(* ========================================================================= *) (* HOL primality proving procedure, based on Pratt certificates. *) (* ========================================================================= *) needs "Library/prime.ml";; prioritize_num();; let num_0 = Int 0;; let num_1 = Int 1;; let num_2 = Int 2;; (* ------------------------------------------------------------------------- *) (* Mostly for compatibility. Should eliminate this eventually. *) (* ------------------------------------------------------------------------- *) let nat_mod_lemma = prove (`!x y n:num. (x == y) (mod n) /\ y <= x ==> ?q. x = y + n * q`, REPEAT GEN_TAC THEN REWRITE_TAC[num_congruent] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN ONCE_REWRITE_TAC [INTEGER_RULE `(x == y) (mod &n) <=> &n divides (x - y)`] THEN ASM_SIMP_TAC[INT_OF_NUM_SUB; ARITH_RULE `x <= y ==> (y:num = x + d <=> y - x = d)`] THEN REWRITE_TAC[GSYM num_divides; divides]);; let nat_mod = prove (`!x y n:num. (mod n) x y <=> ?q1 q2. x + n * q1 = y + n * q2`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM cong] THEN EQ_TAC THENL [ALL_TAC; NUMBER_TAC] THEN MP_TAC(SPECL [`x:num`; `y:num`] LE_CASES) THEN REWRITE_TAC[TAUT `a \/ b ==> c ==> d <=> (c /\ b) \/ (c /\ a) ==> d`] THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [ALL_TAC; ONCE_REWRITE_TAC[NUMBER_RULE `(x:num == y) (mod n) <=> (y == x) (mod n)`]] THEN MESON_TAC[nat_mod_lemma; ARITH_RULE `x + y * 0 = x`]);; (* ------------------------------------------------------------------------- *) (* Lemmas about previously defined terms. *) (* ------------------------------------------------------------------------- *) let PRIME = prove (`!p. prime p <=> ~(p = 0) /\ ~(p = 1) /\ !m. 0 < m /\ m < p ==> coprime(p,m)`, GEN_TAC THEN ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[PRIME_0] THEN ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[PRIME_1] THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o MATCH_MP PRIME_COPRIME) THEN DISCH_TAC THEN X_GEN_TAC `m:num` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `m:num`) THEN STRIP_TAC THEN ASM_REWRITE_TAC[COPRIME_1] THEN ASM_MESON_TAC[NOT_LT; LT_REFL; DIVIDES_LE]; ALL_TAC] THEN FIRST_ASSUM(X_CHOOSE_THEN `q:num` MP_TAC o MATCH_MP PRIME_FACTOR) THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `q:num`) THEN SUBGOAL_THEN `~(coprime(p,q))` (fun th -> REWRITE_TAC[th]) THENL [REWRITE_TAC[coprime; NOT_FORALL_THM] THEN EXISTS_TAC `q:num` THEN ASM_REWRITE_TAC[DIVIDES_REFL] THEN ASM_MESON_TAC[PRIME_1]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE) THEN ASM_REWRITE_TAC[LT_LE; LE_0] THEN ASM_CASES_TAC `p:num = q` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[] THEN DISCH_TAC THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN ASM_MESON_TAC[DIVIDES_ZERO]);; let FINITE_NUMBER_SEGMENT = prove (`!n. { m | 0 < m /\ m < n } HAS_SIZE (n - 1)`, INDUCT_TAC THENL [SUBGOAL_THEN `{m | 0 < m /\ m < 0} = EMPTY` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; LT]; ALL_TAC] THEN REWRITE_TAC[HAS_SIZE; FINITE_RULES; CARD_CLAUSES] THEN CONV_TAC NUM_REDUCE_CONV; ASM_CASES_TAC `n = 0` THENL [SUBGOAL_THEN `{m | 0 < m /\ m < SUC n} = EMPTY` SUBST1_TAC THENL [ASM_REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN ARITH_TAC; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[HAS_SIZE_0]; SUBGOAL_THEN `{m | 0 < m /\ m < SUC n} = n INSERT {m | 0 < m /\ m < n}` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT] THEN UNDISCH_TAC `~(n = 0)` THEN ARITH_TAC; ALL_TAC] THEN UNDISCH_TAC `~(n = 0)` THEN POP_ASSUM MP_TAC THEN SIMP_TAC[FINITE_RULES; HAS_SIZE; CARD_CLAUSES] THEN DISCH_TAC THEN REWRITE_TAC[IN_ELIM_THM; LT_REFL] THEN ARITH_TAC]]);; (* ------------------------------------------------------------------------- *) (* Congruences. *) (* ------------------------------------------------------------------------- *) let CONG_MOD_0 = prove (`!x y. (x == y) (mod 0) <=> (x = y)`, NUMBER_TAC);; let CONG_MOD_1 = prove (`!x y. (x == y) (mod 1)`, NUMBER_TAC);; let CONG_0 = prove (`!x n. ((x == 0) (mod n) <=> n divides x)`, NUMBER_TAC);; let CONG_SUB_CASES = prove (`!x y n. (x == y) (mod n) <=> if x <= y then (y - x == 0) (mod n) else (x - y == 0) (mod n)`, REPEAT GEN_TAC THEN REWRITE_TAC[cong; nat_mod] THEN COND_CASES_TAC THENL [GEN_REWRITE_TAC LAND_CONV [SWAP_EXISTS_THM]; ALL_TAC] THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN POP_ASSUM MP_TAC THEN ARITH_TAC);; let CONG_MULT_LCANCEL = prove (`!a n x y. coprime(a,n) /\ (a * x == a * y) (mod n) ==> (x == y) (mod n)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `a = 0` THENL [ONCE_REWRITE_TAC[COPRIME_SYM] THEN ASM_REWRITE_TAC[COPRIME_0] THEN SIMP_TAC[CONG_MOD_1]; ALL_TAC] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ONCE_REWRITE_TAC[CONG_SUB_CASES] THEN ASM_REWRITE_TAC[LE_MULT_LCANCEL] THEN REWRITE_TAC[GSYM LEFT_SUB_DISTRIB; CONG_0] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[COPRIME_DIVPROD; COPRIME_SYM]);; let