCE_REWRITE_TAC[ARITH_RULE `i + d * n:num = n * d + i`] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[MOD_MULT_ADD] THEN REWRITE_TAC[WORD_EQ_BITS; BIT_WORD_OF_BITS] THEN X_GEN_TAC `i:num` THEN ASM_CASES_TAC `i < dimindex(:N)` THEN ASM_SIMP_TAC[MOD_LT; IN_ELIM_THM] THEN ASM_MESON_TAC[BIT_TRIVIAL; NOT_LE]);; let WORD_ROR_ZERO = prove (`!w:N word. word_ror w 0 = w`, GEN_TAC THEN MATCH_MP_TAC WORD_ROR_EQ_SELF THEN CONV_TAC NUMBER_RULE);; let WORD_ROL_PERIODIC = prove (`!(w:N word) m n. (m == n) (mod dimindex(:N)) ==> word_rol w m = word_rol w n`, SIMP_TAC[CONG; WORD_ROL_ROR_GEN]);; let WORD_ROL_MOD = prove (`!(w:N word) n. word_rol w n = word_rol w (n MOD dimindex(:N))`, REPEAT GEN_TAC THEN MATCH_MP_TAC WORD_ROL_PERIODIC THEN REWRITE_TAC[CONG_RMOD] THEN CONV_TAC NUMBER_RULE);; let WORD_ROL_EQ_SELF = prove (`!(w:N word) n. dimindex(:N) divides n ==> word_rol w n = w`, REWRITE_TAC[divides] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN SIMP_TAC[GSYM MOD_EQ_0; WORD_ROL_ROR_GEN; SUB_0] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC WORD_ROR_EQ_SELF THEN CONV_TAC NUMBER_RULE);; let WORD_ROL_ZERO = prove (`!w:N word. word_rol w 0 = w`, GEN_TAC THEN MATCH_MP_TAC WORD_ROL_EQ_SELF THEN CONV_TAC NUMBER_RULE);; let WORD_ROR_ROL = prove (`!(w:N word) n. n <= dimindex(:N) ==> word_ror w n = word_rol w (dimindex(:N) - n)`, REWRITE_TAC[LE_LT] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[WORD_ROR_ROL_GEN; MOD_LT; MOD_REFL; SUB_0; SUB_REFL] THEN MATCH_MP_TAC WORD_ROL_PERIODIC THEN CONV_TAC NUMBER_RULE);; let WORD_ROL_ROR = prove (`!(w:N word) n. n <= dimindex(:N) ==> word_rol w n = word_ror w (dimindex(:N) - n)`, REWRITE_TAC[LE_LT] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[WORD_ROL_ROR_GEN; MOD_LT; MOD_REFL; SUB_0; SUB_REFL] THEN MATCH_MP_TAC WORD_ROR_PERIODIC THEN CONV_TAC NUMBER_RULE);; let WORD_ROR_SHIFTS = prove (`!(w:N word) n. n <= dimindex(:N) ==> word_ror w n = word_or (word_ushr w n) (word_shl w (dimindex(:N) - n))`, REPEAT STRIP_TAC THEN REWRITE_TAC[word_ror] THEN SIMP_TAC[WORD_EQ_BITS; BIT_WORD_OF_BITS; BIT_WORD_OR] THEN X_GEN_TAC `i:num` THEN ASM_CASES_TAC `i < dimindex(:N)` THEN ASM_REWRITE_TAC[IN_ELIM_THM; BIT_WORD_USHR; BIT_WORD_SHL] THEN REWRITE_TAC[ARITH_RULE `d - n <= i <=> ~(i + n:num < d)`] THEN ASM_CASES_TAC `i + n < dimindex(:N)` THEN ASM_SIMP_TAC[MOD_LT] THEN RULE_ASSUM_TAC(REWRITE_RULE[NOT_LT]) THEN ASM_SIMP_TAC[BIT_TRIVIAL] THEN AP_THM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `1` THEN ASM_ARITH_TAC);; let WORD_ROL_SHIFTS = prove (`!(w:N word) n. n <= dimindex(:N) ==> word_rol w n = word_or (word_shl w n) (word_ushr w (dimindex(:N) - n))`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[WORD_ROL_ROR] THEN ASM_SIMP_TAC[WORD_ROR_SHIFTS; ARITH_RULE `n - m:num <= n`] THEN ASM_SIMP_TAC[ARITH_RULE `m:num <= n ==> n - (n - m) = m`] THEN SIMP_TAC[WORD_EQ_BITS; BIT_WORD_OR; DISJ_SYM]);; let BIT_WORD_ROR = prove (`!(w:N word) n i. bit i (word_ror w n) = if i + n MOD dimindex(:N) < dimindex(:N) then bit (i + n MOD dimindex(:N)) w else i < dimindex(:N) /\ bit ((i + n MOD dimindex(:N)) - dimindex(:N)) w`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[WORD_ROR_MOD] THEN SIMP_TAC[WORD_ROR_SHIFTS; MOD_LT_EQ; LT_IMP_LE; DIMINDEX_NONZERO] THEN REWRITE_TAC[BIT_WORD_OR; BIT_WORD_SHL; BIT_WORD_USHR] THEN COND_CASES_TAC THENL [ASM_CASES_TAC `bit (i + n MOD dimindex(:N)) (w:N word)` THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC; ASM_CASES_TAC `i < dimindex(:N)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `~p /\ q /\ (r <=> r') ==> (p \/ q /\ r <=> r')`) THEN REPEAT CONJ_TAC THENL [ASM_SIMP_TAC[BIT_TRIVIAL; GSYM NOT_LT]; ASM_ARITH_TAC; AP_THM_TAC THEN AP_TERM_TAC THEN ASM_ARITH_TAC]]);; let BIT_WORD_ROL = prove (`!(w:N word) n i. bit i (word_rol w n) = if i < n MOD dimindex(:N) then bit (i + (dimindex(:N) - n MOD dimindex(:N))) w else i < dimindex(:N) /\ bit (i - n MOD dimindex(:N)) w`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[WORD_ROL_MOD] THEN SIMP_TAC[WORD_ROL_SHIFTS; MOD_LT_EQ; LT_IMP_LE; DIMINDEX_NONZERO] THEN REWRITE_TAC[BIT_WORD_OR; BIT_WORD_SHL; BIT_WORD_USHR] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[GSYM NOT_LT] THENL [MATCH_MP_TAC(TAUT `p ==> (p /\ q <=> q)`) THEN TRANS_TAC LT_TRANS `n MOD dimindex(:N)` THEN ASM_REWRITE_TAC[MOD_LT_EQ; DIMINDEX_NONZERO]; ASM_CASES_TAC `i < dimindex(:N)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `(q <=> F) ==> (p \/ q <=> p)`) THEN MATCH_MP_TAC BIT_TRIVIAL THEN ASM_ARITH_TAC]);; let WORD_ROR_COMPOSE = prove (`!(x:N word) m n. word_ror (word_ror x m) n = word_ror x (m + n)`, REWRITE_TAC[word_ror; BIT_WORD_OF_BITS; IN_ELIM_THM] THEN SIMP_TAC[MOD_LT_EQ; DIMINDEX_NONZERO] THEN CONV_TAC MOD_DOWN_CONV THEN REWRITE_TAC[ADD_AC]);; let WORD_ROL_COMPOSE = prove (`!(x:N word) m n. word_rol (word_rol x m) n = word_rol x (m + n)`, REWRITE_TAC[WORD_ROL_ROR_GEN; WORD_ROR_COMPOSE] THEN REPEAT GEN_TAC THEN MATCH_MP_TAC WORD_ROR_PERIODIC THEN REWRITE_TAC[num_congruent; GSYM INT_OF_NUM_ADD] THEN SIMP_TAC[GSYM INT_OF_NUM_SUB; LT_IMP_LE; MOD_LT_EQ; DIMINDEX_NONZERO] THEN REWRITE_TAC[INTEGER_RULE `((n - a) + (n - b):int == (n - c)) (mod n) <=> (a + b == c) (mod n)`] THEN REWRITE_TAC[INT_OF_NUM_ADD; GSYM num_congruent; CONG] THEN CONV_TAC MOD_DOWN_CONV THEN REFL_TAC);; let VAL_WORD_ROR = prove (`!(w:N word) k. k <= dimindex(:N) ==> val(word_ror w k) = 2 EXP (dimindex(:N) - k) * val w MOD 2 EXP k + val w DIV 2 EXP k`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [ADD_SYM] THEN ASM_SIMP_TAC[WORD_ROR_SHIFTS] THEN W(MP_TAC o PART_MATCH (lhand o rand) VAL_WORD_OR_DISJOINT o lhand o snd) THEN ANTS_TAC THENL [REWRITE_TAC[WORD_EQ_BITS_ALT] THEN SIMP_TAC[BIT_WORD_AND; BIT_WORD_USHR; BIT_WORD_SHL; BIT_WORD_0] THEN REPEAT STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP(MESON[BIT_TRIVIAL; NOT_LE] `bit i (w:N word) ==> i < dimindex(:N)`))) THEN ASM_ARITH_TAC; DISCH_THEN SUBST1_TAC] THEN REWRITE_TAC[VAL_WORD_USHR; VAL_WORD_SHL] THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM MOD_MULT2; GSYM EXP_ADD] THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ASM_ARITH_TAC);; let VAL_WORD_ROL = prove (`!(w:N word) k. k <= dimindex(:N) ==> val(word_rol w k) = 2 EXP k * val w MOD 2 EXP (dimindex(:N) - k) + val w DIV 2 EXP (dimindex(:N) - k)`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[WORD_ROL_ROR] THEN SIMP_TAC[VAL_WORD_ROR; ARITH_RULE `n - m:num <= n`] THEN ASM_SIMP_TAC[ARITH_RULE `k:num <= n ==> n - (n - k) = k`]);; let word_ule = new_definition `word_ule = relational2 (<=)`;; let word_uge = new_definition `word_uge = relational2 (>=)`;; let word_ult = new_definition `word_ult = relational2 (<)`;; let word_ugt = new_definition `word_ugt = relational2 (>)`;; let word_ile = new_definition `word_ile = irelational2 (<=)`;; let word_ige = new_definition `word_ige = irelational2 (>=)`;; let word_ilt = new_definition `word_ilt = irelational2 (<)`;; let word_igt = new_definition `word_igt = irelational2 (>)`;; let WORD_ULT = prove (`!x y:N word. word_ult x y <=> val x < val y`, REWRITE_TAC[word_ult; relational2]);; let WORD_ULE = prove (`!x y:N word. word_ule x y <=> val x <= val y`, REWRITE_TAC[word_ule; relational2]);; let WORD_UGT = prove (`!x y:N word. word_ugt x y <=> val x > val y`, REWRITE_TAC[word_ugt; relational2]);; let WORD_UGE = prove (`!x y:N word. word_uge x y <=> val x >= val y`, REWRITE_TAC[word_uge; relational2]);; let WORD_ILT = prove (`!x y:N word. word_ilt x y <=> ival x < ival y`, REWRITE_TAC[word_ilt; irelational2]);; let WORD_ILE = prove (`!x y:N word. word_ile x y <=> ival x <= ival y`, REWRITE_TAC[word_ile; irelational2]);; let WORD_IGT = prove (`!x y:N word. word_igt x y <=> ival x > ival y`, REWRITE_TAC[word_igt; irelational2]);; let WORD_IGE = prove (`!x y:N word. word_ige x y <=> ival x >= ival y`, REWRITE_TAC[word_ige; irelational2]);; (* ------------------------------------------------------------------------- *) (* Simple "propagate signed value modulo" decision procedure. *) (* ------------------------------------------------------------------------- *) let WORD_RULE = let IVAL_WORD_ADD_REM = prove (`!x y:N word. ival(word_add x y) rem (&2 pow dimindex(:N)) = ((ival x rem (&2 pow dimindex(:N))) + (ival y rem (&2 pow dimindex(:N)))) rem (&2 pow dimindex(:N))`, REWRITE_TAC[INT_ADD_REM] THEN REWRITE_TAC[INT_REM_EQ; ICONG_WORD_ADD]) and IVAL_WORD_SUB_REM = prove (`!x y:N word. ival(word_sub x y) rem (&2 pow dimindex(:N)) = ((ival x rem (&2 pow dimindex(:N))) - (ival y rem (&2 pow dimindex(:N)))) rem (&2 pow dimindex(:N))`, REWRITE_TAC[INT_SUB_REM] THEN REWRITE_TAC[INT_REM_EQ; ICONG_WORD_SUB]) and IVAL_WORD_NEG_REM = prove (`!x:N word. ival(word_neg x) rem (&2 pow dimindex(:N)) = (--(ival x rem (&2 pow dimindex(:N)))) rem (&2 pow dimindex(:N))`, REWRITE_TAC[INT_NEG_REM] THEN REWRITE_TAC[INT_REM_EQ; ICONG_WORD_NEG]) and IVAL_WORD_MUL_REM = prove (`!x y:N word. ival(word_mul x y) rem (&2 pow dimindex(:N)) = ((ival x rem (&2 pow dimindex(:N))) * (ival y rem (&2 pow dimindex(:N)))) rem (&2 pow dimindex(:N))`, REWRITE_TAC[INT_MUL_REM] THEN REWRITE_TAC[INT_REM_EQ; ICONG_WORD_MUL]) and IVAL_IWORD_REM = prove (`!x. ival(iword x:N word) rem (&2 pow dimindex(:N)) = x rem (&2 pow dimindex(:N))`, REWRITE_TAC[INT_REM_EQ; IVAL_IWORD_CONG]) and IVAL_WORD_REM = prove (`!n. ival(word n:N word) rem (&2 pow dimindex(:N)) = &n rem (&2 pow dimindex(:N))`, REWRITE_TAC[WORD_IWORD; INT_REM_EQ; IVAL_IWORD_CONG]) and IVAL_WORD_SHL_REM = prove (`!(x:N word) n. ival(word_shl x n) rem (&2 pow dimindex(:N)) = (&2 pow n * ival x rem (&2 pow dimindex(:N))) rem (&2 pow dimindex(:N))`, CONV_TAC INT_REM_DOWN_CONV THEN REWRITE_TAC[INT_REM_EQ; ICONG_WORD_SHL]) and INT_OF_NUM_REM = prove (`&(x + y) rem (&2 pow dimindex(:N)) = (&x rem (&2 pow dimindex(:N)) + &y rem (&2 pow dimindex(:N))) rem (&2 pow dimindex(:N)) /\ &(x * y) rem (&2 pow dimindex(:N)) = (&x rem (&2 pow dimindex(:N)) * &y rem (&2 pow dimindex(:N))) rem (&2 pow dimindex(:N))`, REWRITE_TAC[GSYM INT_OF_NUM_ADD; GSYM INT_OF_NUM_MUL] THEN CONV_TAC INT_REM_DOWN_CONV THEN REWRITE_TAC[]) and INT_OF_NUM_VAL_REM = prove (`!x:N word. &(val x) rem (&2 pow dimindex(:N)) = ival x rem (&2 pow dimindex(:N))`, REWRITE_TAC[REWRITE_RULE[GSYM INT_REM_EQ] IVAL_VAL_CONG]) and pth = prove (`!v w:N word. v = w <=> ival v rem (&2 pow dimindex(:N)) = ival w rem (&2 pow dimindex(:N))`, REWRITE_TAC[INT_REM_EQ; IVAL_CONG]) in let WORD_VAL_EQ_CONV = GEN_REWRITE_CONV I [pth] THENC GEN_REWRITE_CONV TOP_DEPTH_CONV [WORD_NOT_AS_SUB] THENC GEN_REWRITE_CONV (BINOP_CONV o TOP_DEPTH_CONV) [IVAL_WORD_NEG_REM; IVAL_WORD_ADD_REM; IVAL_WORD_SUB_REM; IVAL_WORD_MUL_REM; IVAL_IWORD_REM; IVAL_WORD_REM; IVAL_WORD_SHL_REM; INT_OF_NUM_REM; INT_OF_NUM_VAL_REM] THENC INT_REM_DOWN_CONV THENC GEN_REWRITE_CONV I [INT_REM_EQ] in fun tm -> let avs,bod = strip_forall tm in let th = ONCE_DEPTH_CONV WORD_VAL_EQ_CONV bod in GENL avs (EQT_ELIM(TRANS th (EQT_INTRO(NUMBER_RULE (rand(concl th))))));; (* ------------------------------------------------------------------------- *) (* A somewhat complementary purely bitwise decision procedure. *) (* ------------------------------------------------------------------------- *) let WORD_BITWISE_TAC = let WORD_BITWISE_CONV = GEN_REWRITE_CONV I [WORD_EQ_BITS_ALT] THENC GEN_REWRITE_CONV (BINDER_CONV o RAND_CONV o BINOP_CONV o TOP_DEPTH_CONV) [BIT_WORD_NOT; BIT_WORD_AND; BIT_WORD_OR; BIT_WORD_XOR; BIT_WORD_OF_BITS; BIT_WORD_0; IN_INSERT; NOT_IN_EMPTY; IN_UNIV] in REPEAT GEN_TAC THEN CONV_TAC(ONCE_DEPTH_CONV WORD_BITWISE_CONV) THEN GEN_REWRITE_TAC DEPTH_CONV [MESON[] `(!i. i < dimindex(:N) ==> P i) /\ (!i. i < dimindex(:N) ==> Q i) <=> (!i. i < dimindex(:N) ==> P i /\ Q i)`] THEN TRY(MATCH_MP_TAC(MESON[] `(!i. i < dimindex(:N) ==> P i ==> Q i) ==> (!i. i < dimindex(:N) ==> P i) ==> (!i. i < dimindex(:N) ==> Q i)`) ORELSE MATCH_MP_TAC(MESON[] `(!i. i < dimindex(:N) ==> (P i <=> Q i)) ==> ((!i. i < dimindex(:N) ==> P i) <=> (!i. i < dimindex(:N) ==> Q i))`)) THEN TRY(GEN_TAC THEN DISCH_TAC) THEN ASM_REWRITE_TAC[] THEN CONV_TAC TAUT;; let WORD_BITWISE_RULE tm = prove(tm,WORD_BITWISE_TAC);; (* ------------------------------------------------------------------------- *) (* Slightly ad hoc but useful reduction to linear arithmetic. *) (* ------------------------------------------------------------------------- *) let WORD_ARITH_TAC = let msb_pth = prove (`dimindex (:N) - 1 < dimindex(:N)`, REWRITE_TAC[DIMINDEX_GE_1; ARITH_RULE `n - 1 < n <=> 1 <= n`]) and wordy tm = match tm with Var(_,Tyapp("word",[_])) -> true | _ -> false in REPEAT(CONJ_TAC ORELSE GEN_TAC) THEN REWRITE_TAC[WORD_USHR_MSB_EQ] THEN REWRITE_TAC[BIT_WORD_OR; BIT_WORD_AND; BIT_WORD_NOT; BIT_WORD_XOR; BIT_WORD_INT_MIN; BIT_WORD_1; BIT_WORD_0; msb_pth] THEN REWRITE_TAC[MSB_INT_VAL; WORD_NOT_AS_SUB; WORD_RULE `word_shl (x:N word) 1 = word_add x x`] THEN REWRITE_TAC[WORD_ULT; WORD_ULE; WORD_UGT; WORD_UGE; WORD_ILT; WORD_ILE; WORD_IGT; WORD_IGE] THEN REWRITE_TAC[irelational2; relational2; GSYM VAL_EQ; INT_IVAL] THEN REWRITE_TAC[INT_GT; INT_GE; GT; GE] THEN REWRITE_TAC[GSYM INT_OF_NUM_LE; GSYM INT_OF_NUM_LT; GSYM INT_OF_NUM_EQ] THEN REWRITE_TAC[GSYM INT_OF_NUM_POW; GSYM INT_OF_NUM_MUL; GSYM INT_OF_NUM_ADD] THEN REWRITE_TAC[INT_VAL_WORD_NEG_CASES; INT_VAL_WORD_ADD_CASES; INT_VAL_WORD_INT_MIN; INT_VAL_WORD_SUB_CASES; INT_IVAL; VAL_WORD_0; VAL_WORD_1] THEN W(MAP_EVERY (MP_TAC o C ISPEC INT_VAL_BOUND) o find_terms wordy o snd) THEN REWRITE_TAC[CONJUNCT2 TWICE_MSB] THEN INT_ARITH_TAC;; let WORD_ARITH tm = prove(tm,WORD_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Zero extension and sign extension (also works for shortening modulo). *) (* ------------------------------------------------------------------------- *) let word_zx = new_definition `(word_zx:(M)word->(N)word) w = word(val w)`;; let VAL_WORD_ZX_GEN = prove (`!x. val((word_zx:(M)word->(N)word) x) = val x MOD 2 EXP dimindex(:N)`, GEN_TAC THEN REWRITE_TAC[word_zx; VAL_WORD]);; let VAL_WORD_ZX = prove (`!x. dimindex(:M) <= dimindex(:N) ==> val((word_zx:(M)word->(N)word) x) = val x`, REPEAT STRIP_TAC THEN REWRITE_TAC[VAL_WORD_ZX_GEN] THEN MATCH_MP_TAC MOD_LT THEN TRANS_TAC LTE_TRANS `2 EXP dimindex(:M)` THEN ASM_REWRITE_TAC[LE_EXP; VAL_BOUND] THEN CONV_TAC NUM_REDUCE_CONV);; let WORD_ZX_ZX = prove (`!x. dimindex(:M) <= dimindex(:N) ==> (word_zx:N word->M word) ((word_zx:M word->N word) x) = x`, REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM VAL_EQ; VAL_WORD_ZX_GEN; MOD_MOD_EXP_MIN] THEN ASM_SIMP_TAC[ARITH_RULE `m <= n ==> MIN n m = m`] THEN REWRITE_TAC[VAL_MOD_REFL]);; let WORD_ZX_0 = prove (`(word_zx:M word->N word) (word 0) = word 0`, REWRITE_TAC[GSYM VAL_EQ; VAL_WORD_ZX_GEN; VAL_WORD_0; MOD_0]);; let WORD_ZX_TRIVIAL = prove (`!x:N word. word_zx x = x`, SIMP_TAC[GSYM VAL_EQ; VAL_WORD_ZX; LE_REFL]);; let WORD_ZX_WORD = prove (`!n. (word_zx:M word->N word) (word n) = word (n MOD 2 EXP dimindex(:M))`, REWRITE_TAC[GSYM VAL_EQ; VAL_WORD; VAL_WORD_ZX_GEN]);; let WORD_ZX_WORD_SIMPLE = prove (`!n. dimindex(:N) <= dimindex(:M) ==> word_zx(word n:M word):N word = word n`, SIMP_TAC[GSYM VAL_EQ; VAL_WORD; VAL_WORD_ZX_GEN] THEN SIMP_TAC[MOD_MOD_EXP_MIN; ARITH_RULE `n <= m ==> MIN m n = n`]);; let WORD_ZX_1 = prove (`(word_zx:M word->N word) (word 1) = word 1`, REWRITE_TAC[GSYM VAL_EQ; VAL_WORD_ZX_GEN; VAL_WORD_1; MOD_EQ_SELF] THEN DISJ2_TAC THEN REWRITE_TAC[ARITH_RULE `1 < n <=> 2 EXP 1 <= n`] THEN REWRITE_TAC[LE_EXP; DIMINDEX_GE_1; DIMINDEX_NONZERO] THEN ARITH_TAC);; let WORD_ZX_BITVAL = prove (`!b. (word_zx:M word->N word) (word(bitval b)) = word(bitval b)`, REWRITE_TAC[FORALL_BOOL_THM; BITVAL_CLAUSES; WORD_ZX_0; WORD_ZX_1]);; let BIT_WORD_ZX = prove (`!x i. bit i ((word_zx:M word->N word) x) <=> i < dimindex(:N) /\ bit i x`, REPEAT GEN_TAC THEN ASM_CASES_TAC `i < dimindex(:N)` THENL [ASM_REWRITE_TAC[BIT_VAL; VAL_WORD_ZX_GEN]; ASM_MESON_TAC[BIT_TRIVIAL; NOT_LE]] THEN FIRST_ASSUM(X_CHOOSE_THEN `d:num` SUBST1_TAC o REWRITE_RULE[LT_EXISTS]) THEN REWRITE_TAC[EXP_ADD; GSYM DIV_MOD; ODD_MOD_POW2; NOT_SUC]);; let WORD_ZX_AND = prove (`!(x:M word) (y:M word). word_zx(word_and x y):N word = word_and (word_zx x) (word_zx y)`, REWRITE_TAC[WORD_EQ_BITS_ALT; BIT_WORD_ZX; BIT_WORD_AND] THEN ONCE_REWRITE_TAC[BIT_GUARD] THEN CONV_TAC TAUT);; let WORD_ZX_OR = prove (`!(x:M word) (y:M word). word_zx(word_or x y):N word = word_or (word_zx x) (word_zx y)`, REWRITE_TAC[WORD_EQ_BITS_ALT; BIT_WORD_ZX; BIT_WORD_OR] THEN ONCE_REWRITE_TAC[BIT_GUARD] THEN CONV_TAC TAUT);; let WORD_ZX_XOR = prove (`!(x:M word) (y:M word). word_zx(word_xor x y):N word = word_xor (word_zx x) (word_zx y)`, REWRITE_TAC[WORD_EQ_BITS_ALT; BIT_WORD_ZX; BIT_WORD_XOR] THEN ONCE_REWRITE_TAC[BIT_GUARD] THEN CONV_TAC TAUT);; let WORD_ZX_NOT = prove (`!x:M word. dimindex(:N) <= dimindex(:M) ==> word_zx(word_not x):N word = word_not(word_zx x)`, REPEAT STRIP_TAC THEN SIMP_TAC[WORD_EQ_BITS_ALT; BIT_WORD_ZX; BIT_WORD_NOT] THEN X_GEN_TAC `i:num` THEN ASM_CASES_TAC `bit i (x:M word)` THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC);; let WORD_ZX_ADD = prove (`!(x:M word) (y:M word). dimindex(:N) <= dimindex(:M) ==> word_zx(word_add x y):N word = word_add (word_zx x) (word_zx y)`, REWRITE_TAC[GSYM VAL_EQ; VAL_WORD_ZX_GEN; VAL_WORD_ADD; MOD_MOD_EXP_MIN] THEN SIMP_TAC[ARITH_RULE `n <= m ==> MIN m n = n`] THEN CONV_TAC MOD_DOWN_CONV THEN REWRITE_TAC[]);; let WORD_ZX_MUL = prove (`!(x:M word) (y:M word). dimindex(:N) <= dimindex(:M) ==> word_zx(word_mul x y):N word = word_mul (word_zx x) (word_zx y)`, REWRITE_TAC[GSYM VAL_EQ; VAL_WORD_ZX_GEN; VAL_WORD_MUL; MOD_MOD_EXP_MIN] THEN SIMP_TAC[ARITH_RULE `n <= m ==> MIN m n = n`] THEN CONV_TAC MOD_DOWN_CONV THEN REWRITE_TAC[]);; let WORD_ZX_NEG = prove (`!x:M word. dimindex(:N) <= dimindex(:M) ==> word_zx(word_neg x):N word = word_neg(word_zx x)`, SIMP_TAC[WORD_NEG_AS_ADD; WORD_ZX_ADD; WORD_ZX_NOT; WORD_ZX_1]);; let WORD_ZX_SUB = prove (`!(x:M word) (y:M word). dimindex(:N) <= dimindex(:M) ==> word_zx(word_sub x y):N word = word_sub (word_zx x) (word_zx y)`, REWRITE_TAC[WORD_RULE `word_sub x y = word_add x (word_neg y)`] THEN SIMP_TAC[WORD_ZX_NEG; WORD_ZX_ADD]);; let WORD_ZX_SHL = prove (`!