(* ========================================================================= *) (* Basic theory of divisibility, gcd, coprimality and primality (over N). *) (* ========================================================================= *) prioritize_num();; (* ------------------------------------------------------------------------- *) (* Elementary theory of divisibility *) (* ------------------------------------------------------------------------- *) let DIVIDES_0 = prove (`!x. x divides 0`, NUMBER_TAC);; let DIVIDES_ZERO = prove (`!x. 0 divides x <=> x = 0`, NUMBER_TAC);; let DIVIDES_1 = prove (`!x. 1 divides x`, NUMBER_TAC);; let DIVIDES_REFL = prove (`!x. x divides x`, NUMBER_TAC);; let DIVIDES_TRANS = prove (`!a b c. a divides b /\ b divides c ==> a divides c`, NUMBER_TAC);; let DIVIDES_ADD = prove (`!d a b. d divides a /\ d divides b ==> d divides (a + b)`, NUMBER_TAC);; let DIVIDES_SUB_EQ = prove (`!d a b. d divides (a - b) <=> a < b \/ (a == b) (mod d)`, REPEAT GEN_TAC THEN DISJ_CASES_THEN MP_TAC(ARITH_RULE `a < b /\ a - b = 0 \/ ~(a < b) /\ (a - b) + b = a`) THEN SIMP_TAC[] THEN NUMBER_TAC);; let DIVIDES_SUB = prove (`!d a b. d divides a /\ d divides b ==> d divides (a - b)`, REPEAT STRIP_TAC THEN REWRITE_TAC[DIVIDES_SUB_EQ] THEN DISJ2_TAC THEN REPEAT(POP_ASSUM MP_TAC) THEN NUMBER_TAC);; let DIVIDES_SUB_1 = prove (`!d n. d divides n - 1 <=> n = 0 \/ (n == 1) (mod d)`, REWRITE_TAC[DIVIDES_SUB_EQ; ARITH_RULE `n < 1 <=> n = 0`]);; let DIVIDES_LMUL = prove (`!d a x. d divides a ==> d divides (x * a)`, NUMBER_TAC);; let DIVIDES_RMUL = prove (`!d a x. d divides a ==> d divides (a * x)`, NUMBER_TAC);; let DIVIDES_ADD_REVR = prove (`!d a b. d divides a /\ d divides (a + b) ==> d divides b`, NUMBER_TAC);; let DIVIDES_ADD_REVL = prove (`!d a b. d divides b /\ d divides (a + b) ==> d divides a`, NUMBER_TAC);; let DIVIDES_MUL_L = prove (`!a b c. a divides b ==> (c * a) divides (c * b)`, NUMBER_TAC);; let DIVIDES_MUL_R = prove (`!a b c. a divides b ==> (a * c) divides (b * c)`, NUMBER_TAC);; let DIVIDES_LMUL2 = prove (`!d a x. (x * d) divides a ==> d divides a`, NUMBER_TAC);; let DIVIDES_RMUL2 = prove (`!d a x. (d * x) divides a ==> d divides a`, NUMBER_TAC);; let DIVIDES_CMUL2 = prove (`!a b c. (c * a) divides (c * b) /\ ~(c = 0) ==> a divides b`, NUMBER_TAC);; let DIVIDES_LMUL2_EQ = prove (`!a b c. ~(c = 0) ==> ((c * a) divides (c * b) <=> a divides b)`, NUMBER_TAC);; let DIVIDES_RMUL2_EQ = prove (`!a b c. ~(c = 0) ==> ((a * c) divides (b * c) <=> a divides b)`, NUMBER_TAC);; let DIVIDES_CASES = prove (`!m n. n divides m ==> m = 0 \/ m = n \/ 2 * n <= m`, SIMP_TAC[ARITH_RULE `m = n \/ 2 * n <= m <=> m = n * 1 \/ n * 2 <= m`] THEN SIMP_TAC[divides; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[MULT_EQ_0; EQ_MULT_LCANCEL; LE_MULT_LCANCEL] THEN ARITH_TAC);; let DIVIDES_DIV_NOT = prove (`!n x q r. x = q * n + r /\ 0 < r /\ r < n ==> ~(n divides x)`, SIMP_TAC[NUMBER_RULE `n divides (q * n + r) <=> n divides r`] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE) THEN ASM_ARITH_TAC);; let DIVIDES_MUL2 = prove (`!a b c d. a divides b /\ c divides d ==> (a * c) divides (b * d)`, NUMBER_TAC);; let DIVIDES_EXP = prove (`!x y n. x divides y ==> (x EXP n) divides (y EXP n)`, REPEAT GEN_TAC THEN REWRITE_TAC[divides] THEN DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN EXISTS_TAC `d EXP n` THEN MATCH_ACCEPT_TAC MULT_EXP);; let DIVIDES_EXP2 = prove (`!n x y. ~(n = 0) /\ (x EXP n) divides y ==> x divides y`, INDUCT_TAC THEN REWRITE_TAC[NOT_SUC; EXP] THEN NUMBER_TAC);; let DIVIDES_EXP_LE_IMP = prove (`!p m n. m <= n ==> (p EXP m) divides (p EXP n)`, SIMP_TAC[LE_EXISTS; LEFT_IMP_EXISTS_THM; EXP_ADD] THEN NUMBER_TAC);; let DIVIDES_EXP_LE = prove (`!p m n. 2 <= p ==> ((p EXP m) divides (p EXP n) <=> m <= n)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN ASM_REWRITE_TAC[LE_EXP; EXP_EQ_0] THEN POP_ASSUM MP_TAC THEN ARITH_TAC; SIMP_TAC[LE_EXISTS; LEFT_IMP_EXISTS_THM; EXP_ADD] THEN NUMBER_TAC]);; let DIVIDES_TRIVIAL_UPPERBOUND = prove (`!p n. ~(n = 0) /\ 2 <= p ==> ~((p EXP n) divides n)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE) THEN ASM_REWRITE_TAC[NOT_LE] THEN MATCH_MP_TAC LTE_TRANS THEN EXISTS_TAC `2 EXP n` THEN REWRITE_TAC[LT_POW2_REFL] THEN UNDISCH_TAC `~(n = 0)` THEN SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN ASM_REWRITE_TAC[EXP_MONO_LE; NOT_SUC]);; let DIVIDES_FACT = prove (`!n p. 1 <= p /\ p <= n ==> p divides (FACT n)`, INDUCT_TAC THEN REWRITE_TAC[FACT; LE] THENL [ARITH_TAC; ASM_MESON_TAC[DIVIDES_LMUL; DIVIDES_RMUL; DIVIDES_REFL]]);; let DIVIDES_2 = prove (`!n. 2 divides n <=> EVEN(n)`, REWRITE_TAC[divides; EVEN_EXISTS]);; let DIVIDES_REXP_SUC = prove (`!x y n. x divides y ==> x divides (y EXP (SUC n))`, REWRITE_TAC[EXP; DIVIDES_RMUL]);; let DIVIDES_REXP = prove (`!x y n. x divides y /\ ~(n = 0) ==> x divides (y EXP n)`, GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN SIMP_TAC[DIVIDES_REXP_SUC]);; let FINITE_DIVISORS = prove (`!n. ~(n = 0) ==> FINITE {d | d divides n}`, REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{d:num | d <= n}` THEN REWRITE_TAC[FINITE_NUMSEG_LE] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[DIVIDES_LE]);; let FINITE_SPECIAL_DIVISORS = prove (`!n. ~(n = 0) ==> FINITE {d | P d /\ d divides n}`, REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{d | d divides n}` THEN ASM_SIMP_TAC[FINITE_DIVISORS] THEN SET_TAC[]);; let DIVISORS_EQ = prove (`!m n. m = n <=> !d. d divides m <=> d divides n`, REWRITE_TAC[GSYM DIVIDES_ANTISYM] THEN MESON_TAC[DIVIDES_REFL; DIVIDES_TRANS]);; let MULTIPLES_EQ = prove (`!m n. m = n <=> !d. m divides d <=> n divides d`, REWRITE_TAC[GSYM DIVIDES_ANTISYM] THEN MESON_TAC[DIVIDES_REFL; DIVIDES_TRANS]);; let DIVIDES_NSUM = prove (`!n f s. FINITE s /\ (!i. i IN s ==> n divides (f i)) ==> n divides nsum s f`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN ASM_SIMP_TAC[DIVIDES_0; NSUM_CLAUSES; FORALL_IN_INSERT; DIVIDES_ADD]);; (* ------------------------------------------------------------------------- *) (* Greatest common divisor. *) (* ------------------------------------------------------------------------- *) let DIVIDES_GCD = prove (`!a b d. d divides gcd(a,b) <=> d divides a /\ d divides b`, NUMBER_TAC);; let GCD_0 = prove (`(!a. gcd(0,a) = a) /\ (!a. gcd(a,0) = a)`, NUMBER_TAC);; let GCD_ZERO = prove (`!a b. gcd(a,b) = 0 <=> a = 0 /\ b = 0`, NUMBER_TAC);; let GCD_REFL = prove (`!a. gcd(a,a) = a`, NUMBER_TAC);; let GCD_1 = prove (`(!a. gcd(1,a) = 1) /\ (!a. gcd(a,1) = 1)`, NUMBER_TAC);; let GCD_MULTIPLE = prove (`!a b. gcd(b,a * b) = b`, NUMBER_TAC);; let GCD_ADD = prove (`(!a b. gcd(a + b,b) = gcd(a,b)) /\ (!a b. gcd(b + a,b) = gcd(a,b)) /\ (!a b. gcd(a,a + b) = gcd(a,b)) /\ (!a b. gcd(a,b + a) = gcd(a,b))`, NUMBER_TAC);; let GCD_SUB = prove (`(!a b. b <= a ==> gcd(a - b,b) = gcd(a,b)) /\ (!a b. a <= b ==> gcd(a,b - a) = gcd(a,b))`, MESON_TAC[SUB_ADD; GCD_ADD]);; let DIVIDES_GCD_LEFT = prove (`!m n:num. m divides n <=> gcd(m,n) = m`, NUMBER_TAC);; let DIVIDES_GCD_RIGHT = prove (`!m n:num. n divides m <=> gcd(m,n) = n`, NUMBER_TAC);; let GCD_COPRIME_LMUL = prove (`!a b c. coprime(a,b) ==> gcd(a * b,c) = gcd(a,c) * gcd(b,c)`, NUMBER_TAC);; let GCD_COPRIME_RMUL = prove (`!a b c. coprime(a,b) ==> gcd(c,a * b) = gcd(c,a) * gcd(c,b)`, NUMBER_TAC);; let DIVIDES_LMUL_GCD = prove (`(!d a b. d divides gcd(d,a) * b <=> d divides a * b) /\ (!d a b. d divides gcd(a,d) * b <=> d divides a * b)`, NUMBER_TAC);; let DIVIDES_RMUL_GCD = prove (`(!d a b. d divides a * gcd(d,b) <=> d divides a * b) /\ (!d a b. d divides a * gcd(b,d) <=> d divides a * b)`, NUMBER_TAC);; let GCD_MUL_COPRIME = prove (`(!a b c. coprime(a,b) ==> gcd(a,b * c) = gcd(a,c)) /\ (!a b c. coprime(a,c) ==> gcd(a,b * c) = gcd(a,b)) /\ (!a b c. coprime(b,c) ==> gcd(a,b * c) = gcd(a,b) * gcd(a,c)) /\ (!a b c. coprime(a,c) ==> gcd(a * b,c) = gcd(b,c)) /\ (!a b c. coprime(b,c) ==> gcd(a * b,c) = gcd(a,c)) /\ (!a b c. coprime(a,b) ==> gcd(a * b,c) = gcd(a,c) * gcd(b,c))`, NUMBER_TAC);; let GCD_SYM = prove (`!a b. gcd(a,b) = gcd(b,a)`, NUMBER_TAC);; let GCD_ASSOC = prove (`!a b c. gcd(a,gcd(b,c)) = gcd(gcd(a,b),c)`, NUMBER_TAC);; let GCD_LMUL = prove (`!a b c. gcd(c * a, c * b) = c * gcd(a,b)`, NUMBER_TAC);; let GCD_RMUL = prove (`!a b c. gcd(a * c, b * c) = c * gcd(a,b)`, NUMBER_TAC);; let GCD_BEZOUT_SUM = prove (`!a b d x y. a * x + b * y = d ==> gcd(a,b) divides d`, NUMBER_TAC);; let GCD_COPRIME_DIVIDES_LMUL = prove (`!a b c:num. coprime(a,b) /\ a divides c ==> gcd(a * b,c) = a * gcd(b,c)`, NUMBER_TAC);; let GCD_COPRIME_DIVIDES_RMUL = prove (`!a b c:num. coprime(b,c) /\ b divides a ==> gcd(a,b * c) = b * gcd(a,c)`, ONCE_REWRITE_TAC[GCD_SYM] THEN REWRITE_TAC[GCD_COPRIME_DIVIDES_LMUL]);; let GCD_UNIQUE = prove (`!d a b. (d divides a /\ d divides b) /\ (!e. e divides a /\ e divides b ==> e divides d) <=> d = gcd(a,b)`, REPEAT GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[GCD] THEN ONCE_REWRITE_TAC[GSYM DIVIDES_ANTISYM] THEN ASM_REWRITE_TAC[DIVIDES_GCD] THEN FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[GCD]);; let GCD_EQ = prove (`(!d. d divides x /\ d divides y <=> d divides u /\ d divides v) ==> gcd(x,y) = gcd(u,v)`, REWRITE_TAC[DIVIDES_GCD; GSYM DIVIDES_ANTISYM] THEN MESON_TAC[GCD]);; let BEZOUT_GCD_STRONG = prove (`!a b. ~(a = 0) ==> ?x y. a * x = b * y + gcd(a,b)`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [SWAP_EXISTS_THM] THEN MP_TAC(INTEGER_RULE `?x y. &a * x:int = &b * y + gcd(&a,&b)`) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`x:int`; `y:int`] THEN STRIP_TAC THEN MP_TAC(SPECL [`y:int`; `&a:int`] INT_CONG_NUM_EXISTS) THEN ASM_REWRITE_TAC[INT_OF_NUM_EQ] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:num` THEN DISCH_TAC THEN SUBGOAL_THEN `&a divides (&b * &r + gcd(&a,&b):int)` MP_TAC THENL [REPLICATE_TAC 2 (POP_ASSUM MP_TAC) THEN CONV_TAC INTEGER_RULE; ASM_REWRITE_TAC[int_divides; EXISTS_INT_CASES] THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THEN MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[GSYM NUM_GCD; INT_OF_NUM_MUL; INT_OF_NUM_ADD; INT_OF_NUM_EQ] THEN REWRITE_TAC[INT_MUL_RNEG; INT_OF_NUM_MUL; INT_ARITH `&x:int = -- &y <=> &x:int = &0 /\ &y:int = &0`] THEN ASM_REWRITE_TAC[INT_OF_NUM_EQ; ADD_EQ_0; GCD_ZERO]]);; let BEZOUT_ADD_STRONG = prove (`!a b. ~(a = 0) ==> ?d x y. d divides a /\ d divides b /\ a * x = b * y + d`, MESON_TAC[BEZOUT_GCD_STRONG; GCD]);; let BEZOUT_GCD = prove (`!a b. ?x y. a * x - b * y = gcd(a,b) \/ b * x - a * y = gcd(a,b)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `a = 0 /\ b = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES; GCD_0; SUB_0] THEN FIRST_X_ASSUM(DISJ_CASES_TAC o REWRITE_RULE[DE_MORGAN_THM]) THENL [MP_TAC(SPECL [`a:num`; `b:num`] BEZOUT_GCD_STRONG); MP_TAC(SPECL [`b:num`; `a:num`] BEZOUT_GCD_STRONG)] THEN ASM_REWRITE_TAC[] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN REWRITE_TAC[GCD_SYM] THEN ARITH_TAC);; let BEZOUT_ADD = prove (`!a b. ?d x y. (d divides a /\ d divides b) /\ (a * x = b * y + d \/ b * x = a * y + d)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `a = 0 /\ b = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES; DIVIDES_0; GSYM EXISTS_REFL] THEN ASM_MESON_TAC[BEZOUT_ADD_STRONG; MULT_SYM; ADD_SYM]);; let BEZOUT = prove (`!a b. ?d x y. (d divides a /\ d divides b) /\ (a * x - b * y = d \/ b * x - a * y = d)`, MESON_TAC[BEZOUT_GCD; GCD]);; let GCD_BEZOUT = prove (`!a b d. (?x y. a * x - b * y = d \/ b * x - a * y = d) <=> gcd(a,b) divides d`, REPEAT GEN_TAC THEN EQ_TAC THENL [STRIP_TAC THEN POP_ASSUM(SUBST1_TAC o SYM) THEN MATCH_MP_TAC DIVIDES_SUB THEN CONJ_TAC THEN MATCH_MP_TAC DIVIDES_RMUL THEN REWRITE_TAC[GCD]; DISCH_THEN(X_CHOOSE_THEN `k:num` SUBST1_TAC o REWRITE_RULE[divides]) THEN STRIP_ASSUME_TAC(SPECL [`a:num`; `b:num`] BEZOUT_GCD) THEN MAP_EVERY EXISTS_TAC [`x * k`; `y * k`] THEN ASM_REWRITE_TAC[GSYM RIGHT_SUB_DISTRIB; MULT_ASSOC] THEN FIRST_ASSUM(DISJ_CASES_THEN