CONG_REFL = prove (`!x n. (x == x) (mod n)`, MESON_TAC[cong; nat_mod; ADD_CLAUSES; MULT_CLAUSES]);; let CONG_SYM = prove (`!x y n. (x == y) (mod n) <=> (y == x) (mod n)`, REWRITE_TAC[cong; nat_mod] THEN MESON_TAC[]);; let CONG_TRANS = prove (`!x y z n. (x == y) (mod n) /\ (y == z) (mod n) ==> (x == z) (mod n)`, REWRITE_TAC[cong; nat_mod] THEN MESON_TAC[ARITH_RULE `(x + n * q1 = y + n * q2) /\ (y + n * q3 = z + n * q4) ==> (x + n * (q1 + q3) = z + n * (q2 + q4))`]);; (* ------------------------------------------------------------------------- *) (* Euler totient function. *) (* ------------------------------------------------------------------------- *) let phi = new_definition `phi(n) = CARD { m | 0 < m /\ m <= n /\ coprime(m,n) }`;; let PHI_ALT = prove (`phi(n) = CARD { m | coprime(m,n) /\ m < n}`, REWRITE_TAC[phi] THEN ASM_CASES_TAC `n = 0` THENL [AP_TERM_TAC THEN ASM_REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN MESON_TAC[LT; NOT_LT]; ALL_TAC] THEN ASM_CASES_TAC `n = 1` THENL [SUBGOAL_THEN `({m | 0 < m /\ m <= n /\ coprime (m,n)} = {1}) /\ ({m | coprime (m,n) /\ m < n} = {0})` (CONJUNCTS_THEN SUBST1_TAC) THENL [ALL_TAC; SIMP_TAC[CARD_CLAUSES; FINITE_RULES; NOT_IN_EMPTY]] THEN ASM_REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_SING] THEN REWRITE_TAC[COPRIME_1] THEN REPEAT STRIP_TAC THEN ARITH_TAC; ALL_TAC] THEN AP_TERM_TAC THEN ASM_REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN X_GEN_TAC `m:num` THEN ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[LT] THENL [ASM_MESON_TAC[COPRIME_0; COPRIME_SYM]; ASM_MESON_TAC[LE_LT; COPRIME_REFL; LT_NZ]]);; let PHI_ANOTHER = prove (`!n. ~(n = 1) ==> (phi(n) = CARD {m | 0 < m /\ m < n /\ coprime(m,n)})`, REPEAT STRIP_TAC THEN REWRITE_TAC[phi] THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN ASM_MESON_TAC[LE_LT; COPRIME_REFL; COPRIME_1; LT_NZ]);; let PHI_LIMIT = prove (`!n. phi(n) <= n`, GEN_TAC THEN REWRITE_TAC[PHI_ALT] THEN GEN_REWRITE_TAC RAND_CONV [GSYM CARD_NUMSEG_LT] THEN MATCH_MP_TAC CARD_SUBSET THEN ASM_REWRITE_TAC[FINITE_NUMSEG_LT] THEN SIMP_TAC[SUBSET; IN_ELIM_THM]);; let PHI_LIMIT_STRONG = prove (`!n. ~(n = 1) ==> phi(n) <= n - 1`, REPEAT STRIP_TAC THEN MP_TAC(SPEC `n:num` FINITE_NUMBER_SEGMENT) THEN ASM_SIMP_TAC[PHI_ANOTHER; HAS_SIZE] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (SUBST1_TAC o SYM)) THEN MATCH_MP_TAC CARD_SUBSET THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[SUBSET; IN_ELIM_THM]);; let PHI_0 = prove (`phi 0 = 0`, MP_TAC(SPEC `0` PHI_LIMIT) THEN REWRITE_TAC[ARITH] THEN ARITH_TAC);; let PHI_1 = prove (`phi 1 = 1`, REWRITE_TAC[PHI_ALT; COPRIME_1; CARD_NUMSEG_LT]);; let PHI_LOWERBOUND_1_STRONG = prove (`!n. 1 <= n ==> 1 <= phi(n)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `1 = CARD {1}` SUBST1_TAC THENL [SIMP_TAC[CARD_CLAUSES; NOT_IN_EMPTY; FINITE_RULES; ARITH]; ALL_TAC] THEN REWRITE_TAC[phi] THEN MATCH_MP_TAC CARD_SUBSET THEN CONJ_TAC THENL [SIMP_TAC[SUBSET; IN_INSERT; NOT_IN_EMPTY; IN_ELIM_THM] THEN REWRITE_TAC[ONCE_REWRITE_RULE[COPRIME_SYM] COPRIME_1] THEN GEN_TAC THEN POP_ASSUM MP_TAC THEN ARITH_TAC; MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{b | b <= n}` THEN REWRITE_TAC[CARD_NUMSEG_LE; FINITE_NUMSEG_LE] THEN SIMP_TAC[SUBSET; IN_ELIM_THM]]);; let PHI_LOWERBOUND_1 = prove (`!n. 2 <= n ==> 1 <= phi(n)`, MESON_TAC[PHI_LOWERBOUND_1_STRONG; LE_TRANS; ARITH_RULE `1 <= 2`]);; let PHI_LOWERBOUND_2 = prove (`!n. 3 <= n ==> 2 <= phi(n)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `2 = CARD {1,(n-1)}` SUBST1_TAC THENL [SIMP_TAC[CARD_CLAUSES; IN_INSERT; NOT_IN_EMPTY; FINITE_RULES; ARITH] THEN ASM_SIMP_TAC[ARITH_RULE `3 <= n ==> ~(1 = n - 1)`]; ALL_TAC] THEN REWRITE_TAC[phi] THEN MATCH_MP_TAC CARD_SUBSET THEN CONJ_TAC THENL [SIMP_TAC[SUBSET; IN_INSERT; NOT_IN_EMPTY; IN_ELIM_THM] THEN GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[COPRIME_1] THEN ASM_SIMP_TAC[ARITH; ARITH_RULE `3 <= n ==> 0 < n - 1 /\ n - 1 <= n /\ 1 <= n`] THEN REWRITE_TAC[coprime] THEN X_GEN_TAC `d:num` THEN STRIP_TAC THEN MP_TAC(SPEC `n:num` (CONJUNCT1 COPRIME_1)) THEN REWRITE_TAC[coprime] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `1 = n - (n - 1)` SUBST1_TAC THENL [UNDISCH_TAC `3 <= n` THEN ARITH_TAC; ASM_SIMP_TAC[DIVIDES_SUB]]; MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{b | b <= n}` THEN REWRITE_TAC[CARD_NUMSEG_LE; FINITE_NUMSEG_LE] THEN SIMP_TAC[SUBSET; IN_ELIM_THM]]);; let PHI_PRIME_EQ = prove (`!n. (phi n = n - 1) /\ ~(n = 0) /\ ~(n = 1) <=> prime n`, GEN_TAC THEN REWRITE_TAC[PRIME] THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[PHI_1; ARITH] THEN MP_TAC(SPEC `n:num` FINITE_NUMBER_SEGMENT) THEN ASM_SIMP_TAC[PHI_ANOTHER; HAS_SIZE] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (SUBST1_TAC o SYM)) THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `{m | 0 < m /\ m < n /\ coprime (m,n)} = {m | 0 < m /\ m < n}` THEN CONJ_TAC THENL [ALL_TAC; REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN AP_TERM_TAC THEN ABS_TAC THEN REWRITE_TAC[COPRIME_SYM] THEN CONV_TAC TAUT] THEN EQ_TAC THEN SIMP_TAC[] THEN DISCH_TAC THEN MATCH_MP_TAC CARD_SUBSET_EQ THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[SUBSET; IN_ELIM_THM]);; let PHI_PRIME = prove (`!p. prime p ==> phi p = p - 1`, MESON_TAC[PHI_PRIME_EQ]);; (* ------------------------------------------------------------------------- *) (* Fermat's Little theorem. *) (* ------------------------------------------------------------------------- *) let DIFFERENCE_POS_LEMMA = prove (`b <= a /\ (?x1 x2. x1 * n + a = x2 * n + b) ==> ?x. a = x * n + b`, STRIP_TAC THEN EXISTS_TAC `x2 - x1` THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN REWRITE_TAC[RIGHT_SUB_DISTRIB] THEN ARITH_TAC);; let ITSET_MODMULT = prove (`!n s. FINITE s /\ ~(n = 0) /\ ~(n = 1) /\ coprime(a,n) ==> (!b. b IN s ==> b < n) ==> (ITSET (\x y. (x * y) MOD n) (IMAGE (\b. (a * b) MOD n) s) 1 = (a EXP (CARD s) * ITSET (\x y. (x * y) MOD n) s 1) MOD n)`, GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `coprime(a,n)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN MP_TAC(ISPECL [`\x y. (x * y) MOD n`; `1`] FINITE_RECURSION) THEN W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL [ASM_SIMP_TAC[MOD_MULT_RMOD] THEN REWRITE_TAC[MULT_AC]; ALL_TAC] THEN STRIP_TAC THEN ASM_SIMP_TAC[IMAGE_CLAUSES; CARD_CLAUSES; FINITE_IMAGE] THEN CONJ_TAC THENL [REWRITE_TAC[EXP; MULT_CLAUSES] THEN STRIP_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `0` THEN REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES] THEN MAP_EVERY UNDISCH_TAC [`~(n = 0)`; `~(n = 1)`] THEN ARITH_TAC; ALL_TAC] THEN X_GEN_TAC `b:num` THEN X_GEN_TAC `s:num->bool` THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN REWRITE_TAC[IN_INSERT] THEN REWRITE_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN REWRITE_TAC[FORALL_AND_THM] THEN ASM_CASES_TAC `!b. b IN s ==> b < n` THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN SIMP_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `b:num`) THEN REWRITE_TAC[] THEN DISCH_TAC THEN SUBGOAL_THEN `~((a * b) MOD n IN IMAGE (\b. (a * b) MOD n) s)` (fun th -> REWRITE_TAC[th]) THENL [REWRITE_TAC[IN_IMAGE] THEN DISCH_THEN(X_CHOOSE_THEN `c:num` MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN ASM_SIMP_TAC[GSYM CONG] THEN DISCH_TAC THEN UNDISCH_TAC `~(b:num IN s)` THEN REWRITE_TAC[] THEN SUBGOAL_THEN `b:num = c` (fun th -> ASM_REWRITE_TAC[th]) THEN SUBGOAL_THEN `b MOD n = c MOD n` MP_TAC THENL [ASM_SIMP_TAC[GSYM CONG] THEN MATCH_MP_TAC CONG_MULT_LCANCEL THEN EXISTS_TAC `a:num` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[MOD_LT]; ALL_TAC] THEN REWRITE_TAC[EXP] THEN ASM_SIMP_TAC[MOD_MULT_LMOD; MOD_MULT_RMOD] THEN REWRITE_TAC[MULT_AC]);; let ITSET_MODMULT_COPRIME = prove (`!n s. FINITE s /\ (!b. b IN s ==> coprime(b,n)) /\ ~(n = 0) ==> coprime(ITSET (\x y. (x * y) MOD n) s 1,n)`, GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN MP_TAC(ISPECL [`\x y. (x * y) MOD n`; `1`] FINITE_RECURSION) THEN W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL [ASM_SIMP_TAC[MOD_MULT_RMOD] THEN REWRITE_TAC[MULT_AC]; ALL_TAC] THEN STRIP_TAC THEN ASM_SIMP_TAC[IMAGE_CLAUSES; CARD_CLAUSES; FINITE_IMAGE] THEN REWRITE_TAC[ONCE_REWRITE_RULE[COPRIME_SYM] COPRIME_1] THEN REWRITE_TAC[IN_INSERT] THEN REWRITE_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN REWRITE_TAC[FORALL_AND_THM] THEN MAP_EVERY X_GEN_TAC [`x:num`; `s:num->bool`] THEN ASM_CASES_TAC `!b. b IN s ==> coprime(b,n)` THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN DISCH_THEN(MP_TAC o SPEC `x:num`) THEN ASM_SIMP_TAC[COPRIME_LMOD; ONCE_REWRITE_RULE[COPRIME_SYM] COPRIME_MUL]);; let FERMAT_LITTLE = prove (`!a n. coprime(a,n) ==> (a EXP (phi n) == 1) (mod n)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[COPRIME_0; PHI_0; CONG_MOD_0] THEN CONV_TAC NUM_REDUCE_CONV THEN ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[CONG_MOD_1] THEN DISCH_TAC THEN SUBGOAL_THEN `{ c | ?b. 0 < b /\ b < n /\ coprime(b,n) /\ (c = (a * b) MOD n) } = { b | 0 < b /\ b < n /\ coprime(b,n) }` MP_TAC THENL [REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN X_GEN_TAC `c:num` THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_THEN `b:num` MP_TAC) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN SUBST1_TAC THEN ASM_SIMP_TAC[DIVISION] THEN MATCH_MP_TAC(TAUT `b /\ (~a ==> ~b) ==> a /\ b`) THEN SIMP_TAC[ARITH_RULE `~(0 < n) <=> (n = 0)`] THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN ASM_SIMP_TAC[COPRIME_0] THEN SUBGOAL_THEN `coprime(n,a * b)` MP_TAC THENL [MATCH_MP_TAC COPRIME_MUL THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `a * b = (a * b) DIV n * n + (a * b) MOD n` (fun th -> GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [th]) THENL [ASM_SIMP_TAC[DIVISION]; ALL_TAC] THEN REWRITE_TAC[coprime] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[DIVIDES_ADD; DIVIDES_LMUL; DIVIDES_REFL]; ALL_TAC] THEN