(x:M word) n. dimindex(:N) <= dimindex(:M) ==> word_zx(word_shl x n):N word = word_shl (word_zx x) n`, REWRITE_TAC[GSYM VAL_EQ; VAL_WORD_ZX_GEN; VAL_WORD_SHL; MOD_MOD_EXP_MIN] THEN SIMP_TAC[ARITH_RULE `n <= m ==> MIN m n = n`] THEN CONV_TAC MOD_DOWN_CONV THEN REWRITE_TAC[]);; let word_sx = new_definition `(word_sx:(M)word->(N)word) w = iword(ival w)`;; let IVAL_WORD_SX = prove (`!x. dimindex(:M) <= dimindex(:N) ==> ival((word_sx:(M)word->(N)word) x) = ival x`, REPEAT STRIP_TAC THEN REWRITE_TAC[IVAL_IWORD; word_sx] THEN MATCH_MP_TAC IVAL_IWORD THEN MP_TAC(ISPEC `x:M word` IVAL_BOUND) THEN MATCH_MP_TAC(INT_ARITH `m:int <= n ==> --m <= x /\ x < m ==> --n <= x /\ x < n`) THEN MATCH_MP_TAC INT_POW_MONO THEN CONV_TAC INT_REDUCE_CONV THEN ASM_ARITH_TAC);; let WORD_SX_SX = prove (`!x. dimindex(:M) <= dimindex(:N) ==> (word_sx:N word->M word) ((word_sx:M word->N word) x) = x`, REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM IVAL_EQ] THEN ONCE_REWRITE_TAC[word_sx] THEN ASM_SIMP_TAC[IVAL_WORD_SX; IWORD_IVAL]);; let WORD_SX_0 = prove (`(word_sx:M word->N word) (word 0) = word 0`, REWRITE_TAC[GSYM IVAL_EQ; word_sx; IVAL_WORD_0; GSYM WORD_IWORD]);; let WORD_SX_TRIVIAL = prove (`!x:N word. word_sx x = x`, SIMP_TAC[GSYM IVAL_EQ; IVAL_WORD_SX; LE_REFL]);; (* ------------------------------------------------------------------------- *) (* Conditional AND and OR, with semantics of C's "&&" and "||" *) (* ------------------------------------------------------------------------- *) let word_cand = new_definition `(word_cand:N word->N word->N word) x y = if ~(x = word 0) /\ ~(y = word 0) then word 1 else word 0`;; let word_cor = new_definition `(word_cor:N word->N word->N word) x y = if ~(x = word 0) \/ ~(y = word 0) then word 1 else word 0`;; let WORD_CAND = prove (`!x y:N word. word_cand x y = if x = word 0 \/ y = word 0 then word 0 else word 1`, REWRITE_TAC[word_cand] THEN MESON_TAC[]);; let WORD_COR = prove (`!x y:N word. word_cor x y = if x = word 0 /\ y = word 0 then word 0 else word 1`, REWRITE_TAC[word_cor] THEN MESON_TAC[]);; let WORD_CAND_NE_0 = prove (`!x y:N word. ~(word_cand x y = word 0) <=> ~(x = word 0) /\ ~(y = word 0)`, REWRITE_TAC[word_cand] THEN MESON_TAC[WORD_NE_10]);; let WORD_COR_NE_0 = prove (`!x y:N word. ~(word_cor x y = word 0) <=> ~(x = word 0) \/ ~(y = word 0)`, REWRITE_TAC[word_cor] THEN MESON_TAC[WORD_NE_10]);; let WORD_CAND_EQ_0 = prove (`!x y:N word. word_cand x y = word 0 <=> x = word 0 \/ y = word 0`, REWRITE_TAC[word_cand] THEN MESON_TAC[WORD_NE_10]);; let WORD_COR_EQ_0 = prove (`!x y:N word. word_cor x y = word 0 <=> x = word 0 /\ y = word 0`, REWRITE_TAC[word_cor] THEN MESON_TAC[WORD_NE_10]);; let VAL_WORD_CAND = prove (`!x y:N word. val(word_cand x y) = if ~(val x = 0) /\ ~(val y = 0) then 1 else 0`, REPEAT GEN_TAC THEN REWRITE_TAC[word_cand; VAL_EQ_0] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[VAL_WORD_0; VAL_WORD_1]);; let VAL_WORD_COR = prove (`!x y:N word. val(word_cor x y) = if ~(val x = 0) \/ ~(val y = 0) then 1 else 0`, REPEAT GEN_TAC THEN REWRITE_TAC[word_cor; VAL_EQ_0] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[VAL_WORD_0; VAL_WORD_1]);; let BIT_WORD_CAND = prove (`!i x y:N word. bit i (word_cand x y) <=> i = 0 /\ ~(x = word 0) /\ ~(y = word 0)`, REPEAT GEN_TAC THEN REWRITE_TAC[word_cand] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[BIT_WORD_0; BIT_WORD_1]);; let BIT_WORD_COR = prove (`!i x y:N word. bit i (word_cor x y) <=> i = 0 /\ (~(x = word 0) \/ ~(y = word 0))`, REPEAT GEN_TAC THEN REWRITE_TAC[word_cor] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[BIT_WORD_0; BIT_WORD_1]);; (* ------------------------------------------------------------------------- *) (* Joining, in a somewhat (over?) general sense; v is the high part, w low. *) (* ------------------------------------------------------------------------- *) let word_join = new_definition `(word_join:(M)word->(N)word->(P)word) v w = word(2 EXP dimindex(:N) * val v + val w)`;; let VAL_WORD_JOIN = prove (`!v w. val((word_join:(M)word->(N)word->(P)word) v w) = (2 EXP dimindex(:N) * val v + val w) MOD 2 EXP dimindex(:P)`, REWRITE_TAC[word_join; VAL_WORD]);; let BIT_WORD_JOIN = prove (`!v w i. bit i ((word_join:(M)word->(N)word->(P)word) v w) <=> i < dimindex(:P) /\ (if i < dimindex(:N) then bit i w else bit (i - dimindex(:N)) v)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `i < dimindex(:P)` THEN ASM_SIMP_TAC[BIT_TRIVIAL; GSYM NOT_LT] THEN REWRITE_TAC[word_join; BIT_WORD] THEN ASM_REWRITE_TAC[BIT_VAL] THEN COND_CASES_TAC THEN REWRITE_TAC[] THENL [REWRITE_TAC[ODD_MOD] THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[DIV_MOD] THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM CONG] THEN MATCH_MP_TAC(NUMBER_RULE `d divides e ==> (e * v + w:num == w) (mod d)`) THEN ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[GSYM(CONJUNCT2 EXP)] THEN UNDISCH_TAC `i < dimindex(:N)` THEN SIMP_TAC[LT_EXISTS; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[ARITH_RULE `i + SUC d = SUC i + d`] THEN REWRITE_TAC[EXP_ADD; NUMBER_RULE `(a:num) divides a * b`]; AP_TERM_TAC THEN SUBGOAL_THEN `2 EXP i = 2 EXP (dimindex(:N) + i - dimindex(:N))` SUBST1_TAC THENL [AP_TERM_TAC THEN ASM_ARITH_TAC; SIMP_TAC[EXP_ADD]] THEN REWRITE_TAC[GSYM DIV_DIV] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN SIMP_TAC[DIV_MULT_ADD; EXP_EQ_0; ARITH_EQ] THEN SIMP_TAC[DIV_LT; VAL_BOUND; ADD_CLAUSES]]);; let VAL_WORD_JOIN_SIMPLE = prove (`!v w. dimindex(:M) + dimindex(:N) = dimindex(:P) ==> val((word_join:(M)word->(N)word->(P)word) v w) = 2 EXP dimindex(:N) * val v + val w`, REPEAT STRIP_TAC THEN REWRITE_TAC[VAL_WORD_JOIN] THEN MATCH_MP_TAC MOD_LT THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN TRANS_TAC LTE_TRANS `2 EXP dimindex(:N) * (2 EXP dimindex(:M) - 1) + 2 EXP dimindex(:N)` THEN CONJ_TAC THENL [MATCH_MP_TAC LET_ADD2 THEN REWRITE_TAC[VAL_BOUND; LE_MULT_LCANCEL] THEN DISJ2_TAC THEN MATCH_MP_TAC(ARITH_RULE `a < b ==> a <= b - 1`) THEN REWRITE_TAC[VAL_BOUND]; REWRITE_TAC[LEFT_SUB_DISTRIB; EXP_ADD] THEN MATCH_MP_TAC(ARITH_RULE `n * 1 <= n * m ==> n * m - n * 1 + n <= m * n`) THEN REWRITE_TAC[LE_MULT_LCANCEL; ARITH_RULE `1 <= n <=> ~(n = 0)`] THEN REWRITE_TAC[EXP_EQ_0; ARITH_EQ]]);; let WORD_JOIN_NOT = prove (`!v w. dimindex(:P) <= dimindex(:M) + dimindex(:N) ==> (word_join:(M)word->(N)word->(P)word) (word_not v) (word_not w) = word_not(word_join v w)`, REPEAT STRIP_TAC THEN REWRITE_TAC[WORD_EQ_BITS_ALT] THEN SIMP_TAC[BIT_WORD_JOIN; BIT_WORD_NOT; COND_SWAP] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[BIT_GUARD] THEN EQ_TAC THEN SIMP_TAC[] THEN ASM_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Subwords, where the (pos,len) argument is (lsb_position,length) *) (* ------------------------------------------------------------------------- *) let word_subword = new_definition `word_subword (w:M word) (pos,len):N word = word((val w DIV (2 EXP pos)) MOD (2 EXP len))`;; let VAL_WORD_SUBWORD = prove (`!pos len w:M word. val(word_subword w (pos,len):N word) = (val w DIV (2 EXP pos)) MOD (2 EXP (MIN len (dimindex(:N))))`, REWRITE_TAC[word_subword; VAL_WORD; MOD_MOD_EXP_MIN]);; let VAL_WORD_SUBWORD_DIMINDEX = prove (`!pos w:M word. val(word_subword w (pos,dimindex(:N)):N word) = (val w DIV (2 EXP pos)) MOD (2 EXP dimindex(:N))`, REPEAT GEN_TAC THEN REWRITE_TAC[VAL_WORD_SUBWORD] THEN REWRITE_TAC[ARITH_RULE `MIN n n = n`]);; let VAL_WORD_SUBWORD_SIMPLE = prove (`!w:M word. val(word_subword w (0,dimindex(:N)):N word) = val w MOD (2 EXP dimindex(:N))`, REWRITE_TAC[VAL_WORD_SUBWORD_DIMINDEX; EXP; DIV_1]);; let BIT_WORD_SUBWORD = prove (`!pos len (w:M word) i. bit i (word_subword w (pos,len):N word) <=> i < MIN len (dimindex(:N)) /\ bit (pos + i) w`, REPEAT GEN_TAC THEN REWRITE_TAC[ARITH_RULE `m < MIN p q <=> m < p /\ m < q`] THEN ASM_CASES_TAC `i < dimindex(:N)` THEN ASM_SIMP_TAC[GSYM NOT_LT; BIT_TRIVIAL] THEN ASM_REWRITE_TAC[word_subword; BIT_WORD] THEN REWRITE_TAC[DIV_MOD; GSYM EXP_ADD; BIT_VAL; DIV_DIV] THEN ASM_CASES_TAC `i:num < len` THEN ASM_REWRITE_TAC[] THENL [UNDISCH_TAC `i:num < len` THEN SIMP_TAC[LT_EXISTS; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `d:num` THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[ADD_ASSOC] THEN SPEC_TAC(`pos + i:num`,`j:num`) THEN REWRITE_TAC[EXP_ADD] THEN REWRITE_TAC[GSYM DIV_MOD; ODD_MOD_POW2; NOT_SUC]; MATCH_MP_TAC(MESON[ODD] `n = 0 ==> ~ODD n`) THEN SIMP_TAC[DIV_EQ_0; EXP_EQ_0; ARITH_EQ] THEN TRANS_TAC LTE_TRANS `2 EXP (pos + len)` THEN SIMP_TAC[MOD_LT_EQ; EXP_EQ_0; ARITH_EQ; LE_EXP] THEN ASM_ARITH_TAC]);; let WORD_SUBWORD_0 = prove (`!pos len. word_subword (word 0) (pos,len) = word 0`, REWRITE_TAC[word_subword; VAL_WORD_0; DIV_0; MOD_0]);; let WORD_SUBWORD_JOIN_SELF = prove (`!(w:N word) k. k <= dimindex(:N) ==> word_subword (word_join w w:(N tybit0)word) (k,dimindex(:N)) = word_ror w k`, REPEAT STRIP_TAC THEN REWRITE_TAC[WORD_EQ_BITS_ALT; BIT_WORD_SUBWORD; BIT_WORD_JOIN; BIT_WORD_ROR; DIMINDEX_TYBIT0; ARITH_RULE `MIN n n = n`] THEN X_GEN_TAC `i:num` THEN DISCH_TAC THEN FIRST_ASSUM(DISJ_CASES_THEN2 SUBST1_TAC ASSUME_TAC o MATCH_MP (ARITH_RULE `k:num <= n ==> k = n \/ k < n`)) THEN ASM_SIMP_TAC[MOD_REFL; MOD_LT; ADD_CLAUSES; ARITH_RULE `(n + i) - n:num = i`; ARITH_RULE `~(n + i:num < n)`; ARITH_RULE `i < n ==> n + i < 2 * n`] THEN REWRITE_TAC[ADD_SYM; TAUT `(p /\ q <=> q) <=> q ==> p`] THEN DISCH_THEN(K ALL_TAC) THEN ASM_ARITH_TAC);; let VAL_WORD_SUBWORD_JOIN = prove (`!(h:N word) (l:N word) n m. m <= dimindex(:N) ==> val(word_subword (word_join h l:(N tybit0)word) (n,m) :N word) = ((2 EXP dimindex(:N) * val h + val l) DIV 2 EXP n) MOD 2 EXP m`, REPEAT STRIP_TAC THEN REWRITE_TAC[VAL_WORD_JOIN; VAL_WORD_SUBWORD] THEN REWRITE_TAC[DIV_MOD; GSYM EXP_ADD; MOD_MOD_EXP_MIN; DIMINDEX_TYBIT0] THEN AP_THM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC(MESON[MOD_LT] `!e. x < e /\ x MOD e MOD m = x MOD e MOD n ==> x MOD m = x MOD n`) THEN EXISTS_TAC `2 EXP (2 * dimindex(:N))` THEN CONJ_TAC THENL [REWRITE_TAC[MULT_2; EXP_ADD] THEN MATCH_MP_TAC (ARITH_RULE `e * h + e * 1 <= e * e /\ l < e ==> e * h + l < e * e`) THEN REWRITE_TAC[GSYM LEFT_ADD_DISTRIB; LE_MULT_LCANCEL; VAL_BOUND; EXP_EQ_0; ARITH_EQ; ARITH_RULE `h + 1 <= e <=> h < e`]; REWRITE_TAC[MOD_MOD_EXP_MIN] THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ASM_ARITH_TAC]);; let WORD_SUBWORD_DIMINDEX = prove (`!(x:N word) k. word_subword x (k,dimindex(:M)):M word = word_zx(word_ushr x k)`, REWRITE_TAC[word_subword; word_zx; VAL_WORD_USHR; WORD_MOD_SIZE]);; let WORD_ZX_SUBWORD = prove (`!(x:N word). word_zx x:M word = word_subword x (0,dimindex(:M))`, REWRITE_TAC[WORD_SUBWORD_DIMINDEX; WORD_USHR_ZERO]);; let VAL_WORD_SUBWORD_JOIN_FULL = prove (`!(h:N word) (l:N word) k. k <= dimindex(:N) ==> val(word_subword (word_join h l:(N tybit0)word) (k,dimindex(:N)) :N word) = 2 EXP (dimindex(:N) - k) * val h MOD 2 EXP k + val l DIV (2 EXP k)`, REPEAT STRIP_TAC THEN SIMP_TAC[VAL_WORD_SUBWORD_JOIN; LE_REFL] THEN MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `val(h:N word) DIV 2 EXP k` THEN SUBGOAL_THEN `2 EXP dimindex(:N) = 2 EXP k * 2 EXP (dimindex(:N) - k)` SUBST1_TAC THENL [REWRITE_TAC[GSYM EXP_ADD] THEN AP_TERM_TAC THEN ASM_ARITH_TAC; SIMP_TAC[GSYM MULT_ASSOC; DIV_MULT_ADD; EXP_EQ_0; ARITH_EQ]] THEN CONJ_TAC THENL [REWRITE_TAC[DIVISION_SIMP; ARITH_RULE `d * k * e + e * m + l:num = e * (d * k + m) + l`]; MATCH_MP_TAC(ARITH_RULE `d < e /\ e * (m + 1) <= e * k ==> e * m + d < k * e`) THEN REWRITE_TAC[LE_MULT_LCANCEL; ARITH_RULE `a + 1 <= b <=> a < b`] THEN SIMP_TAC[MOD_LT_EQ; EXP_EQ_0; ARITH_EQ; RDIV_LT_EQ] THEN ASM_SIMP_TAC[GSYM EXP_ADD; ARITH_RULE `k:num <= d ==> k + d - k = d`] THEN REWRITE_TAC[VAL_BOUND]]);; let WORD_SUBWORD_JOIN_AS_USHR = prove (`!(x:N word) k. word_subword (word_join (word 0:N word) x:((N)tybit0)word) (k,dimindex(:N)) = word_ushr x k`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM VAL_EQ] THEN SIMP_TAC[VAL_WORD_USHR; VAL_WORD_SUBWORD_JOIN; LE_REFL] THEN REWRITE_TAC[VAL_WORD_0; MULT_CLAUSES; ADD_CLAUSES] THEN MATCH_MP_TAC MOD_LT THEN MESON_TAC[DIV_LE; VAL_BOUND; LET_TRANS]);; let WORD_SUBWORD_JOIN_AS_SHL = prove (`!(x:N word) k. k <= dimindex(:N) ==> word_subword (word_join x (word 0:N word):((N)tybit0)word) (k,dimindex(:N)) = word_shl x (dimindex(:N) - k)`, REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM VAL_EQ] THEN SIMP_TAC[VAL_WORD_SHL; VAL_WORD_SUBWORD_JOIN; LE_REFL] THEN REWRITE_TAC[VAL_WORD_0; ADD_CLAUSES] THEN AP_THM_TAC THEN AP_TERM_TAC THEN SUBGOAL_THEN `2 EXP dimindex(:N) = 2 EXP k * 2 EXP (dimindex(:N) - k)` SUBST1_TAC THENL [REWRITE_TAC[GSYM EXP_ADD] THEN AP_TERM_TAC THEN ASM_ARITH_TAC; SIMP_TAC[GSYM MULT_ASSOC; DIV_MULT; EXP_EQ_0; ARITH_EQ]]);; let WORD_SUBWORD_AS_USHR = prove (`!(x:N word) k l. dimindex(:N) <= k + l ==> word_subword x (k,l) = word_ushr x k`, REPEAT STRIP_TAC THEN REWRITE_TAC[word_subword; word_ushr] THEN AP_TERM_TAC THEN MATCH_MP_TAC MOD_LT THEN SIMP_TAC[RDIV_LT_EQ; EXP_EQ_0; ARITH_EQ; GSYM EXP_ADD] THEN W(MP_TAC o PART_MATCH lhand VAL_BOUND o lhand o snd) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] LTE_TRANS) THEN ASM_REWRITE_TAC[LE_EXP] THEN ARITH_TAC);; let WORD_USHR_AS_SUBWORD = prove (`!(x:N word) k. word_ushr x k = word_subword x (k,dimindex (:N) - k)`, REPEAT GEN_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC WORD_SUBWORD_AS_USHR THEN ARITH_TAC);; let WORD_SHL_SUBWORD = prove (`!(x:N word) d l. dimindex(:N) <= l + d ==> word_shl (word_subword x (0,l)) d = word_shl x d`, REPEAT STRIP_TAC THEN REWRITE_TAC[word_shl; word_subword] THEN REWRITE_TAC[GSYM VAL_EQ; VAL_WORD; EXP; DIV_1] THEN CONV_TAC MOD_DOWN_CONV THEN ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[GSYM MOD_MULT2; GSYM EXP_ADD; MOD_MOD_EXP_MIN] THEN ASM_SIMP_TAC[ARITH_RULE `n <= l + d ==> MIN (d + l) n = n`]);; let WORD_SUBWORD_AND = prove (`!(x:M word) y pos len. word_subword (word_and x y) (pos,len) :N word = word_and (word_subword x (pos,len)) (word_subword y (pos,len))`, REWRITE_TAC[WORD_EQ_BITS_ALT; BIT_WORD_SUBWORD; BIT_WORD_AND] THEN ONCE_REWRITE_TAC[BIT_GUARD] THEN CONV_TAC TAUT);; let WORD_SUBWORD_OR = prove (`!(x:M word) y pos len. word_subword (word_or x y) (pos,len) :N word = word_or (word_subword x (pos,len)) (word_subword y (pos,len))`, REWRITE_TAC[WORD_EQ_BITS_ALT; BIT_WORD_SUBWORD; BIT_WORD_OR] THEN ONCE_REWRITE_TAC[BIT_GUARD] THEN CONV_TAC TAUT);; let WORD_SUBWORD_XOR = prove (`!(x:M word) y pos len. word_subword (word_xor x y) (pos,len) :N word = word_xor (word_subword x (pos,len)) (word_subword y (pos,len))`, REWRITE_TAC[WORD_EQ_BITS_ALT; BIT_WORD_SUBWORD; BIT_WORD_XOR] THEN ONCE_REWRITE_TAC[BIT_GUARD] THEN CONV_TAC TAUT);; let WORD_SUBWORD_NOT = prove (`!(x:M word) pos len. dimindex(:N) <= len /\ pos + len <= dimindex(:M) ==> word_subword (word_not x) (pos,len):N word = word_not (word_subword x (pos,len))`, REWRITE_TAC[WORD_EQ_BITS_ALT; BIT_WORD_SUBWORD; BIT_WORD_NOT] THEN SIMP_TAC[ARITH_RULE `i < MIN m n <=> i < m /\ i < n`] THEN REPEAT STRIP_TAC THEN EQ_TAC THEN SIMP_TAC[DE_MORGAN_THM] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Bit recursion equations for "linear" operations. *) (* ------------------------------------------------------------------------- *) let BIT_WORD_ADD = prove (`!x (y:N word) i. bit i (word_add x y) <=> i < dimindex(:N) /\ ((bit i x <=> bit i y) <=> ~(i = 0) /\ (bit (i - 1) x /\ bit (i - 1) y \/ (bit (i - 1) x \/ bit (i - 1) y) /\ ~(bit (i - 1) (word_add x y))))`, let lemma = prove (`2 EXP i <= (2 EXP i * b + x) MOD 2 EXP (i + 1) <=> (EVEN b <=> 2 EXP i <= x MOD (2 EXP (i + 1)))`, SIMP_TAC[EXP_ADD; EXP_1; MOD_MULT_MOD; EXP_EQ_0; ARITH_EQ; DIV_MULT_ADD; MOD_MULT_ADD] THEN REWRITE_TAC[MOD_2_CASES; EVEN_ADD] THEN MAP_EVERY ASM_CASES_TAC [`EVEN b`; `EVEN(x DIV 2 EXP i)`] THEN ASM_REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES; LE_ADD; NOT_LE] THEN SIMP_TAC[DIVISION; EXP_EQ_0; ARITH_EQ]) in REPEAT GEN_TAC THEN ASM_CASES_TAC `i < dimindex(:N)` THENL [ASM_REWRITE_TAC[]; ASM_MESON_TAC[NOT_LT; BIT_TRIVIAL]] THEN GEN_REWRITE_TAC LAND_CONV [BIT_VAL_MOD] THEN GEN_REWRITE_TAC (RAND_CONV o RAND_CONV o ONCE_DEPTH_CONV) [BIT_VAL_MOD] THEN ASM_REWRITE_TAC[VAL_WORD_ADD; MOD_MOD_EXP_MIN] THEN GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [TAUT `~p /\ q <=> ~(~p ==> ~q)`] THEN ASM_SIMP_TAC[SUB_ADD; LE_1; ARITH_RULE `~(k = 0) /\ k < n ==> MIN n (k - 1 + 1) = k`] THEN ASM_SIMP_TAC[NOT_IMP; ARITH_RULE `k < n ==> MIN n (k + 1) = k + 1`] THEN ONCE_REWRITE_TAC[GSYM MOD_ADD_MOD] THEN REWRITE_TAC[VAL_MOD_STEP; lemma; ARITH_RULE `(k * b + x) + (k * c + y):num = k * (b + c) + x + y`] THEN BINOP_TAC THENL [MAP_EVERY ASM_CASES_TAC [`bit i (x:N word)`; `bit i (y:N word)`] THEN ASM_REWRITE_TAC[BITVAL_CLAUSES] THEN CONV_TAC NUM_REDUCE_CONV; SIMP_TAC[EXP_ADD; EXP_1; MOD_LT; DIVISION; EXP_EQ_0; ARITH_EQ; ARITH_RULE `x < n /\ y < n ==> x + y < n * 2`]] THEN ASM_CASES_TAC `i = 0` THEN ASM_SIMP_TAC[EXP; MOD_1; ADD_CLAUSES; CONJUNCT1 LE; EXP_EQ_0; ARITH_EQ] THEN SIMP_TAC[MOD_ADD_CASES; DIVISION; EXP_EQ_0; ARITH_EQ] THEN REWRITE_TAC[GSYM NOT_LE] THEN MAP_EVERY ABBREV_TAC [`m = val(x:N word) MOD 2 EXP i`; `n = val(y:N word) MOD 2 EXP i`] THEN SUBGOAL_THEN `m < 2 EXP i /\ n < 2 EXP i` MP_TAC THENL [ASM_MESON_TAC[DIVISION; EXP_EQ_0; ARITH_RULE `~(2 = 0)`]; ALL_TAC] THEN SUBGOAL_THEN `2 EXP i = 2 * 2 EXP(i - 1)` SUBST1_TAC THENL [ASM_SIMP_TAC[GSYM(CONJUNCT2 EXP); ADD1; SUB_ADD; LE_1]; ABBREV_TAC `j = i - 1` THEN REWRITE_TAC[COND_SWAP; NOT_LE] THEN ASM_ARITH_TAC]);; let BIT_WORD_SUB = prove (`!x (y:N word) i. bit i (word_sub x y) <=> i < dimindex(:N) /\ ((bit i x <=> bit i y) <=> ~(i = 0) /\ (~bit (i - 1) x /\ bit (i - 1) y \/ (~bit (i - 1) x \/ bit (i - 1) y) /\ bit (i - 1) (word_sub x y)))`, REPEAT GEN_TAC THEN REWRITE_TAC[WORD_RULE `word_sub x y:N word = word_not(word_add (word_not x) y)`] THEN REWRITE_TAC[BIT_WORD_NOT] THEN ASM_CASES_TAC `i < dimindex(:N)` THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [BIT_WORD_ADD] THEN ASM_SIMP_TAC[BIT_WORD_NOT; ARITH_RULE `i < n ==> i - 1 < n`] THEN REWRITE_TAC[TAUT `~((~p <=> q) <=> r) <=> ((p <=> q) <=> r)`]);; let BIT_WORD_NEG = prove (`!