SUBST1_TAC) THEN REWRITE_TAC[]]);; let GCD_LE = prove (`(!m n. gcd(m,n) <= m <=> (m = 0 ==> n = 0)) /\ (!m n. gcd(m,n) <= n <=> (n = 0 ==> m = 0))`, REPEAT STRIP_TAC THEN MAP_EVERY ASM_CASES_TAC [`m = 0`; `n = 0`] THEN ASM_REWRITE_TAC[GCD_0; LE_REFL; LE] THEN MATCH_MP_TAC DIVIDES_LE_IMP THEN ASM_REWRITE_TAC[GCD]);; let GCD_LE_MIN_EQ = prove (`!m n. gcd(m,n) <= MIN m n <=> (m = 0 <=> n = 0)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[GCD_0; CONJUNCT1 LE; ARITH_RULE `MIN m 0 = 0`] THEN ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[GCD_0; CONJUNCT1 LE; ARITH_RULE `MIN 0 n = 0`] THEN REWRITE_TAC[ARITH_RULE `p <= MIN m n <=> p <= m /\ p <= n`] THEN CONJ_TAC THEN MATCH_MP_TAC DIVIDES_LE_IMP THEN ASM_REWRITE_TAC[GCD]);; let GCD_LE_MIN = prove (`!m n. (m = 0 <=> n = 0) ==> gcd(m,n) <= MIN m n`, REWRITE_TAC[GCD_LE_MIN_EQ]);; let GCD_LE_MAX = prove (`!m n. gcd(m,n) <= MAX m n`, REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[GCD_0; ARITH_RULE `MAX m 0 = m`; LE_REFL] THEN ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[GCD_0; ARITH_RULE `MAX 0 n = n`; LE_REFL] THEN MATCH_MP_TAC(ARITH_RULE `p <= MIN m n ==> p <= MAX m n`) THEN ASM_REWRITE_TAC[GCD_LE_MIN_EQ]);; (* ------------------------------------------------------------------------- *) (* Coprimality *) (* ------------------------------------------------------------------------- *) let COPRIME = prove (`!a b. coprime(a,b) <=> !d. d divides a /\ d divides b <=> d = 1`, REPEAT GEN_TAC THEN REWRITE_TAC[coprime] THEN REPEAT(EQ_TAC ORELSE STRIP_TAC) THEN ASM_REWRITE_TAC[DIVIDES_1] THENL [FIRST_ASSUM MATCH_MP_TAC; FIRST_ASSUM(CONV_TAC o REWR_CONV o GSYM) THEN CONJ_TAC] THEN ASM_REWRITE_TAC[]);; let COPRIME_GCD = prove (`!a b. coprime(a,b) <=> gcd(a,b) = 1`, REWRITE_TAC[GSYM DIVIDES_ONE] THEN NUMBER_TAC);; let GCD_ONE = prove (`!a b. coprime(a,b) ==> gcd(a,b) = 1`, NUMBER_TAC);; let COPRIME_SYM = prove (`!a b. coprime(a,b) <=> coprime(b,a)`, NUMBER_TAC);; let COPRIME_BEZOUT = prove (`!a b. coprime(a,b) <=> ?x y. a * x - b * y = 1 \/ b * x - a * y = 1`, REWRITE_TAC[GCD_BEZOUT; DIVIDES_ONE; COPRIME_GCD]);; let COPRIME_DIVPROD = prove (`!d a b. d divides (a * b) /\ coprime(d,a) ==> d divides b`, NUMBER_TAC);; let COPRIME_1 = prove (`(!a. coprime(a,1)) /\ (!a. coprime(1,a))`, NUMBER_TAC);; let GCD_COPRIME = prove (`!a b a' b'. ~(gcd(a,b) = 0) /\ a = a' * gcd(a,b) /\ b = b' * gcd(a,b) ==> coprime(a',b')`, NUMBER_TAC);; let GCD_COPRIME_EXISTS = prove (`!a b. ?a' b'. a = a' * gcd(a,b) /\ b = b' * gcd(a,b) /\ coprime(a',b')`, REPEAT GEN_TAC THEN ASM_CASES_TAC `gcd(a,b) = 0` THENL [FIRST_ASSUM(ASSUME_TAC o REWRITE_RULE[GCD_ZERO]) THEN MAP_EVERY EXISTS_TAC [`0`; `1`] THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN CONV_TAC NUMBER_RULE; MP_TAC(CONJUNCT1(SPECL [`a:num`; `b:num`] GCD)) THEN REWRITE_TAC[divides; LEFT_AND_EXISTS_THM] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN ASM_MESON_TAC[GCD_COPRIME; MULT_SYM]]);; let COPRIME_DIVPROD_IFF = prove (`!d a. ~(d = 0) ==> ((!b. d divides a * b ==> d divides b) <=> coprime(d,a))`, REPEAT STRIP_TAC THEN EQ_TAC THENL [ALL_TAC; CONV_TAC NUMBER_RULE] THEN MP_TAC(GSYM(ISPECL [`d:num`; `a:num`] GCD_COPRIME_EXISTS)) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a':num`; `b':num`] THEN STRIP_TAC THEN DISCH_THEN(MP_TAC o SPEC `a':num`) THEN ANTS_TAC THEN REPEAT(POP_ASSUM MP_TAC) THEN NUMBER_TAC);; let CONG_MULT_LCANCEL_IFF = prove (`!a n. ~(n = 0) ==> ((!x y. (a * x == a * y) (mod n) ==> (x == y) (mod n)) <=> coprime(a,n))`, REPEAT STRIP_TAC THEN EQ_TAC THENL [ALL_TAC; CONV_TAC NUMBER_RULE] THEN DISCH_THEN(MP_TAC o SPEC `0`) THEN ASM_SIMP_TAC[MULT_CLAUSES; NUMBER_RULE `(0 == x) (mod n) <=> n divides x`; COPRIME_DIVPROD_IFF] THEN CONV_TAC NUMBER_RULE);; let CONG_MULT_RCANCEL_IFF = prove (`!a n. ~(n = 0) ==> ((!x y. (x * a == y * a) (mod n) ==> (x == y) (mod n)) <=> coprime(a,n))`, ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[CONG_MULT_LCANCEL_IFF]);; let COPRIME_0 = prove (`(!d. coprime(d,0) <=> d = 1) /\ (!d. coprime(0,d) <=> d = 1)`, NUMBER_TAC);; let COPRIME_MUL = prove (`!d a b. coprime(d,a) /\ coprime(d,b) ==> coprime(d,a * b)`, NUMBER_TAC);; let COPRIME_LMUL2 = prove (`!d a b. coprime(d,a * b) ==> coprime(d,b)`, NUMBER_TAC);; let COPRIME_RMUL2 = prove (`!d a b. coprime(d,a * b) ==> coprime(d,a)`, NUMBER_TAC);; let COPRIME_LMUL = prove (`!d a b. coprime(a * b,d) <=> coprime(a,d) /\ coprime(b,d)`, NUMBER_TAC);; let COPRIME_RMUL = prove (`!d a b. coprime(d,a * b) <=> coprime(d,a) /\ coprime(d,b)`, NUMBER_TAC);; let COPRIME_EXP = prove (`!n a d. coprime(d,a) ==> coprime(d,a EXP n)`, INDUCT_TAC THEN REWRITE_TAC[EXP; COPRIME_1] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC COPRIME_MUL THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]);; let COPRIME_EXP_IMP = prove (`!n a b. coprime(a,b) ==> coprime(a EXP n,b EXP n)`, REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC COPRIME_EXP THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN MATCH_MP_TAC COPRIME_EXP THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN ASM_REWRITE_TAC[]);; let COPRIME_REXP = prove (`!m n k. coprime(m,n EXP k) <=> coprime(m,n) \/ k = 0`, GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[CONJUNCT1 EXP; COPRIME_1] THEN REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[COPRIME_EXP; NOT_SUC] THEN REWRITE_TAC[EXP] THEN CONV_TAC NUMBER_RULE);; let COPRIME_LEXP = prove (`!m n k. coprime(m EXP k,n) <=> coprime(m,n) \/ k = 0`, ONCE_REWRITE_TAC[COPRIME_SYM] THEN REWRITE_TAC[COPRIME_REXP]);; let COPRIME_EXP2 = prove (`!m n k. coprime(m EXP k,n EXP k) <=> coprime(m,n) \/ k = 0`, REWRITE_TAC[COPRIME_REXP; COPRIME_LEXP; DISJ_ACI]);; let COPRIME_EXP2_SUC = prove (`!n a b. coprime(a EXP (SUC n),b EXP (SUC n)) <=> coprime(a,b)`, REWRITE_TAC[COPRIME_EXP2; NOT_SUC]);; let COPRIME_NPRODUCT_EQ = prove (`(!(f:A->num) a s. FINITE s ==> (coprime(a,nproduct s f) <=> !i. i IN s ==> coprime(a,f i))) /\ (!(f:A->num) b s. FINITE s ==> (coprime(nproduct s f,b) <=> !i. i IN s ==> coprime(f i,b)))`, GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [COPRIME_SYM] THEN REWRITE_TAC[] THEN GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[NPRODUCT_CLAUSES; NOT_IN_EMPTY; COPRIME_1] THEN SIMP_TAC[COPRIME_RMUL; FORALL_IN_INSERT]);; let COPRIME_NPRODUCT = prove (`!s n. FINITE s /\ (!x. x IN s ==> coprime(n,a x)) ==> coprime(n,nproduct s a)`, SIMP_TAC[COPRIME_NPRODUCT_EQ]);; let COPRIME_DIVISORS = prove (`!a b d e. d divides a /\ e divides b /\ coprime(a,b) ==> coprime(d,e)`, NUMBER_TAC);; let COPRIME_REFL = prove (`!n. coprime(n,n) <=> n = 1`, NUMBER_TAC);; let COPRIME_PLUS1 = prove (`!n. coprime(n + 1,n)`, NUMBER_TAC);; let COPRIME_MINUS1 = prove (`!n. ~(n = 0) ==> coprime(n - 1,n)`, REPEAT STRIP_TAC THEN SIMP_TAC[coprime] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_SUB) THEN ASM_SIMP_TAC[ARITH_RULE `~(n = 0) ==> n - (n - 1) = 1`; DIVIDES_ONE]);; let GCD_EXP = prove (`!n a b. gcd(a EXP n,b EXP n) = gcd(a,b) EXP n`, REPEAT STRIP_TAC THEN MP_TAC(SPECL [`a:num`; `b:num`] GCD_COPRIME_EXISTS) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a':num`; `b':num`] THEN STRIP_TAC THEN ONCE_ASM_REWRITE_TAC[] THEN REWRITE_TAC[MULT_EXP; GCD_RMUL] THEN MATCH_MP_TAC(NUM_RING `x = 1 /\ y = 1 ==> a * x = a * y`) THEN ASM_REWRITE_TAC[GSYM COPRIME_GCD; EXP_EQ_1] THEN ASM_REWRITE_TAC[COPRIME_LEXP; COPRIME_REXP]);; let DIVIDES_EXP2_REV = prove (`!n a b. (a EXP n) divides (b EXP n) /\ ~(n = 0) ==> a divides b`, REWRITE_TAC[DIVIDES_GCD_LEFT; GCD_EXP; EXP_MONO_EQ] THEN MESON_TAC[]);; let DIVIDES_EXP2_EQ = prove (`!n a b. ~(n = 0) ==> ((a EXP n) divides (b EXP n) <=> a divides b)`, MESON_TAC[DIVIDES_EXP2_REV; DIVIDES_EXP]);; let DIVIDES_MUL = prove (`!m n r. m divides r /\ n divides r /\ coprime(m,n) ==> (m * n) divides r`, NUMBER_TAC);; let DIVISION_DECOMP = prove (`!a b c. a divides (b * c) ==> ?b' c'. a = b' * c' /\ b' divides b /\ c' divides c`, REPEAT GEN_TAC THEN DISCH_TAC THEN EXISTS_TAC `gcd(a,b)` THEN REWRITE_TAC[GCD] THEN ASM_CASES_TAC `gcd(a,b) = 0` THENL [ASM_REWRITE_TAC[] THEN EXISTS_TAC `1` THEN RULE_ASSUM_TAC(REWRITE_RULE[GCD_ZERO]) THEN ASM_REWRITE_TAC[MULT_CLAUSES; DIVIDES_1]; MP_TAC(SPECL [`a:num`; `b:num`] GCD_COPRIME_EXISTS) THEN MATCH_MP_TAC MONO_EXISTS THEN REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC NUMBER_RULE]);; (* ------------------------------------------------------------------------- *) (* Primes. *) (* ------------------------------------------------------------------------- *) let PRIME_0 = prove (`~prime(0)`, REWRITE_TAC[prime] THEN DISCH_THEN(MP_TAC o SPEC `2` o CONJUNCT2) THEN REWRITE_TAC[DIVIDES_0; ARITH]);; let PRIME_1 = prove (`~prime(1)`, REWRITE_TAC[prime]);; let PRIME_ALT = prove (`!p. prime p <=> ~(p = 0) /\ ~(p = 1) /\ !n. 1 < n /\ n < p ==> ~(n divides p)`, GEN_TAC THEN ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[PRIME_0] THEN REWRITE_TAC[prime; LT_LE] THEN ASM_MESON_TAC[DIVIDES_LE_STRONG; DIVIDES_0; LE_1]);; let PRIME_2 = prove (`prime(2)`, REWRITE_TAC[PRIME_ALT] THEN ARITH_TAC);; let PRIME_COPRIME_STRONG = prove (`!n p. prime(p) ==> p divides n \/ coprime(p,n)`, REWRITE_TAC[prime; coprime] THEN MESON_TAC[]);; let PRIME_COPRIME = prove (`!n p. prime(p) ==> n = 1 \/ p divides n \/ coprime(p,n)`, MESON_TAC[PRIME_COPRIME_STRONG]);; let PRIME_COPRIME_EQ = prove (`!p n. prime p ==> (coprime(p,n) <=> ~(p divides n))`, SIMP_TAC[PRIME_COPRIME_EQ_NONDIVISIBLE]);; let COPRIME_PRIME = prove (`!p a b. coprime(a,b) ==> ~(prime(p) /\ p divides a /\ p divides b)`, MESON_TAC[coprime; PRIME_1]);; let PRIME_DIVPROD = prove (`!p a b. prime(p) /\ p divides (a * b) ==> p divides a \/ p divides b`, MESON_TAC[PRIME_COPRIME_STRONG; COPRIME_DIVPROD]);; let PRIME_DIVPROD_EQ = prove (`!p a b. prime(p) ==> (p divides (a * b) <=> p divides a \/ p divides b)`, MESON_TAC[PRIME_DIVPROD; DIVIDES_LMUL; DIVIDES_RMUL]);; let PRIME_GE_2 = prove (`!p. prime(p) ==> 2 <= p`, REWRITE_TAC[ARITH_RULE `2 <= p <=> ~(p = 0) /\ ~(p = 1)`] THEN MESON_TAC[PRIME_0; PRIME_1]);; let PRIME_FACTOR = prove (`!n. ~(n = 1) ==> ?p. prime(p) /\ p divides n`, MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN REPEAT STRIP_TAC THEN ASM_CASES_TAC `prime(n)` THENL [ASM_MESON_TAC[DIVIDES_REFL]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [PRIME_ALT]) THEN ASM_REWRITE_TAC[DE_MORGAN_THM; NOT_FORALL_THM; NOT_IMP] THEN STRIP_TAC THENL [ASM_MESON_TAC[PRIME_2; DIVIDES_0]; ALL_TAC] THEN ASM_MESON_TAC[DIVIDES_TRANS; LT_REFL]);; let PRIME = prove (`!p. prime p <=> ~(p = 0) /\ ~(p = 1) /\ !m. 0 < m /\ m < p ==> coprime(p,m)`, GEN_TAC THEN ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[PRIME_0] THEN ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[PRIME_1] THEN MP_TAC(SPEC `p:num` ONE_OR_PRIME_DIVIDES_OR_COPRIME) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `n:num` THENL [STRIP_TAC THEN FIRST_X_ASSUM(DISJ_CASES_TAC o SPEC `n:num`) THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE_STRONG) THEN ASM_ARITH_TAC; FIRST_X_ASSUM(MP_TAC o SPEC `n MOD p`) THEN ASM_REWRITE_TAC[MOD_LT_EQ; COPRIME_RMOD; DIVIDES_MOD] THEN MESON_TAC[LE_1]]);; let PRIME_PRIME_FACTOR = prove (`!n. prime n <=> ~(n = 1) /\ !p. prime p /\ p divides n ==> p = n`, GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [prime] THEN ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[] THEN EQ_TAC THENL [MESON_TAC[PRIME_1]; ALL_TAC] THEN STRIP_TAC THEN X_GEN_TAC `d:num` THEN ASM_CASES_TAC `d = 1` THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN FIRST_ASSUM(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC o MATCH_MP PRIME_FACTOR) THEN ASM_MESON_TAC[DIVIDES_TRANS; DIVIDES_ANTISYM]);; let PRIME_FACTOR_LT = prove (`!n m p. prime(p) /\ ~(n = 0) /\ n = p * m ==> m < n`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[MULT_EQ_0; DE_MORGAN_THM]) THEN ASM_SIMP_TAC[LT_MULT_RCANCEL; ARITH_RULE `m < p * m <=> 1 * m < p * m`] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN ARITH_TAC);; let