(* ========================================================================= *) (* Simple formulation of group theory with a type of "(A)group". *) (* ========================================================================= *) needs "Library/frag.ml";; (* Used eventually for free Abelian groups *) needs "Library/card.ml";; (* Need cardinal arithmetic in a few places *) needs "Library/prime.ml";; (* For elementary number-theoretic lemmas *) (* ------------------------------------------------------------------------- *) (* Basic type of groups. *) (* ------------------------------------------------------------------------- *) let group_tybij = let eth = prove (`?s (z:A) n a. z IN s /\ (!x. x IN s ==> n x IN s) /\ (!x y. x IN s /\ y IN s ==> a x y IN s) /\ (!x y z. x IN s /\ y IN s /\ z IN s ==> a x (a y z) = a (a x y) z) /\ (!x. x IN s ==> a z x = x /\ a x z = x) /\ (!x. x IN s ==> a (n x) x = z /\ a x (n x) = z)`, MAP_EVERY EXISTS_TAC [`{ARB:A}`; `ARB:A`; `(\x. ARB):A->A`; `(\x y. ARB):A->A->A`] THEN REWRITE_TAC[IN_SING] THEN MESON_TAC[]) in new_type_definition "group" ("group","group_operations") (GEN_REWRITE_RULE DEPTH_CONV [EXISTS_UNPAIR_THM] eth);; let group_carrier = new_definition `(group_carrier:(A)group->A->bool) = \g. FST(group_operations g)`;; let group_id = new_definition `(group_id:(A)group->A) = \g. FST(SND(group_operations g))`;; let group_inv = new_definition `(group_inv:(A)group->A->A) = \g. FST(SND(SND(group_operations g)))`;; let group_mul = new_definition `(group_mul:(A)group->A->A->A) = \g. SND(SND(SND(group_operations g)))`;; let ([GROUP_ID; GROUP_INV; GROUP_MUL; GROUP_MUL_ASSOC; GROUP_MUL_LID; GROUP_MUL_RID; GROUP_MUL_LINV; GROUP_MUL_RINV] as GROUP_PROPERTIES) = (CONJUNCTS o prove) (`(!G:A group. group_id G IN group_carrier G) /\ (!G x:A. x IN group_carrier G ==> group_inv G x IN group_carrier G) /\ (!G x y:A. x IN group_carrier G /\ y IN group_carrier G ==> group_mul G x y IN group_carrier G) /\ (!G x y z:A. x IN group_carrier G /\ y IN group_carrier G /\ z IN group_carrier G ==> group_mul G x (group_mul G y z) = group_mul G (group_mul G x y) z) /\ (!G x:A. x IN group_carrier G ==> group_mul G (group_id G) x = x) /\ (!G x:A. x IN group_carrier G ==> group_mul G x (group_id G) = x) /\ (!G x:A. x IN group_carrier G ==> group_mul G (group_inv G x) x = group_id G) /\ (!G x:A. x IN group_carrier G ==> group_mul G x(group_inv G x) = group_id G)`, REWRITE_TAC[AND_FORALL_THM] THEN GEN_TAC THEN MP_TAC(SPEC `G:A group` (MATCH_MP(MESON[] `(!a. mk(dest a) = a) /\ (!r. P r <=> dest(mk r) = r) ==> !a. P(dest a)`) group_tybij)) THEN REWRITE_TAC[group_carrier; group_id; group_inv; group_mul] THEN SIMP_TAC[]);; let GROUPS_EQ = prove (`!G H:A group. G = H <=> group_carrier G = group_carrier H /\ group_id G = group_id H /\ group_inv G = group_inv H /\ group_mul G = group_mul H`, REWRITE_TAC[GSYM PAIR_EQ] THEN REWRITE_TAC[group_carrier;group_id;group_inv;group_mul] THEN MESON_TAC[CONJUNCT1 group_tybij]);; let GROUP_CARRIER_NONEMPTY = prove (`!G:A group. ~(group_carrier G = {})`, MESON_TAC[MEMBER_NOT_EMPTY; GROUP_ID]);; (* ------------------------------------------------------------------------- *) (* The trivial group on a given object. *) (* ------------------------------------------------------------------------- *) let singleton_group = new_definition `singleton_group (a:A) = group({a},a,(\x. a),(\x y. a))`;; let SINGLETON_GROUP = prove (`(!a:A. group_carrier(singleton_group a) = {a}) /\ (!a:A. group_id(singleton_group a) = a) /\ (!a:A. group_inv(singleton_group a) = \x. a) /\ (!a:A. group_mul(singleton_group a) = \x y. a)`, REWRITE_TAC[AND_FORALL_THM] THEN GEN_TAC THEN MP_TAC(fst(EQ_IMP_RULE (ISPEC(rand(rand(snd(strip_forall(concl singleton_group))))) (CONJUNCT2 group_tybij)))) THEN REWRITE_TAC[GSYM singleton_group] THEN SIMP_TAC[IN_SING] THEN SIMP_TAC[group_carrier; group_id; group_inv; group_mul]);; let trivial_group = new_definition `trivial_group G <=> group_carrier G = {group_id G}`;; let TRIVIAL_IMP_FINITE_GROUP = prove (`!G:A group. trivial_group G ==> FINITE(group_carrier G)`, SIMP_TAC[trivial_group; FINITE_SING]);; let TRIVIAL_GROUP_SINGLETON_GROUP = prove (`!a:A. trivial_group(singleton_group a)`, REWRITE_TAC[trivial_group; SINGLETON_GROUP]);; let FINITE_SINGLETON_GROUP = prove (`!a:A. FINITE(group_carrier(singleton_group a))`, SIMP_TAC[TRIVIAL_IMP_FINITE_GROUP; TRIVIAL_GROUP_SINGLETON_GROUP]);; let TRIVIAL_GROUP_SUBSET = prove (`!G:A group. trivial_group G <=> group_carrier G SUBSET {group_id G}`, SIMP_TAC[trivial_group; GSYM SUBSET_ANTISYM_EQ; SING_SUBSET; GROUP_ID]);; let TRIVIAL_GROUP = prove (`!G:A group. trivial_group G <=> ?a. group_carrier G = {a}`, GEN_TAC THEN REWRITE_TAC[trivial_group] THEN MATCH_MP_TAC(SET_RULE `c IN s ==> (s = {c} <=> ?a. s = {a})`) THEN REWRITE_TAC[GROUP_ID]);; let TRIVIAL_GROUP_ALT = prove (`!G:A group. trivial_group G <=> ?a. group_carrier G SUBSET {a}`, REWRITE_TAC[TRIVIAL_GROUP; GROUP_CARRIER_NONEMPTY; SET_RULE `(?a. s = {a}) <=> (?a. s SUBSET {a}) /\ ~(s = {})`]);; let TRIVIAL_GROUP_HAS_SIZE_1 = prove (`!G:A group. trivial_group G <=> group_carrier(G) HAS_SIZE 1`, GEN_TAC THEN CONV_TAC(RAND_CONV HAS_SIZE_CONV) THEN REWRITE_TAC[TRIVIAL_GROUP]);; let GROUP_CARRIER_HAS_SIZE_1 = prove (`!G:A group. group_carrier(G) HAS_SIZE 1 <=> trivial_group G`, REWRITE_TAC[TRIVIAL_GROUP_HAS_SIZE_1]);; (* ------------------------------------------------------------------------- *) (* Opposite group (mainly just to avoid some duplicated variant proofs). *) (* ------------------------------------------------------------------------- *) let opposite_group = new_definition `opposite_group(G:A group) = group(group_carrier G,group_id G,group_inv G, \x y. group_mul G y x)`;; let OPPOSITE_GROUP = prove (`!G:A group. group_carrier(opposite_group G) = group_carrier G /\ group_id(opposite_group G) = group_id G /\ group_inv(opposite_group G) = group_inv G /\ group_mul(opposite_group G) = \x y. group_mul G y x`, GEN_TAC THEN MP_TAC(fst(EQ_IMP_RULE (ISPEC(rand(rand(snd(strip_forall(concl opposite_group))))) (CONJUNCT2 group_tybij)))) THEN REWRITE_TAC[GSYM opposite_group] THEN ANTS_TAC THENL [SIMP_TAC GROUP_PROPERTIES; SIMP_TAC[group_carrier; group_id; group_inv; group_mul]]);; let OPPOSITE_OPPOSITE_GROUP = prove (`!G:A group. opposite_group (opposite_group G) = G`, GEN_TAC THEN ONCE_REWRITE_TAC[opposite_group] THEN REWRITE_TAC[OPPOSITE_GROUP; ETA_AX] THEN GEN_REWRITE_TAC RAND_CONV [GSYM(CONJUNCT1 group_tybij)] THEN AP_TERM_TAC THEN REWRITE_TAC[group_carrier; group_id; group_inv; group_mul]);; let OPPOSITE_GROUP_INV = prove (`!G x:A. group_inv(opposite_group G) x = group_inv G x`, REWRITE_TAC[OPPOSITE_GROUP]);; let OPPOSITE_GROUP_MUL = prove (`!G x y:A. group_mul(opposite_group G) x y = group_mul G y x`, REWRITE_TAC[OPPOSITE_GROUP]);; let OPPOSITE_SINGLETON_GROUP = prove (`!a:A. opposite_group(singleton_group a) = singleton_group a`, REWRITE_TAC[GROUPS_EQ; SINGLETON_GROUP; OPPOSITE_GROUP]);; let TRIVIAL_OPPOSITE_GROUP = prove (`!G:A group. trivial_group(opposite_group G) <=> trivial_group G`, REWRITE_TAC[trivial_group; OPPOSITE_GROUP]);; let FINITE_OPPOSITE_GROUP = prove (`!G:A group. FINITE(group_carrier(opposite_group G)) <=> FINITE(group_carrier G)`, REWRITE_TAC[OPPOSITE_GROUP]);; (* ------------------------------------------------------------------------- *) (* Derived operations and derived properties, including separate "powers" *) (* for natural number (group_pow) and integer (group_zpow) indices. *) (* ------------------------------------------------------------------------- *) let group_div = new_definition `group_div G x y = group_mul G x (group_inv G y)`;; let GROUP_DIV = prove (`!G x y:A. x IN group_carrier G /\ y IN group_carrier G ==> (group_div G x y) IN group_carrier G`, SIMP_TAC[group_div; GROUP_MUL; GROUP_INV]);; let GROUP_MUL_LCANCEL = prove (`!G x y z:A. x IN group_carrier G /\ y IN group_carrier G /\ z IN group_carrier G ==> (group_mul G x y = group_mul G x z <=> y = z)`, REPEAT STRIP_TAC THEN EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o AP_TERM `group_mul G (group_inv G x):A->A`) THEN ASM_SIMP_TAC[GROUP_MUL_ASSOC; GROUP_INV; GROUP_MUL_LINV; GROUP_MUL_LID]);; let GROUP_MUL_LCANCEL_IMP = prove (`!G x y z:A. x IN group_carrier G /\ y IN group_carrier G /\ z IN group_carrier G /\ group_mul G x y = group_mul G x z ==> y = z`, MESON_TAC[GROUP_MUL_LCANCEL]);; let GROUP_MUL_RCANCEL = prove (`!G x y z:A. x IN group_carrier G /\ y IN group_carrier G /\ z IN group_carrier G ==> (group_mul G x z = group_mul G y z <=> x = y)`, ONCE_REWRITE_TAC[GSYM OPPOSITE_GROUP_MUL] THEN