STRIP_TAC THEN MP_TAC(SPECL [`a:num`; `n:num`] BEZOUT) THEN DISCH_THEN(X_CHOOSE_THEN `d:num` (X_CHOOSE_THEN `x:num` (X_CHOOSE_THEN `y:num` (CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)))) THEN SUBGOAL_THEN `d = 1` SUBST_ALL_TAC THENL [ASM_MESON_TAC[coprime]; ALL_TAC] THEN STRIP_TAC THENL [EXISTS_TAC `(c * x) MOD n` THEN MATCH_MP_TAC(TAUT `(~a ==> ~c) /\ b /\ c /\ d ==> a /\ b /\ c /\ d`) THEN CONJ_TAC THENL [SIMP_TAC[ARITH_RULE `~(0 < n) <=> (n = 0)`] THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN ASM_SIMP_TAC[COPRIME_0]; ALL_TAC] THEN ASM_SIMP_TAC[DIVISION] THEN CONJ_TAC THENL [SUBGOAL_THEN `coprime(n,c * x)` MP_TAC THENL [MATCH_MP_TAC COPRIME_MUL THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[coprime; GSYM DIVIDES_ONE] THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN SIMP_TAC[DIVIDES_SUB; DIVIDES_LMUL; DIVIDES_RMUL; DIVIDES_REFL]; ALL_TAC] THEN SUBGOAL_THEN `c * x = (c * x) DIV n * n + (c * x) MOD n` (fun th -> GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [th]) THENL [ASM_SIMP_TAC[DIVISION]; ALL_TAC] THEN REWRITE_TAC[coprime] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[DIVIDES_ADD; DIVIDES_LMUL; DIVIDES_REFL]; ALL_TAC] THEN ASM_SIMP_TAC[MOD_MULT_RMOD] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `c * y:num` THEN ASM_REWRITE_TAC[GSYM MULT_ASSOC] THEN ONCE_REWRITE_TAC[ARITH_RULE `(a * c * x = b:num) <=> (c * a * x = b)`] THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP (ARITH_RULE `(a - b = 1) ==> (a = b + 1)`)) THEN REWRITE_TAC[LEFT_ADD_DISTRIB; MULT_CLAUSES; MULT_AC]; EXISTS_TAC `(c * (n - y MOD n)) MOD n` THEN MATCH_MP_TAC(TAUT `(~a ==> ~c) /\ b /\ c /\ d ==> a /\ b /\ c /\ d`) THEN CONJ_TAC THENL [SIMP_TAC[ARITH_RULE `~(0 < n) <=> (n = 0)`] THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN ASM_SIMP_TAC[COPRIME_0]; ALL_TAC] THEN ASM_SIMP_TAC[DIVISION] THEN CONJ_TAC THENL [SUBGOAL_THEN `coprime(n,c * (n - y MOD n))` MP_TAC THENL [MATCH_MP_TAC COPRIME_MUL THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[coprime; GSYM DIVIDES_ONE] THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN X_GEN_TAC `e:num` THEN STRIP_TAC THEN MATCH_MP_TAC DIVIDES_SUB THEN ASM_SIMP_TAC[DIVIDES_RMUL; DIVIDES_REFL] THEN MATCH_MP_TAC DIVIDES_LMUL THEN SUBGOAL_THEN `y = (y DIV n) * n + y MOD n` SUBST1_TAC THENL [ASM_SIMP_TAC[DIVISION]; ALL_TAC] THEN MATCH_MP_TAC DIVIDES_ADD THEN ASM_SIMP_TAC[DIVIDES_LMUL; DIVIDES_REFL] THEN MATCH_MP_TAC DIVIDES_ADD_REVR THEN EXISTS_TAC `n - y MOD n` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[ARITH_RULE `m < n ==> ((n - m) + m = n:num)`; DIVISION]; ALL_TAC] THEN SUBGOAL_THEN `!x. c * x = (c * x) DIV n * n + (c * x) MOD n` (fun th -> GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [th]) THENL [ASM_SIMP_TAC[DIVISION]; ALL_TAC] THEN REWRITE_TAC[coprime] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[DIVIDES_ADD; DIVIDES_LMUL; DIVIDES_REFL]; ALL_TAC] THEN ASM_SIMP_TAC[MOD_MULT_RMOD] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC MOD_UNIQ THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC DIFFERENCE_POS_LEMMA THEN CONJ_TAC THENL [ONCE_REWRITE_TAC[ARITH_RULE `c <= a * c * x <=> c * 1 <= c * a * x`] THEN REWRITE_TAC[LE_MULT_LCANCEL] THEN DISJ2_TAC THEN REWRITE_TAC[ARITH_RULE `1 <= n <=> ~(n = 0)`; MULT_EQ_0; SUB_EQ_0; DE_MORGAN_THM] THEN UNDISCH_TAC `coprime(a,n)` THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN ASM_CASES_TAC `a = 0` THEN ASM_REWRITE_TAC[COPRIME_0] THEN DISCH_TAC THEN ASM_SIMP_TAC[DIVISION; NOT_LE]; ALL_TAC] THEN MAP_EVERY EXISTS_TAC [`c * x`; `c * a * (1 + y DIV n)`] THEN REWRITE_TAC[LEFT_ADD_DISTRIB; LEFT_SUB_DISTRIB] THEN MATCH_MP_TAC(ARITH_RULE `y <= n /\ (a + n = x + y) ==> (a + (n - y) = x)`) THEN CONJ_TAC THENL [REWRITE_TAC[MULT_ASSOC] THEN REWRITE_TAC[LE_MULT_LCANCEL] THEN ASM_SIMP_TAC[LT_IMP_LE; DIVISION]; ALL_TAC] THEN REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB; MULT_CLAUSES] THEN REWRITE_TAC[GSYM ADD_ASSOC; GSYM MULT_ASSOC] THEN REWRITE_TAC[ARITH_RULE `(x + a * c * n = c * a * n + y) <=> (x = y)`] THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP (ARITH_RULE `(n * x - a * y = 1) ==> (x * n = a * y + 1)`)) THEN SUBGOAL_THEN `y = (y DIV n) * n + y MOD n` (fun th -> GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [th]) THENL [ASM_SIMP_TAC[DIVISION]; ALL_TAC] THEN REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB; MULT_CLAUSES] THEN REWRITE_TAC[MULT_AC; ADD_AC]]; ALL_TAC] THEN SUBGOAL_THEN `{c | ?b. 0 < b /\ b < n /\ coprime (b,n) /\ (c = (a * b) MOD n)} = IMAGE (\b. (a * b) MOD n) {b | 0 < b /\ b < n /\ coprime (b,n)}` SUBST1_TAC THENL [REWRITE_TAC[IMAGE; EXTENSION; IN_ELIM_THM; CONJ_ASSOC]; ALL_TAC] THEN DISCH_THEN(MP_TAC o AP_TERM `ITSET (\x y. (x * y) MOD n)`) THEN DISCH_THEN(MP_TAC o C AP_THM `1`) THEN SUBGOAL_THEN `FINITE {b | 0 < b /\ b < n /\ coprime (b,n)} /\ !b. b IN {b | 0 < b /\ b < n /\ coprime (b,n)} ==> b < n` ASSUME_TAC THENL [CONJ_TAC THENL [ALL_TAC; SIMP_TAC[IN_ELIM_THM]] THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{b | 0 < b /\ b < n}` THEN REWRITE_TAC[REWRITE_RULE[HAS_SIZE] FINITE_NUMBER_SEGMENT] THEN SIMP_TAC[SUBSET; IN_ELIM_THM]; ALL_TAC] THEN ASM_SIMP_TAC[REWRITE_RULE[IMP_IMP] ITSET_MODMULT] THEN ASM_SIMP_TAC[GSYM PHI_ANOTHER] THEN DISCH_THEN(MP_TAC o AP_TERM `(MOD)`) THEN DISCH_THEN(MP_TAC o C AP_THM `n:num`) THEN ASM_SIMP_TAC[MOD_MOD_REFL] THEN ASM_SIMP_TAC[GSYM CONG] THEN GEN_REWRITE_TAC (LAND_CONV o RATOR_CONV o RAND_CONV) [ARITH_RULE `x = x * 1`] THEN GEN_REWRITE_TAC (LAND_CONV o RATOR_CONV o LAND_CONV) [MULT_SYM] THEN DISCH_TAC THEN MATCH_MP_TAC CONG_MULT_LCANCEL THEN EXISTS_TAC `ITSET (\x y. (x * y) MOD n) {b | 0 < b /\ b < n /\ coprime (b,n)} 1` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[ITSET_MODMULT_COPRIME; IN_ELIM_THM]);; let FERMAT_LITTLE_PRIME = prove (`!p a. prime p ==> (a EXP p == a) (mod p)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `a:num` o MATCH_MP PRIME_COPRIME) THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN STRIP_TAC THENL [ASM_REWRITE_TAC[EXP_ONE; CONG_REFL]; MATCH_MP_TAC CONG_TRANS THEN EXISTS_TAC `0` THEN GEN_REWRITE_TAC RAND_CONV [CONG_SYM] THEN ASM_REWRITE_TAC[CONG_0] THEN ASM_MESON_TAC[DIVIDES_EXP; DIVIDES_EXP2; PRIME_0]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o MATCH_MP FERMAT_LITTLE) THEN ASM_SIMP_TAC[snd(EQ_IMP_RULE (SPEC_ALL PHI_PRIME_EQ))] THEN REWRITE_TAC[cong; nat_mod] THEN DISCH_THEN(X_CHOOSE_THEN `q1:num` (X_CHOOSE_THEN `q2:num` MP_TAC)) THEN DISCH_THEN(MP_TAC o AP_TERM `( * ) a`) THEN REWRITE_TAC[LEFT_ADD_DISTRIB; GSYM(CONJUNCT2 EXP)] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN REWRITE_TAC[MULT_CLAUSES; GSYM MULT_ASSOC] THEN ASM_MESON_TAC[ARITH_RULE `~(p = 0) ==> (SUC(p - 1) = p)`; PRIME_0]);; (* ------------------------------------------------------------------------- *) (* Lucas's theorem. *) (* ------------------------------------------------------------------------- *) let LUCAS_COPRIME_LEMMA = prove (`!m n a. ~(m = 0) /\ (a EXP m == 1) (mod n) ==> coprime(a,n)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL [ASM_REWRITE_TAC[CONG_MOD_0; EXP_EQ_1] THEN ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN SIMP_TAC[COPRIME_1]; ALL_TAC] THEN ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[COPRIME_1] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[coprime] THEN X_GEN_TAC `d:num` THEN STRIP_TAC THEN UNDISCH_TAC `(a EXP m == 1) (mod n)` THEN ASM_SIMP_TAC[CONG] THEN SUBGOAL_THEN `1 MOD n = 1` SUBST1_TAC THENL [MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `0` THEN REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES] THEN MAP_EVERY UNDISCH_TAC [`~(n = 0)`; `~(n = 1)`] THEN ARITH_TAC; ALL_TAC] THEN DISCH_TAC THEN SUBGOAL_THEN `d divides (a EXP m) MOD n` MP_TAC THENL [ALL_TAC; ASM_SIMP_TAC[DIVIDES_ONE]] THEN MATCH_MP_TAC DIVIDES_ADD_REVR THEN EXISTS_TAC `a EXP m DIV n * n` THEN ASM_SIMP_TAC[GSYM DIVISION; DIVIDES_LMUL] THEN SUBGOAL_THEN `m = SUC(m - 1)` SUBST1_TAC THENL [UNDISCH_TAC `~(m = 0)` THEN ARITH_TAC; ASM_SIMP_TAC[EXP; DIVIDES_RMUL]]);; let LUCAS_WEAK = prove (`!a n. 2 <= n /\ (a EXP (n - 1) == 1) (mod n) /\ (!m. 0 < m /\ m < n - 1 ==> ~(a EXP m == 1) (mod n)) ==> prime(n)`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GSYM PHI_PRIME_EQ; PHI_LIMIT_STRONG; GSYM LE_ANTISYM; ARITH_RULE `2 <= n ==> ~(n = 0) /\ ~(n = 1)`] THEN FIRST_X_ASSUM(MP_TAC o SPEC `phi n`) THEN SUBGOAL_THEN `coprime(a,n)` (fun th -> SIMP_TAC[FERMAT_LITTLE; th]) THENL [MATCH_MP_TAC LUCAS_COPRIME_LEMMA THEN EXISTS_TAC `n - 1` THEN ASM_SIMP_TAC [ARITH_RULE `2 <= n ==> ~(n - 1 = 0)`]; ALL_TAC] THEN REWRITE_TAC[GSYM NOT_LT] THEN MATCH_MP_TAC(TAUT `a ==> ~(a /\ b) ==> ~b`) THEN ASM_SIMP_TAC[PHI_LOWERBOUND_1; ARITH_RULE `1 <= n ==> 0 < n`]);; let LUCAS = prove (`!a n. 2 <= n /\ (a EXP (n - 1) == 1) (mod n) /\ (!p. prime(p) /\ p divides (n - 1) ==> ~(a EXP ((n - 1) DIV p) == 1) (mod n)) ==> prime(n)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP(ARITH_RULE `2 <= n ==> ~(n = 0)`)) THEN MATCH_MP_TAC LUCAS_WEAK THEN EXISTS_TAC `a:num` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[TAUT `a ==> ~b <=> ~(a /\ b)`; GSYM NOT_EXISTS_THM] THEN ONCE_REWRITE_TAC[num_WOP] THEN DISCH_THEN(X_CHOOSE_THEN `m:num` STRIP_ASSUME_TAC) THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP(ARITH_RULE `0 < n ==> ~(n = 0)`)) THEN SUBGOAL_THEN `m divides (n - 1)` MP_TAC THENL [REWRITE_TAC[divides] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN ASM_SIMP_TAC[GSYM MOD_EQ_0] THEN MATCH_MP_TAC(ARITH_RULE `~(0 < n) ==> (n = 0)`) THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(n - 1) MOD m`) THEN ASM_SIMP_TAC[DIVISION] THEN CONJ_TAC THENL [MATCH_MP_TAC LT_TRANS THEN EXISTS_TAC `m:num` THEN ASM_SIMP_TAC[DIVISION]; ALL_TAC] THEN MATCH_MP_TAC CONG_MULT_LCANCEL THEN EXISTS_TAC `a EXP ((n - 1) DIV m * m)` THEN CONJ_TAC THENL [ONCE_REWRITE_TAC[COPRIME_SYM] THEN MATCH_MP_TAC COPRIME_EXP THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN MATCH_MP_TAC LUCAS_COPRIME_LEMMA THEN EXISTS_TAC `m:num` THEN ASM_SIMP_TAC[]; ALL_TAC] THEN REWRITE_TAC[GSYM EXP_ADD] THEN ASM_SIMP_TAC[GSYM DIVISION] THEN REWRITE_TAC[MULT_CLAUSES] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[GSYM EXP_EXP] THEN UNDISCH_TAC `(a EXP (n - 1) == 1) (mod n)` THEN UNDISCH_TAC `(a EXP m == 1) (mod n)` THEN ASM_SIMP_TAC[CONG] THEN REPEAT DISCH_TAC THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `((a EXP m) MOD n) EXP ((n - 1) DIV m) MOD n` THEN CONJ_TAC THENL [ALL_TAC; ASM_SIMP_TAC[MOD_EXP_MOD]] THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[MOD_EXP_MOD] THEN REWRITE_TAC[EXP_ONE]; ALL_TAC] THEN REWRITE_TAC[divides] THEN DISCH_THEN(X_CHOOSE_THEN `r:num` SUBST_ALL_TAC) THEN SUBGOAL_THEN `~(r = 1)` MP_TAC THENL [UNDISCH_TAC `m < m * r` THEN CONV_TAC CONTRAPOS_CONV THEN SIMP_TAC[MULT_CLAUSES; LT_REFL]; ALL_TAC] THEN DISCH_THEN(MP_TAC o MATCH_MP PRIME_FACTOR) THEN DISCH_THEN(X_CHOOSE_THEN `p:num` MP_TAC) THEN STRIP_TAC THEN UNDISCH_TAC `!p. prime p /\ p divides m * r ==> ~(a EXP ((m * r) DIV p) == 1) (mod n)` THEN DISCH_THEN(MP_TAC o SPEC `p:num`) THEN ASM_SIMP_TAC[DIVIDES_LMUL] THEN SUBGOAL_THEN `(m * r) DIV p = m * (r DIV p)` SUBST1_TAC THENL [MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `0` THEN UNDISCH_TAC `prime p` THEN ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[PRIME_0] THEN ASM_SIMP_TAC[ARITH_RULE `~(p = 0) ==> 0 < p`] THEN DISCH_TAC THEN REWRITE_TAC[ADD_CLAUSES; GSYM MULT_ASSOC] THEN AP_TERM_TAC THEN UNDISCH_TAC `p divides r` THEN REWRITE_TAC[divides] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[DIV_MULT] THEN REWRITE_TAC[MULT_AC]; ALL_TAC] THEN UNDISCH_TAC `(a EXP m == 1) (mod n)` THEN ASM_SIMP_TAC[CONG] THEN DISCH_THEN(MP_TAC o C AP_THM `r DIV p` o AP_TERM `(EXP)`) THEN DISCH_THEN(MP_TAC o C AP_THM `n:num` o AP_TERM `(MOD)`) THEN ASM_SIMP_TAC[MOD_EXP_MOD] THEN REWRITE_TAC[EXP_EXP; EXP_ONE]);; (* ------------------------------------------------------------------------- *) (* Prime factorizations. *) (* ------------------------------------------------------------------------- *) let primefact = new_definition `primefact ps n <=> (ITLIST (*) ps 1 = n) /\ !p. MEM p ps ==> prime(p)`;; let PRIMEFACT = prove (`!n. ~(n = 0) ==> ?ps. primefact ps n`, MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[] THENL [REPEAT DISCH_TAC THEN EXISTS_TAC `[]:num list` THEN REWRITE_TAC[primefact; ITLIST; MEM]; ALL_TAC] THEN DISCH_TAC THEN DISCH_TAC THEN FIRST_ASSUM(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC o MATCH_MP PRIME_FACTOR) THEN UNDISCH_TAC `p divides n` THEN REWRITE_TAC[divides] THEN DISCH_THEN(X_CHOOSE_THEN `m:num` SUBST_ALL_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `m:num`) THEN UNDISCH_TAC `~(p * m = 0)` THEN ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN DISCH_TAC THEN GEN_REWRITE_TAC (funpow 3 LAND_CONV) [ARITH_RULE `n = 1 * n`] THEN ASM_REWRITE_TAC[LT_MULT_RCANCEL] THEN SUBGOAL_THEN `1 < p` (fun th -> REWRITE_TAC[th]) THENL [MATCH_MP_TAC(ARITH_RULE `~(p = 0) /\ ~(p = 1) ==> 1 < p`) THEN REPEAT STRIP_TAC THEN UNDISCH_TAC `prime p` THEN ASM_REWRITE_TAC[PRIME_0; PRIME_1]; ALL_TAC] THEN REWRITE_TAC[primefact] THEN DISCH_THEN(X_CHOOSE_THEN `ps:num list` ASSUME_TAC) THEN EXISTS_TAC `CONS (p:num) ps` THEN ASM_REWRITE_TAC[MEM; ITLIST] THEN ASM_MESON_TAC[]);; let PRIMAFACT_CONTAINS = prove (`!ps n. primefact ps n ==> !p. prime p /\ p divides n ==> MEM p ps`, REPEAT GEN_TAC THEN REWRITE_TAC[primefact] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN POP_ASSUM(SUBST1_TAC o SYM) THEN SPEC_TAC(`ps:num list`,`ps:num list`) THEN LIST_INDUCT_TAC THEN REWRITE_TAC[ITLIST; MEM] THENL [ASM_MESON_TAC[DIVIDES_ONE; PRIME_1]; ALL_TAC] THEN STRIP_TAC THEN GEN_TAC THEN DISCH_THEN(fun th -> ASSUME_TAC(CONJUNCT1 th) THEN MP_TAC th) THEN DISCH_THEN(DISJ_CASES_TAC o MATCH_MP PRIME_DIVPROD) THEN ASM_MESON_TAC[prime; PRIME_1]);; let PRIMEFACT_VARIANT = prove (`!ps n. primefact ps n <=> (ITLIST (*) ps 1 = n) /\ ALL prime ps`, REPEAT GEN_TAC THEN REWRITE_TAC[primefact] THEN AP_TERM_TAC THEN SPEC_TAC(`ps:num list`,`ps:num list`) THEN LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[MEM; ALL] THEN ASM_MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Variant of Lucas theorem. *) (* ------------------------------------------------------------------------- *) let LUCAS_PRIMEFACT = prove (`2 <= n /\ (a EXP (n - 1) == 1) (mod n) /\ (ITLIST (*) ps 1 = n - 1) /\ ALL (\p. prime p /\ ~(a EXP ((n - 1) DIV p) == 1) (mod n)) ps ==> prime n`, REPEAT STRIP_TAC THEN MATCH_MP_TAC LUCAS THEN EXISTS_TAC `a:num` THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `primefact ps (n - 1)` MP_TAC THENL [ASM_REWRITE_TAC[PRIMEFACT_VARIANT] THEN MATCH_MP_TAC ALL_IMP THEN EXISTS_TAC `\p. prime p /\ ~(a EXP ((n - 1) DIV p) == 1) (mod n)` THEN ASM_SIMP_TAC[]; ALL_TAC] THEN DISCH_THEN(ASSUME_TAC o MATCH_MP PRIMAFACT_CONTAINS) THEN X_GEN_TAC `p:num` THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN UNDISCH_TAC `ALL (\p. prime p /\ ~(a EXP ((n - 1) DIV p) == 1) (mod n)) ps` THEN SPEC_TAC(`ps:num list`,`ps:num list`) THEN LIST_INDUCT_TAC THEN SIMP_TAC[ALL; MEM] THEN ASM_MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Utility functions. *) (* ------------------------------------------------------------------------- *) let even_num n = mod_num n num_2 =/ num_0;; let odd_num = not o even_num;; (* ------------------------------------------------------------------------- *) (* Least p >= 0 with x <= 2^p. *) (* ------------------------------------------------------------------------- *) let log2 = let rec log2 x y = if x log2 (x -/ num_1) num_0;; (* ------------------------------------------------------------------------- *) (* Raise number to power (x^m) modulo n. *) (* ------------------------------------------------------------------------- *) let rec powermod x m n = if m =/ num_0 then num_1 else let y = powermod x (quo_num m num_2) n in let z = mod_num (y */ y) n in if even_num m then z else mod_num (x */ z) n;; (* ------------------------------------------------------------------------- *) (* Make a call to PARI/GP to factor a number into (probable) primes. *) (* ------------------------------------------------------------------------- *) let factor = let suck_file s = let data = string_of_file s in Sys.remove s; data in let extract_output s = let l0 = explode s in let l0' = rev l0 in let l1 = snd(chop_list(index "]" l0') l0') in let l2 = "["::rev(fst(chop_list(index "[" l1) l1)) in let tm = parse_term (implode l2) in map ((dest_numeral F_F dest_numeral) o dest_pair) (dest_list tm) in fun n -> if n =/ num_1 then [] else let filename = Filename.temp_file "pocklington" ".out" in let s = "echo 'print(factorint(" ^ (string_of_num n) ^ ")) \n quit' | gp >" ^ filename ^ " 2>/dev/null" in if Sys.command s = 0 then let output = suck_file filename in extract_output output else failwith "factor: Call to GP/PARI failed";; (* ------------------------------------------------------------------------- *) (* Alternative giving multiset instead of set plus indices. *) (* ------------------------------------------------------------------------- *) let multifactor = let rec multilist l = if l = [] then [] else let (x,n) = hd l in replicate x (Num.int_of_num n) @ multilist (tl l) in fun n -> multilist (factor n);; (* ------------------------------------------------------------------------- *) (* Recursive creation of Pratt primality certificates. *) (* ------------------------------------------------------------------------- *) type certificate = Prime_2 | Primroot_and_factors of ((num * num list) * num * (num * certificate) list);; let find_primitive_root = let rec find_primitive_root a m ms n = if gcd_num a n =/ num_1 && powermod a m n =/ num_1 && forall (fun k -> powermod a k n <>/ num_1) ms then a else find_primitive_root (a +/ num_1) m ms n in let find_primitive_root_from_2 = find_primitive_root num_2 in fun m ms n -> if n raise Unchanged | (h::t) -> if x =/ h then try uniq x t with Unchanged -> l else x::(uniq h t) in fun l -> if l = [] then [] else uniq (hd l) (tl l);; let setify_num s = let s' = sort (<=/) s in try uniq_num s' with Unchanged -> s';; let certify_prime = let rec cert_prime n = if n <=/ num_2 then if n =/ num_2 then Prime_2 else failwith "certify_prime: not a prime!" else let m = n -/ num_1 in let pfact = multifactor m in let primes = setify_num pfact in let ms = map (fun d -> div_num m d) primes in let a = find_primitive_root m ms n in Primroot_and_factors((n,pfact),a,map (fun n -> n,cert_prime n) primes) in fun n -> if length(multifactor n) = 1 then cert_prime n else failwith "certify_prime: input is not a prime";; (* ------------------------------------------------------------------------- *) (* Relatively efficient evaluation of "(a EXP m == 1) (mod n)". *) (* ------------------------------------------------------------------------- *) let EXP_EQ_MOD_CONV = let pth = prove (`~(n = 0) ==> ((a EXP 0) MOD n = 1 MOD n) /\ ((a EXP (NUMERAL (BIT0 m))) MOD n = let b = (a EXP (NUMERAL m)) MOD n in (b * b) MOD n) /\ ((a EXP (NUMERAL (BIT1 m))) MOD n = let b = (a EXP (NUMERAL m)) MOD n in (a * ((b * b) MOD n)) MOD n)`, DISCH_TAC THEN REWRITE_TAC[EXP] THEN REWRITE_TAC[NUMERAL; BIT0; BIT1] THEN REWRITE_TAC[EXP; EXP_ADD] THEN CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN ASM_SIMP_TAC[MOD_MULT_LMOD; MOD_MULT_RMOD] THEN REWRITE_TAC[MULT_ASSOC] THEN ASM_SIMP_TAC[MOD_MULT_LMOD; MOD_MULT_RMOD] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[MULT_ASSOC] THEN ASM_SIMP_TAC[MOD_MULT_LMOD; MOD_MULT_RMOD]) and pth_cong = prove (`~(n = 0) ==> ((x == y) (mod n) <=> x MOD n = y MOD n)`, REWRITE_TAC[CONG]) and n_tm = `n:num` in let raw_conv tm = let ntm = rand(rand tm) in let th1 = INST [ntm,n_tm] pth_cong in let th2 = EQF_ELIM(NUM_EQ_CONV(rand(lhand(concl th1)))) in let th3 = REWR_CONV (MP th1 