COPRIME_PRIME_EQ = prove (`!a b. coprime(a,b) <=> !p. ~(prime(p) /\ p divides a /\ p divides b)`, REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP COPRIME_PRIME th]); CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[coprime] THEN ONCE_REWRITE_TAC[NOT_FORALL_THM] THEN REWRITE_TAC[NOT_IMP] THEN DISCH_THEN(X_CHOOSE_THEN `d:num` STRIP_ASSUME_TAC) THEN FIRST_ASSUM(X_CHOOSE_TAC `p:num` o MATCH_MP PRIME_FACTOR) THEN EXISTS_TAC `p:num` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN MATCH_MP_TAC DIVIDES_TRANS THEN EXISTS_TAC `d:num` THEN ASM_REWRITE_TAC[]]);; let GCD_PRIME_CASES = prove (`(!p n. prime p ==> gcd(p,n) = if p divides n then p else 1) /\ (!p n. prime p ==> gcd(n,p) = if p divides n then p else 1)`, GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GCD_SYM] THEN REWRITE_TAC[] THEN REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[GSYM DIVIDES_GCD_LEFT] THEN REWRITE_TAC[GSYM COPRIME_GCD] THEN ASM_MESON_TAC[PRIME_COPRIME_EQ]);; let GCD_2_CASES = prove (`(!n. gcd(2,n) = if EVEN n then 2 else 1) /\ (!n. gcd(n,2) = if EVEN n then 2 else 1)`, SIMP_TAC[GCD_PRIME_CASES; PRIME_2; DIVIDES_2]);; let COPRIME_PRIMEPOW = prove (`!p k m. prime p /\ ~(k = 0) ==> (coprime(m,p EXP k) <=> ~(p divides m))`, SIMP_TAC[COPRIME_REXP] THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN SIMP_TAC[PRIME_COPRIME_EQ]);; let COPRIME_BEZOUT_STRONG = prove (`!a b. coprime(a,b) /\ ~(b = 1) ==> ?x y. a * x = b * y + 1`, REPEAT GEN_TAC THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COPRIME_GCD]) THEN DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC BEZOUT_GCD_STRONG THEN ASM_MESON_TAC[COPRIME_0; COPRIME_SYM]);; let COPRIME_BEZOUT_ALT = prove (`!a b. coprime(a,b) /\ ~(a = 0) ==> ?x y. a * x = b * y + 1`, REPEAT GEN_TAC THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COPRIME_GCD]) THEN DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC BEZOUT_GCD_STRONG THEN ASM_MESON_TAC[COPRIME_0; COPRIME_SYM]);; let BEZOUT_PRIME = prove (`!a p. prime p /\ ~(p divides a) ==> ?x y. a * x = p * y + 1`, MESON_TAC[PRIME_COPRIME_STRONG; COPRIME_SYM; COPRIME_BEZOUT_STRONG; PRIME_1]);; let PRIME_DIVEXP = prove (`!n p x. prime(p) /\ p divides (x EXP n) ==> p divides x`, INDUCT_TAC THEN REPEAT GEN_TAC THEN REWRITE_TAC[EXP; DIVIDES_ONE] THENL [DISCH_THEN(SUBST1_TAC o CONJUNCT2) THEN REWRITE_TAC[DIVIDES_1]; DISCH_THEN(fun th -> ASSUME_TAC(CONJUNCT1 th) THEN MP_TAC th) THEN DISCH_THEN(DISJ_CASES_TAC o MATCH_MP PRIME_DIVPROD) THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]);; let PRIME_DIVEXP_N = prove (`!n p x. prime(p) /\ p divides (x EXP n) ==> (p EXP n) divides (x EXP n)`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP PRIME_DIVEXP) THEN MATCH_ACCEPT_TAC DIVIDES_EXP);; let PRIME_DIVEXP_EQ = prove (`!n p x. prime p ==> (p divides x EXP n <=> p divides x /\ ~(n = 0))`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[EXP; DIVIDES_ONE] THEN ASM_MESON_TAC[PRIME_DIVEXP; DIVIDES_REXP; PRIME_1]);; let COPRIME_SOS = prove (`!x y. coprime(x,y) ==> coprime(x * y,(x EXP 2) + (y EXP 2))`, NUMBER_TAC);; let PRIME_IMP_NZ = prove (`!p. prime(p) ==> ~(p = 0)`, MESON_TAC[PRIME_0]);; let DISTINCT_PRIME_COPRIME = prove (`!p q. prime p /\ prime q /\ ~(p = q) ==> coprime(p,q)`, MESON_TAC[prime; coprime; PRIME_1]);; let PRIME_COPRIME_LT = prove (`!x p. prime p /\ 0 < x /\ x < p ==> coprime(x,p)`, REWRITE_TAC[coprime; prime] THEN MESON_TAC[LT_REFL; DIVIDES_LE; NOT_LT; PRIME_0]);; let DIVIDES_PRIME_PRIME = prove (`!p q. prime p /\ prime q ==> (p divides q <=> p = q)`, MESON_TAC[DIVIDES_REFL; DISTINCT_PRIME_COPRIME; PRIME_COPRIME_EQ]);; let COPRIME_PRIME_PRIME = prove (`!p q. prime p /\ prime q ==> (coprime(p,q) <=> ~(p = q))`, MESON_TAC[PRIME_COPRIME_EQ; DIVIDES_PRIME_PRIME; COPRIME_SYM]);; let DIVIDES_PRIME_EXP_LE = prove (`!p q m n. prime p /\ prime q ==> ((p EXP m) divides (q EXP n) <=> m = 0 \/ p = q /\ m <= n)`, GEN_TAC THEN GEN_TAC THEN REPEAT INDUCT_TAC THEN ASM_SIMP_TAC[EXP; DIVIDES_1; DIVIDES_ONE; MULT_EQ_1; NOT_SUC] THENL [MESON_TAC[PRIME_1; ARITH_RULE `~(SUC m <= 0)`]; ALL_TAC] THEN ASM_CASES_TAC `p:num = q` THEN ASM_SIMP_TAC[DIVIDES_EXP_LE; PRIME_GE_2; GSYM(CONJUNCT2 EXP)] THEN ASM_MESON_TAC[PRIME_DIVEXP; DIVIDES_PRIME_PRIME; EXP; DIVIDES_RMUL2]);; let EQ_PRIME_EXP = prove (`!p q m n. prime p /\ prime q ==> (p EXP m = q EXP n <=> m = 0 /\ n = 0 \/ p = q /\ m = n)`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM DIVIDES_ANTISYM] THEN ASM_SIMP_TAC[DIVIDES_PRIME_EXP_LE] THEN ARITH_TAC);; let PRIME_ODD = prove (`!p. prime p ==> p = 2 \/ ODD p`, GEN_TAC THEN REWRITE_TAC[prime; GSYM NOT_EVEN; EVEN_EXISTS] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `2`)) THEN REWRITE_TAC[divides; ARITH] THEN MESON_TAC[]);; let ODD_PRIME = prove (`!p. prime p ==> (ODD p <=> 3 <= p)`, GEN_TAC THEN ASM_CASES_TAC `p = 0` THENL [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN ASM_CASES_TAC `p = 1` THENL [ASM_MESON_TAC[PRIME_1]; ALL_TAC] THEN DISCH_THEN(MP_TAC o MATCH_MP PRIME_ODD) THEN ASM_CASES_TAC `p = 2` THEN ASM_SIMP_TAC[ARITH] THEN ASM_ARITH_TAC);; let DIVIDES_FACT_PRIME = prove (`!p. prime p ==> !n. p divides (FACT n) <=> p <= n`, GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN REWRITE_TAC[FACT; LE] THENL [ASM_MESON_TAC[DIVIDES_ONE; PRIME_0; PRIME_1]; ASM_MESON_TAC[PRIME_DIVPROD_EQ; DIVIDES_LE; NOT_SUC; DIVIDES_REFL; ARITH_RULE `~(p <= n) /\ p <= SUC n ==> p = SUC n`]]);; let EQ_PRIMEPOW = prove (`!p m n. prime p ==> (p EXP m = p EXP n <=> m = n)`, ONCE_REWRITE_TAC[GSYM LE_ANTISYM] THEN SIMP_TAC[LE_EXP; PRIME_IMP_NZ] THEN MESON_TAC[PRIME_1]);; let COPRIME_2 = prove (`(!n. coprime(2,n) <=> ODD n) /\ (!n. coprime(n,2) <=> ODD n)`, GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [COPRIME_SYM] THEN SIMP_TAC[PRIME_COPRIME_EQ; PRIME_2; DIVIDES_2; NOT_EVEN]);; let DIVIDES_EXP_PLUS1 = prove (`!n k. ODD k ==> (n + 1) divides (n EXP k + 1)`, GEN_TAC THEN REWRITE_TAC[ODD_EXISTS; LEFT_IMP_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN REWRITE_TAC[FORALL_UNWIND_THM2] THEN INDUCT_TAC THEN CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[EXP_1; DIVIDES_REFL] THEN REWRITE_TAC[ARITH_RULE `SUC(2 * SUC n) = SUC(2 * n) + 2`] THEN REWRITE_TAC[EXP_ADD; EXP_2] THEN POP_ASSUM MP_TAC THEN NUMBER_TAC);; let DIVIDES_EXP_MINUS1 = prove (`!k n. (n - 1) divides (n EXP k - 1)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL [STRUCT_CASES_TAC(SPEC `k:num` num_CASES) THEN ASM_REWRITE_TAC[EXP; MULT_CLAUSES] THEN CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[DIVIDES_REFL]; REWRITE_TAC[num_divides] THEN ASM_SIMP_TAC[GSYM INT_OF_NUM_SUB; LE_1; EXP_EQ_0; ARITH] THEN POP_ASSUM(K ALL_TAC) THEN REWRITE_TAC[GSYM INT_OF_NUM_POW] THEN SPEC_TAC(`k:num`,`k:num`) THEN INDUCT_TAC THEN REWRITE_TAC[INT_POW] THEN REPEAT(POP_ASSUM MP_TAC) THEN INTEGER_TAC]);; let PRIME_IRREDUCIBLE = prove (`!p. prime p <=> p > 1 /\ !a b. p divides (a * b) ==> p divides a \/ p divides b`, GEN_TAC THEN REWRITE_TAC[GSYM ZERO_ONE_OR_PRIME] THEN REWRITE_TAC[ARITH_RULE `p > 1 <=> ~(p = 0) /\ ~(p = 1)`] THEN MESON_TAC[PRIME_0; PRIME_1]);; let COPRIME_EXP_DIVPROD = prove (`!d n a b. (d EXP n) divides (a * b) /\ coprime(d,a) ==> (d EXP n) divides b`, MESON_TAC[COPRIME_DIVPROD; COPRIME_EXP; COPRIME_SYM]);; let PRIME_COPRIME_CASES = prove (`!p a b. prime p /\ coprime(a,b) ==> coprime(p,a) \/ coprime(p,b)`, MESON_TAC[COPRIME_PRIME; PRIME_COPRIME_EQ]);; let PRIME_DIVPROD_POW_GEN = prove (`!n p a b. prime p /\ ~(p divides gcd(a,b)) /\ p EXP n divides a * b ==> p EXP n divides a \/ p EXP n divides b`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[DISJ_SYM] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [DIVIDES_GCD]) THEN ASM_SIMP_TAC[DE_MORGAN_THM; GSYM PRIME_COPRIME_EQ] THEN ASM_MESON_TAC[COPRIME_LEXP; COPRIME_DIVPROD; MULT_SYM]);; let PRIME_DIVPROD_POW_GEN_EQ = prove (`!n p a b. prime p /\ ~(p divides gcd(a,b)) ==> (p EXP n divides a * b <=> p EXP n divides a \/ p EXP n divides b)`, MESON_TAC[PRIME_DIVPROD_POW_GEN; DIVIDES_RMUL; DIVIDES_LMUL]);; let PRIME_DIVPROD_POW = prove (`!n p a b. prime(p) /\ coprime(a,b) /\ (p EXP n) divides (a * b) ==> (p EXP n) divides a \/ (p EXP n) divides b`, MESON_TAC[COPRIME_EXP_DIVPROD; PRIME_COPRIME_CASES; MULT_SYM]);; let PRIME_DIVPROD_POW_EQ = prove (`!n p a b. prime p /\ coprime(a,b) ==> (p EXP n divides a * b <=> p EXP n divides a \/ p EXP n divides b)`, MESON_TAC[PRIME_DIVPROD_POW; DIVIDES_RMUL; DIVIDES_LMUL]);; let PRIME_FACTOR_INDUCT = prove (`!P. P 0 /\ P 1 /\ (!p n. prime p /\ ~(n = 0) /\ P n ==> P(p * n)) ==> !n. P n`, GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN MAP_EVERY ASM_CASES_TAC [`n = 0`; `n = 1`] THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC o MATCH_MP PRIME_FACTOR) THEN FIRST_X_ASSUM(X_CHOOSE_THEN `d:num` SUBST_ALL_TAC o GEN_REWRITE_RULE I [divides]) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`p:num`; `d:num`]) THEN RULE_ASSUM_TAC(REWRITE_RULE[MULT_EQ_0; DE_MORGAN_THM]) THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[PRIME_FACTOR_LT; MULT_EQ_0]);; let COMPLETE_FACTOR_INDUCT = prove (`!P. P 0 /\ P 1 /\ (!p. prime p ==> P p) /\ (!m n. P m /\ P n ==> P(m * n)) ==> !n. P n`, GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC PRIME_FACTOR_INDUCT THEN ASM_SIMP_TAC[]);; let PRIME_FACTOR_PARTITION = prove (`!Q n. ~(n = 0) ==> ?n1 n2. n1 * n2 = n /\ (!p. prime p /\ p divides n1 ==> Q p) /\ (!p. prime p /\ p divides n2 ==> ~Q p)`, GEN_TAC THEN MATCH_MP_TAC PRIME_FACTOR_INDUCT THEN REWRITE_TAC[MULT_EQ_1; GSYM CONJ_ASSOC; UNWIND_THM2; RIGHT_EXISTS_AND_THM; DIVIDES_ONE] THEN CONJ_TAC THENL [MESON_TAC[PRIME_1]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`p:num`; `n:num`] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ASM_REWRITE_TAC[MULT_EQ_0; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`n1:num`; `n2:num`] THEN REPEAT STRIP_TAC THEN ASM_CASES_TAC `(Q:num->bool) p` THENL [MAP_EVERY EXISTS_TAC [`p * n1:num`; `n2:num`]; MAP_EVERY EXISTS_TAC [`n1:num`; `p * n2:num`]] THEN ASM_SIMP_TAC[IMP_CONJ; PRIME_DIVPROD_EQ] THEN EXPAND_TAC "n" THEN REWRITE_TAC[MULT_AC] THEN ASM_SIMP_TAC[DIVIDES_PRIME_PRIME] THEN ASM_MESON_TAC[]);; let COPRIME_PAIR_DECOMP = prove (`!n1 n2 m. coprime(n1,n2) /\ ~(m = 0) ==> ?m1 m2. coprime(m1,n1) /\ coprime(m2,n2) /\ coprime(m1,m2) /\ m1 * m2 = m`, REPEAT STRIP_TAC THEN MP_TAC(SPECL [`\p:num. p divides n2`; `m:num`] PRIME_FACTOR_PARTITION) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `m1:num` THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `m2:num` THEN REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[COPRIME_PRIME_EQ] THEN MESON_TAC[]);; let EXP_MULT_EXISTS = prove (`!m n p k. ~(m = 0) /\ m EXP k * n = p EXP k ==> ?q. n = q EXP k`, REPEAT GEN_TAC THEN ASM_CASES_TAC `k = 0` THEN ASM_REWRITE_TAC[EXP; MULT_CLAUSES] THEN STRIP_TAC THEN MP_TAC(SPECL [`k:num`; `m:num`; `p:num`] DIVIDES_EXP2_REV) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[divides; MULT_SYM]; ALL_TAC] THEN REWRITE_TAC[divides] THEN DISCH_THEN(CHOOSE_THEN SUBST_ALL_TAC) THEN FIRST_X_ASSUM(MP_TAC o SYM) THEN ASM_REWRITE_TAC[MULT_EXP; GSYM MULT_ASSOC; EQ_MULT_LCANCEL; EXP_EQ_0] THEN MESON_TAC[]);; let COPRIME_POW = prove (`!n a b c. coprime(a,b) /\ a * b = c EXP n ==> ?r s. a = r EXP n /\ b = s EXP n`, GEN_TAC THEN GEN_REWRITE_TAC BINDER_CONV [SWAP_FORALL_THM] THEN GEN_REWRITE_TAC I [SWAP_FORALL_THM] THEN ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[EXP; MULT_EQ_1] THEN MATCH_MP_TAC PRIME_FACTOR_INDUCT THEN REPEAT CONJ_TAC THENL [ASM_REWRITE_TAC[EXP_ZERO; MULT_EQ_0] THEN ASM_MESON_TAC[COPRIME_0; EXP_ZERO; COPRIME_0; EXP_ONE]; SIMP_TAC[EXP_ONE; MULT_EQ_1] THEN MESON_TAC[EXP_ONE]; REWRITE_TAC[MULT_EXP] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `p EXP n divides a \/ p EXP n divides b` MP_TAC THENL [ASM_MESON_TAC[PRIME_DIVPROD_POW; divides]; ALL_TAC] THEN REWRITE_TAC[divides] THEN DISCH_THEN(DISJ_CASES_THEN(X_CHOOSE_THEN `d:num` SUBST_ALL_TAC)) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COPRIME_SYM]) THEN