(x:N word) i. bit i (word_neg x) <=> i < dimindex(:N) /\ (bit i x <=> i = 0 \/ ~bit (i - 1) x /\ ~bit (i - 1) (word_neg x))`, REPEAT GEN_TAC THEN REWRITE_TAC[WORD_RULE `word_neg x:N word = word_sub (word 0) x`] THEN GEN_REWRITE_TAC LAND_CONV [BIT_WORD_SUB] THEN REWRITE_TAC[BIT_WORD_0] THEN CONV_TAC TAUT);; let BIT_WORD_ADD_CLAUSES = prove (`(!x (y:N word). bit 0 (word_add x y) <=> ~(bit 0 x <=> bit 0 y)) /\ (!x (y:N word) i. bit (i + 1) (word_add x y) <=> i + 1 < dimindex(:N) /\ ((bit (i + 1) x <=> bit (i + 1) y) <=> (bit i x /\ bit i y \/ (bit i x \/ bit i y) /\ ~(bit i (word_add x y)))))`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [BIT_WORD_ADD] THEN SIMP_TAC[DIMINDEX_GE_1; LE_1; ADD_SUB; ADD_EQ_0; ARITH_EQ]);; let BIT_WORD_SUB_CLAUSES = prove (`(!x (y:N word). bit 0 (word_sub x y) <=> ~(bit 0 x <=> bit 0 y)) /\ (!x (y:N word) i. bit (i + 1) (word_sub x y) <=> i + 1 < dimindex(:N) /\ ((bit (i + 1) x <=> bit (i + 1) y) <=> (~bit i x /\ bit i y \/ (~bit i x \/ bit i y) /\ bit i (word_sub x y))))`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [BIT_WORD_SUB] THEN SIMP_TAC[DIMINDEX_GE_1; LE_1; ADD_SUB; ADD_EQ_0; ARITH_EQ]);; let BIT_WORD_NEG_CLAUSES = prove (`(!(x:N word). bit 0 (word_neg x) = bit 0 x) /\ (!(x:N word) i. bit (i + 1) (word_neg x) <=> i + 1 < dimindex(:N) /\ (bit (i + 1) x <=> ~bit i x /\ ~bit i (word_neg x)))`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [BIT_WORD_NEG] THEN SIMP_TAC[DIMINDEX_GE_1; LE_1; ADD_SUB; ADD_EQ_0; ARITH_EQ]);; let LE_VAL_MOD_STEP = prove (`!(x:N word) (y:N word) i. (val x MOD 2 EXP (i + 1)) <= (val y MOD 2 EXP (i + 1)) <=> ~bit i x /\ bit i y \/ (bit i x <=> bit i y) /\ val x MOD 2 EXP i <= val y MOD 2 EXP i`, REPEAT GEN_TAC THEN REWRITE_TAC[VAL_MOD_STEP] THEN MAP_EVERY BOOL_CASES_TAC [`bit i (x:N word)`; `bit i (y:N word)`] THEN ASM_REWRITE_TAC[BITVAL_CLAUSES; ADD_CLAUSES; MULT_CLAUSES] THEN REWRITE_TAC[LE_ADD_LCANCEL; NOT_LE] THEN TRY(MATCH_MP_TAC LT_IMP_LE) THEN MATCH_MP_TAC(ARITH_RULE `x:num < y ==> x < y + z`) THEN SIMP_TAC[DIVISION; EXP_EQ_0; ARITH_EQ]);; let LT_VAL_MOD_STEP = prove (`!(x:N word) (y:N word) i. (val x MOD 2 EXP (i + 1)) < (val y MOD 2 EXP (i + 1)) <=> ~bit i x /\ bit i y \/ (bit i x <=> bit i y) /\ val x MOD 2 EXP i < val y MOD 2 EXP i`, REPEAT GEN_TAC THEN REWRITE_TAC[VAL_MOD_STEP] THEN MAP_EVERY BOOL_CASES_TAC [`bit i (x:N word)`; `bit i (y:N word)`] THEN ASM_REWRITE_TAC[BITVAL_CLAUSES; ADD_CLAUSES; MULT_CLAUSES] THEN REWRITE_TAC[LT_ADD_LCANCEL; NOT_LT] THEN TRY(MATCH_MP_TAC LT_IMP_LE) THEN MATCH_MP_TAC(ARITH_RULE `x:num < y ==> x < y + z`) THEN SIMP_TAC[DIVISION; EXP_EQ_0; ARITH_EQ]);; (* ------------------------------------------------------------------------- *) (* Miscellaneous lemmas we don't want to keep regenerating. Many of them in *) (* any case need a little bit of manual effort. *) (* ------------------------------------------------------------------------- *) let WORD_ADD_0 = prove (`(!x:N word. word_add x (word 0) = x) /\ (!x:N word. word_add (word 0) x = x)`, CONV_TAC WORD_RULE);; let WORD_ADD_SYM = prove (`!x y:N word. word_add x y = word_add y x`, CONV_TAC WORD_RULE);; let WORD_ADD_ASSOC = prove (`!x y z:N word. word_add x (word_add y z) = word_add (word_add x y) z`, CONV_TAC WORD_RULE);; let WORD_ADD_AC = prove (`word_add x y = word_add y x /\ word_add (word_add x y) z = word_add x (word_add y z) /\ word_add x (word_add y z) = word_add y (word_add x z)`, CONV_TAC WORD_RULE);; let WORD_MUL_0 = prove (`(!x:N word. word_mul x (word 0) = word 0) /\ (!x:N word. word_mul (word 0) x = word 0)`, CONV_TAC WORD_RULE);; let WORD_MUL_SYM = prove (`!x y:N word. word_mul x y = word_mul y x`, CONV_TAC WORD_RULE);; let WORD_MUL_ASSOC = prove (`!x y z:N word. word_mul x (word_mul y z) = word_mul (word_mul x y) z`, CONV_TAC WORD_RULE);; let WORD_MUL_AC = prove (`word_mul x y = word_mul y x /\ word_mul (word_mul x y) z = word_mul x (word_mul y z) /\ word_mul x (word_mul y z) = word_mul y (word_mul x z)`, CONV_TAC WORD_RULE);; let WORD_SUB_0 = prove (`!x:N word. word_sub x (word 0) = x`, CONV_TAC WORD_RULE);; let WORD_SUB_LZERO = prove (`!x:N word. word_sub (word 0) x = word_neg x`, CONV_TAC WORD_RULE);; let WORD_SUB_EQ_0 = prove (`!x y:N word. word_sub x y = word 0 <=> x = y`, CONV_TAC WORD_RULE);; let WORD_SUB_REFL = prove (`!x:N word. word_sub x x = word 0`, CONV_TAC WORD_RULE);; let WORD_NEG_NEG = prove (`!x:N word. word_neg(word_neg x) = x`, CONV_TAC WORD_RULE);; let WORD_NEG_0 = prove (`word_neg (word 0) = word 0`, CONV_TAC WORD_RULE);; let WORD_NEG_SUB = prove (`!x y:N word. word_neg(word_sub x y) = word_sub y x`, CONV_TAC WORD_RULE);; let WORD_NEG_EQ_0 = prove (`!x:N word. word_neg x = word 0 <=> x = word 0`, CONV_TAC WORD_RULE);; let WORD_NOT_NOT = prove (`!x:N word. word_not(word_not x) = x`, CONV_TAC WORD_BITWISE_RULE);; let WORD_AND_REFL = prove (`!x:N word. word_and x x = x`, CONV_TAC WORD_BITWISE_RULE);; let WORD_AND_0 = prove (`(!x:N word. word_and x (word 0) = word 0) /\ (!x:N word. word_and (word 0) x = word 0)`, CONV_TAC WORD_BITWISE_RULE);; let WORD_AND_NOT0 = prove (`(!x:N word. word_and x (word_not(word 0)) = x) /\ (!x:N word. word_and (word_not(word 0)) x = x)`, CONV_TAC WORD_BITWISE_RULE);; let WORD_AND_SYM = prove (`!x y:N word. word_and x y = word_and y x`, CONV_TAC WORD_BITWISE_RULE);; let WORD_AND_ASSOC = prove (`!x y z:N word. word_and x (word_and y z) = word_and (word_and x y) z`, CONV_TAC WORD_BITWISE_RULE);; let WORD_OR_REFL = prove (`!x:N word. word_or x x = x`, CONV_TAC WORD_BITWISE_RULE);; let WORD_OR_0 = prove (`(!x:N word. word_or x (word 0) = x) /\ (!x:N word. word_or (word 0) x = x)`, CONV_TAC WORD_BITWISE_RULE);; let WORD_OR_NOT0 = prove (`(!x:N word. word_or x (word_not(word 0)) = word_not(word 0)) /\ (!x:N word. word_or (word_not(word 0)) x = word_not(word 0))`, CONV_TAC WORD_BITWISE_RULE);; let WORD_OR_SYM = prove (`!x y:N word. word_or x y = word_or y x`, CONV_TAC WORD_BITWISE_RULE);; let WORD_OR_ASSOC = prove (`!x y z:N word. word_or x (word_or y z) = word_or (word_or x y) z`, CONV_TAC WORD_BITWISE_RULE);; let WORD_OR_EQ_0 = prove (`!x y:N word. word_or x y = word 0 <=> x = word 0 /\ y = word 0`, CONV_TAC WORD_BITWISE_RULE);; let WORD_NOT_AND = prove (`!x y:N word. word_not(word_and x y) = word_or (word_not x) (word_not y)`, CONV_TAC WORD_BITWISE_RULE);; let WORD_NOT_OR = prove (`!x y:N word. word_not(word_or x y) = word_and (word_not x) (word_not y)`, CONV_TAC WORD_BITWISE_RULE);; let WORD_XOR_EQ_0 = prove (`!x y:N word. word_xor x y = word 0 <=> x = y`, CONV_TAC WORD_BITWISE_RULE);; let WORD_XOR_0 = prove (`(!x:N word. word_xor x (word 0) = x) /\ (!x:N word. word_xor (word 0) x = x)`, CONV_TAC WORD_BITWISE_RULE);; let WORD_XOR_NOT = prove (`(!x y:N word. word_xor (word_not x) y = word_not(word_xor x y)) /\ (!x y:N word. word_xor x (word_not y) = word_not(word_xor x y))`, CONV_TAC WORD_BITWISE_RULE);; let WORD_XOR_NOT0 = prove (`(!x:N word. word_xor x (word_not(word 0)) = word_not x) /\ (!x:N word. word_xor (word_not(word 0)) x = word_not x)`, REWRITE_TAC[WORD_XOR_NOT; WORD_XOR_0]);; let WORD_XOR_REFL = prove (`!x:N word. word_xor x x = word 0`, REWRITE_TAC[WORD_XOR_EQ_0]);; let WORD_XOR_SYM = prove (`!x y:N word. word_xor x y = word_xor y x`, CONV_TAC WORD_BITWISE_RULE);; let WORD_XOR_ASSOC = prove (`!x y z:N word. word_xor x (word_xor y z) = word_xor (word_xor x y) z`, CONV_TAC WORD_BITWISE_RULE);; let WORD_AND_1 = prove (`(!x:N word. word_and x (word 1) = if bit 0 x then word 1 else word 0) /\ (!x:N word. word_and (word 1) x = if bit 0 x then word 1 else word 0)`, REWRITE_TAC[WORD_BITWISE_RULE `word_and (word 1:N word) x = word_and x (word 1)`] THEN GEN_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[WORD_EQ_BITS; BIT_WORD_AND; BIT_WORD_1; BIT_WORD_0] THEN X_GEN_TAC `i:num` THEN ASM_CASES_TAC `i = 0` THEN ASM_REWRITE_TAC[BIT_WORD_0] THEN SIMP_TAC[DIMINDEX_GE_1; LE_1]);; let WORD_AND_1_BITVAL = prove (`(!x:N word. word_and (word 1) x = word(bitval(bit 0 x))) /\ (!x:N word. word_and x (word 1) = word(bitval(bit 0 x)))`, REWRITE_TAC[bitval; WORD_AND_1] THEN MESON_TAC[]);; let WORD_NOT_NEG = prove (`!x:N word. word_not(word_neg x) = word_sub x (word 1)`, GEN_TAC THEN REWRITE_TAC[WORD_NOT_AS_SUB] THEN AP_THM_TAC THEN AP_TERM_TAC THEN CONV_TAC WORD_RULE);; let WORD_NOT_SUB = prove (`!x y:N word. word_not(word_sub x y) = word_add (word_not x) y`, REWRITE_TAC[WORD_NOT_AS_SUB] THEN CONV_TAC WORD_RULE);; let WORD_NOT_ADD = prove (`!x y:N word. word_not(word_add x y) = word_add (word_not x) (word_neg y)`, REWRITE_TAC[WORD_NOT_AS_SUB] THEN CONV_TAC WORD_RULE);; let VAL_WORD_SUB_EQ_0 = prove (`!x y:N word. val(word_sub x y) = 0 <=> val x = val y`, REWRITE_TAC[VAL_EQ_0; WORD_SUB_EQ_0] THEN REWRITE_TAC[VAL_EQ]);; let VAL_EQ_MAX_ALT = prove (`!x:N word. val x = 2 EXP dimindex(:N) - 1 <=> x = word_not(word 0)`, GEN_TAC THEN REWRITE_TAC[GSYM VAL_EQ; VAL_WORD_NOT; VAL_WORD_0; SUB_0]);; let VAL_EQ_MAX = prove (`!x:N word. val x = 2 EXP dimindex(:N) - 1 <=> word_not x = word 0`, REWRITE_TAC[VAL_EQ_MAX_ALT] THEN CONV_TAC WORD_BITWISE_RULE);; let VAL_EQ_MAX_MASK = prove (`!x:N word. val x = 2 EXP dimindex(:N) - 1 <=> x = word_neg(word 1)`, REWRITE_TAC[WORD_NEG_1; VAL_EQ_MAX_ALT]);; let VAL_WORD_OR_EQ_0 = prove (`!x y:N word. val(word_or x y) = 0 <=> val x = 0 /\ val y = 0`, REWRITE_TAC[VAL_EQ_0; WORD_OR_EQ_0]);; let VAL_WORD_AND_EQ_MAX = prove (`!x y:N word. val(word_and x y) = 2 EXP dimindex(:N) - 1 <=> val x = 2 EXP dimindex(:N) - 1 /\ val y = 2 EXP dimindex(:N) - 1`, REWRITE_TAC[VAL_EQ_MAX] THEN CONV_TAC WORD_BITWISE_RULE);; let WORD_SHL_AND = prove (`!(v:N word) w n. word_shl (word_and v w) n = word_and (word_shl v n) (word_shl w n)`, REPEAT GEN_TAC THEN REWRITE_TAC[WORD_EQ_BITS; BIT_WORD_SHL; BIT_WORD_AND] THEN X_GEN_TAC `i:num` THEN ASM_CASES_TAC `bit (i - n) (v:N word)` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `bit (i - n) (w:N word)` THEN ASM_REWRITE_TAC[] THEN ARITH_TAC);; let WORD_USHR_AND = prove (`!(v:N word) w n. word_ushr (word_and v w) n = word_and (word_ushr v n) (word_ushr w n)`, REPEAT GEN_TAC THEN REWRITE_TAC[WORD_EQ_BITS; BIT_WORD_USHR; BIT_WORD_AND] THEN X_GEN_TAC `i:num` THEN ASM_CASES_TAC `i + n < dimindex(:N)` THEN RULE_ASSUM_TAC(REWRITE_RULE[NOT_LT]) THEN ASM_SIMP_TAC[BIT_TRIVIAL] THEN ASM_CASES_TAC `i < dimindex(:N)` THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC);; let WORD_SHL_OR = prove (`!(v:N word) w n. word_shl (word_or v w) n = word_or (word_shl v n) (word_shl w n)`, REPEAT GEN_TAC THEN REWRITE_TAC[WORD_EQ_BITS; BIT_WORD_SHL; BIT_WORD_OR] THEN X_GEN_TAC `i:num` THEN ASM_CASES_TAC `bit (i - n) (v:N word)` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `bit (i - n) (w:N word)` THEN ASM_REWRITE_TAC[] THEN ARITH_TAC);; let WORD_USHR_OR = prove (`!(v:N word) w n. word_ushr (word_or v w) n = word_or (word_ushr v n) (word_ushr w n)`, REPEAT GEN_TAC THEN REWRITE_TAC[WORD_EQ_BITS; BIT_WORD_USHR; BIT_WORD_OR] THEN X_GEN_TAC `i:num` THEN ASM_CASES_TAC `i + n < dimindex(:N)` THEN RULE_ASSUM_TAC(REWRITE_RULE[NOT_LT]) THEN ASM_SIMP_TAC[BIT_TRIVIAL] THEN ASM_CASES_TAC `i < dimindex(:N)` THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC);; let WORD_SHL_XOR = prove (`!(v:N word) w n. word_shl (word_xor v w) n = word_xor (word_shl v n) (word_shl w n)`, REPEAT GEN_TAC THEN REWRITE_TAC[WORD_EQ_BITS; BIT_WORD_SHL; BIT_WORD_XOR] THEN X_GEN_TAC `i:num` THEN ASM_CASES_TAC `bit (i - n) (v:N word)` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `bit (i - n) (w:N word)` THEN ASM_REWRITE_TAC[] THEN ARITH_TAC);; let WORD_USHR_XOR = prove (`!(v:N word) w n. word_ushr (word_xor v w) n = word_xor (word_ushr v n) (word_ushr w n)`, REPEAT GEN_TAC THEN REWRITE_TAC[WORD_EQ_BITS; BIT_WORD_USHR; BIT_WORD_XOR] THEN X_GEN_TAC `i:num` THEN ASM_CASES_TAC `i + n < dimindex(:N)` THEN RULE_ASSUM_TAC(REWRITE_RULE[NOT_LT]) THEN ASM_SIMP_TAC[BIT_TRIVIAL] THEN ASM_CASES_TAC `i < dimindex(:N)` THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC);; let WORD_ADD_XOR_GEN = prove (`!x y:N word. word_add x y = word_add (word_shl (word_and x y) 1) (word_xor x y)`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM VAL_CONG; CONG; VAL_WORD_ADD; VAL_WORD_SHL] THEN CONV_TAC MOD_DOWN_CONV THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[EXP_1; VAL_WORD_ADD_AND_XOR]);; let WORD_ADD_OR_GEN = prove (`!x y:N word. word_add x y = word_add (word_and x y) (word_or x y)`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM VAL_CONG; CONG; VAL_WORD_ADD; VAL_WORD_SHL] THEN CONV_TAC MOD_DOWN_CONV THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM VAL_WORD_ADD_AND_OR]);; let WORD_OR_XOR_GEN = prove (`!x y:N word. word_or x y = word_add (word_and x y) (word_xor x y)`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM VAL_CONG; CONG; VAL_WORD_ADD] THEN CONV_TAC MOD_DOWN_CONV THEN REWRITE_TAC[VAL_WORD_OR_AND_XOR]);; let WORD_ADD_OR_EQ = prove (`!x y:N word. word_add x y = word_or x y <=> word_and x y = word 0`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[WORD_ADD_OR_GEN] THEN CONV_TAC WORD_RULE);; let WORD_OR_XOR_EQ = prove (`!x y:N word. word_or x y = word_xor x y <=> word_and x y = word 0`, REWRITE_TAC[WORD_OR_XOR_GEN] THEN CONV_TAC WORD_RULE);; let WORD_ADD_OR = prove (`!x y:N word. word_and x y = word 0 ==> word_add x y = word_or x y`, REWRITE_TAC[WORD_ADD_OR_EQ]);; let WORD_OR_XOR = prove (`!x y:N word. word_and x y = word 0 ==> word_or x y = word_xor x y`, REWRITE_TAC[WORD_OR_XOR_EQ]);; let WORD_ADD_XOR = prove (`!x y:N word. word_and x y = word 0 ==> word_add x y = word_xor x y`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[WORD_ADD_XOR_GEN] THEN ASM_REWRITE_TAC[] THEN CONV_TAC WORD_RULE);; let WORD_SUB_XOR = prove (`!x y:N word. word_and (word_not x) y = word 0 ==> word_sub x y = word_xor x y`, REPEAT STRIP_TAC THEN REWRITE_TAC[WORD_RULE `word_sub x y = z <=> word_add y z = x`] THEN W(MP_TAC o PART_MATCH (lhand o rand) WORD_ADD_XOR o lhand o snd) THEN ANTS_TAC THENL [POP_ASSUM MP_TAC; DISCH_THEN SUBST1_TAC] THEN CONV_TAC WORD_BITWISE_RULE);; let WORD_XOR_SUB = prove (`!x y:N word. word_and (word_not x) y = word 0 ==> word_xor x y = word_sub x y`, SIMP_TAC[WORD_SUB_XOR]);; let WORD_SUB_MASK_WORD = prove (`!k (x:N word). val x < 2 EXP k ==> word_sub (word(2 EXP k - 1)) x = word_xor (word(2 EXP k - 1)) x`, REPEAT STRIP_TAC THEN MATCH_MP_TAC WORD_SUB_XOR THEN SIMP_TAC[WORD_EQ_BITS_ALT; BIT_WORD_AND; BIT_WORD_0; BIT_WORD_NOT; BIT_MASK_WORD; TAUT `p ==> ~(q /\ r) <=> q /\ p ==> ~r`] THEN ASM_REWRITE_TAC[NOT_LT; BLOCK_BITS_ZERO; VAL_MOD_REFL]);; let WORD_XOR_MASK_WORD = prove (`!k (x:N word). val x < 2 EXP k ==> word_xor (word(2 EXP k - 1)) x = word_sub (word(2 EXP k - 1)) x`, SIMP_TAC[WORD_SUB_MASK_WORD]);; let WORD_XOR_INT_MIN = prove (`!w:N word. word_xor word_INT_MIN w = word_add word_INT_MIN w`, GEN_TAC THEN ONCE_REWRITE_TAC[WORD_ADD_XOR_GEN] THEN REWRITE_TAC[WORD_RULE `w:N word = word_add x w <=> x = word 0`] THEN REWRITE_TAC[WORD_SHL_AND] THEN MATCH_MP_TAC(WORD_BITWISE_RULE `x = word 0 ==> word_and x y = word 0`) THEN REWRITE_TAC[WORD_EQ_BITS; BIT_WORD_0; BIT_WORD_SHL; BIT_WORD_INT_MIN] THEN ARITH_TAC);; let WORD_BITVAL_NOT = prove (`!b. word(bitval(~b)) = word_sub (word 1) (word(bitval b))`, GEN_TAC THEN BOOL_CASES_TAC `b:bool` THEN ASM_REWRITE_TAC[BITVAL_CLAUSES] THEN CONV_TAC WORD_RULE);; let IVAL_WORD_NOT = prove (`!x:N word. ival(word_not x) = --(ival x + &1)`, REWRITE_TAC[IVAL_IWORD_GALOIS] THEN REWRITE_TAC[INT_ARITH `--x:int <= --(y + &1) <=> y < x`] THEN REWRITE_TAC[INT_ARITH `--(x + &1):int < y <=> --y <= x`] THEN REWRITE_TAC[IVAL_BOUND] THEN REWRITE_TAC[IWORD_INT_NEG; IWORD_INT_ADD; IWORD_IVAL; GSYM WORD_IWORD] THEN CONV_TAC WORD_RULE);; let [BIT_WORD_NEG_CASES; BIT_WORD_ADD_1_CASES; BIT_WORD_SUB_1_CASES] = (CONJUNCTS o prove) (`(!(x:N word) i. bit i (word_neg x) <=> i < dimindex(:N) /\ (if ?j. j < i /\ bit j x then ~(bit i x) else bit i x)) /\ (!(x:N word) i. bit i (word_add x (word 1)) <=> i < dimindex(:N) /\ (if ?j. j < i /\ ~(bit j x) then bit i x else ~(bit i x))) /\ (!(x:N word) i. bit i (word_sub x (word 1)) <=> i < dimindex(:N) /\ (if ?j. j < i /\ bit j x then bit i x else ~(bit i x)))`, REPEAT CONJ_TAC THEN GEN_TAC THEN MATCH_MP_TAC num_INDUCTION THEN REWRITE_TAC[LT; BIT_WORD_NEG_CLAUSES; BIT_WORD_ADD_CLAUSES; BIT_WORD_SUB_CLAUSES; ADD1; BIT_WORD_1] THEN SIMP_TAC[ADD_EQ_0; LE_1; DIMINDEX_GE_1; ARITH_EQ] THEN X_GEN_TAC `i:num` THEN DISCH_THEN SUBST1_TAC THEN ASM_CASES_TAC `i + 1 < dimindex(:N)` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[RIGHT_OR_DISTRIB; EXISTS_OR_THM; UNWIND_THM2] THEN (ASM_CASES_TAC `i = 0` THEN ASM_SIMP_TAC[LT; LE_1; DIMINDEX_GE_1] THENL [CONV_TAC TAUT; ALL_TAC]) THEN ASM_CASES_TAC `bit i (x:N word)` THEN ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `bit (i + 1) (x:N word)` THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC);; let BIT_WORD_AND_NEG = prove (`!(x:N word) i. bit i (word_and x (word_neg x)) <=> bit i x /\ !j. j < i ==> ~(bit j x)`, REWRITE_TAC[BIT_WORD_AND; BIT_WORD_NEG_CASES] THEN MESON_TAC[BIT_TRIVIAL; NOT_LE]);; let BIT_WORD_OR_NEG = prove (`!(x:N word) i. bit i (word_or x (word_neg x)) <=> i < dimindex(:N) /\ ?j. j <= i /\ bit j x`, REWRITE_TAC[BIT_WORD_OR; BIT_WORD_NEG_CASES] THEN MESON_TAC[LE_LT]);; let BIT_WORD_XOR_NEG = prove (`!(x:N word) i. bit i (word_xor x (word_neg x)) <=> i < dimindex(:N) /\ ?j. j < i /\ bit j x`, REWRITE_TAC[BIT_WORD_NEG_CASES; BIT_WORD_XOR] THEN MESON_TAC[]);; let BIT_WORD_AND_ADD_1 = prove (`!(x:N word) i. bit i (word_and x (word_add x (word 1))) <=> bit i x /\ ?j. j < i /\ ~bit j x`, REWRITE_TAC[BIT_WORD_AND; BIT_WORD_ADD_1_CASES] THEN MESON_TAC[BIT_TRIVIAL; NOT_LE]);; let BIT_WORD_AND_SUB_1 = prove (`!(x:N word) i. bit i (word_and x (word_sub x (word 1))) <=> bit i x /\ ?j. j < i /\ bit j x`, REWRITE_TAC[BIT_WORD_AND; BIT_WORD_SUB_1_CASES] THEN MESON_TAC[BIT_TRIVIAL; NOT_LE]);; let BIT_WORD_OR_ADD_1 = prove (`!(x:N word) i. bit i (word_or x (word_add x (word 1))) <=> i < dimindex(:N) /\ (bit i x \/ !j. j < i ==> bit j x)`, REWRITE_TAC[BIT_WORD_OR; BIT_WORD_ADD_1_CASES] THEN MESON_TAC[]);; let BIT_WORD_OR_SUB_1 = prove (`!(x:N word) i. bit i (word_or x (word_sub x (word 1))) <=> i < dimindex(:N) /\ (bit i x \/ !j. j < i ==> ~bit j x)`, REWRITE_TAC[BIT_WORD_OR; BIT_WORD_SUB_1_CASES] THEN MESON_TAC[]);; let BIT_WORD_XOR_ADD_1 = prove (`!(x:N word) i. bit i (word_xor x (word_add x (word 1))) <=> i < dimindex(:N) /\ !j. j < i ==> bit j x`, REWRITE_TAC[BIT_WORD_ADD_1_CASES; BIT_WORD_XOR] THEN MESON_TAC[]);; let BIT_WORD_XOR_SUB_1 = prove (`!(x:N word) i. bit i (word_xor x (word_sub x (word 1))) <=> i < dimindex(:N) /\ !j. j < i ==> ~(bit j x)`, REWRITE_TAC[BIT_WORD_SUB_1_CASES; BIT_WORD_XOR] THEN MESON_TAC[]);; let BIT_WORD_AND_NOT_SUB_1 = prove (`!(x:N word) i. bit i (word_and (word_not x) (word_sub x (word 1))) <=> i < dimindex(:N) /\ !j. j <= i ==> ~(bit j x)`, REWRITE_TAC[LE_LT; BIT_WORD_AND; BIT_WORD_NOT; BIT_WORD_SUB_1_CASES] THEN MESON_TAC[]);; let BIT_WORD_AND_NOT_ADD_1 = prove (`!