SIMP_TAC[GROUP_MUL_LCANCEL; OPPOSITE_GROUP]);; let GROUP_MUL_RCANCEL_IMP = prove (`!G x y z:A. x IN group_carrier G /\ y IN group_carrier G /\ z IN group_carrier G /\ group_mul G x z = group_mul G y z ==> x = y`, MESON_TAC[GROUP_MUL_RCANCEL]);; let GROUP_LID_UNIQUE = prove (`!G x y:A. x IN group_carrier G /\ y IN group_carrier G /\ group_mul G x y = y ==> x = group_id G`, MESON_TAC[GROUP_MUL_RCANCEL; GROUP_MUL_LID; GROUP_MUL; GROUP_ID]);; let GROUP_RID_UNIQUE = prove (`!G x y:A. x IN group_carrier G /\ y IN group_carrier G /\ group_mul G x y = x ==> y = group_id G`, MESON_TAC[GROUP_MUL_LCANCEL; GROUP_MUL_RID; GROUP_MUL; GROUP_ID]);; let GROUP_LID_EQ = prove (`!G x y:A. x IN group_carrier G /\ y IN group_carrier G ==> (group_mul G x y = y <=> x = group_id G)`, MESON_TAC[GROUP_LID_UNIQUE; GROUP_MUL_LID]);; let GROUP_RID_EQ = prove (`!G x y:A. x IN group_carrier G /\ y IN group_carrier G ==> (group_mul G x y = x <=> y = group_id G)`, MESON_TAC[GROUP_RID_UNIQUE; GROUP_MUL_RID]);; let GROUP_LINV_UNIQUE = prove (`!G x y:A. x IN group_carrier G /\ y IN group_carrier G /\ group_mul G x y = group_id G ==> group_inv G x = y`, MESON_TAC[GROUP_MUL_LCANCEL; GROUP_INV; GROUP_MUL_RINV]);; let GROUP_RINV_UNIQUE = prove (`!G x y:A. x IN group_carrier G /\ y IN group_carrier G /\ group_mul G x y = group_id G ==> group_inv G y = x`, MESON_TAC[GROUP_MUL_RCANCEL; GROUP_INV; GROUP_MUL_LINV]);; let GROUP_LINV_EQ = prove (`!G x y:A. x IN group_carrier G /\ y IN group_carrier G ==> (group_inv G x = y <=> group_mul G x y = group_id G)`, MESON_TAC[GROUP_LINV_UNIQUE; GROUP_MUL_RINV]);; let GROUP_RINV_EQ = prove (`!G x y:A. x IN group_carrier G /\ y IN group_carrier G ==> (group_inv G x = y <=> group_mul G y x = group_id G)`, MESON_TAC[GROUP_RINV_UNIQUE; GROUP_MUL_LINV]);; let GROUP_MUL_EQ_ID = prove (`!G x y:A. x IN group_carrier G /\ y IN group_carrier G ==> (group_mul G x y = group_id G <=> group_mul G y x = group_id G)`, MESON_TAC[GROUP_RINV_EQ; GROUP_LINV_EQ]);; let GROUP_INV_INV = prove (`!G x:A. x IN group_carrier G ==> group_inv G (group_inv G x) = x`, REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_LINV_UNIQUE THEN ASM_SIMP_TAC[GROUP_INV; GROUP_MUL_LINV]);; let GROUP_INV_ID = prove (`!G:A group. group_inv G (group_id G) = group_id G`, GEN_TAC THEN MATCH_MP_TAC GROUP_LINV_UNIQUE THEN SIMP_TAC[GROUP_ID; GROUP_MUL_LID]);; let GROUP_INV_EQ_ID = prove (`!G x:A. x IN group_carrier G ==> (group_inv G x = group_id G <=> x = group_id G)`, MESON_TAC[GROUP_INV_INV; GROUP_INV_ID]);; let GROUP_INV_MUL = prove (`!G x y:A. x IN group_carrier G /\ y IN group_carrier G ==> group_inv G (group_mul G x y) = group_mul G (group_inv G y) (group_inv G x)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_LINV_UNIQUE THEN ASM_SIMP_TAC[GROUP_MUL; GROUP_INV; GROUP_MUL_ASSOC] THEN W(MP_TAC o PART_MATCH (rand o rand) GROUP_MUL_ASSOC o lhand o lhand o snd) THEN ASM_SIMP_TAC[GROUP_MUL_RINV; GROUP_INV] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_SIMP_TAC[GROUP_MUL_RINV; GROUP_INV; GROUP_MUL_RID]);; let GROUP_INV_EQ = prove (`!G x y:A. x IN group_carrier G /\ y IN group_carrier G ==> (group_inv G x = group_inv G y <=> x = y)`, MESON_TAC[GROUP_INV_INV]);; let GROUP_DIV_REFL = prove (`!G x:A. x IN group_carrier G ==> group_div G x x = group_id G`, SIMP_TAC[group_div; GROUP_MUL_RINV]);; let GROUP_DIV_EQ_ID = prove (`!G x y:A. x IN group_carrier G /\ y IN group_carrier G ==> (group_div G x y = group_id G <=> x = y)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `group_id G:A = group_div G y y` SUBST1_TAC THENL [ASM_SIMP_TAC[GROUP_DIV_REFL]; ASM_SIMP_TAC[group_div; GROUP_MUL_RCANCEL; GROUP_INV]]);; let GROUP_COMMUTES_INV = prove (`!G x y:A. x IN group_carrier G /\ y IN group_carrier G /\ group_mul G x y = group_mul G y x ==> group_mul G (group_inv G x) y = group_mul G y (group_inv G x)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_MUL_LCANCEL_IMP THEN MAP_EVERY EXISTS_TAC [`G:A group`; `x:A`] THEN ASM_SIMP_TAC[GROUP_INV; GROUP_MUL; GROUP_MUL_ASSOC; GROUP_MUL_RINV] THEN ASM_SIMP_TAC[GROUP_INV; GROUP_MUL; GSYM GROUP_MUL_ASSOC; GROUP_MUL_RINV] THEN ASM_SIMP_TAC[GROUP_MUL_LID; GROUP_MUL_RID]);; let GROUP_COMMUTES_INV_EQ = prove (`!G x y:A. x IN group_carrier G /\ y IN group_carrier G ==> (group_mul G (group_inv G x) y = group_mul G y (group_inv G x) <=> group_mul G x y = group_mul G y x)`, MESON_TAC[GROUP_COMMUTES_INV; GROUP_INV_INV; GROUP_INV]);; let GROUP_COMMUTES_MUL = prove (`!G x y z:A. x IN group_carrier G /\ y IN group_carrier G /\ z IN group_carrier G /\ group_mul G x z = group_mul G z x /\ group_mul G y z = group_mul G z y ==> group_mul G (group_mul G x y) z = group_mul G z (group_mul G x y)`, MESON_TAC[GROUP_MUL; GROUP_MUL_ASSOC]);; let FORALL_IN_GROUP_CARRIER_INV = prove (`!