th2) tm in let th4 = MP (INST [ntm,n_tm] pth) th2 in let th4a,th4b = CONJ_PAIR th4 in let conv_base = GEN_REWRITE_CONV I [th4a] and conv_step = GEN_REWRITE_CONV I [th4b] in let rec conv tm = try conv_base tm with Failure _ -> (conv_step THENC RAND_CONV conv THENC let_CONV THENC NUM_REDUCE_CONV) tm in let th5 = (LAND_CONV conv THENC NUM_REDUCE_CONV) (rand(concl th3)) in TRANS th3 th5 in let gconv_net = itlist (uncurry net_of_conv) [`(a EXP m == 1) (mod n)`,raw_conv] empty_net in REWRITES_CONV gconv_net;; (* ------------------------------------------------------------------------- *) (* HOL checking of such a certificate. We retain a cache for efficiency. *) (* ------------------------------------------------------------------------- *) let prime_theorem_cache = ref [];; let rec lookup_under_num n l = if l = [] then failwith "lookup_under_num" else let h = hd l in if fst h =/ n then snd h else lookup_under_num n (tl l);; let check_certificate = let n_tm = `n:num` and a_tm = `a:num` and ps_tm = `ps:num list` and SIMPLE_REWRITE_CONV = REWRITE_CONV[] and CONJ_AC_SORTED = TAUT `(a /\ a /\ b <=> a /\ b) /\ (a /\ a <=> a)` in let CLEAN_RULE = CONV_RULE (REWRITE_CONV[ITLIST; ALL; CONJ_AC_SORTED] THENC ONCE_DEPTH_CONV NUM_SUB_CONV THENC DEPTH_CONV NUM_MULT_CONV THENC ONCE_DEPTH_CONV NUM_DIV_CONV THENC ONCE_DEPTH_CONV(NUM_EQ_CONV ORELSEC NUM_LE_CONV) THENC SIMPLE_REWRITE_CONV) in let rec check_certificate cert = match cert with Prime_2 -> PRIME_2 | Primroot_and_factors((n,ps),a,ncerts) -> try lookup_under_num n (!prime_theorem_cache) with Failure _ -> let th1 = INST [mk_numeral n,n_tm; mk_flist (map mk_numeral ps),ps_tm; mk_numeral a,a_tm] LUCAS_PRIMEFACT in let th2 = CLEAN_RULE th1 in let th3 = ONCE_DEPTH_CONV EXP_EQ_MOD_CONV (concl th2) in let th4 = CONV_RULE SIMPLE_REWRITE_CONV (EQ_MP th3 th2) in let ants = conjuncts(lhand(concl th4)) in let certs = map (fun t -> lookup_under_num (dest_numeral(rand t)) ncerts) ants in let ths = map check_certificate certs in let fth = MP th4 (end_itlist CONJ ths) in prime_theorem_cache := (n,fth)::(!prime_theorem_cache); fth in check_certificate;; (* ------------------------------------------------------------------------- *) (* Hence a primality-proving rule. *) (* ------------------------------------------------------------------------- *) let PROVE_PRIME = check_certificate o certify_prime;; (* ------------------------------------------------------------------------- *) (* Rule to generate prime factorization theorems. *) (* ------------------------------------------------------------------------- *) let PROVE_PRIMEFACT = let pth = SPEC_ALL PRIMEFACT_VARIANT and start_CONV = PURE_REWRITE_CONV[ITLIST; ALL] THENC NUM_REDUCE_CONV and ps_tm = `ps:num list` and n_tm = `n:num` in fun n -> let pfact = multifactor n in let th1 = INST [mk_flist(map mk_numeral pfact),ps_tm; mk_numeral n,n_tm] pth in let th2 = TRANS th1 (start_CONV(rand(concl th1))) in let ths = map PROVE_PRIME pfact in EQ_MP (SYM th2) (end_itlist CONJ ths);; (* ------------------------------------------------------------------------- *) (* Conversion for truth or falsity of primality assertion. *) (* ------------------------------------------------------------------------- *) let PRIME_TEST = let NOT_PRIME_THM = prove (`((m = 1) <=> F) ==> ((m = p) <=> F) ==> (m * n = p) ==> (prime(p) <=> F)`, MESON_TAC[prime; divides]) and m_tm = `m:num` and n_tm = `n:num` and p_tm = `p:num` in fun tm -> let p = dest_numeral tm in if p =/ Int 0 then EQF_INTRO PRIME_0 else if p =/ Int 1 then EQF_INTRO PRIME_1 else let pfact = multifactor p in if length pfact = 1 then (remark ("proving that " ^ string_of_num p ^ " is prime"); EQT_INTRO(PROVE_PRIME p)) else (remark ("proving that " ^ string_of_num p ^ " is composite"); let m = hd pfact and n = end_itlist ( */ ) (tl pfact) in let th0 = INST [mk_numeral m,m_tm; mk_numeral n,n_tm; mk_numeral p,p_tm] NOT_PRIME_THM in let th1 = MP th0 (NUM_EQ_CONV (lhand(lhand(concl th0)))) in let th2 = MP th1 (NUM_EQ_CONV (lhand(lhand(concl th1)))) in MP th2 (NUM_MULT_CONV(lhand(lhand(concl th2)))));; let PRIME_CONV = let prime_tm = `prime` in fun tm0 -> let ptm,tm = dest_comb tm0 in if ptm <> prime_tm then failwith "expected term of form prime(n)" else PRIME_TEST tm;; (* ------------------------------------------------------------------------- *) (* Example. *) (* ------------------------------------------------------------------------- *) map (time PRIME_TEST o mk_small_numeral) (0--50);; time PRIME_TEST `65535`;; time PRIME_TEST `65536`;; time PRIME_TEST `65537`;; time PROVE_PRIMEFACT (Int 222);; time PROVE_PRIMEFACT (Int 151);; (* ------------------------------------------------------------------------- *) (* The "Landau trick" in Erdos's proof of Chebyshev-Bertrand theorem. *) (* ------------------------------------------------------------------------- *) map (time PRIME_TEST o mk_small_numeral) [3; 5; 7; 13; 23; 43; 83; 163; 317; 631; 1259; 2503; 4001];;