ASM_SIMP_TAC[COPRIME_RMUL; COPRIME_LMUL; COPRIME_LEXP; COPRIME_REXP] THEN STRIP_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPECL [`b:num`; `d:num`]); FIRST_X_ASSUM(MP_TAC o SPECL [`d:num`; `a:num`])] THEN ASM_REWRITE_TAC[] THEN (ANTS_TAC THENL [MATCH_MP_TAC(NUM_RING `!p. ~(p = 0) /\ a * p = b * p ==> a = b`) THEN EXISTS_TAC `p EXP n` THEN ASM_SIMP_TAC[EXP_EQ_0; PRIME_IMP_NZ] THEN FIRST_X_ASSUM(MP_TAC o SYM) THEN CONV_TAC NUM_RING; STRIP_TAC THEN ASM_REWRITE_TAC[GSYM MULT_EXP] THEN MESON_TAC[]])]);; let PRIME_EXP = prove (`!p n. prime(p EXP n) <=> prime(p) /\ (n = 1)`, GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[EXP; PRIME_1; ARITH_EQ] THEN POP_ASSUM_LIST(K ALL_TAC) THEN SPEC_TAC(`n:num`,`n:num`) THEN ASM_CASES_TAC `p = 0` THENL [ASM_REWRITE_TAC[PRIME_0; EXP; MULT_CLAUSES]; ALL_TAC] THEN INDUCT_TAC THEN REWRITE_TAC[ARITH; EXP_1; EXP; MULT_CLAUSES] THEN REWRITE_TAC[ARITH_RULE `~(SUC(SUC n) = 1)`] THEN REWRITE_TAC[prime; DE_MORGAN_THM] THEN ASM_REWRITE_TAC[MULT_EQ_1; EXP_EQ_1] THEN ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[NOT_IMP; DE_MORGAN_THM] THEN DISCH_THEN(MP_TAC o SPEC `p:num`) THEN ASM_REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL [MESON_TAC[EXP; divides]; ALL_TAC] THEN MATCH_MP_TAC(ARITH_RULE `p < pn:num ==> ~(p = pn)`) THEN GEN_REWRITE_TAC LAND_CONV [GSYM EXP_1] THEN REWRITE_TAC[GSYM(CONJUNCT2 EXP)] THEN ASM_REWRITE_TAC[LT_EXP; ARITH_EQ] THEN MAP_EVERY UNDISCH_TAC [`~(p = 0)`; `~(p = 1)`] THEN ARITH_TAC);; let PRIME_POWER_MULT = prove (`!k x y p. prime p /\ (x * y = p EXP k) ==> ?i j. (x = p EXP i) /\ (y = p EXP j)`, INDUCT_TAC THEN REWRITE_TAC[EXP; MULT_EQ_1] THENL [MESON_TAC[EXP]; ALL_TAC] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `p divides x \/ p divides y` MP_TAC THENL [ASM_MESON_TAC[PRIME_DIVPROD; divides; MULT_AC]; ALL_TAC] THEN REWRITE_TAC[divides] THEN SUBGOAL_THEN `~(p = 0)` ASSUME_TAC THENL [ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN DISCH_THEN(DISJ_CASES_THEN (X_CHOOSE_THEN `d:num` SUBST_ALL_TAC)) THENL [UNDISCH_TAC `(p * d) * y = p * p EXP k`; UNDISCH_TAC `x * p * d = p * p EXP k` THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [MULT_SYM]] THEN REWRITE_TAC[GSYM MULT_ASSOC] THEN ASM_REWRITE_TAC[EQ_MULT_LCANCEL] THEN DISCH_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPECL [`d:num`; `y:num`; `p:num`]); FIRST_X_ASSUM(MP_TAC o SPECL [`d:num`; `x:num`; `p:num`])] THEN ASM_REWRITE_TAC[] THEN MESON_TAC[EXP]);; let PRIME_POWER_EXP = prove (`!n x p k. prime p /\ ~(n = 0) /\ (x EXP n = p EXP k) ==> ?i. x = p EXP i`, INDUCT_TAC THEN REWRITE_TAC[EXP] THEN REPEAT GEN_TAC THEN REWRITE_TAC[NOT_SUC] THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[EXP] THEN ASM_MESON_TAC[PRIME_POWER_MULT]);; let DIVIDES_PRIMEPOW = prove (`!p. prime p ==> !d. d divides (p EXP k) <=> ?i. i <= k /\ d = p EXP i`, GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN EQ_TAC THENL [REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `e:num` THEN DISCH_TAC THEN MP_TAC(SPECL [`k:num`; `d:num`; `e:num`; `p:num`] PRIME_POWER_MULT) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(REPEAT_TCL CHOOSE_THEN (CONJUNCTS_THEN SUBST_ALL_TAC)) THEN FIRST_X_ASSUM(MP_TAC o SYM) THEN REWRITE_TAC[GSYM EXP_ADD] THEN REWRITE_TAC[GSYM LE_ANTISYM; LE_EXP] THEN REWRITE_TAC[LE_ANTISYM] THEN POP_ASSUM MP_TAC THEN ASM_CASES_TAC `p = 0` THEN ASM_SIMP_TAC[PRIME_0] THEN ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[PRIME_1; LE_ANTISYM] THEN MESON_TAC[LE_ADD]; REWRITE_TAC[LE_EXISTS] THEN STRIP_TAC THEN ASM_REWRITE_TAC[EXP_ADD] THEN MESON_TAC[DIVIDES_RMUL; DIVIDES_REFL]]);; let PRIMEPOW_DIVIDES_PROD = prove (`!p k m n. prime p /\ (p EXP k) divides (m * n) ==> ?i j. (p EXP i) divides m /\ (p EXP j) divides n /\ k = i + j`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP DIVISION_DECOMP) THEN REWRITE_TAC[NUMBER_RULE `a = b * c <=> b divides a /\ c divides a /\ b * c = a`] THEN ASM_MESON_TAC[EXP_ADD; EQ_PRIMEPOW; DIVIDES_PRIMEPOW]);; let EUCLID_BOUND = prove (`!n. ?p. prime(p) /\ n < p /\ p <= SUC(FACT n)`, GEN_TAC THEN MP_TAC(SPEC `FACT n + 1` PRIME_FACTOR) THEN SIMP_TAC[ARITH_RULE `0 < n ==> ~(n + 1 = 1)`; ADD1; FACT_LT] THEN MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL [ASM_MESON_TAC[DIVIDES_ADD_REVR; DIVIDES_ONE; PRIME_1; NOT_LT; PRIME_0; ARITH_RULE `(p = 0) \/ 1 <= p`; DIVIDES_FACT]; ASM_MESON_TAC[DIVIDES_LE; ARITH_RULE `~(x + 1 = 0)`]]);; let EUCLID = prove (`!n. ?p. prime(p) /\ p > n`, REWRITE_TAC[GT] THEN MESON_TAC[EUCLID_BOUND]);; let PRIMES_INFINITE = prove (`INFINITE {p | prime p}`, REWRITE_TAC[INFINITE; num_FINITE; IN_ELIM_THM] THEN MESON_TAC[EUCLID; NOT_LE; GT]);; let FACTORIZATION_INDEX = prove (`!n p. ~(n = 0) /\ 2 <= p ==> ?k. (p EXP k) divides n /\ !l. k < l ==> ~((p EXP l) divides n)`, REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM NOT_LE; CONTRAPOS_THM] THEN REWRITE_TAC[GSYM num_MAX] THEN CONJ_TAC THENL [EXISTS_TAC `0` THEN REWRITE_TAC[EXP; DIVIDES_1]; EXISTS_TAC `n:num` THEN GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] LE_TRANS) THEN MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `2 EXP l` THEN SIMP_TAC[LT_POW2_REFL; LT_IMP_LE] THEN SPEC_TAC(`l:num`,`l:num`) THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ARITH; CONJUNCT1 EXP; EXP_MONO_LE; NOT_SUC]]);; let PRIMEPOW_FACTOR = prove (`!n. 2 <= n ==> ?p k m. prime p /\ 1 <= k /\ coprime(p,m) /\ n = p EXP k * m`, REPEAT STRIP_TAC THEN MP_TAC(ISPEC `n:num` PRIME_FACTOR) THEN ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `p:num` THEN STRIP_TAC THEN MP_TAC(ISPECL [`n:num`; `p:num`] FACTORIZATION_INDEX) THEN ASM_SIMP_TAC[PRIME_GE_2; ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:num` THEN REWRITE_TAC[divides; LEFT_AND_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `m:num` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `k + 1`)) THEN ASM_REWRITE_TAC[ARITH_RULE `k < k + 1`; EXP_ADD; GSYM MULT_ASSOC] THEN ASM_SIMP_TAC[EQ_MULT_LCANCEL; EXP_EQ_0; PRIME_IMP_NZ] THEN REWRITE_TAC[EXP_1; GSYM divides] THEN UNDISCH_TAC `(p:num) divides n` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `k = 0` THEN ASM_SIMP_TAC[EXP; MULT_CLAUSES; LE_1] THEN ASM_MESON_TAC[PRIME_COPRIME_STRONG]);; let PRIMEPOW_DIVISORS_DIVIDES = prove (`!m n. m divides n <=> !p k. prime p /\ p EXP k divides m ==> p EXP k divides n`, REWRITE_TAC[TAUT `(p <=> q) <=> (p ==> q) /\ (q ==> p)`] THEN REWRITE_TAC[FORALL_AND_THM] THEN CONJ_TAC THENL [MESON_TAC[DIVIDES_TRANS]; ALL_TAC] THEN MATCH_MP_TAC num_WF THEN X_GEN_TAC `m:num` THEN DISCH_THEN(LABEL_TAC "*") THEN X_GEN_TAC `n:num` THEN ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[DIVIDES_0] THENL [MP_TAC(SPEC `n:num` EUCLID) THEN REWRITE_TAC[GT] THEN DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN DISCH_THEN(MP_TAC o SPECL [`p:num`; `1`]) THEN ASM_REWRITE_TAC[EXP_1] THEN DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN ASM_SIMP_TAC[GSYM NOT_LT; DIVIDES_REFL]; ALL_TAC] THEN ASM_CASES_TAC `m = 1` THEN ASM_REWRITE_TAC[DIVIDES_1] THEN MP_TAC(SPEC `m:num` PRIMEPOW_FACTOR) THEN ANTS_TAC THENL [ASM_ARITH_TAC; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`p:num`; `k:num`; `r:num`] THEN STRIP_TAC THEN DISCH_THEN(fun th -> MP_TAC(SPECL[`p:num`; `k:num`] th) THEN ASM_REWRITE_TAC[NUMBER_RULE `a divides (a * b)`] THEN ASSUME_TAC th) THEN REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `s:num` THEN DISCH_TAC THEN ASM_REWRITE_TAC[GSYM divides] THEN MATCH_MP_TAC DIVIDES_MUL_L THEN REMOVE_THEN "*" (MP_TAC o SPEC `r:num`) THEN ASM_CASES_TAC `r = 0` THENL [ASM_MESON_TAC[MULT_CLAUSES]; ALL_TAC] THEN ASM_REWRITE_TAC[ARITH_RULE `q < p * q <=> 1 * q < p * q`] THEN ASM_SIMP_TAC[LT_MULT_RCANCEL; ARITH_RULE `1 < p <=> ~(p = 0 \/ p = 1)`] THEN REWRITE_TAC[EXP_EQ_0; EXP_EQ_1] THEN ANTS_TAC THENL [ASM_MESON_TAC[PRIME_0; PRIME_1; LE_1]; ALL_TAC] THEN DISCH_THEN MATCH_MP_TAC THEN MAP_EVERY X_GEN_TAC [`q:num`; `l:num`] THEN ASM_CASES_TAC `l = 0` THEN ASM_REWRITE_TAC[EXP; DIVIDES_1] THEN STRIP_TAC THEN ASM_CASES_TAC `q:num = p` THENL [UNDISCH_TAC `coprime(p,r)` THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN REWRITE_TAC[coprime] THEN DISCH_THEN(MP_TAC o SPEC `p:num`) THEN ASM_SIMP_TAC[DIVIDES_REFL; PRIME_GE_2; ARITH_RULE `2 <= p ==> ~(p = 1)`] THEN MATCH_MP_TAC(TAUT `p ==> ~p ==> q`) THEN TRANS_TAC DIVIDES_TRANS `p EXP l` THEN ASM_MESON_TAC[DIVIDES_REXP; DIVIDES_REFL]; FIRST_X_ASSUM(MP_TAC o SPECL [`q:num`; `l:num`]) THEN ASM_SIMP_TAC[DIVIDES_LMUL] THEN DISCH_THEN(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] COPRIME_EXP_DIVPROD)) THEN MATCH_MP_TAC COPRIME_EXP THEN ASM_MESON_TAC[DISTINCT_PRIME_COPRIME]]);; let PRIMEPOW_DIVISORS_EQ = prove (`!m n. m = n <=> !p k. prime p ==> (p EXP k divides m <=> p EXP k divides n)`, MESON_TAC[DIVIDES_ANTISYM; PRIMEPOW_DIVISORS_DIVIDES]);; (* ------------------------------------------------------------------------- *) (* A binary form of the Chinese Remainder Theorem. *) (* ------------------------------------------------------------------------- *) let CHINESE_REMAINDER = prove (`!a b u v. coprime(a,b) /\ ~(a = 0) /\ ~(b = 0) ==> ?x q1 q2. x = u + q1 * a /\ x = v + q2 * b`, let lemma = prove (`(?d x y. (d = 1) /\ P x y d) <=> (?x y. P x y 1)`, MESON_TAC[]) in REPEAT STRIP_TAC THEN MP_TAC(SPECL [`b:num`; `a:num`] BEZOUT_ADD_STRONG) THEN MP_TAC(SPECL [`a:num`; `b:num`] BEZOUT_ADD_STRONG) THEN ASM_REWRITE_TAC[CONJ_ASSOC] THEN SUBGOAL_THEN `!d. d divides a /\ d divides b <=> (d = 1)` (fun th -> REWRITE_TAC[th; ONCE_REWRITE_RULE[CONJ_SYM] th]) THENL [UNDISCH_TAC `coprime(a,b)` THEN SIMP_TAC[GSYM DIVIDES_GCD; COPRIME_GCD; DIVIDES_ONE]; ALL_TAC] THEN REWRITE_TAC[lemma] THEN DISCH_THEN(X_CHOOSE_THEN `x1:num` (X_CHOOSE_TAC `y1:num`)) THEN DISCH_THEN(X_CHOOSE_THEN `x2:num` (X_CHOOSE_TAC `y2:num`)) THEN EXISTS_TAC `v * a * x1 + u * b * x2:num` THEN EXISTS_TAC `v * x1 + u * y2:num` THEN EXISTS_TAC `v * y1 + u * x2:num` THEN CONJ_TAC THENL [SUBST1_TAC(ASSUME `b * x2 = a * y2 + 1`); SUBST1_TAC(ASSUME `a * x1 = b * y1 + 1`)] THEN REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB; MULT_CLAUSES] THEN REWRITE_TAC[MULT_AC] THEN REWRITE_TAC[ADD_AC]);; (* ------------------------------------------------------------------------- *) (* Index of a (usually prime) divisor of a number. *) (* ------------------------------------------------------------------------- *) let FINITE_EXP_LE = prove (`!P p n. 2 <= p ==> FINITE {j | P j /\ p EXP j <= n}`, REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `0..n` THEN SIMP_TAC[FINITE_NUMSEG; SUBSET; IN_ELIM_THM; LE_0; IN_NUMSEG] THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN TRANS_TAC LE_TRANS `p EXP i` THEN ASM_REWRITE_TAC[] THEN TRANS_TAC LE_TRANS `2 EXP i` THEN ASM_SIMP_TAC[EXP_MONO_LE_IMP; LT_POW2_REFL; LT_IMP_LE]);; let FINITE_INDICES = prove (`!P p n. 2 <= p /\ ~(n = 0) ==> FINITE {j | P j /\ p EXP j divides n}`, REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{j | P j /\ p EXP j <= n}` THEN ASM_SIMP_TAC[FINITE_EXP_LE] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[DIVIDES_LE]);; let index_def = new_definition `index p n = if p <= 1 \/ n = 0 then 0 else CARD {j | 1 <= j /\ p EXP j divides n}`;; let INDEX_0 = prove (`!p. index p 0 = 0`, REWRITE_TAC[index_def]);; let PRIMEPOW_DIVIDES_INDEX = prove (`!n p k. p EXP k divides n <=> n = 0 \/ p = 1 \/ k <= index p n`, REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[INDEX_0; DIVIDES_0; EXP_EQ_0] THEN ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[EXP_ZERO; COND_RAND; COND_RATOR] THEN ASM_SIMP_TAC[LE_0; DIVIDES_1; ARITH; index_def; DIVIDES_ZERO] THEN SIMP_TAC[CONJUNCT1 LE; COND_ID] THEN ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[EXP_ONE; DIVIDES_1] THEN COND_CASES_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `2 <= p` ASSUME_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN MP_TAC(ISPECL [`n:num`; `p:num`] FACTORIZATION_INDEX) THEN