(x:N word) i. bit i (word_and (word_not x) (word_add x (word 1))) <=> i < dimindex(:N) /\ ~(bit i x) /\ !j. j < i ==> bit j x`, REWRITE_TAC[BIT_WORD_AND; BIT_WORD_NOT; BIT_WORD_ADD_1_CASES] THEN MESON_TAC[]);; let WORD_OR_SHL_USHR = prove (`!(h:N word) l m n. m + n = dimindex(:N) ==> word_or (word_shl h m) (word_ushr l n) = word_zx (word_ushr (word_join h l:(N tybit0)word) n)`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[WORD_EQ_BITS_ALT] THEN X_GEN_TAC `i:num` THEN DISCH_TAC THEN ASM_REWRITE_TAC[BIT_WORD_JOIN; BIT_WORD_ZX; BIT_WORD_SHL; BIT_WORD_USHR; BIT_WORD_OR; DIMINDEX_TYBIT0] THEN SUBGOAL_THEN `m <= i <=> ~(i + n < dimindex(:N))` SUBST1_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[ARITH_RULE `i < n ==> i < 2 * n`] THEN MATCH_MP_TAC(TAUT `(p <=> s) /\ (q <=> F) /\ r ==> (p \/ q <=> r /\ s)`) THEN REPEAT CONJ_TAC THENL [AP_THM_TAC THEN AP_TERM_TAC THEN ASM_ARITH_TAC; MATCH_MP_TAC BIT_TRIVIAL THEN ASM_ARITH_TAC; ASM_ARITH_TAC]);; let WORD_OR_USHR_SHL = prove (`!(h:N word) l m n. m + n = dimindex(:N) ==> word_or (word_ushr l m) (word_shl h n) = word_zx (word_ushr (word_join h l:(N tybit0)word) m)`, ONCE_REWRITE_TAC[ADD_SYM; WORD_OR_SYM] THEN REWRITE_TAC[WORD_OR_SHL_USHR]);; let WORD_ADD_SHL_USHR = prove (`!(h:N word) l m n. m + n = dimindex(:N) ==> word_add (word_shl h m) (word_ushr l n) = word_zx (word_ushr (word_join h l:(N tybit0)word) n)`, REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH (lhand o rand) WORD_ADD_OR o lhand o snd) THEN ASM_SIMP_TAC[WORD_OR_SHL_USHR] THEN DISCH_THEN MATCH_MP_TAC THEN ONCE_REWRITE_TAC[WORD_EQ_BITS_ALT] THEN X_GEN_TAC `i:num` THEN DISCH_TAC THEN REWRITE_TAC[BIT_WORD_0; BIT_WORD_AND; BIT_WORD_SHL; BIT_WORD_USHR] THEN STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP (MESON[BIT_TRIVIAL] `bit i (x:N word) ==> ~(dimindex(:N) <= i)`))) THEN ASM_ARITH_TAC);; let WORD_ADD_USHR_SHL = prove (`!(h:N word) l m n. m + n = dimindex(:N) ==> word_add (word_ushr l m) (word_shl h n) = word_zx (word_ushr (word_join h l:(N tybit0)word) m)`, ONCE_REWRITE_TAC[ADD_SYM; WORD_ADD_SYM] THEN REWRITE_TAC[WORD_ADD_SHL_USHR]);; (* ------------------------------------------------------------------------- *) (* An idiom for describing a mask duplicating a bit throughout a word. *) (* ------------------------------------------------------------------------- *) let WORD_MASK_ALT = prove (`!p. word_neg(word(bitval p)) = if p then word_neg(word 1) else word 0`, MATCH_MP_TAC bool_INDUCT THEN REWRITE_TAC[BITVAL_CLAUSES; WORD_NEG_0]);; let WORD_MASK = prove (`!p. word_neg(word(bitval p)) = if p then word_not(word 0) else word 0`, REWRITE_TAC[WORD_MASK_ALT; WORD_NEG_1]);; let BIT_WORD_MASK = prove (`!p i. bit i (word_neg(word(bitval p)):N word) <=> i < dimindex(:N) /\ p`, MATCH_MP_TAC bool_INDUCT THEN REWRITE_TAC[BITVAL_CLAUSES; WORD_NEG_0; BIT_WORD_0] THEN REWRITE_TAC[WORD_NEG_1; BIT_WORD_NOT; BIT_WORD_0]);; let WORD_ISHR_MSB = prove (`!x:N word. word_ishr x (dimindex(:N) - 1) = word_neg(word(bitval(bit (dimindex(:N) - 1) x)))`, SIMP_TAC[WORD_EQ_BITS_ALT; BIT_WORD_MASK; BIT_WORD_ISHR] THEN SIMP_TAC[ARITH_RULE `i < n ==> (i + n - 1 < n <=> i = 0)`] THEN REWRITE_TAC[COND_ID; ADD_CLAUSES]);; let WORD_NOT_MASK = prove (`!p. word_not(word_neg(word(bitval p))) = word_neg(word(bitval(~p)))`, MATCH_MP_TAC bool_INDUCT THEN REWRITE_TAC[BITVAL_CLAUSES] THEN CONV_TAC WORD_RULE);; let WORD_AND_MASK = prove (`(!p x. word_and (word_neg(word(bitval p))) x = if p then x else word 0) /\ (!p x. word_and x (word_neg(word(bitval p))) = if p then x else word 0)`, REPEAT STRIP_TAC THEN REWRITE_TAC[WORD_MASK] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC WORD_BITWISE_RULE);; let WORD_OR_MASK = prove (`(!p x. word_or (word_neg(word(bitval p))) x = if p then word_neg(word(bitval p)) else x) /\ (!p x. word_or x (word_neg(word(bitval p))) = if p then word_neg(word(bitval p)) else x)`, REPEAT STRIP_TAC THEN REWRITE_TAC[WORD_MASK] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC WORD_BITWISE_RULE);; let WORD_XOR_MASK = prove (`(!p x. word_xor (word_neg(word(bitval p))) x = if p then word_not x else x) /\ (!p x. word_xor x (word_neg(word(bitval p))) = if p then word_not x else x)`, REPEAT STRIP_TAC THEN REWRITE_TAC[WORD_MASK] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC WORD_BITWISE_RULE);; let WORD_NEG_AND_MASK = prove (`(!b x. word_neg (word_and (word_neg(word(bitval b))) x) = word_and (word_neg(word(bitval b))) (word_neg x)) /\ (!b x. word_neg (word_and x (word_neg(word(bitval b)))) = word_and (word_neg x) (word_neg(word(bitval b))))`, REPEAT STRIP_TAC THEN REWRITE_TAC[WORD_AND_MASK] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[WORD_NEG_0]);; let WORD_AND_MASKS = prove (`!p q. word_and (word_neg(word(bitval p))) (word_neg(word(bitval q))) = word_neg(word(bitval(p /\ q)))`, REPEAT(MATCH_MP_TAC bool_INDUCT THEN CONJ_TAC) THEN REWRITE_TAC[BITVAL_CLAUSES; WORD_NEG_0; WORD_AND_0; WORD_AND_REFL]);; let WORD_OR_MASKS = prove (`!p q. word_or (word_neg(word(bitval p))) (word_neg(word(bitval q))) = word_neg(word(bitval(p \/ q)))`, REPEAT(MATCH_MP_TAC bool_INDUCT THEN CONJ_TAC) THEN REWRITE_TAC[BITVAL_CLAUSES; WORD_NEG_0; WORD_OR_0; WORD_OR_REFL]);; let WORD_XOR_MASKS = prove (`!p q. word_xor (word_neg(word(bitval p))) (word_neg(word(bitval q))) = word_neg(word(bitval(~(p <=> q))))`, REPEAT(MATCH_MP_TAC bool_INDUCT THEN CONJ_TAC) THEN REWRITE_TAC[BITVAL_CLAUSES; WORD_NEG_0; WORD_XOR_0; WORD_XOR_REFL]);; let WORD_AND_CONDITIONS = prove (`!p q. word_and (word(bitval p)) (word(bitval q)) = word(bitval(p /\ q))`, REPEAT(MATCH_MP_TAC bool_INDUCT THEN CONJ_TAC) THEN REWRITE_TAC[BITVAL_CLAUSES; WORD_NEG_0; WORD_AND_0; WORD_AND_REFL]);; let WORD_OR_CONDITIONS = prove (`!p q. word_or (word(bitval p)) (word(bitval q)) = word(bitval(p \/ q))`, REPEAT(MATCH_MP_TAC bool_INDUCT THEN CONJ_TAC) THEN REWRITE_TAC[BITVAL_CLAUSES; WORD_NEG_0; WORD_OR_0; WORD_OR_REFL]);; let WORD_XOR_CONDITIONS = prove (`!p q. word_xor (word(bitval p)) (word(bitval q)) = word(bitval(~(p <=> q)))`, REPEAT(MATCH_MP_TAC bool_INDUCT THEN CONJ_TAC) THEN REWRITE_TAC[BITVAL_CLAUSES; WORD_NEG_0; WORD_XOR_0; WORD_XOR_REFL]);; let VAL_WORD_MASK = prove (`!b. val(word_neg(word(bitval b):N word)) = (2 EXP dimindex(:N) - 1) * bitval b`, GEN_TAC THEN REWRITE_TAC[VAL_WORD_NEG_CASES; VAL_WORD_BITVAL; BITVAL_EQ_0] THEN REWRITE_TAC[COND_SWAP] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[BITVAL_CLAUSES] THEN ARITH_TAC);; let IVAL_WORD_MASK = prove (`!b. ival(word_neg(word(bitval b):N word)) = --(&(bitval b))`, GEN_TAC THEN REWRITE_TAC[WORD_IWORD; GSYM IWORD_INT_NEG] THEN MATCH_MP_TAC IVAL_IWORD THEN MATCH_MP_TAC(INT_ARITH `&0:int <= x /\ x <= &1 /\ &2 pow 0 <= e ==> --e <= --x /\ --x < e`) THEN REWRITE_TAC[INT_OF_NUM_LE; LE_0; BITVAL_BOUND] THEN MATCH_MP_TAC INT_POW_MONO THEN REWRITE_TAC[INT_OF_NUM_LE] THEN ARITH_TAC);; let INT_VAL_WORD_MASK = prove (`!b. &(val(word_neg(word(bitval b):N word))):int = (&2 pow dimindex(:N) - &1) * &(bitval b)`, GEN_TAC THEN REWRITE_TAC[INT_VAL_WORD_NEG_CASES; VAL_WORD_BITVAL; BITVAL_EQ_0; INT_OF_NUM_EQ; COND_SWAP] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[BITVAL_CLAUSES] THEN INT_ARITH_TAC);; let REAL_VAL_WORD_MASK = prove (`!b. &(val(word_neg(word(bitval b):N word))):real = (&2 pow dimindex(:N) - &1) * &(bitval b)`, GEN_TAC THEN REWRITE_TAC[REAL_VAL_WORD_NEG_CASES; VAL_WORD_BITVAL; BITVAL_EQ_0; REAL_OF_NUM_EQ; COND_SWAP] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[BITVAL_CLAUSES] THEN REAL_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Some lemmas about masks 000..001111..1111 and their values. *) (* ------------------------------------------------------------------------- *) let VAL_WORD_AND_MASK = prove (`!(x:N word) k. val(word_and x (word_of_bits {i | i < k})) = val x MOD (2 EXP k)`, REPEAT GEN_TAC THEN REWRITE_TAC[val_def] THEN SIMP_TAC[BINARY_DIGITSUM_MOD; FINITE_NUMSEG_LT; NSUM_RESTRICT_SET] THEN MATCH_MP_TAC NSUM_EQ THEN REWRITE_TAC[IN_ELIM_THM; BIT_WORD_AND; IN_ELIM_THM; BIT_WORD_OF_BITS] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[bitval] THEN ARITH_TAC);; let IVAL_WORD_AND_MASK = prove (`!(x:N word) k. k < dimindex(:N) ==> ival(word_and x (word_of_bits {i | i < k})) = ival x rem (&2 pow k)`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[INT_REM_IVAL; LT_IMP_LE] THEN REWRITE_TAC[GSYM VAL_WORD_AND_MASK; ival] THEN MATCH_MP_TAC(MESON[] `p ==> (if p then x else y) = x`) THEN REWRITE_TAC[VAL_WORD_AND_MASK] THEN TRANS_TAC LTE_TRANS `2 EXP k` THEN SIMP_TAC[DIVISION; EXP_EQ_0; ARITH_EQ; LE_EXP] THEN ASM_ARITH_TAC);; let VAL_WORD_AND_MASK_WORD = prove (`!x k. val(word_and x (word(2 EXP k - 1))) = val x MOD 2 EXP k`, REWRITE_TAC[GSYM WORD_OF_BITS_MASK; VAL_WORD_AND_MASK]);; let WORD_AND_MASK_WORD = prove (`(!(x:N word) k. word_and x (word(2 EXP k - 1)) = word(val x MOD 2 EXP k)) /\ (!(x:N word) k. word_and (word(2 EXP k - 1)) x = word(val x MOD 2 EXP k))`, GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [WORD_AND_SYM] THEN REWRITE_TAC[] THEN REPEAT GEN_TAC THEN REWRITE_TAC[GSYM VAL_EQ; VAL_WORD_AND_MASK_WORD] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC VAL_WORD_EQ THEN MATCH_MP_TAC(ARITH_RULE `x MOD n <= x /\ x < e ==> x MOD n < e`) THEN REWRITE_TAC[MOD_LE; VAL_BOUND]);; let VAL_WORD_AND_NOT_MASK_WORD = prove (`!(x:N word) k. val(word_and x (word_not(word(2 EXP k - 1)))) = 2 EXP k * val x DIV 2 EXP k`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`x:N word`; `k:num`] VAL_WORD_AND_MASK_WORD) THEN MATCH_MP_TAC(ARITH_RULE `h + l:num = h' + l' ==> l = l' ==> h = h'`) THEN REWRITE_TAC[DIVISION_SIMP] THEN W(MP_TAC o PART_MATCH (rand o rand) VAL_WORD_OR_DISJOINT o lhand o snd) THEN ANTS_TAC THENL [CONV_TAC WORD_BITWISE_RULE; DISCH_THEN(SUBST1_TAC o SYM)] THEN AP_TERM_TAC THEN CONV_TAC WORD_BITWISE_RULE);; let WORD_AND_NOT_MASK_WORD = prove (`(!(x:N word) k. word_and x (word_not(word(2 EXP k - 1))) = word(2 EXP k * val x DIV 2 EXP k)) /\ (!(x:N word) k. word_and (word_not(word(2 EXP k - 1))) x = word(2 EXP k * val x DIV 2 EXP k))`, GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [WORD_AND_SYM] THEN REWRITE_TAC[] THEN REPEAT GEN_TAC THEN REWRITE_TAC[GSYM VAL_EQ; VAL_WORD_AND_NOT_MASK_WORD] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC VAL_WORD_EQ THEN REWRITE_TAC[GSYM VAL_WORD_AND_NOT_MASK_WORD; VAL_BOUND]);; let WORD_BITMASK = prove (`!k. word_of_bits {i | i < k}:N word = word_sub (word_of_bits {k}) (word 1)`, REWRITE_TAC[WORD_OF_BITS_MASK; WORD_OF_BITS_SING_AS_WORD] THEN REWRITE_TAC[WORD_SUB; ARITH_RULE `1 <= n <=> ~(n = 0)`] THEN REWRITE_TAC[EXP_EQ_0; ARITH_EQ]);; let MASK_WORD_SUB = prove (`!k. word_sub (word(2 EXP k)) (word 1):N word = word(2 EXP k - 1)`, GEN_TAC THEN REWRITE_TAC[WORD_SUB] THEN REWRITE_TAC[ARITH_RULE `1 <= n <=> ~(n = 0)`] THEN REWRITE_TAC[EXP_EQ_0; ARITH_EQ]);; let WORD_AND_MASK_WORDS = prove (`!i j. word_and (word(2 EXP j - 1)) (word(2 EXP k - 1)):N word = word(2 EXP MIN j k - 1)`, SIMP_TAC[WORD_EQ_BITS_ALT; BIT_WORD_AND; BIT_MASK_WORD] THEN ARITH_TAC);; let WORD_OR_MASK_WORDS = prove (`!i j. word_or (word(2 EXP j - 1)) (word(2 EXP k - 1)):N word = word(2 EXP MAX j k - 1)`, SIMP_TAC[WORD_EQ_BITS_ALT; BIT_WORD_OR; BIT_MASK_WORD] THEN ARITH_TAC);; let WORD_USHR_MASK_WORD = prove (`!k i. k <= dimindex(:N) ==> word_ushr (word(2 EXP k - 1):N word) i = word(2 EXP (k - i) - 1)`, SIMP_TAC[WORD_EQ_BITS_ALT; BIT_WORD_USHR; BIT_MASK_WORD] THEN ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Trailing and leading zero count (returning word size for zero input). *) (* ------------------------------------------------------------------------- *) let word_ctz = new_definition `word_ctz (a:N word) = if a = word 0 then dimindex(:N) else minimal i. bit i a`;; let word_clz = new_definition `word_clz (a:N word) = dimindex(:N) - minimal m. !i. m <= i ==> ~bit i a`;; let WORD_CLZ = prove (`!x:N word. word_clz x = dimindex (:N) - (minimal m. val x < 2 EXP m)`, GEN_TAC THEN REWRITE_TAC[word_clz] THEN AP_TERM_TAC THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `m:num` THEN REWRITE_TAC[] THEN SIMP_TAC[GSYM WORD_USHR_EQ_0; WORD_EQ_BITS; BIT_WORD_USHR; BIT_WORD_0] THEN MESON_TAC[LE_EXISTS; ADD_SYM]);; let WORD_CTZ_0 = prove (`word_ctz(word 0:N word) = dimindex(:N)`, REWRITE_TAC[word_ctz]);; let WORD_LE_CTZ = prove (`!(a:N word) n. n <= word_ctz a <=> n <= dimindex(:N) /\ !i. bit i a ==> n <= i`, REPEAT GEN_TAC THEN REWRITE_TAC[word_ctz] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[BIT_WORD_0] THEN RULE_ASSUM_TAC(REWRITE_RULE[WORD_EQ_BITS_ALT; BIT_WORD_0]) THEN W(MP_TAC o PART_MATCH (lhand o rand) LE_MINIMAL o lhand o snd) THEN ANTS_TAC THENL [ASM_MESON_TAC[]; DISCH_THEN SUBST1_TAC] THEN ASM_MESON_TAC[NOT_LE; LE_CASES; LE_TRANS]);; let WORD_CTZ_LE = prove (`!(a:N word) n. word_ctz a <= n <=> n < dimindex(:N) ==> ?i. i <= n /\ bit i a`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `m <= n <=> ~(SUC n <= m)`] THEN REWRITE_TAC[WORD_LE_CTZ; DE_MORGAN_THM] THEN REWRITE_TAC[ARITH_RULE `SUC n <= m <=> ~(m <= n)`] THEN MESON_TAC[NOT_LT]);; let WORD_CTZ_LE_DIMINDEX = prove (`!a:N word. word_ctz(a) <= dimindex(:N)`, REWRITE_TAC[WORD_CTZ_LE; LT_REFL]);; let WORD_CTZ_LBOUND = prove (`!(a:N word) i. bit i a ==> word_ctz(a) <= i`, REWRITE_TAC[WORD_CTZ_LE] THEN MESON_TAC[LE_REFL]);; let WORD_CTZ_EQ_DIMINDEX = prove (`!a:N word. word_ctz a = dimindex(:N) <=> a = word 0`, REWRITE_TAC[GSYM LE_ANTISYM; WORD_CTZ_LE_DIMINDEX; WORD_LE_CTZ] THEN REWRITE_TAC[LE_REFL; WORD_EQ_BITS_ALT; BIT_WORD_0] THEN MESON_TAC[NOT_LE]);; let WORD_CTZ_LT_DIMINDEX = prove (`!a:N word. word_ctz a < dimindex(:N) <=> ~(a = word 0)`, REWRITE_TAC[LT_LE; WORD_CTZ_LE_DIMINDEX; WORD_CTZ_EQ_DIMINDEX]);; let WORD_CTZ_EQ_0 = prove (`!a:N word. word_ctz a = 0 <=> bit 0 a`, REWRITE_TAC[GSYM(CONJUNCT1 LE)] THEN REWRITE_TAC[WORD_CTZ_LE; CONJUNCT1 LE; UNWIND_THM2] THEN SIMP_TAC[DIMINDEX_GE_1; LE_1]);; let WORD_CTZ_UNIQUE_GEN = prove (`!(a:N word) n. word_ctz a = n <=> n <= dimindex(:N) /\ (n < dimindex(:N) ==> bit n a) /\ (!i. i < n ==> ~bit i a)`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM LE_ANTISYM] THEN REWRITE_TAC[WORD_CTZ_LE; WORD_LE_CTZ] THEN ASM_CASES_TAC `n <= dimindex(:N)` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[NOT_LT; MESON[] `p ==> ~bit a b <=> bit a b ==> ~p`] THEN ASM_CASES_TAC `n < dimindex(:N)` THEN ASM_REWRITE_TAC[] THEN MESON_TAC[LE_ANTISYM]);; let WORD_CTZ_UNIQUE = prove (`!(a:N word) n. n < dimindex(:N) ==> (word_ctz a = n <=> bit n a /\ !i. i < n ==> ~bit i a)`, SIMP_TAC[WORD_CTZ_UNIQUE_GEN; LT_IMP_LE]);; let WORD_LE_CTZ_VAL_MOD = prove (`!(a:N word) n. n <= word_ctz a <=> n <= dimindex(:N) /\ val a MOD 2 EXP n = 0`, REPEAT GEN_TAC THEN REWRITE_TAC[WORD_LE_CTZ] THEN ASM_CASES_TAC `n <= dimindex(:N)` THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [GSYM CONTRAPOS_THM] THEN REWRITE_TAC[VAL_MOD; NOT_LE] THEN SIMP_TAC[NSUM_EQ_0_IFF; FINITE_NUMSEG_LT; IN_ELIM_THM] THEN REWRITE_TAC[MULT_EQ_0; EXP_EQ_0; ARITH_EQ; BITVAL_EQ_0]);; let WORD_LE_CTZ_VAL = prove (`!(a:N word) n. n <= word_ctz a <=> n <= dimindex(:N) /\ 2 EXP n divides val a`, REWRITE_TAC[WORD_LE_CTZ_VAL_MOD] THEN MESON_TAC[divides; MOD_EQ_0; MULT_SYM]);; let WORD_CTZ_UNIQUE_VAL = prove (`!(a:N word) n. val a MOD (2 EXP (n + 1)) = 2 EXP n ==> word_ctz a = n`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `dimindex(:N)` o MATCH_MP (ARITH_RULE `a MOD p = n ==> !e. a MOD p <= a ==> a < 2 EXP e ==> n < 2 EXP e`)) THEN REWRITE_TAC[VAL_BOUND; MOD_LE; LT_EXP; ARITH] THEN DISCH_TAC THEN ASM_SIMP_TAC[WORD_CTZ_UNIQUE] THEN CONJ_TAC THENL [ASM_REWRITE_TAC[BIT_VAL_MOD; LE_REFL]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o AP_TERM `\x. x MOD (2 EXP n)`) THEN REWRITE_TAC[EXP_ADD; MOD_MOD; MOD_REFL] THEN REWRITE_TAC[GSYM VAL_WORD_AND_MASK] THEN REWRITE_TAC[VAL_EQ_0; WORD_EQ_BITS; BIT_WORD_0] THEN REWRITE_TAC[BIT_WORD_AND; BIT_WORD_OF_BITS; IN_ELIM_THM] THEN ASM_MESON_TAC[LT_TRANS]);; let WORD_CLZ_0 = prove (`word_clz(word 0:N word) = dimindex(:N)`, REWRITE_TAC[word_clz; BIT_WORD_0] THEN MATCH_MP_TAC(ARITH_RULE `d = 0 ==> m - d = m`) THEN MATCH_MP_TAC MINIMAL_UNIQUE THEN REWRITE_TAC[LT]);; let WORD_SIZE_SUB_CLZ = prove (`!(a:N word). dimindex(:N) - word_clz(a) = (minimal m. !i. m <= i ==> ~bit i a)`, REPEAT GEN_TAC THEN REWRITE_TAC[word_clz] THEN MATCH_MP_TAC(ARITH_RULE `m:num <= n ==> n - (n - m) = m`) THEN MATCH_MP_TAC MINIMAL_UBOUND THEN MESON_TAC[BIT_TRIVIAL]);; let WORD_CLZ_LE_DIMINDEX = prove (`!a:N word. word_clz(a) <= dimindex(:N)`, REWRITE_TAC[word_clz] THEN ARITH_TAC);; let WORD_LE_CLZ = prove (`!(a:N word) n. n <= word_clz(a) <=> n <= dimindex(:N) /\ !i. bit i a ==> i + n < dimindex(:N)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `n <= dimindex(:N)` THENL [ASM_REWRITE_TAC[]; ASM_MESON_TAC[WORD_CLZ_LE_DIMINDEX; LE_TRANS]] THEN TRANS_TAC EQ_TRANS `dimindex(:N) - word_clz(a:N word) <= dimindex(:N) - n` THEN CONJ_TAC THENL [ASM_ARITH_TAC; REWRITE_TAC[WORD_SIZE_SUB_CLZ]] THEN W(MP_TAC o PART_MATCH (lhand o rand) MINIMAL_LE o lhand o snd) THEN REWRITE_TAC[] THEN ANTS_TAC THENL [MESON_TAC[BIT_TRIVIAL]; DISCH_THEN SUBST1_TAC] THEN ONCE_REWRITE_TAC[TAUT `p ==> ~q <=> q ==> ~p`] THEN REWRITE_TAC[NOT_LE; MESON[LE_REFL; LTE_TRANS] `(?m:num. m <= n /\ !i. P i ==> i < m) <=> (!i. P i ==> i < n)`] THEN ASM_SIMP_TAC[ARITH_RULE `n:num <= d ==> (i < d - n <=> i + n < d)`]);; let WORD_CLZ_LE = prove (`!(a:N word) n. word_clz(a) <= n <=> n < dimindex(:N) ==> ?i. dimindex(:N) <= i + n + 1 /\ bit i a`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `m <= n <=> ~(SUC n <= m)`] THEN REWRITE_TAC[WORD_LE_CLZ; DE_MORGAN_THM] THEN REWRITE_TAC[LE_SUC_LT] THEN ASM_CASES_TAC `n < dimindex(:N)` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; NOT_LT] THEN MESON_TAC[ARITH_RULE `i + SUC n = i + n + 1`]);; let WORD_CLZ_LBOUND_ALT = prove (`!(a:N word) i. bit i a ==> word_clz(a) + i < dimindex(:N)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(ARITH_RULE `~(n <= i) /\ c <= (n - 1) - i ==> c + i < n`) THEN CONJ_TAC THENL [ASM_MESON_TAC[BIT_TRIVIAL]; ALL_TAC] THEN REWRITE_TAC[WORD_CLZ_LE] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `i:num` THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC);; let WORD_CLZ_LBOUND = prove (`!