(P:A->bool) G. (!x. x IN group_carrier G ==> P(group_inv G x)) <=> (!x. x IN group_carrier G ==> P x)`, MESON_TAC[GROUP_INV; GROUP_INV_INV]);; let EXISTS_IN_GROUP_CARRIER_INV = prove (`!P G:A group. (?x. x IN group_carrier G /\ P(group_inv G x)) <=> (?x. x IN group_carrier G /\ P x)`, MESON_TAC[GROUP_INV; GROUP_INV_INV]);; let group_pow = new_recursive_definition num_RECURSION `group_pow G x 0 = group_id G /\ group_pow G x (SUC n) = group_mul G x (group_pow G x n)`;; let GROUP_POW = prove (`!G (x:A) n. x IN group_carrier G ==> group_pow G x n IN group_carrier G`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[group_pow; GROUP_ID; GROUP_MUL]);; let GROUP_POW_0 = prove (`!G (x:A). group_pow G x 0 = group_id G`, REWRITE_TAC[group_pow]);; let GROUP_POW_1 = prove (`!G x:A. x IN group_carrier G ==> group_pow G x 1 = x`, SIMP_TAC[num_CONV `1`; group_pow; GROUP_MUL_RID]);; let GROUP_POW_2 = prove (`!G x:A. x IN group_carrier G ==> group_pow G x 2 = group_mul G x x`, SIMP_TAC[num_CONV `2`; num_CONV `1`; group_pow; GROUP_MUL_RID]);; let GROUP_POW_ID = prove (`!n. group_pow G (group_id G) n = group_id G`, INDUCT_TAC THEN ASM_SIMP_TAC[group_pow; GROUP_ID; GROUP_MUL_LID]);; let GROUP_POW_ADD = prove (`!G (x:A) m n. x IN group_carrier G ==> group_pow G x (m + n) = group_mul G (group_pow G x m) (group_pow G x n)`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[group_pow; ADD_CLAUSES; GROUP_POW; GROUP_MUL_LID] THEN ASM_SIMP_TAC[GROUP_MUL_ASSOC; GROUP_POW]);; let GROUP_POW_SUB = prove (`!G (x:A) m n. x IN group_carrier G /\ n <= m ==> group_pow G x (m - n) = group_div G (group_pow G x m) (group_pow G x n)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_MUL_RCANCEL_IMP THEN MAP_EVERY EXISTS_TAC [`G:A group`; `group_pow G x n:A`] THEN ASM_SIMP_TAC[GROUP_POW; GROUP_MUL; GROUP_INV; group_div; GSYM GROUP_MUL_ASSOC; GROUP_MUL_LINV; GROUP_MUL_RID; GSYM GROUP_POW_ADD; SUB_ADD]);; let GROUP_POW_SUB_ALT = prove (`!G (x:A) m n. x IN group_carrier G /\ n <= m ==> group_pow G x (m - n) = group_mul G (group_inv G (group_pow G x n)) (group_pow G x m)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_MUL_LCANCEL_IMP THEN MAP_EVERY EXISTS_TAC [`G:A group`; `group_pow G x n:A`] THEN ASM_SIMP_TAC[GROUP_POW; GROUP_MUL; GROUP_INV; group_div; GROUP_MUL_ASSOC; GROUP_MUL_RINV; GROUP_MUL_LID; GSYM GROUP_POW_ADD; ARITH_RULE `n:num <= m ==> n + m - n = m`]);; let GROUP_INV_POW = prove (`!G (x:A) n. x IN group_carrier G ==> group_inv G (group_pow G x n) = group_pow G (group_inv G x) n`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN REWRITE_TAC[CONJUNCT1 group_pow; GROUP_INV_ID] THEN GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [ARITH_RULE `SUC n = 1 + n`] THEN ASM_SIMP_TAC[ADD1; GROUP_POW_ADD; GROUP_INV; GROUP_INV_MUL; GROUP_POW; GROUP_POW_1]);; let GROUP_POW_MUL = prove (`!G (x:A) m n. x IN group_carrier G ==> group_pow G x (m * n) = group_pow G (group_pow G x m) n`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[GROUP_POW_0; MULT_CLAUSES] THEN ASM_SIMP_TAC[GROUP_POW_ADD; CONJUNCT2 group_pow]);; let GROUP_POW_POW = prove (`!G (x:A) m n. x IN group_carrier G ==> group_pow G (group_pow G x m) n = group_pow G x (m * n)`, SIMP_TAC[GROUP_POW_MUL]);; let GROUP_COMMUTES_POW = prove (`!G (x:A) (y:A) n. x IN group_carrier G /\ y IN group_carrier G /\ group_mul G x y = group_mul G y x ==> group_mul G (group_pow G x n) y = group_mul G y (group_pow G x n)`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[group_pow; GROUP_MUL_LID; GROUP_MUL_RID] THEN ASM_MESON_TAC[GROUP_MUL_ASSOC; GROUP_POW]);; let GROUP_MUL_POW = prove (`!G (x:A) (y:A) n. x IN group_carrier G /\ y IN group_carrier G /\ group_mul G x y = group_mul G y x ==> group_pow G (group_mul G x y) n = group_mul G (group_pow G x n) (group_pow G y n)`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[group_pow; GROUP_MUL_LID; GROUP_ID] THEN