ASM_SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `a:num` THEN STRIP_TAC THEN SUBGOAL_THEN `!k. p EXP k divides n <=> k <= a` ASSUME_TAC THENL [GEN_TAC THEN EQ_TAC THENL [ASM_MESON_TAC[NOT_LE]; ALL_TAC] THEN DISCH_TAC THEN TRANS_TAC DIVIDES_TRANS `p EXP a` THEN ASM_SIMP_TAC[DIVIDES_EXP_LE]; ASM_REWRITE_TAC[GSYM numseg; CARD_NUMSEG_1]]);; let LE_INDEX = prove (`!n p k. k <= index p n <=> (n = 0 \/ p = 1 ==> k = 0) /\ p EXP k divides n`, REPEAT GEN_TAC THEN REWRITE_TAC[PRIMEPOW_DIVIDES_INDEX] THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[INDEX_0; CONJUNCT1 LE] THEN ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[index_def; ARITH; CONJUNCT1 LE]);; let EXP_INDEX_DIVIDES = prove (`!p n. p EXP (index p n) divides n`, MESON_TAC[LE_INDEX; LE_REFL]);; let INDEX_LT = prove (`!n p k. (~(n = 0) \/ ~(k = 0)) /\ n < p EXP k ==> index p n < k`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM DE_MORGAN_THM; GSYM NOT_LE; LE_INDEX] THEN REWRITE_TAC[CONTRAPOS_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC (MP_TAC o MATCH_MP DIVIDES_LE_STRONG)) THEN ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[]);; let INDEX_1 = prove (`!p. index p 1 = 0`, GEN_TAC THEN REWRITE_TAC[index_def; ARITH] THEN COND_CASES_TAC THEN REWRITE_TAC[DIVIDES_ONE; EXP_EQ_1] THEN ASM_SIMP_TAC[ARITH_RULE `~(p <= 1) ==> ~(p = 1)`; ARITH_RULE `~(1 <= j /\ j = 0)`; EMPTY_GSPEC; CARD_CLAUSES]);; let INDEX_MUL = prove (`!m n. prime p /\ ~(m = 0) /\ ~(n = 0) ==> index p (m * n) = index p m + index p n`, REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM LE_ANTISYM] THEN SUBGOAL_THEN `~(p = 1)` ASSUME_TAC THENL [ASM_MESON_TAC[PRIME_1]; ALL_TAC] THEN CONJ_TAC THENL [MATCH_MP_TAC(MESON[LE_REFL] `(!k:num. k <= m ==> k <= n) ==> m <= n`) THEN MP_TAC(SPEC `p:num` PRIMEPOW_DIVIDES_PROD) THEN ASM_REWRITE_TAC[LE_INDEX; MULT_EQ_0] THEN ASM_MESON_TAC[LE_ADD2; LE_INDEX]; ASM_REWRITE_TAC[LE_INDEX; MULT_EQ_0; EXP_ADD] THEN MATCH_MP_TAC DIVIDES_MUL2 THEN ASM_MESON_TAC[LE_INDEX; LE_REFL]]);; let INDEX_EXP = prove (`!p n k. prime p ==> index p (n EXP k) = k * index p n`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[EXP_ZERO; INDEX_0; COND_RAND; COND_RATOR; INDEX_1; MULT_CLAUSES; COND_ID] THEN INDUCT_TAC THEN ASM_SIMP_TAC[INDEX_MUL; EXP_EQ_0; EXP; INDEX_1; MULT_CLAUSES] THEN ARITH_TAC);; let INDEX_FACT = prove (`!p n. prime p ==> index p (FACT n) = nsum(1..n) (\m. index p m)`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN REWRITE_TAC[FACT; NSUM_CLAUSES_NUMSEG; INDEX_1; ARITH] THEN ASM_SIMP_TAC[INDEX_MUL; NOT_SUC; FACT_NZ] THEN ARITH_TAC);; let INDEX_FACT_ALT = prove (`!p n. prime p ==> index p (FACT n) = nsum {j | 1 <= j /\ p EXP j <= n} (\j. n DIV (p EXP j))`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[INDEX_FACT] THEN SUBGOAL_THEN `~(p = 0) /\ ~(p = 1) /\ 2 <= p /\ ~(p <= 1)` STRIP_ASSUME_TAC THENL [FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN ARITH_TAC; ALL_TAC] THEN ASM_SIMP_TAC[index_def; LE_1] THEN TRANS_TAC EQ_TRANS `nsum(1..n) (\m. nsum {j | 1 <= j /\ p EXP j <= n} (\j. if p EXP j divides m then 1 else 0))` THEN CONJ_TAC THENL [MATCH_MP_TAC NSUM_EQ_NUMSEG THEN X_GEN_TAC `m:num` THEN STRIP_TAC THEN ASM_REWRITE_TAC[GSYM NSUM_RESTRICT_SET; IN_ELIM_THM] THEN ASM_SIMP_TAC[NSUM_CONST; FINITE_INDICES; LE_1; MULT_CLAUSES] THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN ASM_MESON_TAC[DIVIDES_LE; LE_1; LE_TRANS]; W(MP_TAC o PART_MATCH (lhs o rand) NSUM_SWAP o lhand o snd) THEN ASM_SIMP_TAC[FINITE_NUMSEG; FINITE_EXP_LE] THEN DISCH_THEN(K ALL_TAC) THEN MATCH_MP_TAC NSUM_EQ THEN X_GEN_TAC `j:num` THEN REWRITE_TAC[IN_ELIM_THM; GSYM NSUM_RESTRICT_SET] THEN STRIP_TAC THEN ASM_SIMP_TAC[NSUM_CONST; FINITE_NUMSEG; FINITE_RESTRICT; MULT_CLAUSES] THEN SUBGOAL_THEN `{m | m IN 1..n /\ p EXP j divides m} = IMAGE (\q. p EXP j * q) (1..(n DIV p EXP j))` (fun th -> ASM_SIMP_TAC[CARD_IMAGE_INJ; FINITE_NUMSEG; EQ_MULT_LCANCEL; th; EXP_EQ_0; PRIME_IMP_NZ; CARD_NUMSEG_1]) THEN REWRITE_TAC[EXTENSION; IN_IMAGE; IN_NUMSEG; IN_ELIM_THM; divides] THEN X_GEN_TAC `d:num` THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `q:num` THEN ASM_CASES_TAC `d = p EXP j * q` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[LE_RDIV_EQ; EXP_EQ_0; PRIME_IMP_NZ; MULT_EQ_0; ARITH_RULE `1 <= x <=> ~(x = 0)`]]);; let INDEX_FACT_UNBOUNDED = prove (`!p n. prime p ==> index p (FACT n) = nsum {j | 1 <= j} (\j. n DIV (p EXP j))`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[INDEX_FACT_ALT] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC NSUM_SUPERSET THEN ASM_SIMP_TAC[SUBSET; IN_ELIM_THM; IMP_CONJ; DIV_EQ_0; EXP_EQ_0; PRIME_IMP_NZ; NOT_LE]);; let PRIMEPOW_DIVIDES_FACT = prove (`!p n k. prime p ==> (p EXP k divides FACT n <=> k <= nsum {j | 1 <= j /\ p EXP j <= n} (\j. n DIV (p EXP j)))`, SIMP_TAC[PRIMEPOW_DIVIDES_INDEX; INDEX_FACT_ALT; FACT_NZ] THEN MESON_TAC[PRIME_1]);; let INDEX_REFL = prove (`!n. index n n = if n <= 1 then 0 else 1`, GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[index_def] THEN ASM_CASES_TAC `n = 0` THENL [ASM_ARITH_TAC; ASM_REWRITE_TAC[]] THEN ONCE_REWRITE_TAC[MESON[EXP_1] `a divides b <=> a divides b EXP 1`] THEN ASM_CASES_TAC `2 <= n` THENL [ALL_TAC; ASM_ARITH_TAC] THEN ASM_SIMP_TAC[DIVIDES_EXP_LE; GSYM numseg; CARD_NUMSEG_1]);; let INDEX_EQ_0 = prove (`!p n. index p n = 0 <=> n = 0 \/ p = 1 \/ ~(p divides n)`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `n = 0 <=> ~(1 <= n)`] THEN REWRITE_TAC[LE_INDEX; EXP_1; ARITH] THEN MESON_TAC[]);; let INDEX_ZERO = prove (`!p n. ~(p divides n) ==> index p n = 0`, SIMP_TAC[INDEX_EQ_0]);; let INDEX_POW = prove (`!p n k. index (p EXP k) n = index p n DIV k`, REPEAT GEN_TAC THEN ASM_CASES_TAC `k = 0` THENL [ASM_REWRITE_TAC[DIV_ZERO; INDEX_EQ_0; EXP]; ALL_TAC] THEN GEN_REWRITE_TAC I [MESON[LE_TRANS; LE_ANTISYM] `(m:num = n) <=> !d. d <= m <=> d <= n`] THEN X_GEN_TAC `d:num` THEN ASM_SIMP_TAC[LE_INDEX; LE_RDIV_EQ; EXP_EXP] THEN ASM_REWRITE_TAC[MULT_EQ_0; EXP_EQ_1]);; let INDEX_PRIME = prove (`!p a. prime p ==> index a p = if p = a then 1 else 0`, REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[INDEX_REFL; INDEX_EQ_0] THEN ASM_MESON_TAC[prime; PRIME_0; PRIME_1; ARITH_RULE `p <= 1 <=> p = 0 \/ p = 1`]);; let INDEX_TRIVIAL_BOUND = prove (`!n p. index p n <= n`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`n:num`; `p:num`; `n:num`] PRIMEPOW_DIVIDES_INDEX) THEN REWRITE_TAC[index_def] THEN COND_CASES_TAC THEN REWRITE_TAC[LE_0] THEN RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM; NOT_LE]) THEN ASM_SIMP_TAC[ARITH_RULE `1 < p ==> ~(p = 1)`] THEN DISCH_THEN(ASSUME_TAC o SYM) THEN MATCH_MP_TAC(ARITH_RULE `~(m:num <= n) ==> n <= m`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN ASM_REWRITE_TAC[NOT_LE] THEN MATCH_MP_TAC LTE_TRANS THEN EXISTS_TAC `2 EXP n` THEN REWRITE_TAC[LT_POW2_REFL] THEN MATCH_MP_TAC EXP_MONO_LE_IMP THEN ASM_ARITH_TAC);; let INDEX_DECOMPOSITION = prove (`!n p. ?m. p EXP (index p n) * m = n /\ (n = 0 \/ p = 1 \/ ~(p divides m))`, REPEAT GEN_TAC THEN MP_TAC(SPECL [`n:num`; `p:num`; `index p n`] LE_INDEX) THEN REWRITE_TAC[LE_REFL] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [divides]) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `m:num` THEN DISCH_THEN(ASSUME_TAC o SYM) THEN ASM_REWRITE_TAC[] THEN MP_TAC(SPECL [`n:num`; `p:num`; `index p n + 1`] LE_INDEX) THEN REWRITE_TAC[ADD_EQ_0; ARITH_EQ; ARITH_RULE `~(n + 1 <= n)`] THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[EXP_ADD; EXP_1; CONTRAPOS_THM] THEN FIRST_X_ASSUM(MP_TAC o SYM) THEN POP_ASSUM_LIST(K ALL_TAC) THEN NUMBER_TAC);; let INDEX_DECOMPOSITION_PRIME = prove (`!n p. prime p ==> ?m. p EXP (index p n) * m = n /\ (n = 0 \/ coprime(p,m))`, REPEAT STRIP_TAC THEN MP_TAC(SPECL [`n:num`; `p:num`] INDEX_DECOMPOSITION) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `m:num` THEN ASM_CASES_TAC `p = 1` THENL [ASM_MESON_TAC[PRIME_1]; ASM_REWRITE_TAC[]] THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[PRIME_COPRIME_STRONG]);; let INDEX_DECOMPOSITION_LE = prove (`!p e1 m1 e2 m2. p EXP e1 * m1 = p EXP e2 * m2 /\ ~(p = 0) /\ ~(p divides m2) ==> e1 <= e2`, REPEAT GEN_TAC THEN REWRITE_TAC[TAUT `p /\ ~q /\ ~r ==> s <=> ~q ==> ~s ==> p ==> r`] THEN DISCH_TAC THEN REWRITE_TAC[NOT_LE; LT_EXISTS; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `d:num` THEN DISCH_THEN SUBST1_TAC THEN ASM_REWRITE_TAC[EXP_ADD; GSYM MULT_ASSOC; EQ_MULT_LCANCEL; EXP_EQ_0] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[EXP] THEN CONV_TAC NUMBER_RULE);; let INDEX_DECOMPOSITION_UNIQUE = prove (`!p e1 m1 e2 m2. p EXP e1 * m1 = p EXP e2 * m2 /\ ~(p = 0) /\ ~(p divides m1) /\ ~(p divides m2) ==> e1 = e2`, REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM LE_ANTISYM] THEN ASM_MESON_TAC[INDEX_DECOMPOSITION_LE]);; let INDEX_UNIQUE = prove (`!p m n e. p EXP e * m = n /\ (p = 0 ==> e = 0) /\ ~(p divides m) ==> index p n = e`, REPEAT STRIP_TAC THEN REWRITE_TAC[ARITH_RULE `i = e <=> e <= i /\ ~(e + 1 <= i)`] THEN REWRITE_TAC[LE_INDEX; ARITH_RULE `~(e + 1 = 0)`] THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN POP_ASSUM MP_TAC THEN UNDISCH_TAC `p = 0 ==> e = 0` THEN ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[DIVIDES_1] THEN ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[DIVIDES_0; MULT_EQ_0] THEN ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[EXP_EQ_0; DIVIDES_ZERO] THEN DISCH_TAC THEN ASM_REWRITE_TAC[EXP_ZERO; MULT_CLAUSES; ARITH; DIVIDES_1; DIVIDES_ZERO] THEN REWRITE_TAC[EXP_ADD; NUMBER_RULE `p divides (p * q:num)`] THEN ASM_SIMP_TAC[DIVIDES_LMUL2_EQ; EXP_EQ_0; EXP_1]);; let INDEX_UNIQUE_EQ = prove (`!n p k. index p n = k <=> if p = 1 \/ n = 0 then k = 0 else !j. p EXP j divides n <=> j <= k`, REPEAT GEN_TAC THEN COND_CASES_TAC THENL [REWRITE_TAC[index_def] THEN ASM_MESON_TAC[LE_REFL]; RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM])] THEN ASM_REWRITE_TAC[PRIMEPOW_DIVIDES_INDEX] THEN MESON_TAC[LE_ANTISYM]);; let INDEX_UNIQUE_ALT = prove (`!n p k. index p n = k <=> if p = 1 \/ n = 0 then k = 0 else p EXP k divides n /\ ~(p EXP (k + 1) divides n)`, REPEAT GEN_TAC THEN REWRITE_TAC[INDEX_UNIQUE_EQ] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL [ARITH_TAC; ALL_TAC] THEN X_GEN_TAC `j:num` THEN EQ_TAC THEN DISCH_TAC THENL [ALL_TAC; ASM_MESON_TAC[DIVIDES_EXP_LE_IMP; DIVIDES_TRANS]] THEN UNDISCH_TAC `~(p EXP (k + 1) divides n)` THEN REWRITE_TAC[GSYM NOT_LT; CONTRAPOS_THM] THEN REWRITE_TAC[ARITH_RULE `k < j <=> k + 1 <= j`] THEN ASM_MESON_TAC[DIVIDES_EXP_LE_IMP; DIVIDES_TRANS]);; let INDEX_ADD_MIN = prove (`!p m n. MIN (index p m) (index p n) <= index p (m + n)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `p = 1` THENL [ASM_SIMP_TAC[index_def] THEN ARITH_TAC; REWRITE_TAC[LE_INDEX]] THEN ASM_SIMP_TAC[ADD_EQ_0; INDEX_EQ_0; ARITH_RULE `MIN a b = 0 <=> a = 0 \/ b = 0`] THEN MATCH_MP_TAC DIVIDES_ADD THEN CONJ_TAC THEN MATCH_MP_TAC DIVIDES_TRANS THENL [EXISTS_TAC `p EXP (index p m)`; EXISTS_TAC `p EXP (index p n)`] THEN REWRITE_TAC[EXP_INDEX_DIVIDES] THEN MATCH_MP_TAC DIVIDES_EXP_LE_IMP THEN ARITH_TAC);; let INDEX_SUB_MIN = prove (`!p m n. n < m ==> MIN (index p m) (index p n) <= index p (m - n)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `p = 1` THENL [ASM_SIMP_TAC[index_def] THEN ARITH_TAC; REWRITE_TAC[LE_INDEX]] THEN ASM_SIMP_TAC[SUB_EQ_0; GSYM NOT_LT] THEN MATCH_MP_TAC DIVIDES_ADD_REVL THEN EXISTS_TAC `n:num` THEN ASM_SIMP_TAC[SUB_ADD; LT_IMP_LE] THEN CONJ_TAC THEN MATCH_MP_TAC DIVIDES_TRANS THENL [EXISTS_TAC `p EXP (index p n)`; EXISTS_TAC `p EXP (index p m)`] THEN REWRITE_TAC[EXP_INDEX_DIVIDES] THEN MATCH_MP_TAC DIVIDES_EXP_LE_IMP THEN ARITH_TAC);; let INDEX_ADD = prove (`!p n m. ~(n = 0) /\ (~(m = 0) ==> index p n < index p m) ==> index p (m + n) = index p n`, REPEAT GEN_TAC THEN ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[ADD_CLAUSES] THEN ASM_CASES_TAC `p = 1` THENL [ASM_MESON_TAC[INDEX_EQ_0; LT_REFL]; REPEAT STRIP_TAC] THEN ASM_REWRITE_TAC[INDEX_UNIQUE_ALT; ADD_EQ_0] THEN CONJ_TAC THENL [MATCH_MP_TAC