(a:N word) i. bit i a ==> word_clz(a) < dimindex(:N) - i`, MESON_TAC[WORD_CLZ_LBOUND_ALT; ARITH_RULE `a + i:num < n ==> a < n - i`]);; let WORD_CLZ_EQ_DIMINDEX = prove (`!a:N word. word_clz a = dimindex(:N) <=> a = word 0`, REWRITE_TAC[GSYM LE_ANTISYM; WORD_CLZ_LE_DIMINDEX; WORD_LE_CLZ] THEN REWRITE_TAC[LE_REFL; ARITH_RULE `~(i + n:num < n)`] THEN REWRITE_TAC[WORD_EQ_BITS; BIT_WORD_0]);; let WORD_CLZ_LT_DIMINDEX = prove (`!a:N word. word_clz a < dimindex(:N) <=> ~(a = word 0)`, REWRITE_TAC[LT_LE; WORD_CLZ_LE_DIMINDEX; WORD_CLZ_EQ_DIMINDEX]);; let WORD_CLZ_EQ_0 = prove (`!a:N word. word_clz a = 0 <=> bit (dimindex(:N) - 1) a`, REWRITE_TAC[GSYM(CONJUNCT1 LE)] THEN REWRITE_TAC[WORD_CLZ_LE; CONJUNCT1 LE; UNWIND_THM2] THEN GEN_TAC THEN SIMP_TAC[DIMINDEX_GE_1; LE_1; ADD_CLAUSES] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [MESON[BIT_TRIVIAL] `bit i (a:N word) <=> ~(dimindex(:N) <= i) /\ bit i a`] THEN REWRITE_TAC[CONJ_ASSOC; DIMINDEX_GE_1; UNWIND_THM2; ARITH_RULE `n <= i + 1 /\ ~(n <= i) <=> i = n - 1 /\ 1 <= n`]);; let WORD_CLZ_DECOMP = prove (`!a:N word. word_clz(a) + (minimal m. !i. m <= i ==> ~bit i a) = dimindex(:N)`, GEN_TAC THEN REWRITE_TAC[word_clz] THEN MATCH_MP_TAC SUB_ADD THEN MATCH_MP_TAC MINIMAL_UBOUND THEN MESON_TAC[BIT_TRIVIAL]);; let WORD_CLZ_UNIQUE_GEN = prove (`!(a:N word) n. word_clz a = n <=> n <= dimindex(:N) /\ (n < dimindex(:N) ==> bit (dimindex(:N) - n - 1) a) /\ (!i. dimindex(:N) - n <= i ==> ~bit i a)`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM LE_ANTISYM] THEN REWRITE_TAC[WORD_CLZ_LE; WORD_LE_CLZ] THEN ASM_CASES_TAC `n <= dimindex(:N)` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[NOT_LT; MESON[] `p ==> ~bit a b <=> bit a b ==> ~p`] THEN ASM_SIMP_TAC[ARITH_RULE `n:num <= N ==> (~(N - n <= i) <=> i + n < N)`] THEN ASM_CASES_TAC `n < dimindex(:N)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `(r ==> (p <=> q)) ==> (p /\ r <=> q /\ r)`) THEN DISCH_THEN(fun th -> ONCE_REWRITE_TAC[MATCH_MP (MESON[] `(!i. bit i a ==> P i) ==> (!i. bit i a <=> P i /\ bit i a)`) th]) THEN ASM_REWRITE_TAC[CONJ_ASSOC; DIMINDEX_GE_1; UNWIND_THM2; ARITH_RULE `N <= i + n + 1 /\ i + n < N <=> 1 <= N /\ n < N /\ i = N - n - 1`] THEN EQ_TAC THEN SIMP_TAC[] THEN ASM_ARITH_TAC);; let WORD_CLZ_UNIQUE = prove (`!(a:N word) n. n < dimindex(:N) ==> (word_clz a = n <=> bit (dimindex(:N) - n - 1) a /\ !i. dimindex(:N) - n <= i ==> ~bit i a)`, SIMP_TAC[WORD_CLZ_UNIQUE_GEN; LT_IMP_LE]);; let WORD_LE_CLZ_VAL = prove (`!(a:N word) n. n <= word_clz a <=> n <= dimindex(:N) /\ val a < 2 EXP (dimindex(:N) - n)`, REPEAT GEN_TAC THEN REWRITE_TAC[WORD_LE_CLZ] THEN ASM_CASES_TAC `n <= dimindex(:N)` THEN ASM_REWRITE_TAC[] THEN TRANS_TAC EQ_TRANS `val(a:N word) DIV 2 EXP (dimindex(:N) - n) = 0` THEN CONJ_TAC THENL [ALL_TAC; SIMP_TAC[DIV_EQ_0; EXP_EQ_0; ARITH_EQ]] THEN REWRITE_TAC[VAL_DIV] THEN W(MP_TAC o PART_MATCH (lhand o rand) NSUM_EQ_0_IFF o rand o snd) THEN ANTS_TAC THENL [MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{i | i < dimindex(:N)}` THEN REWRITE_TAC[FINITE_NUMSEG_LT] THEN SET_TAC[]; DISCH_THEN SUBST1_TAC] THEN REWRITE_TAC[FORALL_IN_GSPEC; MULT_EQ_0; EXP_EQ_0; ARITH_EQ; BITVAL_EQ_0] THEN ASSUME_TAC(SPEC `a:N word` BIT_TRIVIAL) THEN EQ_TAC THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `i:num` THEN FIRST_X_ASSUM(MP_TAC o SPEC `i:num`) THEN ASM_CASES_TAC `bit i (a:N word)` THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC);; let WORD_LE_CLZ_VAL_MULT = prove (`!(a:N word) n. n <= word_clz a <=> n <= dimindex(:N) /\ 2 EXP n * val a < 2 EXP dimindex(:N)`, REPEAT GEN_TAC THEN REWRITE_TAC[WORD_LE_CLZ_VAL] THEN ASM_CASES_TAC `n <= dimindex(:N)` THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `2 EXP dimindex(:N) = 2 EXP n * 2 EXP (dimindex(:N) - n)` SUBST1_TAC THENL [REWRITE_TAC[GSYM EXP_ADD] THEN AP_TERM_TAC THEN ASM_ARITH_TAC; REWRITE_TAC[LT_MULT_LCANCEL; EXP_EQ_0; ARITH_EQ]]);; let WORD_LE_CLZ_VAL_DIV = prove (`!(a:N word) n. n <= word_clz a <=> n <= dimindex(:N) /\ val a DIV (2 EXP (dimindex(:N) - n)) = 0`, SIMP_TAC[DIV_EQ_0; EXP_EQ_0; ARITH_EQ; WORD_LE_CLZ_VAL]);; let VAL_BOUND_CLZ = prove (`!(a:N word) n. 2 EXP n * val a < 2 EXP dimindex(:N) <=> a = word 0 \/ n <= word_clz a`, REPEAT GEN_TAC THEN ASM_CASES_TAC `a:N word = word 0` THEN ASM_REWRITE_TAC[VAL_WORD_0; MULT_CLAUSES; EXP_LT_0; EXP_EQ_0; ARITH_EQ] THEN REWRITE_TAC[WORD_LE_CLZ_VAL_MULT] THEN REWRITE_TAC[TAUT `(p <=> q /\ p) <=> p ==> q`] THEN DISCH_THEN(MP_TAC o MATCH_MP (ARITH_RULE `n * a < N ==> n * 1 <= n * a ==> n <= N`)) THEN REWRITE_TAC[LE_EXP; ARITH_EQ; EXP_EQ_0; LE_MULT_LCANCEL] THEN ASM_SIMP_TAC[LE_1; VAL_EQ_0]);; let WORD_CLZ_UNIQUE_VAL = prove (`!(a:N word) n. n < dimindex(:N) /\ val a DIV (2 EXP (dimindex(:N) - n - 1)) = 1 ==> word_clz a = n`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[WORD_CLZ_UNIQUE] THEN CONJ_TAC THENL [ASM_REWRITE_TAC[BIT_VAL; ARITH]; ALL_TAC] THEN X_GEN_TAC `i:num` THEN DISCH_TAC THEN SUBGOAL_THEN `i = (dimindex (:N) - n - 1) + SUC(i - (dimindex(:N) - n))` SUBST1_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN ASM_SIMP_TAC[BIT_VAL; EXP_ADD; GSYM DIV_DIV] THEN MATCH_MP_TAC(MESON[ODD] `n = 0 ==> ~ODD n`) THEN SIMP_TAC[DIV_EQ_0; ARITH_EQ; EXP_EQ_0] THEN GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `1 = 2 EXP 0`] THEN REWRITE_TAC[LT_EXP] THEN ARITH_TAC);; let WORD_CTZ_BIT = prove (`!k. word_ctz (word_of_bits {k}:N word) = MIN k (dimindex(:N))`, GEN_TAC THEN REWRITE_TAC[WORD_CTZ_UNIQUE_GEN; BIT_WORD_OF_BITS; IN_SING] THEN REWRITE_TAC[ARITH_RULE `MIN k n = if k < n then k else n`] THEN ASM_MESON_TAC[LT_IMP_LE; LT_REFL; LE_REFL]);; let WORD_CLZ_BIT = prove (`!k. word_clz (word_of_bits {k}:N word) = if k < dimindex(:N) then dimindex(:N) - 1 - k else dimindex(:N)`, GEN_TAC THEN REWRITE_TAC[WORD_CLZ_UNIQUE_GEN; BIT_WORD_OF_BITS; IN_SING] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC);; let WORD_CTZ_MASK_WORD = prove (`!k. word_ctz (word(2 EXP k - 1):N word) = if k = 0 then dimindex(:N) else 0`, GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[WORD_CTZ_0; WORD_CTZ_EQ_0] THEN ASM_SIMP_TAC[BIT_MASK_WORD; DIMINDEX_GE_1; LE_1]);; let WORD_CLZ_MASK_WORD = prove (`!k. word_clz (word(2 EXP k - 1):N word) = dimindex(:N) - k`, REWRITE_TAC[WORD_CLZ_UNIQUE_GEN; BIT_MASK_WORD] THEN ASM_ARITH_TAC);; let WORD_AND_NEG_CTZ = prove (`!x:N word. word_and x (word_neg x) = word_of_bits {word_ctz x}`, GEN_TAC THEN REWRITE_TAC[WORD_EQ_BITS_ALT] THEN REWRITE_TAC[BIT_WORD_AND_NEG; BIT_WORD_OF_BITS; IN_SING] THEN MESON_TAC[WORD_CTZ_UNIQUE_GEN; LT_IMP_LE]);; let WORD_XOR_SUB_1_CTZ = prove (`!x:N word. word_xor x (word_sub x (word 1)) = word(2 EXP (word_ctz x + 1) - 1)`, REWRITE_TAC[WORD_EQ_BITS_ALT; BIT_WORD_XOR_SUB_1; BIT_MASK_WORD] THEN SIMP_TAC[WORD_LE_CTZ; ARITH_RULE `a < b + 1 <=> a <= b`] THEN MESON_TAC[LT_IMP_LE; NOT_LT]);; let WORD_AND_NOT_SUB_1_CTZ = prove (`!x:N word. word_and (word_not x) (word_sub x (word 1)) = word(2 EXP word_ctz x - 1)`, SIMP_TAC[WORD_EQ_BITS_ALT; BIT_WORD_AND_NOT_SUB_1; BIT_MASK_WORD] THEN REWRITE_TAC[GSYM NOT_LE; WORD_CTZ_LE] THEN MESON_TAC[NOT_LE]);; let WORD_CTZ_EMULATION_REV = prove (`!x:N word. word_clz(word_and (word_not x) (word_sub x (word 1))) = dimindex(:N) - word_ctz x`, REWRITE_TAC[WORD_AND_NOT_SUB_1_CTZ; WORD_CLZ_MASK_WORD]);; let WORD_CTZ_EMULATION_AND_NEG_REV = prove (`!x:N word. word_clz(word_and x (word_neg x)) = if x = word 0 then dimindex(:N) else dimindex(:N) - 1 - word_ctz x`, GEN_TAC THEN REWRITE_TAC[WORD_AND_NEG_CTZ; WORD_CLZ_BIT] THEN REWRITE_TAC[WORD_CTZ_LT_DIMINDEX; COND_SWAP] THEN ARITH_TAC);; let WORD_CTZ_EMULATION_XOR_SUB_1_REV = prove (`!x:N word. word_clz(word_xor x (word_sub x (word 1))) = dimindex(:N) - 1 - word_ctz x`, GEN_TAC THEN REWRITE_TAC[WORD_XOR_SUB_1_CTZ; WORD_CLZ_MASK_WORD] THEN ARITH_TAC);; let WORD_CTZ_EMULATION = prove (`!x:N word. word_ctz x = dimindex(:N) - word_clz(word_and (word_not x) (word_sub x (word 1)))`, GEN_TAC THEN MATCH_MP_TAC(ARITH_RULE `t:num <= n /\ l <= n /\ l = n - t ==> t = n - l`) THEN REWRITE_TAC[WORD_CLZ_LE_DIMINDEX; WORD_CTZ_LE_DIMINDEX] THEN REWRITE_TAC[WORD_CTZ_EMULATION_REV]);; let WORD_CTZ_EMULATION_AND_NEG = prove (`!x:N word. word_ctz x = if x = word 0 then dimindex(:N) else dimindex(:N) - 1 - word_clz(word_and x (word_neg x))`, GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[WORD_CTZ_0] THEN ASM_REWRITE_TAC[WORD_CTZ_EMULATION_AND_NEG_REV] THEN ASM_SIMP_TAC[WORD_CTZ_LT_DIMINDEX; DIMINDEX_GE_1; ARITH_RULE `1 <= n ==> (c = n - 1 - (n - 1 - c) <=> c < n)`]);; let WORD_CTZ_EMULATION_XOR_SUB_1 = prove (`!x:N word. word_ctz x = if x = word 0 then dimindex(:N) else dimindex(:N) - 1 - word_clz(word_xor x (word_sub x (word 1)))`, GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[WORD_CTZ_0] THEN REWRITE_TAC[WORD_CTZ_EMULATION_XOR_SUB_1_REV] THEN ASM_SIMP_TAC[WORD_CTZ_LT_DIMINDEX; DIMINDEX_GE_1; ARITH_RULE `1 <= n ==> (c = n - 1 - (n - 1 - c) <=> c < n)`]);; let WORD_CLZ_IMP = prove (`!(x:N word) (y:N word). (!i. i < dimindex(:N) /\ bit i x ==> bit i y) ==> word_clz y <= word_clz x`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(MESON[LE_TRANS; LE_REFL] `(!d:num. d <= x ==> d <= y) ==> x <= y`) THEN REWRITE_TAC[WORD_LE_CLZ] THEN ASM_MESON_TAC[BIT_TRIVIAL; NOT_LE]);; let WORD_CLZ_OR = prove (`!(x:N word) y. word_clz (word_or x y) = MIN (word_clz x) (word_clz y)`, REPEAT GEN_TAC THEN REWRITE_TAC[ARITH_RULE `p = MIN m n <=> p <= m /\ p <= n /\ (m <= p \/ n <= p)`] THEN SIMP_TAC[WORD_CLZ_IMP; BIT_WORD_OR_ALT] THEN MP_TAC(ISPEC `word_or x y:N word` WORD_LE_CLZ) THEN REWRITE_TAC[BIT_WORD_OR_ALT; FORALL_AND_THM; TAUT `p \/ q ==> r <=> (p ==> r) /\ (q ==> r)`] THEN ONCE_REWRITE_TAC[TAUT `p /\ q /\ r <=> (p /\ q) /\ (p /\ r)`] THEN SIMP_TAC[GSYM WORD_LE_CLZ] THEN ARITH_TAC);; let WORD_CTZ_IMP = prove (`!(x:N word) (y:N word). (!i. i < dimindex(:N) /\ bit i x ==> bit i y) ==> word_ctz y <= word_ctz x`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(MESON[LE_TRANS; LE_REFL] `(!d:num. d <= x ==> d <= y) ==> x <= y`) THEN REWRITE_TAC[WORD_LE_CTZ] THEN ASM_MESON_TAC[BIT_TRIVIAL; NOT_LE]);; let WORD_CTZ_OR = prove (`!(x:N word) y. word_ctz (word_or x y) = MIN (word_ctz x) (word_ctz y)`, REPEAT GEN_TAC THEN REWRITE_TAC[ARITH_RULE `p = MIN m n <=> p <= m /\ p <= n /\ (m <= p \/ n <= p)`] THEN SIMP_TAC[WORD_CTZ_IMP; BIT_WORD_OR_ALT] THEN MP_TAC(ISPEC `word_or x y:N word` WORD_LE_CTZ) THEN REWRITE_TAC[BIT_WORD_OR_ALT; FORALL_AND_THM; TAUT `p \/ q ==> r <=> (p ==> r) /\ (q ==> r)`] THEN ONCE_REWRITE_TAC[TAUT `p /\ q /\ r <=> (p /\ q) /\ (p /\ r)`] THEN SIMP_TAC[GSYM WORD_LE_CTZ] THEN ARITH_TAC);; let WORD_CLZ_MONO = prove (`!(x:N word) (y:N word). val x <= val y ==> word_clz y <= word_clz x`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(MESON[LE_TRANS; LE_REFL] `(!d:num. d <= x ==> d <= y) ==> x <= y`) THEN REWRITE_TAC[WORD_LE_CLZ_VAL] THEN ASM_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Alignment. The definition rolls in the assumption that the value is a *) (* power of 2 no more than the wordsize, which seems intuitively natural. *) (* ------------------------------------------------------------------------- *) let aligned = new_definition `aligned n (a:N word) <=> n divides 2 EXP dimindex(:N) /\ n divides val a`;; let ALIGNED = prove (`!n x:N word. aligned n x <=> n divides 2 EXP dimindex(:N) /\ &n divides ival(x)`, REPEAT GEN_TAC THEN REWRITE_TAC[aligned] THEN MATCH_MP_TAC(TAUT `(p ==> (q <=> r)) ==> (p /\ q <=> p /\ r)`) THEN REWRITE_TAC[num_divides; GSYM INT_OF_NUM_CLAUSES] THEN MATCH_MP_TAC(INTEGER_RULE `(y:int == x) (mod m) ==> n divides m ==> (n divides x <=> n divides y)`) THEN REWRITE_TAC[IVAL_VAL_CONG]);; let ALIGNED_WORD = prove (`!n k. aligned n (word k:N word) <=> n divides 2 EXP dimindex(:N) /\ n divides k`, REPEAT GEN_TAC THEN REWRITE_TAC[aligned] THEN MATCH_MP_TAC(TAUT `(p ==> (q <=> r)) ==> (p /\ q <=> p /\ r)`) THEN GEN_REWRITE_TAC LAND_CONV [divides] THEN REWRITE_TAC[aligned; VAL_WORD; DIVIDES_MOD] THEN DISCH_THEN(CHOOSE_THEN SUBST1_TAC) THEN REWRITE_TAC[MOD_MOD]);; let ALIGNED_IWORD = prove (`!n k. aligned n (iword k:N word) <=> n divides 2 EXP dimindex(:N) /\ &n divides k`, REPEAT GEN_TAC THEN REWRITE_TAC[ALIGNED] THEN MATCH_MP_TAC(TAUT `(p ==> (q <=> r)) ==> (p /\ q <=> p /\ r)`) THEN REWRITE_TAC[num_divides; GSYM INT_OF_NUM_CLAUSES] THEN MATCH_MP_TAC(INTEGER_RULE `(x:int == y) (mod m) ==> n divides m ==> (n divides x <=> n divides y)`) THEN REWRITE_TAC[IVAL_IWORD_CONG]);; let ALIGNED_WORD_0 = prove (`!n. aligned n (word 0:N word) <=> n divides 2 EXP dimindex(:N)`, REWRITE_TAC[ALIGNED_WORD; VAL_WORD_0] THEN CONV_TAC NUMBER_RULE);; let ALIGNED_WORD_NEG = prove (`!n x:N word. aligned n (word_neg x) <=> aligned n x`, REPEAT GEN_TAC THEN REWRITE_TAC[ALIGNED] THEN REWRITE_TAC[num_divides; GSYM INT_OF_NUM_CLAUSES] THEN MATCH_MP_TAC(INTEGER_RULE `(y:int == --x) (mod e) ==> (n divides e /\ n divides y <=> n divides e /\ n divides x)`) THEN REWRITE_TAC[ICONG_WORD_NEG]);; let ALIGNED_WORD_ADD = prove (`!n a b:N word. aligned n a /\ aligned n b ==> aligned n (word_add a b)`, REWRITE_TAC[FORALL_WORD; ALIGNED_WORD; GSYM WORD_ADD] THEN CONV_TAC NUMBER_RULE);; let ALIGNED_WORD_MUL = prove (`!n a b:N word. aligned n a \/ aligned n b ==> aligned n (word_mul a b)`, REWRITE_TAC[FORALL_WORD; ALIGNED_WORD; GSYM WORD_MUL] THEN CONV_TAC NUMBER_RULE);; let ALIGNED_WORD_SUB = prove (`!n a b:N word. aligned n a /\ aligned n b ==> aligned n (word_sub a b)`, REWRITE_TAC[WORD_RULE `word_sub x y:N word = word_add x (word_neg y)`] THEN SIMP_TAC[ALIGNED_WORD_NEG; ALIGNED_WORD_ADD]);; let ALIGNED_WORD_ADD_EQ = prove (`(!n x y:N word. aligned n x ==> (aligned n (word_add x y) <=> aligned n y)) /\ (!n x y:N word. aligned n y ==> (aligned n (word_add x y) <=> aligned n x))`, MESON_TAC[ALIGNED_WORD_ADD; ALIGNED_WORD_NEG; WORD_ADD_SYM; WORD_RULE `word_add (word_neg x) (word_add x y) = y`]);; let ALIGNED_WORD_SUB_EQ = prove (`(!n x y:N word. aligned n x ==> (aligned n (word_sub x y) <=> aligned n y)) /\ (!n x y:N word. aligned n y ==> (aligned n (word_sub x y) <=> aligned n x))`, REWRITE_TAC[WORD_RULE `word_sub x y = word_add x (word_neg y)`] THEN MESON_TAC[ALIGNED_WORD_ADD_EQ; ALIGNED_WORD_NEG]);; (* ------------------------------------------------------------------------- *) (* JVM-specific word operations, though they may well work in other places. *) (* *) (* All shift operations mask out the lower bits as the unsigned shift count. *) (* *) (* Division does truncation towards zero; at this level there is no concept *) (* of an exception on division by zero. Note that the JVM is defined anyway *) (* so INT_MIN / -1 doesn't generate any exception, just returning the *) (* correct modular result as per the usual pattern. *) (* *) (* Remainder is then defined by the usual Euclidean identity. *) (* ------------------------------------------------------------------------- *) let word_jshl = new_definition `word_jshl (x:N word) (y:N word) = word_shl x (val y MOD dimindex(:N))`;; let word_jshr = new_definition `word_jshr (x:N word) (y:N word) = word_ishr x (val y MOD dimindex(:N))`;; let word_jushr = new_definition `word_jushr (x:N word) (y:N word) = word_ushr x (val y MOD dimindex(:N))`;; let word_jdiv = new_definition `word_jdiv:N word->N word->N word = imodular (\a b. int_sgn a * int_sgn b * (abs(a) div abs(b)))`;; let word_jrem = new_definition `word_jrem (x:N word) (y:N word) = word_sub x (word_mul (word_jdiv x y) y)`;; (* ------------------------------------------------------------------------- *) (* The JVM doesn't include rotates as primitive, but here is what they *) (* obviously would be like, and proof that some emulations work. Note that *) (* emulation using negative shifts relies not only on the Java *) (* masking treatment of shift counts but also on the word size being a *) (* power of 2 (of course for the JVM it is 2^5 = 32 or 2^6 = 64). *) (* ------------------------------------------------------------------------- *) let word_jror = new_definition `word_jror (w:N word) (k:N word) = word_ror w (val k)`;; let word_jrol = new_definition `word_jrol (w:N word) (k:N word) = word_rol w (val k)`;; let VAL_WORD_NEG_MOD_DIMINDEX = prove (`!k:N word. dimindex(:N) divides 2 EXP dimindex(:N) ==> (val(word_neg k) == dimindex (:N) - val k MOD dimindex(:N)) (mod dimindex(:N))`, REPEAT STRIP_TAC THEN REWRITE_TAC[VAL_WORD_NEG; CONG] THEN MATCH_MP_TAC(MESON[] `x MOD n MOD m = x MOD m /\ x MOD m = y ==> x MOD n MOD m = y`) THEN CONJ_TAC THENL [ASM_MESON_TAC[divides; MOD_MOD]; ALL_TAC] THEN REWRITE_TAC[GSYM CONG; num_congruent] THEN SIMP_TAC[GSYM INT_OF_NUM_SUB; LT_IMP_LE; VAL_BOUND; DIVISION; DIMINDEX_NONZERO; GSYM INT_OF_NUM_REM] THEN MATCH_MP_TAC(INTEGER_RULE `n divides e /\ (k':int == k) (mod n) ==> (e - k == n - k') (mod n)`) THEN ASM_REWRITE_TAC[GSYM num_divides; INT_REM_MOD_SELF]);; let WORD_JROL_JROR = prove (`!w k:N word. dimindex(:N) divides 2 EXP dimindex(:N) ==> word_jrol w k = word_jror w (word_neg k)`, REPEAT STRIP_TAC THEN REWRITE_TAC[word_jrol; word_jror] THEN REWRITE_TAC[WORD_ROL_ROR_GEN] THEN MATCH_MP_TAC WORD_ROR_PERIODIC THEN ONCE_REWRITE_TAC[NUMBER_RULE `(x:num == y) (mod n) <=> (y == x) (mod n)`] THEN MATCH_MP_TAC VAL_WORD_NEG_MOD_DIMINDEX THEN ASM_REWRITE_TAC[]);; let WORD_JROR_JROL = prove (`!w k:N word. dimindex(:N) divides 2 EXP dimindex(:N) ==> word_jror w k = word_jrol w (word_neg k)`, REPEAT STRIP_TAC THEN REWRITE_TAC[word_jrol; word_jror] THEN REWRITE_TAC[WORD_ROR_ROL_GEN] THEN MATCH_MP_TAC WORD_ROL_PERIODIC THEN ONCE_REWRITE_TAC[NUMBER_RULE `(x:num == y) (mod n) <=> (y == x) (mod n)`] THEN MATCH_MP_TAC VAL_WORD_NEG_MOD_DIMINDEX THEN ASM_REWRITE_TAC[]);; let WORD_JROR = prove (`!w k:N word. dimindex(:N) divides 2 EXP dimindex(:N) ==> word_jror w k = word_or (word_jushr w k) (word_jshl w (word_neg k))`, REPEAT STRIP_TAC THEN REWRITE_TAC[word_jror; word_jushr; word_jshl] THEN ONCE_REWRITE_TAC[WORD_ROR_MOD] THEN SIMP_TAC[WORD_ROR_SHIFTS; DIVISION; DIMINDEX_NONZERO; LT_IMP_LE] THEN FIRST_X_ASSUM(MP_TAC o ISPEC `k:N word` o MATCH_MP VAL_WORD_NEG_MOD_DIMINDEX) THEN REWRITE_TAC[CONG] THEN DISCH_THEN SUBST1_TAC THEN ASM_CASES_TAC `val(k:N word) MOD dimindex(:N) = 0` THENL [ASM_REWRITE_TAC[SUB_0; MOD_REFL; WORD_USHR_ZERO; WORD_SHL_ZERO] THEN MATCH_MP_TAC(WORD_BITWISE_RULE `y = word 0 ==> word_or x y = word_or x x`) THEN REWRITE_TAC[GSYM VAL_EQ_0; VAL_WORD_SHL; MOD_MULT]; AP_TERM_TAC THEN AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC MOD_LT THEN REWRITE_TAC[ARITH_RULE `n - k < n <=> ~(k = 0) /\ ~(n = 0)`] THEN