ASM_SIMP_TAC[GROUP_MUL_ASSOC; GROUP_MUL; GROUP_POW] THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM(CONJUNCT2 group_pow)] THEN ASM_SIMP_TAC[GSYM GROUP_MUL_ASSOC; GROUP_MUL; GROUP_POW] THEN REWRITE_TAC[GSYM(CONJUNCT2 group_pow)] THEN ASM_MESON_TAC[GROUP_COMMUTES_POW]);; let group_zpow = new_definition `group_zpow G (x:A) n = if &0 <= n then group_pow G x (num_of_int n) else group_inv G (group_pow G x (num_of_int(--n)))`;; let GROUP_ZPOW = prove (`!G (x:A) n. x IN group_carrier G ==> group_zpow G x n IN group_carrier G`, REPEAT STRIP_TAC THEN REWRITE_TAC[group_zpow] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[GROUP_POW; GROUP_INV]);; let GROUP_NPOW = prove (`!G (x:A) n. group_zpow G x (&n) = group_pow G x n`, REWRITE_TAC[NUM_OF_INT_OF_NUM; group_zpow; INT_POS]);; let GROUP_ZPOW_0 = prove (`!G (x:A). group_zpow G x (&0) = group_id G`, REWRITE_TAC[GROUP_NPOW; GROUP_POW_0]);; let GROUP_ZPOW_1 = prove (`!G x:A. x IN group_carrier G ==> group_zpow G x (&1) = x`, REWRITE_TAC[GROUP_NPOW; GROUP_POW_1]);; let GROUP_ZPOW_2 = prove (`!G x:A. x IN group_carrier G ==> group_zpow G x (&2) = group_mul G x x`, REWRITE_TAC[GROUP_NPOW; GROUP_POW_2]);; let GROUP_ZPOW_ID = prove (`!n. group_zpow G (group_id G) n = group_id G`, GEN_TAC THEN REWRITE_TAC[group_zpow; GROUP_POW_ID; GROUP_INV_ID; COND_ID]);; let GROUP_ZPOW_NEG = prove (`!G (x:A) n. x IN group_carrier G ==> group_zpow G x (--n) = group_inv G (group_zpow G x n)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `n:int = &0` THEN ASM_REWRITE_TAC[INT_NEG_0; GROUP_NPOW; group_pow; GROUP_INV_ID] THEN REWRITE_TAC[group_zpow; INT_NEG_NEG] THEN ASM_SIMP_TAC[INT_ARITH `~(n:int = &0) ==> (&0 <= --n <=> ~(&0 <= n))`] THEN ASM_CASES_TAC `&0:int <= n` THEN ASM_SIMP_TAC[GROUP_INV_INV; GROUP_POW]);; let GROUP_ZPOW_MINUS1 = prove (`!G x:A. x IN group_carrier G ==> group_zpow G x (-- &1) = group_inv G x`, SIMP_TAC[GROUP_ZPOW_NEG; GROUP_ZPOW_1]);; let GROUP_ZPOW_POW = prove (`(!G (x:A) n. group_zpow G x (&n) = group_pow G x n) /\ (!G (x:A) n. group_zpow G x (-- &n) = group_inv G (group_pow G x n))`, SIMP_TAC[group_zpow; INT_POS; NUM_OF_INT_OF_NUM; INT_OF_NUM_EQ; INT_NEG_0; INT_NEG_NEG; INT_ARITH `&0:int <= -- &n <=> &n:int = &0`] THEN REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[group_pow; GROUP_INV_ID]);; let GROUP_ZPOW_ABS_EQ_ID = prove (`!G (x:A) n. x IN group_carrier G ==> (group_zpow G x (abs n) = group_id G <=> group_zpow G x n = group_id G)`, REWRITE_TAC[FORALL_INT_CASES; INT_ABS_NEG; INT_ABS_NUM] THEN SIMP_TAC[GROUP_ZPOW_NEG; GROUP_NPOW] THEN MESON_TAC[GROUP_INV_EQ_ID; GROUP_POW]);; let GROUP_ZPOW_ADD = prove (`!G (x:A) m n. x IN group_carrier G ==> group_zpow G x (m + n) = group_mul G (group_zpow G x m) (group_zpow G x n)`, REPEAT STRIP_TAC THEN DISJ_CASES_THEN MP_TAC(SPEC `n:int` INT_IMAGE) THEN DISJ_CASES_THEN MP_TAC(SPEC `m:int` INT_IMAGE) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `p:num` THEN DISCH_THEN SUBST1_TAC THEN X_GEN_TAC `q:num` THEN DISCH_THEN SUBST1_TAC THEN ASM_SIMP_TAC[GSYM INT_NEG_ADD; GROUP_ZPOW_NEG; GROUP_NPOW; INT_OF_NUM_ADD] THEN REPEAT CONJ_TAC THENL [ASM_SIMP_TAC[GROUP_POW_ADD]; DISJ_CASES_TAC(ARITH_RULE `p:num <= q \/ q <= p`) THENL [ASM_REWRITE_TAC[INT_ARITH `--x + y:int = y - x`]; ASM_REWRITE_TAC[INT_ARITH `--x + y:int = --(x - y)`]] THEN ASM_SIMP_TAC[GROUP_ZPOW_NEG; INT_OF_NUM_SUB; GROUP_NPOW] THEN ASM_SIMP_TAC[GROUP_POW_SUB_ALT; GROUP_INV_MUL; GROUP_INV_INV; GROUP_POW; GROUP_INV; GROUP_MUL]; DISJ_CASES_TAC(ARITH_RULE `q:num <= p \/ p <= q`) THENL [ASM_REWRITE_TAC[INT_ARITH `y + --x:int = y - x`]; ASM_REWRITE_TAC[INT_ARITH `y + --x:int = --(x - y)`]] THEN ASM_SIMP_TAC[GROUP_ZPOW_NEG; INT_OF_NUM_SUB; GROUP_NPOW] THEN ASM_SIMP_TAC[GROUP_POW_SUB; GROUP_INV_MUL; GROUP_INV_INV; GROUP_POW; GROUP_INV; GROUP_MUL; group_div]; ONCE_REWRITE_TAC[ADD_SYM] THEN ASM_SIMP_TAC[GROUP_POW_ADD; GROUP_INV_MUL; GROUP_POW]]);; let GROUP_ZPOW_SUB = prove (`!G (x:A) m n. x IN group_carrier G ==> group_zpow G x (m - n) = group_div G (group_zpow G x m) (group_zpow G x n)`, SIMP_TAC[group_div; INT_SUB; GROUP_ZPOW_ADD; GROUP_ZPOW_NEG]);; let GROUP_ZPOW_SUB_ALT = prove (`!G (x:A) m n. x IN group_carrier G ==> group_zpow G x (m - n) = group_mul G (group_inv G (group_zpow G x n)) (group_zpow G x m)`, REWRITE_TAC[INT_ARITH `x - y:int = --y + x`] THEN SIMP_TAC[GROUP_ZPOW_ADD; GROUP_ZPOW_NEG]);; let GROUP_INV_ZPOW = prove (`!G (x:A) n. x IN group_carrier G ==> group_inv G (group_zpow G x n) = group_zpow G (group_inv G x) n`, REPEAT STRIP_TAC THEN REWRITE_TAC[group_zpow] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[GROUP_INV_POW]);; let GROUP_ZPOW_MUL = prove (`!G (x:A) m n. x IN group_carrier G ==> group_zpow G x (m * n) = group_zpow G (group_zpow G x m) n`, REPEAT STRIP_TAC THEN DISJ_CASES_THEN MP_TAC(SPEC `n:int` INT_IMAGE) THEN DISJ_CASES_THEN MP_TAC(SPEC `m:int` INT_IMAGE) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `p:num` THEN DISCH_THEN SUBST1_TAC THEN X_GEN_TAC `q:num` THEN DISCH_THEN SUBST1_TAC THEN ASM_REWRITE_TAC[INT_MUL_LNEG; INT_MUL_RNEG; INT_NEG_NEG] THEN ASM_SIMP_TAC[GROUP_ZPOW_NEG; INT_OF_NUM_MUL; GROUP_NPOW; GROUP_INV; GROUP_POW; GROUP_POW_MUL; GROUP_INV_POW; GROUP_INV_INV]);; let GROUP_COMMUTES_ZPOW = prove (`!G (x:A) (y:A) n. x IN group_carrier G /\ y IN group_carrier G /\ group_mul G x y = group_mul G y x ==> group_mul G (group_zpow G x n) y = group_mul G y (group_zpow G x n)`, REWRITE_TAC[FORALL_INT_CASES; GROUP_ZPOW_POW] THEN REPEAT GEN_TAC THEN REWRITE_TAC[GROUP_COMMUTES_POW] THEN ASM_SIMP_TAC[GROUP_INV_POW] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_COMMUTES_POW THEN ASM_MESON_TAC[GROUP_COMMUTES_INV; GROUP_INV]);; let GROUP_MUL_ZPOW = prove (`!G (x:A) (y:A) n. x IN group_carrier G /\ y IN group_carrier G /\ group_mul G x y = group_mul G y x ==> group_zpow G (group_mul G x y) n = group_mul G (group_zpow G x n) (group_zpow G y n)`, REWRITE_TAC[FORALL_INT_CASES; GROUP_ZPOW_POW; GROUP_MUL_POW] THEN SIMP_TAC[GSYM GROUP_INV_MUL; GROUP_POW; GROUP_INV] THEN ASM_SIMP_TAC[GSYM GROUP_MUL_POW]);; (* ------------------------------------------------------------------------- *) (* Abelian groups. *) (* ------------------------------------------------------------------------- *) let abelian_group = new_definition `abelian_group (G:A group) <=> !x y. x IN group_carrier G /\ y IN group_carrier G ==> group_mul G x y = group_mul G y x`;; let TRIVIAL_IMP_ABELIAN_GROUP = prove (`!G:A group. trivial_group G ==> abelian_group G`, SIMP_TAC[trivial_group; abelian_group; IN_SING]);; let ABELIAN_SINGLETON_GROUP = prove (`!a:A. abelian_group(singleton_group a)`, SIMP_TAC[TRIVIAL_IMP_ABELIAN_GROUP; TRIVIAL_GROUP_SINGLETON_GROUP]);; let ABELIAN_OPPOSITE_GROUP = prove (`!G:A group. abelian_group (opposite_group G) <=> abelian_group G`, SIMP_TAC[abelian_group; OPPOSITE_GROUP_MUL; OPPOSITE_GROUP] THEN MESON_TAC[]);; let ABELIAN_GROUP_MUL_POW = prove (`!G (x:A) (y:A) n. abelian_group G /\ x IN group_carrier G /\ y IN group_carrier G ==> group_pow G (group_mul G x y) n = group_mul G (group_pow G x n) (group_pow G y n)`, MESON_TAC[GROUP_MUL_POW; abelian_group]);; let ABELIAN_GROUP_MUL_ZPOW = prove (`!G (x:A) (y:A) n. abelian_group G /\ x IN group_carrier G /\ y IN group_carrier G ==> group_zpow G (group_mul G x y) n = group_mul G (group_zpow G x n) (group_zpow G y n)`, MESON_TAC[GROUP_MUL_ZPOW; abelian_group]);; let ABELIAN_GROUP_DIV_ZPOW = prove (`!G x (y:A) n. abelian_group G /\ x IN group_carrier G /\ y IN group_carrier G ==> group_zpow G (group_div G x y) n = group_div G (group_zpow G x n) (group_zpow G y n)`, MESON_TAC[group_div; GROUP_INV_ZPOW; ABELIAN_GROUP_MUL_ZPOW; GROUP_INV]);; let ABELIAN_GROUP_MUL_AC = prove (`!G:A group. abelian_group G <=> (!x y. x IN group_carrier G /\ y IN group_carrier G ==> group_mul G x y = group_mul G y x) /\ (!x y z. x IN group_carrier G /\ y IN group_carrier G /\ z IN group_carrier G ==> group_mul G (group_mul G x y) z = group_mul G x (group_mul G y z)) /\ (!x y z. x IN group_carrier G /\ y IN group_carrier G /\ z IN group_carrier G ==> group_mul G x (group_mul G y z) = group_mul G y (group_mul G x z))`, REWRITE_TAC[abelian_group] THEN MESON_TAC[GROUP_MUL_ASSOC]);; (* ------------------------------------------------------------------------- *) (* Totalized versions of the group operations (using additive terminology *) (* for variety's sake). This totalization can be quite convenient, e.g. for *) (* normalization and use of the "iterate" construct in the Abelian case. *) (* ------------------------------------------------------------------------- *) let group_neg = new_definition `group_neg G x = if