DIVIDES_ADD; MATCH_MP_TAC(MESON[DIVIDES_ADD_REVR] `(p:num) divides m /\ ~(p divides n) ==> ~(p divides m + n)`)] THEN ASM_REWRITE_TAC[PRIMEPOW_DIVIDES_INDEX] THEN ASM_ARITH_TAC);; let INDEX_MULT_BASE = prove (`(!p n. index p (p * n) = if p <= 1 \/ n = 0 then 0 else index p n + 1) /\ (!p n. index p (n * p) = if p <= 1 \/ n = 0 then 0 else index p n + 1)`, MATCH_MP_TAC(TAUT `(p ==> q) /\ p ==> p /\ q`) THEN CONJ_TAC THENL [MESON_TAC[MULT_SYM]; REPEAT GEN_TAC] THEN COND_CASES_TAC THENL [ASM_REWRITE_TAC[index_def] THEN ASM_MESON_TAC[MULT_EQ_0]; RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM]) THEN POP_ASSUM MP_TAC] THEN ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[LE_0] THEN STRIP_TAC THEN MATCH_MP_TAC INDEX_UNIQUE THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[ONCE_REWRITE_RULE[ADD_SYM] EXP_ADD] THEN ASM_REWRITE_TAC[EXP_1; GSYM MULT_ASSOC] THEN ASM_MESON_TAC[INDEX_DECOMPOSITION; LE_REFL]);; let INDEX_MULT_EXP = prove (`(!p n k. index p (p EXP k * n) = if p <= 1 \/ n = 0 then 0 else k + index p n) /\ (!p n k. index p (n * p EXP k) = if n = 0 \/ p <= 1 then 0 else index p n + k)`, MATCH_MP_TAC(TAUT `(p ==> q) /\ p ==> p /\ q`) THEN CONJ_TAC THENL [REWRITE_TAC[MULT_SYM; ADD_SYM; DISJ_SYM]; GEN_TAC THEN GEN_TAC] THEN ASM_CASES_TAC `p = 0` THENL [ASM_REWRITE_TAC[index_def; ARITH]; ALL_TAC] THEN ASM_CASES_TAC `p <= 1` THENL [ASM_REWRITE_TAC[index_def]; ALL_TAC] THEN ASM_CASES_TAC `n = 0` THENL [ASM_REWRITE_TAC[index_def; MULT_CLAUSES]; ASM_REWRITE_TAC[]] THEN INDUCT_TAC THEN REWRITE_TAC[EXP; MULT_CLAUSES; GSYM MULT_ASSOC] THEN ASM_REWRITE_TAC[INDEX_MULT_BASE; ADD1; ADD_CLAUSES] THEN ASM_REWRITE_TAC[MULT_EQ_0; EXP_EQ_0] THEN ARITH_TAC);; let INDEX_MULT_ADD = prove (`(!p m n k. ~(n = 0) /\ index p n < k ==> index p (p EXP k * m + n) = index p n) /\ (!p m n k. ~(n = 0) /\ index p n < k ==> index p (m * p EXP k + n) = index p n) /\ (!p m n k. ~(n = 0) /\ index p n < k ==> index p (n + m * p EXP k) = index p n) /\ (!p m n k. ~(n = 0) /\ index p n < k ==> index p (n + p EXP k * m) = index p n)`, MATCH_MP_TAC(TAUT `(p ==> q) /\ p ==> p /\ q`) THEN CONJ_TAC THENL [REWRITE_TAC[MULT_SYM; ADD_SYM; DISJ_SYM]; REPEAT GEN_TAC] THEN ASM_CASES_TAC `p <= 1` THENL [ASM_REWRITE_TAC[index_def]; ALL_TAC] THEN STRIP_TAC THEN MATCH_MP_TAC INDEX_ADD THEN ASM_SIMP_TAC[MULT_EQ_0; EXP_EQ_0; DE_MORGAN_THM] THEN REWRITE_TAC[INDEX_MULT_EXP] THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC);; let INDEX_NSUM_LE = prove (`!(f:A->num) p n k. FINITE k /\ ~(k = {}) /\ (!a. a IN k ==> n <= index p (f a)) ==> n <= index p (nsum k f)`, REPEAT STRIP_TAC THEN MP_TAC(ISPEC `\m. n <= index p m` NSUM_CLOSED_NONEMPTY) THEN REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH rand INDEX_ADD_MIN o rand o snd) THEN ASM_ARITH_TAC);; let DIVIDES_INDEX = prove (`!m n. m divides n <=> n = 0 \/ ~(m = 0) /\ !p. prime p ==> index p m <= index p n`, REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[DIVIDES_0] THEN ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[DIVIDES_ZERO] THEN ONCE_REWRITE_TAC[MESON[LE_REFL; LE_ANTISYM; LE_TRANS] `m <= n <=> !k:num. k <= m ==> k <= n`] THEN REWRITE_TAC[LE_INDEX] THEN ASM_SIMP_TAC[MESON[PRIME_1] `prime p ==> ~(p = 1)`] THEN GEN_REWRITE_TAC LAND_CONV [PRIMEPOW_DIVISORS_DIVIDES] THEN MESON_TAC[]);; let EQ_INDEX = prove (`!m n. m = n <=> (m = 0 <=> n = 0) /\ !p. prime p ==> index p m = index p n`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM DIVIDES_ANTISYM] THEN REWRITE_TAC[DIVIDES_INDEX] THEN MAP_EVERY ASM_CASES_TAC [`m = 0`; `n = 0`] THEN ASM_REWRITE_TAC[] THEN MESON_TAC[LE_ANTISYM]);; let COPRIME_INDEX = prove (`!m n. coprime(m,n) <=> (m = 0 ==> n = 1) /\ (n = 0 ==> m = 1) /\ !p. prime p ==> index p m = 0 \/ index p n = 0`, REPEAT GEN_TAC THEN MAP_EVERY ASM_CASES_TAC [`m = 0`; `n = 0`] THEN ASM_SIMP_TAC[INDEX_EQ_0; COPRIME_0; MESON[PRIME_1] `prime p ==> ~(p = 1)`] THEN MESON_TAC[COPRIME_PRIME_EQ]);; let INDEX_GCD = prove (`!m n p. prime p ==> index p (gcd(m,n)) = if m = 0 then index p n else if n = 0 then index p m else MIN (index p m) (index p n)`, REPEAT STRIP_TAC THEN MAP_EVERY ASM_CASES_TAC [`m = 0`; `n = 0`] THEN ASM_SIMP_TAC[GCD_0; INDEX_0] THEN REWRITE_TAC[ARITH_RULE `MIN 0 n = 0 /\ MIN m 0 = 0`] THEN MP_TAC(GEN `k:num` (SPECL [`m:num`; `n:num`; `p EXP k`] DIVIDES_GCD)) THEN ASM_REWRITE_TAC[PRIMEPOW_DIVIDES_INDEX] THEN ASM_SIMP_TAC[MESON[PRIME_1] `prime p ==> ~(p = 1)`] THEN ASM_REWRITE_TAC[GCD_ZERO] THEN REWRITE_TAC[ARITH_RULE `k <= m /\ k <= n <=> k <= MIN m n`] THEN MESON_TAC[LE_REFL; LE_ANTISYM; LE_TRANS]);; let INDEX_FACT_PRIME_MULT = prove (`!p n. prime p ==> index p (FACT(p * n)) = n + index p (FACT n)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES; FACT; INDEX_1; ADD_CLAUSES] THEN ASM_SIMP_TAC[INDEX_FACT; MULT_EQ_0; PRIME_IMP_NZ; INDEX_MUL] THEN TRANS_TAC EQ_TRANS `nsum (IMAGE (\i. p * i) (1..n)) (\m. index p m)` THEN CONJ_TAC THENL [MATCH_MP_TAC NSUM_SUPERSET THEN MATCH_MP_TAC(SET_RULE `(!x. f x IN t <=> x IN s) /\ (!y. ~P y ==> y IN IMAGE f UNIV) ==> IMAGE f s SUBSET t /\ !y. y IN t /\ ~(y IN IMAGE f s) ==> P y`) THEN REWRITE_TAC[IN_NUMSEG; LE_MULT_LCANCEL; ARITH_RULE `1 <= n <=> ~(n = 0)`; MULT_EQ_0; IN_IMAGE; IN_UNIV; INDEX_EQ_0; divides] THEN ASM_MESON_TAC[PRIME_0]; ASM_SIMP_TAC[NSUM_IMAGE; EQ_MULT_LCANCEL; PRIME_IMP_NZ; o_DEF] THEN ASM_SIMP_TAC[INDEX_MUL; LE_1; PRIME_IMP_NZ; NSUM_ADD_NUMSEG] THEN REWRITE_TAC[ETA_AX; EQ_ADD_RCANCEL] THEN SIMP_TAC[NSUM_CONST; FINITE_NUMSEG; CARD_NUMSEG_1] THEN REWRITE_TAC[INDEX_REFL] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN ASM_ARITH_TAC]);; let PRIME_FACTORIZATION_INDEX = prove (`!k. FINITE {p | prime p /\ ~(k p = 0)} ==> ?n. ~(n = 0) /\ !p. prime p ==> index p n = k p`, SUBGOAL_THEN `!s. FINITE s ==> !k. {p | prime p /\ ~(k p = 0)} SUBSET s ==> ?n. ~(n = 0) /\ !p. prime p ==> index p n = k p` MP_TAC THENL [ALL_TAC; MESON_TAC[SUBSET_REFL]] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN CONJ_TAC THENL [REWRITE_TAC[SET_RULE `{p | prime p /\ ~Z p} SUBSET {} <=> !p. prime p ==> Z p`] THEN MESON_TAC[INDEX_1; ARITH_RULE `~(1 = 0)`]; MAP_EVERY X_GEN_TAC [`p:num`; `s:num->bool`] THEN STRIP_TAC THEN X_GEN_TAC `k:num->num` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `\i. if i = p then 0 else (k:num->num) i`) THEN REWRITE_TAC[] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `prime p` THENL [ALL_TAC; ASM_MESON_TAC[]] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP PRIME_IMP_NZ) THEN DISCH_THEN(X_CHOOSE_THEN `n:num` STRIP_ASSUME_TAC) THEN EXISTS_TAC `p EXP k p * n` THEN ASM_SIMP_TAC[INDEX_MUL; MULT_EQ_0; EXP_EQ_0; INDEX_EXP] THEN X_GEN_TAC `q:num` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `q:num`) THEN COND_CASES_TAC THEN ASM_SIMP_TAC[INDEX_REFL] THENL [COND_CASES_TAC THEN REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES] THEN FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN ASM_ARITH_TAC; DISCH_TAC THEN REWRITE_TAC[EQ_ADD_RCANCEL_0; MULT_EQ_0] THEN ASM_SIMP_TAC[INDEX_EQ_0; DIVIDES_PRIME_PRIME]]]);; let PRIME_POWER_EXISTS = prove (`!n q. prime q ==> ((?i. n = q EXP i) <=> (!p. prime p /\ p divides n ==> p = q))`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [PRIMEPOW_DIVISORS_EQ] THEN ASM_SIMP_TAC[DIVIDES_PRIME_EXP_LE] THEN EQ_TAC THEN DISCH_TAC THENL [X_GEN_TAC `p:num` THEN DISCH_TAC THEN FIRST_X_ASSUM(X_CHOOSE_THEN `i:num` (MP_TAC o SPECL [`p:num`; `1`])) THEN ASM_SIMP_TAC[EXP_1; ARITH_EQ]; EXISTS_TAC `index q n` THEN MAP_EVERY X_GEN_TAC [`p:num`; `k:num`] THEN STRIP_TAC THEN ASM_CASES_TAC `k = 0` THEN ASM_REWRITE_TAC[EXP; DIVIDES_1; LE_INDEX] THEN ASM_CASES_TAC `p EXP k divides n` THENL [ALL_TAC; ASM_MESON_TAC[]] THEN FIRST_ASSUM(MP_TAC o SPEC `p:num`) THEN ANTS_TAC THENL [ASM_MESON_TAC[DIVIDES_EXP2]; DISCH_THEN SUBST_ALL_TAC] THEN ASM_REWRITE_TAC[DE_MORGAN_THM] THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[PRIME_1]] THEN DISCH_TAC THEN FIRST_X_ASSUM(fun th -> MP_TAC(SPEC `3` th) THEN MP_TAC(SPEC `2` th)) THEN ASM_REWRITE_TAC[DIVIDES_0; NOT_IMP] THEN REWRITE_TAC[PRIME_ALT; IMP_CONJ_ALT; DIVIDES_MOD] THEN CONV_TAC(ONCE_DEPTH_CONV EXPAND_CASES_CONV) THEN REWRITE_TAC[LT] THEN ARITH_TAC]);; let PRIME_FACTORIZATION_ALT = prove (`!n. ~(n = 0) ==> nproduct {p | prime p} (\p. p EXP index p n) = n`, MATCH_MP_TAC COMPLETE_FACTOR_INDUCT THEN REWRITE_TAC[INDEX_0; INDEX_1; MULT_EQ_0; ARITH_EQ; DE_MORGAN_THM; EXP] THEN SIMP_TAC[REWRITE_RULE[GSYM nproduct; NEUTRAL_MUL] (MATCH_MP ITERATE_EQ_NEUTRAL MONOIDAL_MUL)] THEN CONJ_TAC THENL [X_GEN_TAC `p:num` THEN REPEAT DISCH_TAC THEN ASM_SIMP_TAC[INDEX_PRIME] THEN REWRITE_TAC[COND_RAND; EXP; EXP_1] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [EQ_SYM_EQ] THEN ASM_SIMP_TAC[IN_ELIM_THM; REWRITE_RULE[GSYM nproduct; NEUTRAL_MUL] (MATCH_MP ITERATE_DELTA MONOIDAL_MUL)]; MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(MESON[] `x * y = z ==> x = m /\ y = n ==> z = m * n`) THEN W(MP_TAC o PART_MATCH (rand o rand) (REWRITE_RULE[GSYM nproduct] (MATCH_MP ITERATE_OP_GEN MONOIDAL_MUL)) o lhand o snd) THEN REWRITE_TAC[support; NEUTRAL_MUL] THEN ANTS_TAC THENL [ASM_REWRITE_TAC[IN_ELIM_THM; EXP_EQ_1; INDEX_EQ_0] THEN ASM_SIMP_TAC[DE_MORGAN_THM; CONJ_ASSOC; FINITE_SPECIAL_DIVISORS]; DISCH_THEN(SUBST1_TAC o SYM)] THEN MATCH_MP_TAC(REWRITE_RULE[GSYM nproduct] (MATCH_MP ITERATE_EQ MONOIDAL_MUL)) THEN ASM_SIMP_TAC[IN_ELIM_THM; INDEX_MUL; EXP_ADD]]);; let PRIME_FACTORIZATION = prove (`!n. ~(n = 0) ==> nproduct {p | prime p /\ p divides n} (\p. p EXP index p n) = n`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM(MATCH_MP PRIME_FACTORIZATION_ALT th)]) THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[nproduct] THEN MATCH_MP_TAC(MATCH_MP ITERATE_SUPERSET MONOIDAL_MUL) THEN SIMP_TAC[IN_ELIM_THM; IMP_CONJ; NEUTRAL_MUL; EXP_EQ_1; INDEX_EQ_0] THEN SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* Least common multiples. *) (* ------------------------------------------------------------------------- *) let lcm = prove (`lcm(m,n) = if m * n = 0 then 0 else (m * n) DIV gcd(m,n)`, REWRITE_TAC[GSYM INT_OF_NUM_EQ; GSYM INT_OF_NUM_MUL; NUM_LCM; int_lcm] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[INT_OF_NUM_MUL; INT_OF_NUM_DIV; INT_ABS_NUM; GSYM NUM_GCD]);; let LCM_DIVIDES = prove (`!m n d. lcm(m,n) divides d <=> m divides d /\ n divides d`, NUMBER_TAC);; let LCM = prove (`!m n. m divides lcm(m,n) /\ n divides lcm(m,n) /\ (!d. m divides d /\ n divides d ==> lcm(m,n) divides d)`, NUMBER_TAC);; let LCM_DIVIDES_MUL = prove (`!m n. lcm(m,n) divides m * n`, REWRITE_TAC[LCM_DIVIDES] THEN CONV_TAC NUMBER_RULE);; let DIVIDES_LCM = prove (`!m n r. r divides m \/ r divides n ==> r divides lcm(m,n)`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM (MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] DIVIDES_TRANS)) THEN ASM_MESON_TAC[LCM]);; let LCM_0 = prove (`(!n. lcm(0,n) = 0) /\ (!n. lcm(n,0) = 0)`, REWRITE_TAC[lcm; MULT_CLAUSES] THEN ARITH_TAC);; let LCM_1 = prove (`(!n. lcm(1,n) = n) /\ (!n. lcm(n,1) = n)`, SIMP_TAC[lcm; MULT_CLAUSES; GCD_1; DIV_1] THEN MESON_TAC[]);; let LCM_SYM = prove (`!m n. lcm(m,n) = lcm(n,m)`, REWRITE_TAC[lcm; MULT_SYM; GCD_SYM; ARITH_RULE `MAX m n = MAX n m`]);; let DIVIDES_LCM_GCD = prove (`!m n d. d divides lcm(m,n) <=> d * gcd(m,n) divides m * n`, NUMBER_TAC);; let PRIMEPOW_DIVIDES_LCM = prove (`!m n p k. prime p ==> (p EXP k divides lcm(m,n) <=> p EXP k divides m \/ p EXP k divides n)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [STRIP_TAC; MESON_TAC[DIVIDES_LCM]] THEN ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[LCM_0; DIVIDES_0] THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[LCM_0; DIVIDES_0] THEN MP_TAC(SPECL [`n:num`; `p:num`] FACTORIZATION_INDEX) THEN MP_TAC(SPECL [`m:num`; `p:num`] FACTORIZATION_INDEX) THEN ASM_SIMP_TAC[PRIME_GE_2; LEFT_IMP_EXISTS_THM; divides; LEFT_AND_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a:num`; `q:num`] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`b:num`; `r:num`] THEN STRIP_TAC