ASM_REWRITE_TAC[DIMINDEX_NONZERO]]);; let WORD_JROL = prove (`!w k:N word. dimindex(:N) divides 2 EXP dimindex(:N) ==> word_jrol w k = word_or (word_jshl w k) (word_jushr w (word_neg k))`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[WORD_JROL_JROR; WORD_JROR] THEN ONCE_REWRITE_TAC[WORD_RULE `word_neg(word_neg x):N word = x`] THEN CONV_TAC WORD_BITWISE_RULE);; let WORD_JUSHR_NEG = prove (`!w k:N word. dimindex(:N) divides 2 EXP dimindex(:N) ==> word_jushr w (word_neg k) = if val k MOD dimindex(:N) = 0 then w else word_ushr w (dimindex(:N) - val k MOD dimindex(:N))`, REPEAT STRIP_TAC THEN REWRITE_TAC[word_jushr] THEN ASM_SIMP_TAC[REWRITE_RULE[CONG] VAL_WORD_NEG_MOD_DIMINDEX] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[SUB_0; MOD_REFL; WORD_USHR_ZERO] THEN ASM_SIMP_TAC[MOD_LT; DIMINDEX_GE_1; ARITH_RULE `1 <= n /\ ~(m = 0) ==> n - m < n`]);; let WORD_JSHL_NEG = prove (`!w k:N word. dimindex(:N) divides 2 EXP dimindex(:N) ==> word_jshl w (word_neg k) = if val k MOD dimindex(:N) = 0 then w else word_shl w (dimindex(:N) - val k MOD dimindex(:N))`, REPEAT STRIP_TAC THEN REWRITE_TAC[word_jshl] THEN ASM_SIMP_TAC[REWRITE_RULE[CONG] VAL_WORD_NEG_MOD_DIMINDEX] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[SUB_0; MOD_REFL; WORD_SHL_ZERO] THEN ASM_SIMP_TAC[MOD_LT; DIMINDEX_GE_1; ARITH_RULE `1 <= n /\ ~(m = 0) ==> n - m < n`]);; (* ------------------------------------------------------------------------- *) (* Conversion for "j" forms applied to numeral shift/rotate word. *) (* ------------------------------------------------------------------------- *) let WORD_WORD_OPERATION_CONV = let pth = prove (`word_jshl (x:N word) (word n) = word_shl x (n MOD (2 EXP dimindex(:N)) MOD dimindex(:N)) /\ word_jshr x (word n) = word_ishr x (n MOD (2 EXP dimindex(:N)) MOD dimindex(:N)) /\ word_jushr x (word n) = word_ushr x (n MOD (2 EXP dimindex(:N)) MOD dimindex(:N)) /\ word_jrol x (word n) = word_rol x (n MOD (2 EXP dimindex(:N)) MOD dimindex(:N)) /\ word_jror x (word n) = word_ror x (n MOD (2 EXP dimindex(:N)) MOD dimindex(:N))`, REWRITE_TAC[word_jshl; word_jshr; word_jushr; word_jrol; word_jror] THEN REWRITE_TAC[VAL_WORD; GSYM WORD_ROL_MOD; GSYM WORD_ROR_MOD]) in GEN_REWRITE_CONV I [pth] THENC RAND_CONV (BINOP2_CONV (RAND_CONV (!word_POW2SIZE_CONV) THENC NUM_MOD_CONV) (!word_SIZE_CONV) THENC NUM_MOD_CONV);; (* ------------------------------------------------------------------------- *) (* Emulation of unsigned comparisons using signed (useful for the JVM). *) (* ------------------------------------------------------------------------- *) let IVAL_TOPFLIP_VAL = prove (`!w:N word. ival(word_xor word_INT_MIN w) = &(val w) - &2 pow (dimindex(:N) - 1)`, REWRITE_TAC[INT_IVAL; WORD_XOR_INT_MIN] THEN REWRITE_TAC[INT_VAL_WORD_ADD_CASES; INT_VAL_WORD_INT_MIN; MSB_INT_VAL] THEN WORD_ARITH_TAC);; let WORD_ULE_TOPFLIP = prove (`!v w:N word. word_ule v w <=> word_ile (word_xor (word_INT_MIN) v) (word_xor (word_INT_MIN) w)`, REWRITE_TAC[word_ule; word_ile; relational2; irelational2] THEN REWRITE_TAC[IVAL_TOPFLIP_VAL; GSYM INT_OF_NUM_LE] THEN INT_ARITH_TAC);; let WORD_ULT_TOPFLIP = prove (`!v w:N word. word_ult v w <=> word_ilt (word_xor (word_INT_MIN) v) (word_xor (word_INT_MIN) w)`, REWRITE_TAC[word_ult; word_ilt; relational2; irelational2] THEN REWRITE_TAC[IVAL_TOPFLIP_VAL; GSYM INT_OF_NUM_LT] THEN INT_ARITH_TAC);; let WORD_UGE_TOPFLIP = prove (`!v w:N word. word_uge v w <=> word_ige (word_xor (word_INT_MIN) v) (word_xor (word_INT_MIN) w)`, REWRITE_TAC[word_uge; word_ige; relational2; irelational2] THEN REWRITE_TAC[IVAL_TOPFLIP_VAL; INT_GE; GE; GSYM INT_OF_NUM_LE] THEN INT_ARITH_TAC);; let WORD_UGT_TOPFLIP = prove (`!v w:N word. word_ugt v w <=> word_igt (word_xor (word_INT_MIN) v) (word_xor (word_INT_MIN) w)`, REWRITE_TAC[word_ugt; word_igt; relational2; irelational2] THEN REWRITE_TAC[IVAL_TOPFLIP_VAL; INT_GT; GT; GSYM INT_OF_NUM_LT] THEN INT_ARITH_TAC);; let WORD_ILT_TOPFLIP = prove (`!v w:N word. word_ilt v w <=> word_ult (word_xor word_INT_MIN v) (word_xor word_INT_MIN w)`, REWRITE_TAC[WORD_ULT_TOPFLIP] THEN REWRITE_TAC[WORD_BITWISE_RULE `word_xor m (word_xor m x) = x`]);; let WORD_ILE_TOPFLIP = prove (`!v w:N word. word_ile v w <=> word_ule (word_xor word_INT_MIN v) (word_xor word_INT_MIN w)`, REWRITE_TAC[WORD_ULE_TOPFLIP] THEN REWRITE_TAC[WORD_BITWISE_RULE `word_xor m (word_xor m x) = x`]);; let WORD_IGT_TOPFLIP = prove (`!v w:N word. word_igt v w <=> word_ugt (word_xor word_INT_MIN v) (word_xor word_INT_MIN w)`, REWRITE_TAC[WORD_UGT_TOPFLIP] THEN REWRITE_TAC[WORD_BITWISE_RULE `word_xor m (word_xor m x) = x`]);; let WORD_IGE_TOPFLIP = prove (`!v w:N word. word_ige v w <=> word_uge (word_xor word_INT_MIN v) (word_xor word_INT_MIN w)`, REWRITE_TAC[WORD_UGE_TOPFLIP] THEN REWRITE_TAC[WORD_BITWISE_RULE `word_xor m (word_xor m x) = x`]);; (* ------------------------------------------------------------------------- *) (* Characterizing exactness of word add or add-with-carry via comparison. *) (* ------------------------------------------------------------------------- *) let WORD_LE_ADD_EXACT = prove (`(!x y:N word. val x <= val(word_add x y) <=> val(word_add x y) = val x + val y) /\ (!x y:N word. val y <= val(word_add x y) <=> val(word_add x y) = val x + val y)`, WORD_ARITH_TAC);; let WORD_ADD_LT_EXACT = prove (`(!x y:N word. val(word_add x y) < val x <=> val(word_add x y) + 2 EXP dimindex(:N) = val x + val y) /\ (!x y:N word. val(word_add x y) < val y <=> val(word_add x y) + 2 EXP dimindex(:N) = val x + val y)`, WORD_ARITH_TAC);; let WORD_ADD_LT_INEXACT = prove (`(!x y:N word. val(word_add x y) < val x <=> ~(val(word_add x y) = val x + val y)) /\ (!x y:N word. val(word_add x y) < val y <=> ~(val(word_add x y) = val x + val y))`, WORD_ARITH_TAC);; let WORD_LT_ADC_EXACT = prove (`(!x y:N word. val x < val(word_add (word_add x y) (word 1)) <=> val(word_add (word_add x y) (word 1)) = val x + val y + 1) /\ (!x y:N word. val y < val(word_add (word_add x y) (word 1)) <=> val(word_add (word_add x y) (word 1)) = val x + val y + 1)`, WORD_ARITH_TAC);; let WORD_ADC_LE_EXACT = prove (`(!x y:N word. val(word_add (word_add x y) (word 1)) <= val x <=> val(word_add (word_add x y) (word 1)) + 2 EXP dimindex(:N) = val x + val y + 1) /\ (!x y:N word. val(word_add (word_add x y) (word 1)) <= val y <=> val(word_add (word_add x y) (word 1)) + 2 EXP dimindex(:N) = val x + val y + 1)`, WORD_ARITH_TAC);; let WORD_ADC_LE_INEXACT = prove (`(!x y:N word. val(word_add (word_add x y) (word 1)) <= val x <=> ~(val(word_add (word_add x y) (word 1)) = val x + val y + 1)) /\ (!x y:N word. val(word_add (word_add x y) (word 1)) <= val y <=> ~(val(word_add (word_add x y) (word 1)) = val x + val y + 1))`, WORD_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Conversion for explicit numeric bits of word operations, one level. *) (* For example BIT_WORD_CONV `bit 7 (word_sub x y:int16)` *) (* ------------------------------------------------------------------------- *) let BIT_WORD_CONV = let pth_ror = prove (`bit i (word_ror (w:N word) n) <=> (\m. (\s. if s < dimindex(:N) then bit s w else i < dimindex(:N) /\ bit (s - dimindex(:N)) w) (i + m)) (n MOD dimindex(:N))`, REWRITE_TAC[BIT_WORD_ROR]) and pth_rol = prove (`bit i (word_rol (w:N word) n) <=> (\m. if i < m then bit (i + dimindex(:N) - m) w else i < dimindex(:N) /\ bit (i - m) w) (n MOD dimindex(:N))`, REWRITE_TAC[BIT_WORD_ROL]) in let rule_add = (MATCH_MP o prove) (`n = SUC m ==> (bit n (word_add x y:N word) <=> n < dimindex(:N) /\ ((bit n x <=> bit n y) <=> bit m x /\ bit m y \/ (bit m x \/ bit m y) /\ ~bit m (word_add x y)))`, SIMP_TAC[REWRITE_RULE[GSYM ADD1] BIT_WORD_ADD_CLAUSES]) and rule_sub = (MATCH_MP o prove) (`n = SUC m ==> (bit n (word_sub x y:N word) <=> n < dimindex(:N) /\ ((bit n x <=> bit n y) <=> ~bit m x /\ bit m y \/ (~bit m x \/ bit m y) /\ bit m (word_sub x y)))`, SIMP_TAC[REWRITE_RULE[GSYM ADD1] BIT_WORD_SUB_CLAUSES]) and rule_neg = (MATCH_MP o prove) (`n = SUC m ==> (bit n (word_neg x:N word) <=> n < dimindex(:N) /\ (bit n x <=> ~bit m x /\ ~bit m (word_neg x)))`, SIMP_TAC[REWRITE_RULE[GSYM ADD1] BIT_WORD_NEG_CLAUSES]) and conv_shl = GEN_REWRITE_CONV I [REWRITE_RULE[CONJ_ASSOC] BIT_WORD_SHL] and conv_ror = GEN_REWRITE_CONV I [pth_ror] and conv_rol = GEN_REWRITE_CONV I [pth_rol] and conv_cond_t = GEN_REWRITE_CONV I [CONJUNCT1(SPEC_ALL COND_CLAUSES)] and conv_cond_f = GEN_REWRITE_CONV I [CONJUNCT2(SPEC_ALL COND_CLAUSES)] and conv_and = GEN_REWRITE_CONV I [AND_CLAUSES] and conv_and_t = GEN_REWRITE_CONV I [CONJUNCT1(SPEC_ALL AND_CLAUSES)] and conv_and_f = GEN_REWRITE_CONV I [el 2 (CONJUNCTS(SPEC_ALL AND_CLAUSES))] and zero_tm = `0` and one_tm = `1` in fun tm -> match tm with Comb(Comb(Const("bit",_),n),Comb(Const("word",_),m)) when is_numeral n && is_numeral m -> if m = zero_tm then GEN_REWRITE_CONV I [BIT_WORD_0] tm else if m = one_tm then (GEN_REWRITE_CONV I [BIT_WORD_1] THENC NUM_EQ_CONV) tm else (GEN_REWRITE_CONV I [BIT_WORD] THENC BINOP2_CONV (RAND_CONV(!word_SIZE_CONV) THENC NUM_LT_CONV) (RAND_CONV (RAND_CONV NUM_EXP_CONV THENC NUM_DIV_CONV) THENC NUM_ODD_CONV) THENC conv_and) tm | Comb(Comb(Const("bit",_),n),Comb(Const("word",_),m)) when is_numeral n && m = one_tm -> (GEN_REWRITE_CONV I [BIT_WORD_1] THENC NUM_EQ_CONV) tm | Comb(Comb(Const("bit",_),n),Comb(Const("word_not",_),_)) when is_numeral n -> (GEN_REWRITE_CONV I [BIT_WORD_NOT] THENC LAND_CONV(RAND_CONV(!word_SIZE_CONV) THENC NUM_LT_CONV) THENC conv_and) tm | Comb(Comb(Const("bit",_),n),Comb(Comb(Const("word_and",_),_),_)) when is_numeral n -> GEN_REWRITE_CONV I [BIT_WORD_AND_ALT] tm | Comb(Comb(Const("bit",_),n),Comb(Comb(Const("word_or",_),_),_)) when is_numeral n -> GEN_REWRITE_CONV I [BIT_WORD_OR_ALT] tm | Comb(Comb(Const("bit",_),n),Comb(Comb(Const("word_xor",_),_),_)) when is_numeral n -> GEN_REWRITE_CONV I [BIT_WORD_XOR_ALT] tm | Comb(Comb(Const("bit",_),n),Comb(Comb(Const("word_add",_),_),_)) when is_numeral n -> if n = zero_tm then (GEN_REWRITE_CONV I [CONJUNCT1 BIT_WORD_ADD_CLAUSES]) tm else (GEN_REWRITE_CONV I [rule_add (num_CONV n)] THENC LAND_CONV(RAND_CONV(!word_SIZE_CONV) THENC NUM_LT_CONV) THENC conv_and) tm | Comb(Comb(Const("bit",_),n),Comb(Comb(Const("word_sub",_),_),_)) when is_numeral n -> if n = zero_tm then (GEN_REWRITE_CONV I [CONJUNCT1 BIT_WORD_SUB_CLAUSES]) tm else (GEN_REWRITE_CONV I [rule_sub (num_CONV n)] THENC LAND_CONV(RAND_CONV(!word_SIZE_CONV) THENC NUM_LT_CONV) THENC conv_and) tm | Comb(Comb(Const("bit",_),n),Comb(Const("word_neg",_),_)) when is_numeral n -> if n = zero_tm then (GEN_REWRITE_CONV I [CONJUNCT1 BIT_WORD_NEG_CLAUSES]) tm else (GEN_REWRITE_CONV I [rule_neg (num_CONV n)] THENC LAND_CONV(RAND_CONV(!word_SIZE_CONV) THENC NUM_LT_CONV) THENC conv_and) tm | Comb(Comb(Const("bit",_),n),Comb(Comb(Const("word_shl",_),_),m)) when is_numeral n && is_numeral m -> (conv_shl THENC BINOP2_CONV (BINOP2_CONV NUM_LE_CONV (RAND_CONV(!word_SIZE_CONV) THENC NUM_LT_CONV) THENC conv_and) (LAND_CONV NUM_SUB_CONV) THENC conv_and) tm | Comb(Comb(Const("bit",_),n),Comb(Comb(Const("word_ushr",_),_),m)) when is_numeral n && is_numeral m -> (GEN_REWRITE_CONV I [BIT_WORD_USHR] THENC LAND_CONV NUM_ADD_CONV) tm | Comb(Comb(Const("bit",_),n),Comb(Comb(Const("word_ishr",_),_),m)) when is_numeral n && is_numeral m -> (GEN_REWRITE_CONV I [BIT_WORD_ISHR] THENC RATOR_CONV(LAND_CONV (BINOP2_CONV NUM_ADD_CONV (!word_SIZE_CONV) THENC NUM_LT_CONV)) THENC ((conv_cond_t THENC LAND_CONV NUM_ADD_CONV) ORELSEC (conv_cond_f THENC COMB2_CONV (RAND_CONV(RAND_CONV(!word_SIZE_CONV) THENC NUM_LT_CONV)) (LAND_CONV(LAND_CONV(!word_SIZE_CONV) THENC NUM_SUB_CONV)) THENC conv_and))) tm | Comb(Comb(Const("bit",_),n),Comb(Comb(Const("word_ror",_),_),m)) when is_numeral n && is_numeral m -> (conv_ror THENC RAND_CONV (RAND_CONV(!word_SIZE_CONV) THENC NUM_MOD_CONV) THENC BETA_CONV THENC RAND_CONV NUM_ADD_CONV THENC BETA_CONV THENC RATOR_CONV(LAND_CONV (RAND_CONV(!word_SIZE_CONV) THENC NUM_LT_CONV)) THENC (conv_cond_t ORELSEC (conv_cond_f THENC LAND_CONV(RAND_CONV(!word_SIZE_CONV) THENC NUM_LT_CONV) THENC ((conv_and_t THENC LAND_CONV(RAND_CONV(!word_SIZE_CONV) THENC NUM_SUB_CONV)) ORELSEC conv_and_f )))) tm | Comb(Comb(Const("bit",_),n),Comb(Comb(Const("word_rol",_),_),m)) when is_numeral n && is_numeral m -> (conv_rol THENC RAND_CONV (RAND_CONV(!word_SIZE_CONV) THENC NUM_MOD_CONV) THENC BETA_CONV THENC RATOR_CONV(LAND_CONV NUM_LT_CONV) THENC ((conv_cond_t THENC LAND_CONV(RAND_CONV (LAND_CONV(!word_SIZE_CONV) THENC NUM_SUB_CONV) THENC NUM_ADD_CONV)) ORELSEC (conv_cond_f THENC LAND_CONV(RAND_CONV(!word_SIZE_CONV) THENC NUM_LT_CONV) THENC ((conv_and_t THENC LAND_CONV NUM_SUB_CONV) ORELSEC conv_and_f) ))) tm | Comb(Comb(Const("bit",_),n),Comb(Comb(Const("word_join",_),_),_)) when is_numeral n -> (GEN_REWRITE_CONV I [BIT_WORD_JOIN] THENC LAND_CONV (RAND_CONV(!word_SIZE_CONV) THENC NUM_LT_CONV) THENC (conv_and_f ORELSEC (conv_and_t THENC RATOR_CONV(LAND_CONV (RAND_CONV(!word_SIZE_CONV) THENC NUM_LT_CONV)) THENC (conv_cond_t ORELSEC (conv_cond_f THENC LAND_CONV(RAND_CONV(!word_SIZE_CONV) THENC NUM_SUB_CONV)) )))) tm | Comb(Comb(Const("bit",_),n), Comb(Comb(Const("word_subword",_),_), Comb(Comb(Const(",",_),p),q))) when is_numeral n && is_numeral p && is_numeral q -> (GEN_REWRITE_CONV I [BIT_WORD_SUBWORD] THENC LAND_CONV (RAND_CONV(RAND_CONV(!word_SIZE_CONV) THENC NUM_MIN_CONV) THENC NUM_LT_CONV) THENC ((conv_and_t THENC LAND_CONV NUM_ADD_CONV) ORELSEC conv_and_f)) tm | _ -> failwith "BIT_WORD_CONV";; (* ------------------------------------------------------------------------- *) (* Conversions for explicit calculations with terms of the form "word n" *) (* where n is a numeral. They all work for arbitrary n and whenever they *) (* return "word m", then that will be canonical, i.e. m < 2^wordsize. *) (* ------------------------------------------------------------------------- *) let WORD_WORD_CONV = let pth = prove (`word n:N word = word(n MOD (2 EXP dimindex(:N)))`, REWRITE_TAC[WORD_MOD_SIZE]) in fun tm -> match tm with Comb(Const("word",_),t) when is_numeral t -> (GEN_REWRITE_CONV I [pth] THENC funpow 2 RAND_CONV (!word_POW2SIZE_CONV) THENC RAND_CONV NUM_MOD_CONV) tm | _ -> failwith "WORD_WORD_CONV";; let WORD_IWORD_CONV tm = match tm with Comb(Const("iword",_),t) when is_intconst t -> (REWR_CONV iword THENC funpow 4 RAND_CONV (!word_SIZE_CONV) THENC funpow 3 RAND_CONV INT_POW_CONV THENC funpow 2 RAND_CONV INT_REM_CONV THENC GEN_REWRITE_CONV RAND_CONV [NUM_OF_INT_OF_NUM]) tm | _ -> failwith "WORD_IWORD_CONV";; let WORD_VAL_CONV tm = match tm with Comb(Const("val",_),Comb(Const("word",_),n)) when is_numeral n -> (GEN_REWRITE_CONV I [VAL_WORD] THENC funpow 2 RAND_CONV (!word_SIZE_CONV) THENC RAND_CONV NUM_EXP_CONV THENC NUM_MOD_CONV) tm | _ -> failwith "WORD_VAL_CONV";; let WORD_IVAL_CONV = let pth = prove (`ival(word n:N word) = (\v. if v < 2 EXP (dimindex (:N) - 1) then &v else &v - &2 pow dimindex(:N)) (val(word n:N word))`, REWRITE_TAC[ival]) and cth1,cth2 = CONJ_PAIR (MESON[] `(if T then x:int else y:int) = x /\ (if F then x:int else y:int) = y`) in fun tm -> (match tm with Comb(Const("ival",_),Comb(Const("word",_),n)) when is_numeral n -> (GEN_REWRITE_CONV I [pth] THENC RAND_CONV WORD_VAL_CONV THENC BETA_CONV THENC RATOR_CONV(LAND_CONV (RAND_CONV (RAND_CONV (LAND_CONV (!word_SIZE_CONV) THENC NUM_SUB_CONV) THENC NUM_EXP_CONV) THENC NUM_LT_CONV)) THENC (GEN_REWRITE_CONV I [cth1] ORELSEC (GEN_REWRITE_CONV I [cth2] THENC (RAND_CONV o RAND_CONV) (!word_SIZE_CONV) THENC RAND_CONV INT_POW_CONV THENC INT_SUB_CONV))) tm | _ -> failwith "WORD_IVAL_CONV");; let WORD_BIT_CONV = let pth0 = prove (`(ODD(0 DIV 2 EXP k) <=> F) /\ (ODD(NUMERAL(BIT0 n) DIV 2 EXP 0) <=> F) /\ (ODD(NUMERAL(BIT1 n) DIV 2 EXP 0) <=> T)`, REWRITE_TAC[DIV_0; ODD; EXP; DIV_1] THEN REWRITE_TAC[NUMERAL; BIT0; BIT1] THEN REWRITE_TAC[ODD; ODD_ADD]) and pth1 = prove (`(ODD(NUMERAL(BIT0 n) DIV 2 EXP SUC k) <=> ODD(NUMERAL n DIV (2 EXP k))) /\ (ODD(NUMERAL(BIT1 n) DIV 2 EXP SUC k) <=> ODD(NUMERAL n DIV (2 EXP k)))`, CONJ_TAC THEN AP_TERM_TAC THEN GEN_REWRITE_TAC (BINOP_CONV o LAND_CONV) [NUMERAL] THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [BIT0; BIT1] THEN REWRITE_TAC[EXP; GSYM DIV_DIV] THEN AP_THM_TAC THEN AP_TERM_TAC THEN ARITH_TAC) in let conv0 = GEN_REWRITE_CONV I [pth0] and conv1 = GEN_REWRITE_CONV I [pth1] and conva = GEN_REWRITE_CONV I [AND_CLAUSES] in let rec conv tm = (conv0 ORELSEC (funpow 3 RAND_CONV num_CONV THENC conv1 THENC conv)) tm in fun tm -> match tm with Comb(Comb(Const("bit",_),k),Comb(Const("word",_),n)) when is_numeral k && is_numeral n -> (GEN_REWRITE_CONV I [BIT_WORD] THENC BINOP2_CONV (RAND_CONV (!word_SIZE_CONV) THENC NUM_LT_CONV) conv THENC conva) tm | _ -> failwith "WORD_BIT_CONV";; let WORD_EQ_CONV = let pth = prove (`word(NUMERAL m):N word = (word(NUMERAL n):N word) <=> val(word(NUMERAL m):N word) = val(word(NUMERAL n):N word)`, REWRITE_TAC[VAL_EQ]) in GEN_REWRITE_CONV I [pth] THENC BINOP_CONV WORD_VAL_CONV THENC NUM_EQ_CONV;; let WORD_ULT_CONV = let pth = prove (`word_ult (word(NUMERAL m):N word) (word(NUMERAL n):N word) <=> val(word(NUMERAL m):N word) < val(word(NUMERAL n):N word)`, REWRITE_TAC[word_ult; relational2]) in GEN_REWRITE_CONV I [pth] THENC BINOP_CONV WORD_VAL_CONV THENC NUM_LT_CONV;; let WORD_ULE_CONV = let pth = prove (`word_ule (word(NUMERAL m):N word) (word(NUMERAL n):N word) <=> val(word(NUMERAL m):N word) <= val(word(NUMERAL n):N word)`, REWRITE_TAC[word_ule; relational2]) in GEN_REWRITE_CONV I [pth] THENC BINOP_CONV WORD_VAL_CONV THENC NUM_LE_CONV;; let WORD_UGT_CONV = let pth = prove (`word_ugt (word(NUMERAL m):N word) (word(NUMERAL n):N word) <=> val(word(NUMERAL m):N word) > val(word(NUMERAL n):N word)`, REWRITE_TAC[word_ugt; relational2]) in GEN_REWRITE_CONV I [pth] THENC BINOP_CONV WORD_VAL_CONV THENC NUM_GT_CONV;; let WORD_UGE_CONV = let pth = prove (`word_uge (word(NUMERAL m):N word) (word(NUMERAL n):N word) <=> val(word(NUMERAL m):N word) >= val(word(NUMERAL n):N word)`, REWRITE_TAC[word_uge; relational2]) in GEN_REWRITE_CONV I [pth] THENC BINOP_CONV WORD_VAL_CONV THENC NUM_GE_CONV;; let WORD_ILT_CONV = let pth = prove (`word_ilt (word(NUMERAL m):N word) (word(NUMERAL n):N word) <=> ival(word(NUMERAL m):N word) < ival(word(NUMERAL n):N word)`, REWRITE_TAC[word_ilt; irelational2]) in GEN_REWRITE_CONV I [pth] THENC BINOP_CONV WORD_IVAL_CONV THENC INT_LT_CONV;; let WORD_ILE_CONV = let pth = prove (`word_ile (word(NUMERAL m):N word) (word(NUMERAL n):N word) <=> ival(word(NUMERAL m):N word) <= ival(word(NUMERAL n):N word)`, REWRITE_TAC[word_ile; irelational2]) in GEN_REWRITE_CONV I [pth] THENC BINOP_CONV WORD_IVAL_CONV THENC INT_LE_CONV;; let WORD_IGT_CONV = let pth = prove (`word_igt (word(NUMERAL m):N word) (word(NUMERAL n):N word) <=> ival(word(NUMERAL m):N word) > ival(word(NUMERAL n):N word)`, REWRITE_TAC[word_igt; irelational2]) in GEN_REWRITE_CONV I [pth] THENC BINOP_CONV WORD_IVAL_CONV THENC INT_GT_CONV;; let WORD_IGE_CONV = let pth = prove (`word_ige (word(NUMERAL m):N word) (word(NUMERAL n):N word) <=> ival(word(NUMERAL m):N word) >= ival(word(NUMERAL n):N word)`, REWRITE_TAC[word_ige; irelational2]) in GEN_REWRITE_CONV I [pth] THENC BINOP_CONV WORD_IVAL_CONV THENC INT_GE_CONV;; let WORD_ADD_CONV = let pth = prove (`word_add (word(NUMERAL m):N word) (word(NUMERAL n):N word) = word((NUMERAL m + NUMERAL n) MOD (2 EXP dimindex(:N)))`, REWRITE_TAC[word_add; modular; VAL_WORD; WORD_EQ; CONG] THEN CONV_TAC MOD_DOWN_CONV THEN REWRITE_TAC[]) in GEN_REWRITE_CONV I [pth] THENC RAND_CONV (BINOP2_CONV NUM_ADD_CONV (!word_POW2SIZE_CONV) THENC NUM_MOD_CONV);; let WORD_MUL_CONV = let pth = prove (`word_mul (word(NUMERAL m):N word) (word(NUMERAL n):N word) = word((NUMERAL m * NUMERAL n) MOD (2 EXP dimindex(:N)))`, REWRITE_TAC[word_mul; modular; VAL_WORD; WORD_EQ; CONG] THEN CONV_TAC MOD_DOWN_CONV THEN REWRITE_TAC[]) in GEN_REWRITE_CONV I [pth] THENC RAND_CONV (BINOP2_CONV NUM_MULT_CONV (!word_POW2SIZE_CONV) THENC NUM_MOD_CONV);; let WORD_SUB_CONV = let pth = prove (`word_sub (word(NUMERAL m):N word) (word(NUMERAL n):N word) = (\p. word((NUMERAL m + (p - NUMERAL n MOD p)) MOD p)) (2 EXP dimindex(:N))`, REWRITE_TAC[word_sub; modular; VAL_WORD; WORD_EQ; CONG] THEN CONV_TAC MOD_DOWN_CONV THEN REWRITE_TAC[]) in GEN_REWRITE_CONV I [pth] THENC RAND_CONV(!word_POW2SIZE_CONV) THENC BETA_CONV THENC RAND_CONV (LAND_CONV (RAND_CONV(RAND_CONV NUM_MOD_CONV THENC NUM_SUB_CONV) THENC NUM_ADD_CONV) THENC NUM_MOD_CONV);; let WORD_NEG_CONV = let pth = prove (`word_neg (word(NUMERAL n):N word) = (\p. word((p - NUMERAL n MOD p) MOD p)) (2 EXP dimindex(:N))`, REWRITE_TAC[word_neg; word_sub; modular; VAL_WORD; WORD_EQ; CONG] THEN CONV_TAC MOD_DOWN_CONV THEN REWRITE_TAC[ADD_CLAUSES]) in GEN_REWRITE_CONV I [pth] THENC RAND_CONV(!word_POW2SIZE_CONV) THENC BETA_CONV THENC RAND_CONV (LAND_CONV (RAND_CONV NUM_MOD_CONV THENC NUM_SUB_CONV) THENC NUM_MOD_CONV);; let WORD_UDIV_CONV = let pth = prove (`word_udiv (word(NUMERAL m):N word) (word(NUMERAL n):N word) = (\p. word((NUMERAL m MOD p) DIV (NUMERAL n MOD p))) (2 EXP dimindex(:N))`, REWRITE_TAC[GSYM VAL_EQ; VAL_WORD_UDIV; VAL_WORD] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC MOD_LT THEN MATCH_MP_TAC(ARITH_RULE `m DIV n <= m /\ m < p ==> m DIV n < p`) THEN SIMP_TAC[DIV_LE; DIVISION; EXP_EQ_0; ARITH_EQ]) in GEN_REWRITE_CONV I [pth] THENC RAND_CONV(!word_POW2SIZE_CONV) THENC BETA_CONV THENC RAND_CONV(BINOP_CONV NUM_MOD_CONV THENC NUM_DIV_CONV);; let WORD_UMOD_CONV = let pth = prove (`word_umod (word(NUMERAL m):N word) (word(NUMERAL n):N word) = (\p. word((NUMERAL m MOD p) MOD (NUMERAL n MOD p))) (2 EXP dimindex(:N))`, REWRITE_TAC[GSYM VAL_EQ; VAL_WORD_UMOD; VAL_WORD] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC MOD_LT THEN MATCH_MP_TAC(ARITH_RULE `m MOD n <= m /\ m < p ==> m MOD n < p`) THEN SIMP_TAC[MOD_LE; DIVISION; EXP_EQ_0; ARITH_EQ]) in GEN_REWRITE_CONV I [pth] THENC RAND_CONV(!word_POW2SIZE_CONV) THENC BETA_CONV THENC RAND_CONV(BINOP_CONV NUM_MOD_CONV THENC NUM_MOD_CONV);; let WORD_UMAX_CONV = let pth = prove (`word_umax (word(NUMERAL m):N word) (word(NUMERAL n):N word) = (\p. word(MAX (NUMERAL m MOD p) (NUMERAL n MOD p))) (2 EXP dimindex(:N))`, REWRITE_TAC[GSYM VAL_EQ; VAL_WORD_UMAX; VAL_WORD] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC MOD_LT THEN REWRITE_TAC[ARITH_RULE `MAX a b < n <=> a < n /\ b < n`] THEN SIMP_TAC[DIVISION; EXP_EQ_0; ARITH_EQ]) in GEN_REWRITE_CONV I [pth] THENC RAND_CONV(!word_POW2SIZE_CONV) THENC BETA_CONV THENC RAND_CONV(BINOP_CONV NUM_MOD_CONV THENC NUM_MAX_CONV);; let WORD_UMIN_CONV = let pth = prove (`word_umin (word(NUMERAL m):N word) (word(NUMERAL n):N word) = (\p. word(MIN (NUMERAL m MOD p) (NUMERAL n MOD p))) (2 EXP dimindex(:N))`, REWRITE_TAC[GSYM VAL_EQ; VAL_WORD_UMIN; VAL_WORD] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC MOD_LT THEN REWRITE_TAC[ARITH_RULE `MIN a b < n <=> a < n \/ b < n`] THEN SIMP_TAC[DIVISION; EXP_EQ_0; ARITH_EQ]) in GEN_REWRITE_CONV I [pth] THENC RAND_CONV(!word_POW2SIZE_CONV) THENC BETA_CONV THENC RAND_CONV(BINOP_CONV NUM_MOD_CONV THENC NUM_MIN_CONV);; let WORD_IMAX_CONV = let pth = prove (`word_imax (word(NUMERAL m):N word) (word(NUMERAL n):N word) = if ival(word(NUMERAL m):N word) <= ival(word(NUMERAL n):N word) then word((NUMERAL n) MOD (2 EXP dimindex(:N))) else word((NUMERAL m) MOD (2 EXP dimindex(:N)))`, COND_CASES_TAC THEN REWRITE_TAC[GSYM IVAL_EQ; IVAL_WORD_IMAX; WORD_MOD_SIZE] THEN ASM_REWRITE_TAC[INT_MAX]) in GEN_REWRITE_CONV I [pth] THENC RATOR_CONV(LAND_CONV(BINOP_CONV WORD_IVAL_CONV THENC INT_LE_CONV)) THENC GEN_REWRITE_CONV I [COND_CLAUSES] THENC funpow 2 RAND_CONV (!word_POW2SIZE_CONV) THENC RAND_CONV NUM_MOD_CONV;; let WORD_IMIN_CONV = let pth = prove (`word_imin (word(NUMERAL m):N word) (word(NUMERAL n):N word) = if ival(word(NUMERAL m):N word) <= ival(word(NUMERAL n):N word) then word((NUMERAL m) MOD (2 EXP dimindex(:N))) else word((NUMERAL n) MOD (2 EXP dimindex(:N)))`, COND_CASES_TAC THEN REWRITE_TAC[GSYM IVAL_EQ; IVAL_WORD_IMIN; WORD_MOD_SIZE] THEN ASM_REWRITE_TAC[INT_MIN]) in GEN_REWRITE_CONV I [pth] THENC RATOR_CONV(LAND_CONV(BINOP_CONV WORD_IVAL_CONV THENC INT_LE_CONV)) THENC GEN_REWRITE_CONV I [COND_CLAUSES] THENC funpow 2 RAND_CONV (!word_POW2SIZE_CONV) THENC RAND_CONV NUM_MOD_CONV;; let WORD_SHL_CONV = let pth = prove (`word_shl (word(NUMERAL m):N word) (NUMERAL n) = (\p. word((NUMERAL m * 2 EXP (NUMERAL n)) MOD p)) (2 EXP dimindex(:N))`, REWRITE_TAC[word_shl; WORD_EQ; VAL_WORD; CONG] THEN CONV_TAC MOD_DOWN_CONV THEN REFL_TAC) in GEN_REWRITE_CONV I [pth] THENC RAND_CONV (!word_POW2SIZE_CONV) THENC BETA_CONV THENC RAND_CONV (LAND_CONV (RAND_CONV NUM_EXP_CONV THENC NUM_MULT_CONV) THENC NUM_MOD_CONV);; let WORD_USHR_CONV = let pth = prove (`word_ushr (word(NUMERAL m):N word) (NUMERAL n) = (\p. word((NUMERAL m MOD p) DIV (2 EXP NUMERAL n) MOD p)) (2 EXP dimindex(:N))`, REWRITE_TAC[word_ushr; WORD_EQ; VAL_WORD; CONG] THEN CONV_TAC MOD_DOWN_CONV THEN REFL_TAC) in GEN_REWRITE_CONV I [pth] THENC RAND_CONV (!word_POW2SIZE_CONV) THENC BETA_CONV THENC RAND_CONV (LAND_CONV (BINOP2_CONV NUM_MOD_CONV NUM_EXP_CONV THENC NUM_DIV_CONV) THENC NUM_MOD_CONV);; let WORD_ISHR_CONV = let pth = prove (`word_ishr (word(NUMERAL m):N word) (NUMERAL n) = iword (ival(word(NUMERAL m):N word) div &2 pow (NUMERAL n))`, REWRITE_TAC[word_ishr]) in GEN_REWRITE_CONV I [pth] THENC RAND_CONV(BINOP2_CONV WORD_IVAL_CONV INT_POW_CONV THENC INT_DIV_CONV) THENC WORD_IWORD_CONV;; let WORD_NOT_CONV = let pth = prove (`word_not(word n:N word) = (\p. word(p - 1 - n MOD p)) (2 EXP dimindex(:N))`, REWRITE_TAC[GSYM VAL_EQ; VAL_WORD_NOT; VAL_WORD] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC MOD_LT THEN MATCH_MP_TAC(ARITH_RULE `~(p = 0) ==> p - 1 - n < p`) THEN REWRITE_TAC[EXP_EQ_0; ARITH_EQ]) in fun tm -> (match tm with Comb(Const("word_not",_),Comb(Const("word",_),n)) when is_numeral n -> (GEN_REWRITE_CONV I [pth] THENC RAND_CONV (!word_POW2SIZE_CONV) THENC BETA_CONV THENC RAND_CONV(BINOP2_CONV NUM_SUB_CONV NUM_MOD_CONV THENC NUM_SUB_CONV)) tm | _ -> failwith "WORD_NOT_CONV");; let WORD_AND_CONV = let pth = prove (`?f. ((!n. f _0 n = _0) /\ (!m. f m _0 = _0)) /\ ((!m n. f (BIT0 m) (BIT0 n) = BIT0(f m n)) /\ (!m n. f (BIT0 m) (BIT1 n) = BIT0(f m n)) /\ (!m n. f (BIT1 m) (BIT0 n) = BIT0(f m n)) /\ (!m n. f (BIT1 m) (BIT1 n) = BIT1(f m n))) /\ (!m n. word_and (word(NUMERAL m):N word) (word(NUMERAL n)) = word(NUMERAL(f m n)))`, MP_TAC(prove_general_recursive_function_exists `?f. !m n. f m n = if m = 0 then 0 else if n = 0 then 0 else (if m MOD 2 = 1 /\ n MOD 2 = 1 then 1 else 0) + 2 * f (m DIV 2) (n DIV 2)`) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:num->num->num` THEN DISCH_TAC THEN SUBGOAL_THEN `(!n. f 0 n = 0) /\ (!m. f m 0 = 0) /\ (!m n. f (2 * m) (2 * n) = 2 * f m n) /\ (!m n. f (2 * m + 1) (2 * n) = 2 * f m n) /\ (!m n. f (2 * m) (2 * n + 1) = 2 * f m n) /\ (!m n. f (2 * m + 1) (2 * n + 1) = 2 * f m n + 1)` MP_TAC THENL [REPEAT STRIP_TAC THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [th]) THEN REWRITE_TAC[ARITH_RULE `(2 * n) DIV 2 = n /\ (2 * n + 1) DIV 2 = n`; ONCE_REWRITE_RULE[MULT_SYM] MOD_MULT_ADD; MOD_MULT; ADD_EQ_0; MULT_EQ_0] THEN CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[ADD_CLAUSES; ARITH_RULE `1 + 2 * n = 2 * n + 1`] THEN REPEAT(COND_CASES_TAC THEN REWRITE_TAC[]) THEN REWRITE_TAC[ARITH_RULE `0 = 2 * n <=> n = 0`] THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [th]) THEN ASM_REWRITE_TAC[COND_ID]; FIRST_X_ASSUM(K ALL_TAC) THEN STRIP_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[NUMERAL]; ALL_TAC] THEN CONJ_TAC THENL [REWRITE_TAC[BIT0; BIT1] THEN ASM_REWRITE_TAC[GSYM MULT_2; ADD1]; REWRITE_TAC[NUMERAL]] THEN REWRITE_TAC[WORD_EQ_BITS; BIT_WORD_AND; BIT_WORD] THEN SIMP_TAC[TAUT `(p /\ q <=> p /\ r) <=> (p ==> (q <=> r))`] THEN MATCH_MP_TAC BINARY_INDUCT THEN ASM_REWRITE_TAC[DIV_0; ODD] THEN X_GEN_TAC `m:num` THEN DISCH_TAC THEN CONJ_TAC THEN MATCH_MP_TAC BINARY_INDUCT THEN ASM_REWRITE_TAC[DIV_0; ODD] THEN X_GEN_TAC `n:num` THEN DISCH_THEN(K ALL_TAC) THEN CONJ_TAC THEN INDUCT_TAC THEN REWRITE_TAC[EXP; DIV_1; ODD_MULT; ARITH; ODD_ADD] THEN DISCH_TAC THEN REWRITE_TAC[GSYM DIV_DIV] THEN REWRITE_TAC[ARITH_RULE `(2 * n) DIV 2 = n /\ (2 * n + 1) DIV 2 = n`; MOD_MULT; ONCE_REWRITE_RULE[MULT_SYM] MOD_MULT_ADD] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC) and qth = prove (`BIT0 _0 = _0`, REWRITE_TAC[ARITH_ZERO]) and nty = `:N` in fun tm -> (match tm with Comb(Comb(Const("word_and",_), Comb(Const("word",_),m)), Comb(Const("word",_),n)) when is_numeral m && is_numeral n -> let th1 = INST_TYPE [hd(snd(dest_type(type_of(rand tm)))),nty] pth in let f,bod = dest_exists(concl th1) in let pth_base,th2 = CONJ_PAIR(ASSUME bod) in let pth_step,pth_trans = CONJ_PAIR th2 in let base_conv = GEN_REWRITE_CONV I [pth_base] and step_conv = GEN_REWRITE_CONV I [pth_step] and fix_conv = GEN_REWRITE_CONV TRY_CONV [qth] in let rec conv t = (base_conv ORELSEC (step_conv THENC RAND_CONV conv THENC fix_conv)) t in let th3 = REWR_CONV pth_trans tm in let th4 = CONV_RULE(funpow 3 RAND_CONV conv) th3 in let th5 = PROVE_HYP th1 (SIMPLE_CHOOSE f th4) in CONV_RULE(RAND_CONV WORD_WORD_CONV) th5 | _ -> failwith "WORD_AND_CONV");; let WORD_OR_CONV = let pth = prove (`?f. ((!n. f _0 n = n) /\ (!m. f m _0 = m)) /\ ((!m n. f (BIT0 m) (BIT0 n) = BIT0(f m n)) /\ (!m n. f (BIT0 m) (BIT1 n) = BIT1(f m n)) /\ (!m n. f (BIT1 m) (BIT0 n) = BIT1(f m n)) /\ (!m n. f (BIT1 m) (BIT1 n) = BIT1(f m n))) /\ (!m n. word_or (word(NUMERAL m):N word) (word(NUMERAL n)) = word(NUMERAL(f m n)))`, MP_TAC(prove_general_recursive_function_exists `?f. !m n. f m n = if m = 0 then n else if n = 0 then m else (if m MOD 2 = 1 \/ n MOD 2 = 1 then 1 else 0) + 2 * f (m DIV 2) (n DIV 2)`) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:num->num->num` THEN DISCH_TAC THEN SUBGOAL_THEN `(!n. f 0 n = n) /\ (!m. f m 0 = m) /\ (!m n. f (2 * m) (2 * n) = 2 * f m n) /\ (!m n. f (2 * m + 1) (2 * n) = 2 * f m n + 1) /\ (!m n. f (2 * m) (2 * n + 1) = 2 * f m n + 1) /\ (!m n. f (2 * m + 1) (2 * n + 1) = 2 * f m n + 1)` MP_TAC THENL [REPEAT STRIP_TAC THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [th]) THEN REWRITE_TAC[ARITH_RULE `(2 * n) DIV 2 = n /\ (2 * n + 1) DIV 2 = n`; ONCE_REWRITE_RULE[MULT_SYM] MOD_MULT_ADD; MOD_MULT; ADD_EQ_0; MULT_EQ_0] THEN CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[ADD_CLAUSES; ARITH_RULE `1 + 2 * n = 2 * n + 1`] THEN REPEAT(COND_CASES_TAC THEN REWRITE_TAC[]) THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN TRY(FIRST_ASSUM ACCEPT_TAC) THEN TRY(AP_THM_TAC THEN AP_TERM_TAC) THEN AP_TERM_TAC THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [th]) THEN ASM_REWRITE_TAC[COND_ID] THEN MESON_TAC[]; FIRST_X_ASSUM(K ALL_TAC) THEN STRIP_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[NUMERAL]; ALL_TAC] THEN CONJ_TAC THENL [REWRITE_TAC[BIT0; BIT1] THEN ASM_REWRITE_TAC[GSYM MULT_2; ADD1]; REWRITE_TAC[NUMERAL]] THEN REWRITE_TAC[WORD_EQ_BITS; BIT_WORD_OR; BIT_WORD] THEN SIMP_TAC[TAUT `(p /\ q <=> p /\ r) <=> (p ==> (q <=> r))`] THEN MATCH_MP_TAC BINARY_INDUCT THEN ASM_REWRITE_TAC[DIV_0; ODD] THEN X_GEN_TAC `m:num` THEN DISCH_TAC THEN CONJ_TAC THEN MATCH_MP_TAC BINARY_INDUCT THEN ASM_REWRITE_TAC[DIV_0; ODD] THEN X_GEN_TAC `n:num` THEN DISCH_THEN(K ALL_TAC) THEN CONJ_TAC THEN INDUCT_TAC THEN REWRITE_TAC[EXP; DIV_1; ODD_MULT; ARITH; ODD_ADD] THEN DISCH_TAC THEN REWRITE_TAC[GSYM DIV_DIV] THEN REWRITE_TAC[ARITH_RULE `(2 * n) DIV 2 = n /\ (2 * n + 1) DIV 2 = n`; MOD_MULT; ONCE_REWRITE_RULE[MULT_SYM] MOD_MULT_ADD] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC) and qth = prove (`BIT0 _0 = _0`, REWRITE_TAC[ARITH_ZERO]) and nty = `:N` in fun tm -> (match tm with Comb(Comb(Const("word_or",_), Comb(Const("word",_),m)), Comb(Const("word",_),n)) when is_numeral m && is_numeral n -> let th1 = INST_TYPE [hd(snd(dest_type(type_of(rand tm)))),nty] pth in let f,bod = dest_exists(concl th1) in let pth_base,th2 = CONJ_PAIR(ASSUME bod) in let pth_step,pth_trans = CONJ_PAIR th2 in let base_conv = GEN_REWRITE_CONV I [pth_base] and step_conv = GEN_REWRITE_CONV I [pth_step] and fix_conv = GEN_REWRITE_CONV TRY_CONV [qth] in let rec conv t = (base_conv ORELSEC (step_conv THENC RAND_CONV conv THENC fix_conv)) t in let th3 = REWR_CONV pth_trans tm in let th4 = CONV_RULE(funpow 3 RAND_CONV conv) th3 in let th5 = PROVE_HYP th1 (SIMPLE_CHOOSE f th4) in CONV_RULE(RAND_CONV WORD_WORD_CONV) th5 | _ -> failwith "WORD_OR_CONV");; let WORD_XOR_CONV = let pth = prove (`?f. ((!n. f _0 n = n) /\ (!m. f m _0 = m)) /\ ((!m n. f (BIT0 m) (BIT0 n) = BIT0(f m n)) /\ (!m n. f (BIT0 m) (BIT1 n) = BIT1(f m n)) /\ (!m n. f (BIT1 m) (BIT0 n) = BIT1(f m n)) /\ (!m n. f (BIT1 m) (BIT1 n) = BIT0(f m n))) /\ (!m n. word_xor (word(NUMERAL m):N word) (word(NUMERAL n)) = word(NUMERAL(f m n)))`, MP_TAC(prove_general_recursive_function_exists `?f. !m n. f m n = if m = 0 then n else if n = 0 then m else (if m MOD 2 = 1 <=> n MOD 2 = 1 then 0 else 1) + 2 * f (m DIV 2) (n DIV 2)`) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:num->num->num` THEN DISCH_TAC THEN SUBGOAL_THEN `(!n. f 0 n = n) /\ (!m. f m 0 = m) /\ (!m n. f (2 * m) (2 * n) = 2 * f m n) /\ (!m n. f (2 * m + 1) (2 * n) = 2 * f m n + 1) /\ (!m n. f (2 * m) (2 * n + 1) = 2 * f m n + 1) /\ (!m n. f (2 * m + 1) (2 * n + 1) = 2 * f m n)` MP_TAC THENL [REPEAT STRIP_TAC THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [th]) THEN REWRITE_TAC[ARITH_RULE `(2 * n) DIV 2 = n /\ (2 * n + 1) DIV 2 = n`; ONCE_REWRITE_RULE[MULT_SYM] MOD_MULT_ADD; MOD_MULT; ADD_EQ_0; MULT_EQ_0] THEN CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[ADD_CLAUSES; ARITH_RULE `1 + 2 * n = 2 * n + 1`] THEN REPEAT(COND_CASES_TAC THEN REWRITE_TAC[]) THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN TRY(FIRST_ASSUM ACCEPT_TAC) THEN TRY(AP_THM_TAC THEN AP_TERM_TAC) THEN AP_TERM_TAC THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [th]) THEN ASM_REWRITE_TAC[COND_ID] THEN MESON_TAC[]; FIRST_X_ASSUM(K ALL_TAC) THEN STRIP_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[NUMERAL]; ALL_TAC] THEN CONJ_TAC THENL [REWRITE_TAC[BIT0; BIT1] THEN ASM_REWRITE_TAC[GSYM MULT_2; ADD1]; REWRITE_TAC[NUMERAL]] THEN REWRITE_TAC[WORD_EQ_BITS; BIT_WORD_XOR; BIT_WORD] THEN SIMP_TAC[TAUT `(p /\ q <=> p /\ r) <=> (p ==> (q <=> r))`] THEN MATCH_MP_TAC BINARY_INDUCT THEN ASM_REWRITE_TAC[DIV_0; ODD] THEN X_GEN_TAC `m:num` THEN DISCH_TAC THEN CONJ_TAC THEN MATCH_MP_TAC BINARY_INDUCT THEN ASM_REWRITE_TAC[DIV_0; ODD] THEN X_GEN_TAC `n:num` THEN DISCH_THEN(K ALL_TAC) THEN CONJ_TAC THEN INDUCT_TAC THEN REWRITE_TAC[EXP; DIV_1; ODD_MULT; ARITH; ODD_ADD] THEN DISCH_TAC THEN REWRITE_TAC[GSYM DIV_DIV] THEN REWRITE_TAC[ARITH_RULE `(2 * n) DIV 2 = n /\ (2 * n + 1) DIV 2 = n`; MOD_MULT; ONCE_REWRITE_RULE[MULT_SYM] MOD_MULT_ADD] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC) and qth = prove (`BIT0 _0 = _0`, REWRITE_TAC[ARITH_ZERO]) and nty = `:N` in fun tm -> (match tm with Comb(Comb(Const("word_xor",_), Comb(Const("word",_),m)), Comb(Const("word",_),n)) when is_numeral m && is_numeral n -> let th1 = INST_TYPE [hd(snd(dest_type(type_of(rand tm)))),nty] pth in let f,bod = dest_exists(concl th1) in let pth_base,th2 = CONJ_PAIR(ASSUME bod) in let pth_step,pth_trans = CONJ_PAIR th2 in let base_conv = GEN_REWRITE_CONV I [pth_base] and step_conv = GEN_REWRITE_CONV I [pth_step] and fix_conv = GEN_REWRITE_CONV TRY_CONV [qth] in let rec conv t = (base_conv ORELSEC (step_conv THENC RAND_CONV conv THENC fix_conv)) t in let th3 = REWR_CONV pth_trans tm in let th4 = CONV_RULE(funpow 3 RAND_CONV conv) th3 in let th5 = PROVE_HYP th1 (SIMPLE_CHOOSE f th4) in CONV_RULE(RAND_CONV WORD_WORD_CONV) th5 | _ -> failwith "WORD_XOR_CONV");; let WORD_ROL_CONV = let pth = prove (`word_rol (word(NUMERAL m):N word) n = (\n. word_or (word_shl (word(NUMERAL m):N word) n) (word_ushr (word(NUMERAL m):N word) (dimindex (:N) - n))) (n MOD dimindex(:N))`, REWRITE_TAC[] THEN GEN_REWRITE_TAC LAND_CONV [WORD_ROL_MOD] THEN SIMP_TAC[WORD_ROL_SHIFTS; DIMINDEX_NONZERO; DIVISION; LT_IMP_LE]) in GEN_REWRITE_CONV I [pth] THENC (RAND_CONV o RAND_CONV) (!word_SIZE_CONV) THENC RAND_CONV NUM_MOD_CONV THENC NUM_REDUCE_CONV THENC BINOP2_CONV WORD_SHL_CONV ((RAND_CONV o LAND_CONV) (!word_SIZE_CONV) THENC RAND_CONV NUM_SUB_CONV THENC WORD_USHR_CONV) THENC WORD_OR_CONV;; let WORD_ROR_CONV = let pth = prove (`word_ror (word(NUMERAL m):N word) n = (\n. word_or (word_ushr (word(NUMERAL m):N word) n) (word_shl (word(NUMERAL m):N word) (dimindex (:N) - n))) (n MOD dimindex(:N))`, REWRITE_TAC[] THEN GEN_REWRITE_TAC LAND_CONV [WORD_ROR_MOD] THEN SIMP_TAC[WORD_ROR_SHIFTS; DIMINDEX_NONZERO; DIVISION; LT_IMP_LE]) in GEN_REWRITE_CONV I [pth] THENC (RAND_CONV o RAND_CONV) (!word_SIZE_CONV) THENC RAND_CONV NUM_MOD_CONV THENC NUM_REDUCE_CONV THENC BINOP2_CONV WORD_USHR_CONV ((RAND_CONV o LAND_CONV) (!word_SIZE_CONV) THENC RAND_CONV NUM_SUB_CONV THENC WORD_SHL_CONV) THENC WORD_OR_CONV;; let WORD_ZX_CONV = let pth = prove (`(word_zx:M word->N word) (word (NUMERAL n)) = word (NUMERAL n MOD (2 EXP (MIN (dimindex(:M)) (dimindex(:N)))))`, REWRITE_TAC[GSYM VAL_EQ; VAL_WORD_ZX_GEN; VAL_WORD] THEN MESON_TAC[MOD_MOD_EXP_MIN; MOD_MOD_REFL]) in GEN_REWRITE_CONV I [pth] THENC RAND_CONV (RAND_CONV (RAND_CONV(BINOP_CONV (!word_SIZE_CONV) THENC NUM_MIN_CONV) THENC NUM_EXP_CONV) THENC NUM_MOD_CONV);; let WORD_SX_CONV = let pth = prove (`(word_sx:M word->N word) (word (NUMERAL n)) = iword(ival(word(NUMERAL n):M word))`, REWRITE_TAC[word_sx]) in GEN_REWRITE_CONV I [pth] THENC RAND_CONV WORD_IVAL_CONV THENC WORD_IWORD_CONV;; let WORD_CAND_CONV = let pth = prove (`word_cand (word(NUMERAL m):N word) (word(NUMERAL n):N word) = if word(NUMERAL m):N word = word 0 \/ word(NUMERAL n):N word = word 0 then word 0 else word 1`, REWRITE_TAC[WORD_CAND]) in GEN_REWRITE_CONV I [pth] THENC RATOR_CONV(LAND_CONV (BINOP_CONV WORD_EQ_CONV THENC GEN_REWRITE_CONV I [OR_CLAUSES])) THENC GEN_REWRITE_CONV I [COND_CLAUSES];; let WORD_COR_CONV = let pth = prove (`word_cor (word(NUMERAL m):N word) (word(NUMERAL n):N word) = if word(NUMERAL m):N word = word 0 /\ word(NUMERAL n):N word = word 0 then word 0 else word 1`, REWRITE_TAC[WORD_COR]) in GEN_REWRITE_CONV I [pth] THENC RATOR_CONV(LAND_CONV (BINOP_CONV WORD_EQ_CONV THENC GEN_REWRITE_CONV I [AND_CLAUSES])) THENC GEN_REWRITE_CONV I [COND_CLAUSES];; let WORD_JOIN_CONV = let pth = prove (`(word_join:(M)word->(N)word->(P)word) (word(NUMERAL m)) (word(NUMERAL n)) = word((2 EXP dimindex(:N) * NUMERAL m MOD 2 EXP dimindex(:M) + NUMERAL n MOD 2 EXP dimindex(:N)) MOD 2 EXP dimindex(:P))`, REWRITE_TAC[GSYM VAL_EQ; VAL_WORD_JOIN; VAL_WORD; MOD_MOD_REFL]) in GEN_REWRITE_CONV I [pth] THENC RAND_CONV (BINOP2_CONV (BINOP2_CONV (BINOP2_CONV (!word_POW2SIZE_CONV) (RAND_CONV(!word_POW2SIZE_CONV) THENC NUM_MOD_CONV) THENC NUM_MULT_CONV) (RAND_CONV(!word_POW2SIZE_CONV) THENC NUM_MOD_CONV) THENC NUM_ADD_CONV) (!word_POW2SIZE_CONV) THENC NUM_MOD_CONV);; let WORD_SUBWORD_CONV = let pth = prove (`word_subword (word(NUMERAL m):M word) (NUMERAL p,NUMERAL q):N word = word((val(word(NUMERAL m):M word) DIV 2 EXP NUMERAL p) MOD 2 EXP MIN (NUMERAL q) (dimindex (:N)))`, REWRITE_TAC[word_subword; GSYM MOD_MOD_EXP_MIN] THEN REWRITE_TAC[WORD_EQ; CONG; MOD_MOD_REFL]) in GEN_REWRITE_CONV I [pth] THENC RAND_CONV (BINOP2_CONV (BINOP2_CONV WORD_VAL_CONV NUM_EXP_CONV THENC NUM_DIV_CONV) (RAND_CONV (RAND_CONV (!word_SIZE_CONV) THENC NUM_MIN_CONV) THENC NUM_EXP_CONV) THENC NUM_MOD_CONV);; let WORD_BITS_OF_WORD_CONV = let pth = prove (`?f. (!i. f i _0 = {} /\ (!n. f i (BIT0 n) = f (i + 1) n) /\ (!n. f i (BIT1 n) = i INSERT f (i + 1) n)) /\ (!w:N word. bits_of_word w = f 0 (val w))`, MP_TAC(prove_general_recursive_function_exists `?f. !i n. f i n = if n = 0 then {} else if n MOD 2 = 1 then i INSERT f (i + 1) (n DIV 2) else f (i + 1) (n DIV 2)`) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:num->num->num->bool` THEN DISCH_TAC THEN GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV o LAND_CONV o LAND_CONV o RAND_CONV) [GSYM NUMERAL] THEN GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV o RAND_CONV o BINOP_CONV o BINDER_CONV o LAND_CONV o RAND_CONV) [BIT0; BIT1] THEN REWRITE_TAC[ADD1; GSYM MULT_2] THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [th]) THEN REWRITE_TAC[ADD_EQ_0; MULT_EQ_0; ARITH_EQ; ARITH_RULE `(2 * n + 1) DIV 2 = n /\ (2 * n) DIV 2 = n`] THEN REWRITE_TAC[MOD_MULT] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[MOD_MULT_ADD] THEN CONV_TAC NUM_REDUCE_CONV THEN ASM_MESON_TAC[]; POP_ASSUM(K ALL_TAC) THEN REWRITE_TAC[FORALL_AND_THM] THEN STRIP_TAC] THEN X_GEN_TAC `w:N word` THEN REWRITE_TAC[EXTENSION] THEN SUBGOAL_THEN `!k i. i IN f k (val w) <=> k <= i /\ (i - k) IN bits_of_word(w:N word)` MP_TAC THENL [ALL_TAC; MESON_TAC[SUB_0; LE_0]] THEN REWRITE_TAC[bits_of_word; BIT_VAL] THEN SPEC_TAC(`val(w:N word)`,`n:num`) THEN MATCH_MP_TAC BINARY_INDUCT THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN REWRITE_TAC[DIV_0; NOT_IN_EMPTY; ARITH] THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN ASM_REWRITE_TAC[IN_INSERT; AND_FORALL_THM] THEN MAP_EVERY X_GEN_TAC [`k:num`; `i:num`] THEN ASM_CASES_TAC `i:num = k` THEN ASM_REWRITE_TAC[LE_REFL; SUB_REFL; ARITH_RULE `~(k + 1 <= k)`] THEN REWRITE_TAC[EXP; DIV_1; ODD_ADD; ODD_MULT; ARITH] THEN ASM_CASES_TAC `k:num <= i` THEN ASM_REWRITE_TAC[] THENL [ALL_TAC; ASM_ARITH_TAC] THEN ASM_CASES_TAC `k + 1 <= i` THEN ASM_REWRITE_TAC[] THENL [ALL_TAC; ASM_ARITH_TAC] THEN SUBGOAL_THEN `i - k = SUC(i - (k + 1))` SUBST1_TAC THENL [ASM_ARITH_TAC; REWRITE_TAC[EXP; GSYM DIV_DIV]] THEN REWRITE_TAC[ARITH_RULE `(2 * n + 1) DIV 2 = n /\ (2 * n) DIV 2 = n`]) and nty = `:N` in fun tm -> (match tm with Comb(Const("bits_of_word",_),Comb(Const("word",_),n)) when is_numeral n -> let th1 = INST_TYPE [hd(snd(dest_type(type_of(rand tm)))),nty] pth in let f,bod = dest_exists(concl th1) in let pth_clauses,th2 = CONJ_PAIR(ASSUME bod) in let pth_z,pth_o = CONJ_PAIR(SPEC_ALL pth_clauses) in let pth_0,pth_1 = CONJ_PAIR pth_o in let conv_z = GEN_REWRITE_CONV I [pth_z] and conv_0 = GEN_REWRITE_CONV I [pth_0] and conv_1 = GEN_REWRITE_CONV I [pth_1] in let rec conv t = (conv_z ORELSEC (conv_0 THENC LAND_CONV NUM_ADD_CONV THENC conv) ORELSEC (conv_1 THENC RAND_CONV(LAND_CONV NUM_ADD_CONV THENC conv))) t in let th3 = REWR_CONV th2 tm in let th4 = CONV_RULE(RAND_CONV(RAND_CONV WORD_VAL_CONV)) th3 in let th5 = GEN_REWRITE_RULE (RAND_CONV o RAND_CONV) [NUMERAL] th4 in let th6 = CONV_RULE(RAND_CONV conv) th5 in PROVE_HYP th1 (SIMPLE_CHOOSE f th6) | _ -> failwith "WORD_BITS_OF_WORD_CONV");; let WORD_POPCOUNT_CONV = let pth = prove (`?f. (f _0 = 0 /\ (!n. f (BIT0 n) = f n) /\ (!n. f (BIT1 n) = SUC(f n))) /\ (!w:N word. word_popcount w = f (val w))`, MP_TAC(prove_general_recursive_function_exists `?f. !n. f n = if n = 0 then 0 else if n MOD 2 = 1 then SUC(f (n DIV 2)) else f (n DIV 2)`) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:num->num` THEN DISCH_TAC THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o LAND_CONV o RAND_CONV) [GSYM NUMERAL] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o BINOP_CONV o BINDER_CONV o LAND_CONV o RAND_CONV) [BIT0; BIT1] THEN REWRITE_TAC[ADD1; GSYM MULT_2] THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [th]) THEN REWRITE_TAC[ADD_EQ_0; MULT_EQ_0; ARITH_EQ; ARITH_RULE `(2 * n + 1) DIV 2 = n /\ (2 * n) DIV 2 = n`] THEN REWRITE_TAC[MOD_MULT] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[MOD_MULT_ADD] THEN CONV_TAC NUM_REDUCE_CONV THEN ASM_MESON_TAC[ADD1]; POP_ASSUM(K ALL_TAC) THEN REWRITE_TAC[FORALL_AND_THM] THEN STRIP_TAC] THEN X_GEN_TAC `w:N word` THEN REWRITE_TAC[word_popcount] THEN REWRITE_TAC[bits_of_word; BIT_VAL] THEN SUBGOAL_THEN `!n. {i | ODD(n DIV 2 EXP i)} HAS_SIZE f n` MP_TAC THENL [ALL_TAC; SIMP_TAC[HAS_SIZE]] THEN MATCH_MP_TAC BINARY_INDUCT THEN ASM_REWRITE_TAC[HAS_SIZE; DIV_0; ODD; EMPTY_GSPEC; FINITE_EMPTY; CARD_CLAUSES] THEN X_GEN_TAC `n:num` THEN STRIP_TAC THEN SUBGOAL_THEN `!P. {i | P i} = {i | i = 0 /\ P 0} UNION IMAGE SUC {i | P(SUC i)}` (fun th -> ONCE_REWRITE_TAC[th]) THENL [REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM; IN_IMAGE] THEN MESON_TAC[num_CASES]; REWRITE_TAC[EXP; DIV_1; ODD_ADD; ODD_MULT; ARITH]] THEN REWRITE_TAC[EMPTY_GSPEC; SING_GSPEC; GSYM DIV_DIV] THEN REWRITE_TAC[ARITH_RULE `(2 * n + 1) DIV 2 = n /\ (2 * n) DIV 2 = n`] THEN REWRITE_TAC[UNION_EMPTY; INSERT_UNION_EQ] THEN ASM_SIMP_TAC[FINITE_INSERT; FINITE_IMAGE; CARD_CLAUSES] THEN REWRITE_TAC[IN_IMAGE; NOT_SUC; ADD1; EQ_ADD_RCANCEL] THEN ASM_SIMP_TAC[CARD_IMAGE_INJ; SUC_INJ]) and nty = `:N` in fun tm -> (match tm with Comb(Const("word_popcount",_),Comb(Const("word",_),n)) when is_numeral n -> let th1 = INST_TYPE [hd(snd(dest_type(type_of(rand tm)))),nty] pth in let f,bod = dest_exists(concl th1) in let pth_clauses,th2 = CONJ_PAIR(ASSUME bod) in let pth_z,pth_o = CONJ_PAIR(SPEC_ALL pth_clauses) in let pth_0,pth_1 = CONJ_PAIR pth_o in let conv_z = GEN_REWRITE_CONV I [pth_z] and conv_0 = GEN_REWRITE_CONV I [pth_0] and conv_1 = GEN_REWRITE_CONV I [pth_1] in let rec conv t = (conv_z ORELSEC (conv_0 THENC conv) ORELSEC (conv_1 THENC RAND_CONV conv THENC NUM_SUC_CONV)) t in let th3 = REWR_CONV th2 tm in let th4 = CONV_RULE(RAND_CONV(RAND_CONV WORD_VAL_CONV)) th3 in let th5 = GEN_REWRITE_RULE (RAND_CONV o RAND_CONV) [NUMERAL] th4 in let th6 = CONV_RULE(RAND_CONV conv) th5 in PROVE_HYP th1 (SIMPLE_CHOOSE f th6) | _ -> failwith "WORD_POPCOUNT_CONV");; let WORD_EVENPARITY_CONV = let conv = GEN_REWRITE_CONV I [word_evenparity] THENC RAND_CONV WORD_POPCOUNT_CONV THENC NUM_EVEN_CONV in fun tm -> (match tm with Comb(Const("word_evenparity",_),Comb(Const("word",_),n)) when is_numeral n -> conv tm | _ -> failwith "WORD_EVENPARITY_CONV");; let WORD_ODDPARITY_CONV = let conv = GEN_REWRITE_CONV I [word_oddparity] THENC RAND_CONV WORD_POPCOUNT_CONV THENC NUM_ODD_CONV in fun tm -> (match tm with Comb(Const("word_oddparity",_),Comb(Const("word",_),n)) when is_numeral n -> conv tm | _ -> failwith "WORD_ODDPARITY_CONV");; let WORD_CTZ_CONV = let ctz = let rec ctza a n = if mod_num n num_2 =/ num_0 then ctza (a + 1) (quo_num n num_2) else a in fun n -> ctza 0 n and pth_0 = prove (`!(a:N word). val a = 0 ==> word_ctz a = dimindex(:N)`, SIMP_TAC[VAL_EQ_0; WORD_CTZ_0]) and pth = prove (`!(a:N word) v. val a = v ==> !n e. 2 EXP n = e /\ v MOD (2 * e) = e ==> word_ctz a = n`, REPEAT GEN_TAC THEN DISCH_THEN(SUBST1_TAC o SYM) THEN REPEAT GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[GSYM(CONJUNCT2 EXP); ADD1] THEN REWRITE_TAC[WORD_CTZ_UNIQUE_VAL]) in fun tm -> match tm with Comb(Const("word_ctz",_),Comb(Const("word",_),t)) when is_numeral t -> let th1 = ISPEC (rand tm) pth in let th2 = WORD_VAL_CONV(lhand(lhand(snd(dest_forall(concl th1))))) in let mtm = rand(concl th2) in let m = dest_numeral mtm in if m =/ num_0 then CONV_RULE (RAND_CONV(!word_SIZE_CONV)) (MATCH_MP pth_0 th2) else let th3 = MP (SPEC mtm th1) th2 in let n = ctz m in let th4 = SPECL [mk_small_numeral n; mk_numeral(pow2 n)] th3 in MP th4 (EQT_ELIM(NUM_REDUCE_CONV(lhand(concl th4)))) | _ -> failwith "WORD_CTZ_CONV";; let WORD_CLZ_CONV = let clz k = let m = pow2 k in let rec clza a n = if n if n =/ num_0 then k else min k (clza (-1) n) and pth_0 = prove (`!(a:N word). val a = 0 ==> word_clz a = dimindex(:N)`, SIMP_TAC[VAL_EQ_0; WORD_CLZ_0]) and pth = prove (`!(a:N word) v. val a = v ==> !n d. n + 1 + d = dimindex(:N) /\ v DIV (2 EXP d) = 1 ==> word_clz a = n`, REPEAT GEN_TAC THEN DISCH_THEN(SUBST1_TAC o SYM) THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC WORD_CLZ_UNIQUE_VAL THEN CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN ASM_MESON_TAC[ARITH_RULE `n + 1 + d = N ==> N - n - 1 = d`]) in fun tm -> match tm with Comb(Const("word_clz",_),Comb(Const("word",_),t)) when is_numeral t -> let th1 = ISPEC (rand tm) pth in let th2 = WORD_VAL_CONV(lhand(lhand(snd(dest_forall(concl th1))))) in let mtm = rand(concl th2) in let m = dest_numeral mtm in if m =/ num_0 then CONV_RULE (RAND_CONV(!word_SIZE_CONV)) (MATCH_MP pth_0 th2) else let th3 = MP (SPEC mtm th1) th2 in let th4 = CONV_RULE (BINDER_CONV(BINDER_CONV(LAND_CONV(LAND_CONV (RAND_CONV(!word_SIZE_CONV)))))) th3 in let btm = lhand(lhand(snd(strip_forall(concl th4)))) in let e = dest_small_numeral(rand btm) in let n = clz e m in let d = e - (n + 1) in let th5 = SPECL [mk_small_numeral n; mk_small_numeral d] th4 in MP th5 (EQT_ELIM(NUM_REDUCE_CONV(lhand(concl th5)))) | _ -> failwith "WORD_CLZ_CONV";; let WORD_JSHL_CONV = let pth = prove (`word_jshl (word(NUMERAL m):N word) (word(NUMERAL n):N word) = word_shl (word(NUMERAL m):N word) (val(word(NUMERAL n):N word) MOD dimindex (:N))`, REWRITE_TAC[word_jshl]) in GEN_REWRITE_CONV I [pth] THENC RAND_CONV(BINOP2_CONV WORD_VAL_CONV (!word_SIZE_CONV) THENC NUM_MOD_CONV) THENC WORD_SHL_CONV;; let WORD_JSHR_CONV = let pth = prove (`word_jshr (word(NUMERAL m):N word) (word(NUMERAL n):N word) = word_ishr (word(NUMERAL m):N word) (val(word(NUMERAL n):N word) MOD dimindex (:N))`, REWRITE_TAC[word_jshr]) in GEN_REWRITE_CONV I [pth] THENC RAND_CONV(BINOP2_CONV WORD_VAL_CONV (!word_SIZE_CONV) THENC NUM_MOD_CONV) THENC WORD_ISHR_CONV;; let WORD_JUSHR_CONV = let pth = prove (`word_jushr (word(NUMERAL m):N word) (word(NUMERAL n):N word) = word_ushr (word(NUMERAL m):N word) (val(word(NUMERAL n):N word) MOD dimindex (:N))`, REWRITE_TAC[word_jushr]) in GEN_REWRITE_CONV I [pth] THENC RAND_CONV(BINOP2_CONV WORD_VAL_CONV (!word_SIZE_CONV) THENC NUM_MOD_CONV) THENC WORD_USHR_CONV;; let WORD_JROL_CONV = let pth = prove (`word_jrol (word(NUMERAL m):N word) (word(NUMERAL n):N word) = word_rol (word(NUMERAL m):N word) (val(word(NUMERAL n):N word))`, REWRITE_TAC[word_jrol]) in GEN_REWRITE_CONV I [pth] THENC RAND_CONV WORD_VAL_CONV THENC WORD_ROL_CONV;; let WORD_JROR_CONV = let pth = prove (`word_jror (word(NUMERAL m):N word) (word(NUMERAL n):N word) = word_ror (word(NUMERAL m):N word) (val(word(NUMERAL n):N word))`, REWRITE_TAC[word_jror]) in GEN_REWRITE_CONV I [pth] THENC RAND_CONV WORD_VAL_CONV THENC WORD_ROR_CONV;; let WORD_JDIV_CONV = let pth = prove (`word_jdiv (word(NUMERAL m):N word) (word(NUMERAL n)) = (\a b. iword((int_sgn a * int_sgn b) * (abs a div abs b))) (ival(word(NUMERAL m):N word)) (ival(word(NUMERAL n):N word))`, REWRITE_TAC[word_jdiv; imodular; GSYM INT_MUL_ASSOC]) in GEN_REWRITE_CONV I [pth] THENC RATOR_CONV(RAND_CONV WORD_IVAL_CONV THENC BETA_CONV) THENC RAND_CONV WORD_IVAL_CONV THENC BETA_CONV THENC RAND_CONV(COMB2_CONV (RAND_CONV (BINOP_CONV INT_SGN_CONV THENC INT_MUL_CONV)) (BINOP_CONV INT_ABS_CONV THENC INT_DIV_CONV) THENC INT_MUL_CONV) THENC WORD_IWORD_CONV;; let WORD_JREM_CONV = let pth = prove (`word_jrem (word(NUMERAL m):N word) (word(NUMERAL n):N word) = word_sub (word (NUMERAL m)) (word_mul (word_jdiv (word (NUMERAL m)) (word (NUMERAL n))) (word (NUMERAL n)))`, REWRITE_TAC[word_jrem]) in GEN_REWRITE_CONV I [pth] THENC RAND_CONV (LAND_CONV WORD_JDIV_CONV THENC WORD_MUL_CONV) THENC WORD_SUB_CONV;; let WORD_RED_CONV = let gconv_net = itlist (uncurry net_of_conv) [`word(NUMERAL n):N word`,CHANGED_CONV WORD_WORD_CONV; `iword i:N word`,WORD_IWORD_CONV; `val(w:N word)`,WORD_VAL_CONV; `ival(w:N word)`,WORD_IVAL_CONV; `bit (NUMERAL k) (word(NUMERAL n):N word)`,WORD_BIT_CONV; `word(NUMERAL m):N word = word(NUMERAL n)`,WORD_EQ_CONV; `word_ult (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_ULT_CONV; `word_ule (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_ULE_CONV; `word_ugt (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_UGT_CONV; `word_uge (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_UGE_CONV; `word_ilt (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_ILT_CONV; `word_ile (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_ILE_CONV; `word_igt (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_IGT_CONV; `word_ige (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_IGE_CONV; `word_neg (word(NUMERAL n):N word)`,WORD_NEG_CONV; `word_add (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_ADD_CONV; `word_mul (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_MUL_CONV; `word_sub (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_SUB_CONV; `word_udiv (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_UDIV_CONV; `word_umod (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_UMOD_CONV; `word_umax (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_UMAX_CONV; `word_umin (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_UMIN_CONV; `word_imax (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_IMAX_CONV; `word_imin (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_IMIN_CONV; `word_shl (word(NUMERAL m):N word) (NUMERAL n)`,WORD_SHL_CONV; `word_ushr (word(NUMERAL m):N word) (NUMERAL n)`,WORD_USHR_CONV; `word_ishr (word(NUMERAL m):N word) (NUMERAL n)`,WORD_ISHR_CONV; `word_not (word(NUMERAL n):N word)`,WORD_NOT_CONV; `word_and (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_AND_CONV; `word_or (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_OR_CONV; `word_xor (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_XOR_CONV; `word_rol (word(NUMERAL m):N word) (NUMERAL n)`,WORD_ROL_CONV; `word_ror (word(NUMERAL m):N word) (NUMERAL n)`,WORD_ROR_CONV; `word_zx (word(NUMERAL n):N word)`,WORD_ZX_CONV; `word_sx (word(NUMERAL n):N word)`,WORD_SX_CONV; `word_cand (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_CAND_CONV; `word_cor (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_COR_CONV; `word_join (word(NUMERAL m):M word) (word(NUMERAL n):N word)`, WORD_JOIN_CONV; `word_subword (word(NUMERAL m):M word) (NUMERAL p,NUMERAL q):N word`, WORD_SUBWORD_CONV; `bits_of_word (word(NUMERAL n):N word)`,WORD_BITS_OF_WORD_CONV; `word_popcount (word(NUMERAL n):N word)`,WORD_POPCOUNT_CONV; `word_evenparity (word(NUMERAL n):N word)`,WORD_EVENPARITY_CONV; `word_oddparity (word(NUMERAL n):N word)`,WORD_ODDPARITY_CONV; `word_ctz (word(NUMERAL n):N word)`,WORD_CTZ_CONV; `word_clz (word(NUMERAL n):N word)`,WORD_CLZ_CONV; `word_jshl (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_JSHL_CONV; `word_jshr (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_JSHR_CONV; `word_jushr (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_JUSHR_CONV; `word_jrol (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_JROL_CONV; `word_jror (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_JROR_CONV; `word_jdiv (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_JDIV_CONV; `word_jrem (word(NUMERAL m):N word) (word(NUMERAL n))`,WORD_JREM_CONV] (basic_net()) in REWRITES_CONV gconv_net;; let WORD_REDUCE_CONV = DEPTH_CONV WORD_RED_CONV;; (* ------------------------------------------------------------------------- *) (* Alternative returning signed words. *) (* ------------------------------------------------------------------------- *) let WORD_TO_IWORD_CONV = let pth = prove (`word(NUMERAL n):N word = iword(ival(word(NUMERAL n):N word))`, REWRITE_TAC[IWORD_IVAL]) in GEN_REWRITE_CONV I [pth] THENC RAND_CONV WORD_IVAL_CONV;; let WORD_IREDUCE_CONV = WORD_REDUCE_CONV THENC ONCE_DEPTH_CONV WORD_TO_IWORD_CONV;;