THEN REWRITE_TAC[GSYM divides] THEN UNDISCH_TAC `p EXP k divides lcm (m,n)` THEN ASM_REWRITE_TAC[DIVIDES_LCM_GCD] THEN SUBGOAL_THEN `gcd(p EXP a * q,p EXP b * r) = p EXP (MIN a b) * gcd(p EXP (a - MIN a b) * q,p EXP (b - MIN a b) * r)` SUBST1_TAC THENL [REWRITE_TAC[GSYM GCD_LMUL; MULT_ASSOC; GSYM EXP_ADD] THEN AP_TERM_TAC THEN BINOP_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ARITH_TAC; REWRITE_TAC[MULT_ASSOC; GSYM EXP_ADD]] THEN DISCH_THEN(MP_TAC o MATCH_MP (NUMBER_RULE `a * b divides c ==> a divides c`)) THEN REWRITE_TAC[ARITH_RULE `((a * b) * c) * d:num = (a * c) * b * d`] THEN REWRITE_TAC[GSYM EXP_ADD] THEN DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] (ONCE_REWRITE_RULE[MULT_SYM] COPRIME_EXP_DIVPROD))) THEN ANTS_TAC THENL [MATCH_MP_TAC COPRIME_MUL THEN CONJ_TAC THEN MATCH_MP_TAC(MESON[PRIME_COPRIME_STRONG] `prime p /\ ~(p divides n) ==> coprime(p,n)`) THEN ASM_REWRITE_TAC[divides] THEN STRIP_TAC THENL [UNDISCH_TAC `!l. a < l ==> ~(?x. m = p EXP l * x)` THEN DISCH_THEN(MP_TAC o SPEC `a + 1`); UNDISCH_TAC `!l. b < l ==> ~(?x. n = p EXP l * x)` THEN DISCH_THEN(MP_TAC o SPEC `b + 1`)] THEN ASM_REWRITE_TAC[ARITH_RULE `a < a + 1`; EXP_ADD; EXP_1] THEN MESON_TAC[MULT_AC]; ASM_SIMP_TAC[DIVIDES_EXP_LE; PRIME_GE_2] THEN DISCH_THEN(MP_TAC o MATCH_MP (ARITH_RULE `k + MIN a b <= a + b ==> k <= a \/ k <= b`)) THEN MATCH_MP_TAC MONO_OR THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC DIVIDES_RMUL THEN ASM_SIMP_TAC[DIVIDES_EXP_LE; PRIME_GE_2]]);; let PRIME_DIVIDES_LCM = prove (`!m n p. prime p ==> (p divides lcm(m,n) <=> p divides m \/ p divides n)`, REPEAT GEN_TAC THEN MP_TAC(SPECL [`m:num`; `n:num`; `p:num`; `1`] PRIMEPOW_DIVIDES_LCM) THEN REWRITE_TAC[EXP_1]);; let LCM_ZERO = prove (`!m n. lcm(m,n) = 0 <=> m = 0 \/ n = 0`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [MULTIPLES_EQ] THEN REWRITE_TAC[LCM_DIVIDES; DIVIDES_ZERO] THEN MAP_EVERY ASM_CASES_TAC [`m = 0`; `n = 0`] THEN ASM_REWRITE_TAC[DIVIDES_ZERO] THEN ASM_MESON_TAC[DIVIDES_REFL; MULT_EQ_0; DIVIDES_LMUL; DIVIDES_RMUL]);; let INDEX_LCM = prove (`!m n p. prime p ==> index p (lcm(m,n)) = if m = 0 \/ n = 0 then 0 else MAX (index p m) (index p n)`, REPEAT STRIP_TAC THEN MAP_EVERY ASM_CASES_TAC [`m = 0`; `n = 0`] THEN ASM_SIMP_TAC[LCM_0; INDEX_0] THEN FIRST_ASSUM(MP_TAC o SPECL [`m:num`; `n:num`] o MATCH_MP PRIMEPOW_DIVIDES_LCM) THEN ASM_REWRITE_TAC[PRIMEPOW_DIVIDES_INDEX; LCM_ZERO] THEN ASM_SIMP_TAC[MESON[PRIME_1] `prime p ==> ~(p = 1)`] THEN REWRITE_TAC[ARITH_RULE `k <= m \/ k <= n <=> k <= MAX m n`] THEN MESON_TAC[LE_REFL; LE_ANTISYM; LE_TRANS]);; let LCM_ASSOC = prove (`!m n p. lcm(m,lcm(n,p)) = lcm(lcm(m,n),p)`, REPEAT GEN_TAC THEN REWRITE_TAC[MULTIPLES_EQ] THEN REWRITE_TAC[LCM_DIVIDES] THEN X_GEN_TAC `q:num` THEN REWRITE_TAC[LCM_ZERO] THEN CONV_TAC TAUT);; let LCM_REFL = prove (`!n. lcm(n,n) = n`, REWRITE_TAC[lcm; GCD_REFL; MULT_EQ_0; ARITH_RULE `MAX n n = n`] THEN SIMP_TAC[DIV_MULT] THEN MESON_TAC[]);; let LCM_MULTIPLE = prove (`!a b. lcm(b,a * b) = a * b`, REWRITE_TAC[MULTIPLES_EQ; LCM_DIVIDES] THEN NUMBER_TAC);; let LCM_GCD_DISTRIB = prove (`!a b c. lcm(a,gcd(b,c)) = gcd(lcm(a,b),lcm(a,c))`, REWRITE_TAC[PRIMEPOW_DIVISORS_EQ] THEN SIMP_TAC[PRIMEPOW_DIVIDES_LCM; DIVIDES_GCD] THEN CONV_TAC TAUT);; let GCD_LCM_DISTRIB = prove (`!a b c. gcd(a,lcm(b,c)) = lcm(gcd(a,b),gcd(a,c))`, REWRITE_TAC[PRIMEPOW_DIVISORS_EQ] THEN SIMP_TAC[PRIMEPOW_DIVIDES_LCM; DIVIDES_GCD] THEN CONV_TAC TAUT);; let LCM_UNIQUE = prove (`!d m n. m divides d /\ n divides d /\ (!e. m divides e /\ n divides e ==> d divides e) <=> d = lcm(m,n)`, REWRITE_TAC[MULTIPLES_EQ; LCM_DIVIDES] THEN MESON_TAC[DIVIDES_REFL; DIVIDES_TRANS]);; let LCM_EQ = prove (`!x y u v. (!d. x divides d /\ y divides d <=> u divides d /\ v divides d) ==> lcm(x,y) = lcm(u,v)`, SIMP_TAC[MULTIPLES_EQ; LCM_DIVIDES]);; let LCM_EQ_1 = prove (`!m n. lcm(m,n) = 1 <=> m = 1 /\ n = 1`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [EQ_SYM_EQ] THEN REWRITE_TAC[GSYM LCM_UNIQUE; DIVIDES_1; DIVIDES_ONE]);; let DIVIDES_LCM_LEFT = prove (`!m n. n divides m <=> lcm(m,n) = m`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC RAND_CONV [EQ_SYM_EQ] THEN SIMP_TAC[GSYM LCM_UNIQUE; DIVIDES_REFL]);; let DIVIDES_LCM_RIGHT = prove (`!m n. m divides n <=> lcm(m,n) = n`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC RAND_CONV [EQ_SYM_EQ] THEN SIMP_TAC[GSYM LCM_UNIQUE; DIVIDES_REFL]);; let MULT_LCM_GCD = prove (`!m n. lcm(m,n) * gcd(m,n) = m * n`, REPEAT GEN_TAC THEN MAP_EVERY ASM_CASES_TAC [`m = 0`; `n = 0`] THEN ASM_REWRITE_TAC[GCD_0; LCM_0; MULT_CLAUSES] THEN ASM_REWRITE_TAC[lcm; MULT_EQ_0; GSYM DIVIDES_DIV_MULT] THEN CONV_TAC NUMBER_RULE);; let MULT_GCD_LCM = prove (`!m n. gcd(m,n) * lcm(m,n) = m * n`, MESON_TAC[MULT_SYM; MULT_LCM_GCD]);; let LCM_LMUL = prove (`!a b c. lcm(c * a,c * b) = c * lcm(a,b)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `c = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES; LCM_0] THEN ASM_REWRITE_TAC[lcm; GCD_LMUL; MULT_EQ_0; DISJ_ACI] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM]) THEN ASM_SIMP_TAC[GSYM MULT_ASSOC; DIV_MULT2; MULT_EQ_0; GCD_ZERO] THEN MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `0` THEN ASM_SIMP_TAC[ADD_CLAUSES; LE_1; GCD_ZERO] THEN ONCE_REWRITE_TAC[ARITH_RULE `a * c * b:num = (c * d) * g <=> c * d * g = c * a * b`] THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM DIVIDES_DIV_MULT] THEN CONV_TAC NUMBER_RULE);; let LCM_RMUL = prove (`!a b c. lcm(a * c,b * c) = c * lcm(a,b)`, MESON_TAC[LCM_LMUL; MULT_SYM]);; let LCM_EXP = prove (`!n a b. lcm(a EXP n,b EXP n) = lcm(a,b) EXP n`, REPEAT GEN_TAC THEN REWRITE_TAC[lcm] THEN REWRITE_TAC[MULT_EQ_0; EXP_EQ_0] THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[EXP; GCD_REFL; DIV_1; MULT_CLAUSES] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL [ASM_MESON_TAC[num_CASES; EXP_ZERO]; ALL_TAC] THEN RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM]) THEN REWRITE_TAC[GCD_EXP; GSYM MULT_EXP] THEN MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `0` THEN ASM_SIMP_TAC[ADD_CLAUSES; LE_1; GCD_ZERO; EXP_EQ_0] THEN REWRITE_TAC[GSYM MULT_EXP] THEN AP_THM_TAC THEN AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[GSYM DIVIDES_DIV_MULT] THEN CONV_TAC NUMBER_RULE);; let LCM_COPRIME_DECOMP = prove (`!m n:num. ?m' n'. m' divides m /\ n' divides n /\ coprime(m',n') /\ m' * n' = lcm(m,n)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `m = 0` THENL [ASM_REWRITE_TAC[DIVIDES_0; COPRIME_0; GCD_0; LCM_0] THEN MAP_EVERY EXISTS_TAC [`0`; `1`] THEN CONV_TAC NUMBER_RULE; ALL_TAC] THEN MP_TAC(ISPECL [`m:num`; `n:num`] GCD_COPRIME_EXISTS) THEN ASM_REWRITE_TAC[GCD_ZERO; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`m':num`; `n':num`] THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN MP_TAC(ISPECL [`m':num`; `n':num`; `gcd(m,n)`] COPRIME_PAIR_DECOMP) THEN ASM_REWRITE_TAC[GCD_ZERO; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`n'':num`; `m'':num`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`m' * m'':num`; `n' * n'':num`] THEN REWRITE_TAC[COPRIME_LMUL; COPRIME_RMUL; GSYM CONJ_ASSOC] THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN ASM_REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL [ASM_MESON_TAC[DIVIDES_MUL_L; DIVIDES_REFL; DIVIDES_RMUL; DIVIDES_LMUL]; ALL_TAC] THEN MATCH_MP_TAC(NUM_RING `!d. ~(d = 0) /\ a * d = b * d ==> a = b`) THEN EXISTS_TAC `gcd(m,n):num` THEN ASM_REWRITE_TAC[MULT_LCM_GCD; GCD_ZERO] THEN REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC NUM_RING);; let LE_LCM = prove (`(!m n. m <= lcm(m,n) <=> n = 0 ==> m = 0) /\ (!m n. n <= lcm(m,n) <=> m = 0 ==> n = 0)`, REPEAT STRIP_TAC THEN MAP_EVERY ASM_CASES_TAC [`m = 0`; `n = 0`] THEN ASM_REWRITE_TAC[LCM_0; LE_REFL; LE] THEN MATCH_MP_TAC DIVIDES_LE_IMP THEN ASM_REWRITE_TAC[LCM; LCM_ZERO]);; let LCM_LE_MULT = prove (`!m n. lcm(m,n) <= m * n`, REPEAT GEN_TAC THEN REWRITE_TAC[lcm] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[LE_REFL; DIV_LE]);; let LCM_EQ_MULT = prove (`!m n. lcm(m,n) = m * n <=> m = 0 \/ n = 0 \/ coprime(m,n)`, REPEAT GEN_TAC THEN MAP_EVERY ASM_CASES_TAC [`m = 0`; `n = 0`] THEN ASM_REWRITE_TAC[LCM_0; MULT_CLAUSES] THEN ASM_REWRITE_TAC[lcm; DIV_EQ_SELF; MULT_EQ_0; COPRIME_GCD]);; let MAX_LE_LCM_EQ = prove (`!m n. MAX m n <= lcm(m,n) <=> (m = 0 <=> n = 0)`, REPEAT GEN_TAC THEN REWRITE_TAC[MAX] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[LE_LCM] THEN ASM_ARITH_TAC);; let MAX_LE_LCM = prove (`!m n. (m = 0 <=> n = 0) ==> MAX m n <= lcm(m,n)`, REWRITE_TAC[MAX_LE_LCM_EQ]);; (* ------------------------------------------------------------------------- *) (* Iterated GCD and LCM over a finite set (or one with finite support). *) (* ------------------------------------------------------------------------- *) let NEUTRAL_GCD = prove (`neutral (\m n. gcd(m,n)) = 0`, REWRITE_TAC[neutral] THEN MATCH_MP_TAC SELECT_UNIQUE THEN MESON_TAC[GCD_0]);; let MONOIDAL_GCD = prove (`monoidal (\m n:num. gcd(m,n))`, REWRITE_TAC[monoidal; NEUTRAL_GCD; GCD_0] THEN MESON_TAC[GCD_ASSOC; GCD_SYM]);; let NEUTRAL_LCM = prove (`neutral (\m n. lcm(m,n)) = 1`, REWRITE_TAC[neutral] THEN MATCH_MP_TAC SELECT_UNIQUE THEN MESON_TAC[LCM_1]);; let MONOIDAL_LCM = prove (`monoidal (\m n:num. lcm(m,n))`, REWRITE_TAC[monoidal; NEUTRAL_LCM; LCM_1] THEN MESON_TAC[LCM_ASSOC; LCM_SYM]);; let ITERATE_GCD_DIVIDES = prove (`!f k i:K. FINITE k /\ i IN k ==> iterate (\m n:num. gcd(m,n)) k f divides f i`, GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[FORALL_IN_INSERT; MATCH_MP ITERATE_CLAUSES MONOIDAL_GCD] THEN MESON_TAC[NOT_IN_EMPTY; GCD; DIVIDES_REFL; DIVIDES_TRANS]);; let ITERATE_GCD_DIVIDES_EQ = prove (`!f k i:K. i IN k ==> (iterate (\m n:num. gcd(m,n)) k f divides f i <=> FINITE {j | j IN k /\ ~(f j = 0)} \/ f i = 0)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `f(i:K) = 0` THEN ASM_REWRITE_TAC[DIVIDES_0] THEN ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN REWRITE_TAC[support; NEUTRAL_GCD] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[DIVIDES_ZERO] THEN MATCH_MP_TAC ITERATE_GCD_DIVIDES THEN ASM_REWRITE_TAC[IN_ELIM_THM]);; let DIVIDES_ITERATE_GCD = prove (`!f (k:K->bool) d. FINITE k ==> (d divides iterate (\m n:num. gcd(m,n)) k f <=> !i. i IN k ==> d divides f i)`, GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[FORALL_IN_INSERT; MATCH_MP ITERATE_CLAUSES MONOIDAL_GCD] THEN SIMP_TAC[NEUTRAL_GCD; DIVIDES_0; NOT_IN_EMPTY; DIVIDES_GCD]);; let DIVIDES_ITERATE_GCD_GEN = prove (`!f (k:K->bool) d. d divides iterate (\m n:num. gcd(m,n)) k f <=> FINITE {j | j IN k /\ ~(f j = 0)} ==> !i. i IN k ==> d divides f i`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN REWRITE_TAC[support; NEUTRAL_GCD] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[DIVIDES_0] THEN ASM_SIMP_TAC[DIVIDES_ITERATE_GCD; IN_ELIM_THM] THEN MESON_TAC[DIVIDES_0]);; let DIVIDES_ITERATE_LCM = prove (`!f k i:K. FINITE k /\ i IN k ==> f i divides iterate (\m n:num. lcm(m,n)) k f`, GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[FORALL_IN_INSERT; MATCH_MP ITERATE_CLAUSES MONOIDAL_LCM] THEN ASM_SIMP_TAC[NOT_IN_EMPTY; DIVIDES_LCM; DIVIDES_REFL]);; let DIVIDES_ITERATE_LCM_GEN = prove (`!f k i:K. i IN k ==> (f i divides iterate (\m n:num. lcm(m,n)) k f <=> FINITE {j | j IN k /\ ~(f j = 1)} \/ f i = 1)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `f(i:K) = 1` THEN ASM_REWRITE_TAC[DIVIDES_1] THEN ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN REWRITE_TAC[support; NEUTRAL_LCM] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[DIVIDES_ONE] THEN MATCH_MP_TAC DIVIDES_ITERATE_LCM THEN ASM_REWRITE_TAC[IN_ELIM_THM]);; let ITERATE_LCM_DIVIDES = prove (`!f (k:K->bool) n. FINITE k ==> (iterate (\m n:num. lcm(m,n)) k f divides n <=> !i. i IN k ==> f i divides n)`, GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[FORALL_IN_INSERT; MATCH_MP ITERATE_CLAUSES MONOIDAL_LCM] THEN SIMP_TAC[NEUTRAL_LCM; DIVIDES_1; NOT_IN_EMPTY; LCM_DIVIDES]);; let ITERATE_LCM_DIVIDES_GEN = prove (`!f (k:K->bool) n. iterate (\m n:num. lcm(m,n)) k f divides n <=> FINITE {j | j IN k /\ ~(f j = 1)} ==> !i. i IN k ==> f i divides n`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN REWRITE_TAC[support; NEUTRAL_LCM] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[ITERATE_LCM_DIVIDES; DIVIDES_1; IN_ELIM_THM] THEN MESON_TAC[DIVIDES_1]);; let PRIMEPOW_DIVIDES_ITERATE_LCM = prove (`!f (k:K->bool) p m. FINITE k /\ prime p ==> (p EXP m divides iterate (\m n:num. lcm(m,n)) k f <=> m = 0 \/ ?i. i IN k /\ p EXP m divides (f i))`, GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[EXISTS_IN_INSERT; MATCH_MP ITERATE_CLAUSES MONOIDAL_LCM; PRIMEPOW_DIVIDES_LCM; NOT_IN_EMPTY; NEUTRAL_LCM] THEN MESON_TAC[DIVIDES_ONE; EXP_EQ_1; PRIME_1]);; let PRIMEPOW_DIVIDES_ITERATE_LCM_GEN = prove (`!f (k:K->bool) p m. prime p ==> (p EXP m divides iterate (\m n:num. lcm(m,n)) k f <=> m = 0 \/ FINITE {j | j IN k /\ ~(f j = 1)} /\ ?i. i IN k /\ p EXP m divides (f i))`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[EXP; DIVIDES_1] THEN ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN REWRITE_TAC[support; NEUTRAL_LCM] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[DIVIDES_ONE; EXP_EQ_1] THEN ASM_SIMP_TAC[PRIMEPOW_DIVIDES_ITERATE_LCM; IN_ELIM_THM] THEN ASM_MESON_TAC[DIVIDES_1; DIVIDES_ONE; PRIME_1; EXP_EQ_1]);; let PRIME_DIVIDES_ITERATE_LCM_GEN = prove (`!f (k:K->bool) p. prime p ==> (p divides iterate (\m n:num. lcm(m,n)) k f <=> FINITE {j | j IN k /\ ~(f j = 1)} /\ ?i. i IN k /\ p divides (f i))`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`f:K->num`; `k:K->bool`; `p:num`; `1`] PRIMEPOW_DIVIDES_ITERATE_LCM_GEN) THEN REWRITE_TAC[EXP_1; ARITH_EQ]);; let PRIME_DIVIDES_ITERATE_LCM = prove (`!f (k:K->bool) p. FINITE k /\ prime p ==> (p divides iterate (\m n:num. lcm(m,n)) k f <=> ?i. i IN k /\ p divides (f i))`, SIMP_TAC[PRIME_DIVIDES_ITERATE_LCM_GEN; FINITE_RESTRICT]);; let ITERATE_LCM_EQ_0_GEN = prove (`!(k:K->bool) f. iterate (\m n. lcm(m,n)) k f = 0 <=> FINITE {j | j IN k /\ ~(f j = 1)} /\ ?j. j IN k /\ f j = 0`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN REWRITE_TAC[support; NEUTRAL_LCM] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[ARITH_EQ] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [ARITH_RULE `n = 0 <=> ~(n = 1) /\ n = 0`] THEN ONCE_REWRITE_TAC[SET_RULE `j IN k /\ ~(f j = 1) /\ f j = 0 <=> j IN {j | j IN k /\ ~(f j = 1)} /\ f j = 0`] THEN POP_ASSUM MP_TAC THEN SPEC_TAC(`{j:K | j IN k /\ ~(f j = 1)}`,`k:K->bool`) THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[MATCH_MP ITERATE_CLAUSES MONOIDAL_LCM] THEN SIMP_TAC[NEUTRAL_LCM; LCM_ZERO; EXISTS_IN_INSERT; NOT_IN_EMPTY] THEN CONV_TAC NUM_REDUCE_CONV);; let ITERATE_LCM_EQ_0 = prove (`!(k:K->bool) f. FINITE k ==> (iterate (\m n. lcm(m,n)) k f = 0 <=> ?j. j IN k /\ f j = 0)`, SIMP_TAC[ITERATE_LCM_EQ_0_GEN; FINITE_RESTRICT]);; let ITERATE_LCM_EQ_1_GEN = prove (`!(k:K->bool) f. iterate (\m n. lcm(m,n)) k f = 1 <=> FINITE {j | j IN k /\ ~(f j = 1)} ==> !j. j IN k ==> f j = 1`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN REWRITE_TAC[support; NEUTRAL_LCM] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[SET_RULE `(!j. j IN k ==> f j = 1) <=> !j. j IN {j | j IN k /\ ~(f j = 1)} ==> f j = 1`] THEN POP_ASSUM MP_TAC THEN SPEC_TAC(`{j:K | j IN k /\ ~(f j = 1)}`,`k:K->bool`) THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[MATCH_MP ITERATE_CLAUSES MONOIDAL_LCM] THEN SIMP_TAC[NEUTRAL_LCM; LCM_EQ_1; NOT_IN_EMPTY] THEN SET_TAC[]);; let ITERATE_LCM_EQ_1 = prove (`!(k:K->bool) f. FINITE k ==> (iterate (\m n. lcm(m,n)) k f = 1 <=> !j. j IN k ==> f j = 1)`, SIMP_TAC[ITERATE_LCM_EQ_1_GEN; FINITE_RESTRICT]);; let ITERATE_GCD_EQ_0_GEN = prove (`!(k:K->bool) f. iterate (\m n. gcd(m,n)) k f = 0 <=> FINITE {j | j IN k /\ ~(f j = 0)} ==> !j. j IN k ==> f j = 0`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN REWRITE_TAC[support; NEUTRAL_GCD] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[SET_RULE `(!j. j IN k ==> f j = 0) <=> !j. j IN {j | j IN k /\ ~(f j = 0)} ==> f j = 0`] THEN POP_ASSUM MP_TAC THEN SPEC_TAC(`{j:K | j IN k /\ ~(f j = 0)}`,`k:K->bool`) THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[MATCH_MP ITERATE_CLAUSES MONOIDAL_GCD] THEN SIMP_TAC[NEUTRAL_GCD; GCD_ZERO; NOT_IN_EMPTY] THEN SET_TAC[]);; let ITERATE_GCD_EQ_0 = prove (`!(k:K->bool) f. FINITE k ==> (iterate (\m n. gcd(m,n)) k f = 0 <=> !j. j IN k ==> f j = 0)`, SIMP_TAC[ITERATE_GCD_EQ_0_GEN; FINITE_RESTRICT]);; (* ------------------------------------------------------------------------- *) (* Induction principle for multiplicative functions etc. *) (* ------------------------------------------------------------------------- *) let INDUCT_COPRIME = prove (`!P. (!a b. 1 < a /\ 1 < b /\ coprime(a,b) /\ P a /\ P b ==> P(a * b)) /\ (!p k. prime p ==> P(p EXP k)) ==> !n. 1 < n ==> P n`, GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE `1 < n ==> ~(n = 1)`)) THEN DISCH_THEN(X_CHOOSE_TAC `p:num` o MATCH_MP PRIME_FACTOR) THEN MP_TAC(SPECL [`n:num`; `p:num`] FACTORIZATION_INDEX) THEN ASM_SIMP_TAC[PRIME_GE_2; ARITH_RULE `1 < n ==> ~(n = 0)`] THEN REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`k:num`; `m:num`] THEN STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN ASM_CASES_TAC `m = 1` THEN ASM_SIMP_TAC[MULT_CLAUSES] THEN FIRST_X_ASSUM(CONJUNCTS_THEN2 MATCH_MP_TAC MP_TAC) THEN ASM_SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN MATCH_MP_TAC(TAUT `!p. (a /\ b /\ ~p) /\ c /\ (a /\ ~p ==> b ==> d) ==> a /\ b /\ c /\ d`) THEN EXISTS_TAC `m = 0` THEN SUBGOAL_THEN `~(k = 0)` ASSUME_TAC THENL [DISCH_THEN SUBST_ALL_TAC THEN FIRST_X_ASSUM(MP_TAC o C MATCH_MP (ARITH_RULE `0 < 1`)) THEN FIRST_X_ASSUM(MP_TAC o CONJUNCT2) THEN REWRITE_TAC[EXP; EXP_1; MULT_CLAUSES; divides]; ALL_TAC] THEN CONJ_TAC THENL [UNDISCH_TAC `1 < p EXP k * m` THEN ASM_REWRITE_TAC[ARITH_RULE `1 < x <=> ~(x = 0) /\ ~(x = 1)`] THEN ASM_REWRITE_TAC[EXP_EQ_0; EXP_EQ_1; MULT_EQ_0; MULT_EQ_1] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2 o CONJUNCT1) THEN ASM_ARITH_TAC; ALL_TAC] THEN CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o C MATCH_MP (ARITH_RULE `k < k + 1`)) THEN REWRITE_TAC[EXP_ADD; EXP_1; GSYM MULT_ASSOC; EQ_MULT_LCANCEL] THEN ASM_SIMP_TAC[EXP_EQ_0; PRIME_IMP_NZ; GSYM divides] THEN DISCH_TAC THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN MATCH_MP_TAC COPRIME_EXP THEN ASM_MESON_TAC[PRIME_COPRIME; COPRIME_SYM]; DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `m = 1 * m`] THEN ASM_REWRITE_TAC[LT_MULT_RCANCEL]]);; let INDUCT_COPRIME_STRONG = prove (`!P. (!a b. 1 < a /\ 1 < b /\ coprime(a,b) /\ P a /\ P b ==> P(a * b)) /\ (!p k. prime p /\ ~(k = 0) ==> P(p EXP k)) ==> !n. 1 < n ==> P n`, GEN_TAC THEN STRIP_TAC THEN ONCE_REWRITE_TAC[TAUT `a ==> b <=> a ==> a ==> b`] THEN MATCH_MP_TAC INDUCT_COPRIME THEN CONJ_TAC THENL [ASM_MESON_TAC[]; MAP_EVERY X_GEN_TAC [`p:num`; `k:num`] THEN ASM_CASES_TAC `k = 0` THEN ASM_REWRITE_TAC[LT_REFL; EXP] THEN ASM_MESON_TAC[]]);; let INDUCT_COPRIME_ALT = prove (`!P. P 0 /\ (!a b. 1 < a /\ 1 < b /\ coprime(a,b) /\ P a /\ P b ==> P(a * b)) /\ (!p k. prime p ==> P(p EXP k)) ==> !n. P n`, GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC(MESON[] `(!n. 1 < n ==> P n) /\ (!n. ~(1 < n) ==> P n) ==> !n. P n`) THEN CONJ_TAC THENL [MATCH_MP_TAC INDUCT_COPRIME THEN ASM_REWRITE_TAC[]; REWRITE_TAC[ARITH_RULE `~(1 < n) <=> n = 0 \/ n = 1`] THEN REPEAT STRIP_TAC THEN ASM_MESON_TAC[PRIME_2; EXP]]);; (* ------------------------------------------------------------------------- *) (* A conversion for divisibility. *) (* ------------------------------------------------------------------------- *) let DIVIDES_CONV = let pth_0 = SPEC `b:num` DIVIDES_ZERO and pth_1 = prove (`~(a = 0) ==> (a divides b <=> (b MOD a = 0))`, REWRITE_TAC[DIVIDES_MOD]) and a_tm = `a:num` and b_tm = `b:num` and zero_tm = `0` and dest_divides = dest_binop `(divides)` in fun tm -> let a,b = dest_divides tm in if a = zero_tm then CONV_RULE (RAND_CONV NUM_EQ_CONV) (INST [b,b_tm] pth_0) else let th1 = INST [a,a_tm; b,b_tm] pth_1 in let th2 = MP th1 (EQF_ELIM(NUM_EQ_CONV(rand(lhand(concl th1))))) in CONV_RULE (RAND_CONV (LAND_CONV NUM_MOD_CONV THENC NUM_EQ_CONV)) th2;; (* ------------------------------------------------------------------------- *) (* A conversion for coprimality. *) (* ------------------------------------------------------------------------- *) let COPRIME_CONV = let pth_yes_l = prove (`(m * x = n * y + 1) ==> (coprime(m,n) <=> T)`, MESON_TAC[coprime; DIVIDES_RMUL; DIVIDES_ADD_REVR; DIVIDES_ONE]) and pth_yes_r = prove (`(m * x = n * y + 1) ==> (coprime(n,m) <=> T)`, MESON_TAC[coprime; DIVIDES_RMUL; DIVIDES_ADD_REVR; DIVIDES_ONE]) and pth_no = prove (`(m = x * d) /\ (n = y * d) /\ ~(d = 1) ==> (coprime(m,n) <=> F)`, REWRITE_TAC[coprime; divides] THEN MESON_TAC[MULT_AC]) and pth_oo = prove (`coprime(0,0) <=> F`, MESON_TAC[coprime; DIVIDES_REFL; NUM_REDUCE_CONV `1 = 0`]) and m_tm = `m:num` and n_tm = `n:num` and x_tm = `x:num` and y_tm = `y:num` and d_tm = `d:num` and coprime_tm = `coprime` in let rec bezout (m,n) = if m =/ Int 0 then (Int 0,Int 1) else if n =/ Int 0 then (Int 1,Int 0) else if m <=/ n then let q = quo_num n m and r = mod_num n m in let (x,y) = bezout(m,r) in (x -/ q */ y,y) else let (x,y) = bezout(n,m) in (y,x) in fun tm -> let pop,ptm = dest_comb tm in if pop <> coprime_tm then failwith "COPRIME_CONV" else let l,r = dest_pair ptm in let m = dest_numeral l and n = dest_numeral r in if m =/ Int 0 && n =/ Int 0 then pth_oo else let (x,y) = bezout(m,n) in let d = x */ m +/ y */ n in let th = if d =/ Int 1 then if x >/ Int 0 then INST [l,m_tm; r,n_tm; mk_numeral x,x_tm; mk_numeral(minus_num y),y_tm] pth_yes_l else INST [r,m_tm; l,n_tm; mk_numeral(minus_num x),y_tm; mk_numeral y,x_tm] pth_yes_r else INST [l,m_tm; r,n_tm; mk_numeral d,d_tm; mk_numeral(m // d),x_tm; mk_numeral(n // d),y_tm] pth_no in MP th (EQT_ELIM(NUM_REDUCE_CONV(lhand(concl th))));; (* ------------------------------------------------------------------------- *) (* More general (slightly less efficiently coded) GCD_CONV, and LCM_CONV. *) (* ------------------------------------------------------------------------- *) let GCD_CONV = let pth0 = prove(`gcd(0,0) = 0`,REWRITE_TAC[GCD_0]) in let pth1 = prove (`!m n x y d m' n'. (m * x = n * y + d) /\ (m = m' * d) /\ (n = n' * d) ==> (gcd(m,n) = d)`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN CONV_TAC(RAND_CONV SYM_CONV) THEN ASM_REWRITE_TAC[GSYM GCD_UNIQUE] THEN ASM_MESON_TAC[DIVIDES_LMUL; DIVIDES_RMUL; DIVIDES_ADD_REVR; DIVIDES_REFL]) in let pth2 = prove (`!m n x y d m' n'. (n * y = m * x + d) /\ (m = m' * d) /\ (n = n' * d) ==> (gcd(m,n) = d)`, MESON_TAC[pth1; GCD_SYM]) in let gcd_tm = `gcd` in let rec bezout (m,n) = if m =/ Int 0 then (Int 0,Int 1) else if n =/ Int 0 then (Int 1,Int 0) else if m <=/ n then let q = quo_num n m and r = mod_num n m in let (x,y) = bezout(m,r) in (x -/ q */ y,y) else let (x,y) = bezout(n,m) in (y,x) in fun tm -> let gt,lr = dest_comb tm in if gt <> gcd_tm then failwith "GCD_CONV" else let mtm,ntm = dest_pair lr in let m = dest_numeral mtm and n = dest_numeral ntm in if m =/ Int 0 && n =/ Int 0 then pth0 else let x0,y0 = bezout(m,n) in let x = abs_num x0 and y = abs_num y0 in let xtm = mk_numeral x and ytm = mk_numeral y in let d = abs_num(x */ m -/ y */ n) in let dtm = mk_numeral d in let m' = m // d and n' = n // d in let mtm' = mk_numeral m' and ntm' = mk_numeral n' in let th = SPECL [mtm;ntm;xtm;ytm;dtm;mtm';ntm'] (if m */ x =/ n */ y +/ d then pth1 else pth2) in MP th (EQT_ELIM(NUM_REDUCE_CONV(lhand(concl th))));; let LCM_CONV = GEN_REWRITE_CONV I [lcm] THENC RATOR_CONV(LAND_CONV(LAND_CONV NUM_MULT_CONV THENC NUM_EQ_CONV)) THENC (GEN_REWRITE_CONV I [CONJUNCT1(SPEC_ALL COND_CLAUSES)] ORELSEC (GEN_REWRITE_CONV I [CONJUNCT2(SPEC_ALL COND_CLAUSES)] THENC COMB2_CONV (RAND_CONV NUM_MULT_CONV) GCD_CONV THENC NUM_DIV_CONV));;