x IN group_carrier G then group_inv G x else x`;; let group_add = new_definition `group_add G x (y:A) = if x IN group_carrier G /\ y IN group_carrier G then group_mul G x y else if x IN group_carrier G then y else if y IN group_carrier G then x else @w. ~(w IN group_carrier G)`;; let group_nmul = new_recursive_definition num_RECURSION `group_nmul G 0 x = group_id G /\ group_nmul G (SUC n) x = group_add G x (group_nmul G n x)`;; let GROUP_NEG = prove (`!G x:A. group_neg G x IN group_carrier G <=> x IN group_carrier G`, REWRITE_TAC[group_neg] THEN MESON_TAC[GROUP_INV]);; let GROUP_ADD = prove (`!G x y:A. group_add G x y IN group_carrier G <=> x IN group_carrier G /\ y IN group_carrier G`, REWRITE_TAC[group_add] THEN MESON_TAC[GROUP_MUL]);; let GROUP_NEG_EQ_INV = prove (`!G x:A. x IN group_carrier G ==> group_neg G x = group_inv G x`, SIMP_TAC[group_neg]);; let GROUP_ADD_EQ_MUL = prove (`!G x y:A. x IN group_carrier G /\ y IN group_carrier G ==> group_add G x y = group_mul G x y`, SIMP_TAC[group_add]);; let GROUP_ADD_LID = prove (`!G x:A. group_add G (group_id G) x = x`, SIMP_TAC[group_add; GROUP_ID; GROUP_MUL_LID; COND_ID]);; let GROUP_ADD_RID = prove (`!G x:A. group_add G x (group_id G) = x`, SIMP_TAC[group_add; GROUP_ID; GROUP_MUL_RID; COND_ID]);; let GROUP_ADD_ASSOC = prove (`!G x y z:A. group_add G x (group_add G y z) = group_add G (group_add G x y) z`, REPEAT GEN_TAC THEN REWRITE_TAC[group_add] THEN MAP_EVERY ASM_CASES_TAC [`(x:A) IN group_carrier G`; `(y:A) IN group_carrier G`; `(z:A) IN group_carrier G`] THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[GROUP_MUL; GROUP_MUL_ASSOC; COND_ID] THEN ASM_MESON_TAC[]);; let GROUP_NEG_ADD = prove (`!G x y:A. group_neg G (group_add G x y) = group_add G (group_neg G y) (group_neg G x)`, REPEAT GEN_TAC THEN REWRITE_TAC[group_add; group_neg] THEN MAP_EVERY ASM_CASES_TAC [`(x:A) IN group_carrier G`; `(y:A) IN group_carrier G`] THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[GROUP_MUL; GROUP_INV_MUL; GROUP_INV; COND_ID] THEN ASM_MESON_TAC[]);; let GROUP_NEG_NEG = prove (`!G x:A. group_neg G (group_neg G x) = x`, REPEAT GEN_TAC THEN REWRITE_TAC[group_neg] THEN MESON_TAC[GROUP_INV; GROUP_INV_INV]);; let GROUP_NEG_ID = prove (`!G:A group. group_neg G (group_id G) = group_id G`, SIMP_TAC[group_neg; GROUP_INV_ID; GROUP_ID]);; let GROUP_ADD_EQ_ID = prove (`!G x y:A. group_add G x y = group_id G <=> group_add G y x = group_id G`, REWRITE_TAC[group_add] THEN ASM_MESON_TAC[GROUP_ID; GROUP_ADD; GROUP_MUL_EQ_ID]);; let GROUP_NEG_EQ_ID = prove (`!G x:A. group_neg G x = group_id G <=> x = group_id G`, MESON_TAC[GROUP_ID; GROUP_NEG; GROUP_INV_EQ_ID; GROUP_NEG_EQ_INV]);; let GROUP_NMUL_EQ_POW = prove (`!G (x:A) n. x IN group_carrier G ==> group_nmul G n x = group_pow G x n`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[group_nmul; group_pow; GROUP_ADD_EQ_MUL; GROUP_POW]);; let GROUP_NMUL_ADD = prove (`!G (x:A) m n. group_nmul G (m + n) x = group_add G (group_nmul G m x) (group_nmul G n x)`, GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[group_nmul; ADD_CLAUSES; GROUP_ADD_LID] THEN REWRITE_TAC[GROUP_ADD_ASSOC]);; let GROUP_NMUL_MUL = prove (`!G (x:A) m n. group_nmul G (m * n) x = group_nmul G m (group_nmul G n x)`, GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[CONJUNCT1 group_nmul; MULT_CLAUSES] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN ASM_REWRITE_TAC[GROUP_NMUL_ADD; CONJUNCT2 group_nmul]);; let GROUP_NMUL_1 = prove (`!G x:A. group_nmul G 1 x = x`, REWRITE_TAC[num_CONV `1`; group_nmul; GROUP_ADD_RID]);; let GROUP_NEG_NMUL = prove (`!G (x:A) n. group_neg G (group_nmul G n x) = group_nmul G n (group_neg G x)`, GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THENL [REWRITE_TAC[group_nmul; GROUP_NEG_ID]; ALL_TAC] THEN GEN_REWRITE_TAC RAND_CONV [group_nmul] THEN REWRITE_TAC[ADD1; GROUP_NMUL_ADD; GROUP_NEG_ADD] THEN ASM_REWRITE_TAC[GROUP_NMUL_1]);; let GROUP_ADD_SYM = prove (`!G x y:A. abelian_group G ==> group_add G x y = group_add G y x`, SIMP_TAC[group_add; abelian_group] THEN MESON_TAC[]);; let GROUP_ADD_SYM_EQ = prove (`!G:A group. (!x y. group_add G x y = group_add G y x) <=> abelian_group G`, REWRITE_TAC[group_add; abelian_group] THEN MESON_TAC[]);; let GROUP_ADD_NMUL = prove (`!G (x:A) y n. abelian_group G ==> group_nmul G n (group_add G x y) = group_add G (group_nmul G n x) (group_nmul G n y)`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[group_nmul; GROUP_ADD_LID] THEN RULE_ASSUM_TAC(REWRITE_RULE[GSYM GROUP_ADD_SYM_EQ]) THEN REWRITE_TAC[GROUP_ADD_ASSOC] THEN AP_THM_TAC THEN AP_TERM_TAC THEN ASM_MESON_TAC[GROUP_ADD_ASSOC]);; let NEUTRAL_GROUP_ADD = prove (`!G:A group. neutral(group_add G) = group_id G`, GEN_TAC THEN REWRITE_TAC[neutral] THEN MESON_TAC[GROUP_ADD_LID; GROUP_ADD_RID]);; let MONOIDAL_GROUP_ADD = prove (`!G:A group. monoidal(group_add G) <=> abelian_group G`, REWRITE_TAC[monoidal; GROUP_ADD_ASSOC; NEUTRAL_GROUP_ADD; GROUP_ADD_LID; GSYM GROUP_ADD_SYM_EQ]);; (* ------------------------------------------------------------------------- *) (* Procedure for equations s = t or equivalences s = t <=> s' = t' in *) (* the theory of groups, which will generate carrier membership *) (* conditions if they are not explicitly presented as an implication, *) (* e.g. *) (* *) (* GROUP_RULE *) (* `group_mul G a (group_inv G (group_mul G b a)) = *) (* group_inv G (group_mul G (group_inv G c) (group_mul G c b))`;; *) (* *) (* GROUP_RULE *) (* `!G x y z:A. *) (* x IN group_carrier G /\ *) (* y IN group_carrier G /\ *) (* z IN group_carrier G *) (* ==> (group_mul G (group_div G z y) *) (* (group_mul G x (group_div G y z)) = *) (* group_id G <=> *) (* group_inv G (group_mul G x y) = group_inv G y)`;; *) (* ------------------------------------------------------------------------- *) let GROUP_RULE = let rec GROUP_MEM tm = if is_conj tm then CONJ (GROUP_MEM(lhand tm)) (GROUP_MEM(rand tm)) else try PART_MATCH I GROUP_ID tm with Failure _ -> try let th = try PART_MATCH rand GROUP_INV tm with Failure _ -> try PART_MATCH rand GROUP_POW tm with Failure _ -> try PART_MATCH rand GROUP_ZPOW tm with Failure _ -> try PART_MATCH rand GROUP_MUL tm with Failure _ -> PART_MATCH rand GROUP_DIV tm in MP th (GROUP_MEM(lhand(concl th))) with Failure _ -> ASSUME tm in let GROUP_REWR_CONV th = if not(is_imp(snd(strip_forall(concl th)))) then REWR_CONV th else let mfn = PART_MATCH (lhand o rand) th in fun tm -> let ith = mfn tm in MP ith (GROUP_MEM(lhand(concl ith))) in let GROUP_CANONIZE_CONV = let mfn_inv = (MATCH_MP o prove) (`!G t t':A. t = t' /\ t IN group_carrier G ==> group_inv G t = group_neg G t' /\ group_inv G t IN group_carrier G`, SIMP_TAC[IMP_CONJ; group_neg; GROUP_INV]) and mfn_neg = (MATCH_MP o prove) (`!G t t':A. t = t' /\ t IN group_carrier G ==> group_neg G t = group_neg G t' /\ group_neg G t IN group_carrier G`, SIMP_TAC[GROUP_NEG]) and mfn_pow = (MATCH_MP o prove) (`!G t (t':A) n. t = t' /\ t IN group_carrier G ==> group_pow G t n = group_nmul G n t' /\ group_pow G t n IN group_carrier G`, SIMP_TAC[GROUP_NMUL_EQ_POW; IMP_CONJ; GROUP_POW]) and mfn_nmul = (MATCH_MP o prove) (`!G t (t':A) n. t = t' /\ t IN group_carrier G ==> group_nmul G n t = group_nmul G n t' /\ group_nmul G n t IN group_carrier G`, SIMP_TAC[GROUP_NMUL_EQ_POW; GROUP_POW; IMP_CONJ]) and mfn_mul = (MATCH_MP o prove) (`!G s t s' t':A. (s = s' /\ s IN group_carrier G) /\ (t = t' /\ t IN group_carrier G) ==> group_mul G s t = group_add G s' t' /\ group_mul G s t IN group_carrier G`, SIMP_TAC[IMP_CONJ; group_add; GROUP_MUL]) and mfn_add = (MATCH_MP o prove) (`!G s t s' t':A. (s = s' /\ s IN group_carrier G) /\ (t = t' /\ t IN group_carrier G) ==> group_add G s t = group_add G s' t' /\ group_add G s t IN group_carrier G`, SIMP_TAC[GROUP_ADD]) and in_tm = `(IN):A->(A->bool)->bool` and gc_tm = `group_carrier:(A)group->A->bool` in let rec GROUP_TOTALIZE g tm = match tm with Comb(Comb(Comb(Const("group_mul",_),g),s),t) -> mfn_mul(CONJ (GROUP_TOTALIZE g s) (GROUP_TOTALIZE g t)) | Comb(Comb(Comb(Const("group_add",_),g),s),t) -> mfn_add(CONJ (GROUP_TOTALIZE g s) (GROUP_TOTALIZE g t)) | Comb(Comb(Comb(Const("group_pow",_),g),t),n) -> SPEC n (mfn_pow(GROUP_TOTALIZE g t)) | Comb(Comb(Comb(Const("group_nmul",_),g),n),t) -> SPEC n (mfn_nmul(GROUP_TOTALIZE g t)) | Comb(Comb(Const("group_inv",_),g),t) -> mfn_inv(GROUP_TOTALIZE g t) | Comb(Comb(Const("group_neg",_),g),t) -> mfn_neg(GROUP_TOTALIZE g t) | Comb(Const("group_id",_),g) -> CONJ (REFL tm) (ISPEC g GROUP_ID) | _ -> let ifn = inst[type_of tm,aty] in CONJ (REFL tm) (ASSUME(mk_comb(mk_comb(ifn in_tm,tm),mk_comb(ifn gc_tm,g)))) in let GROUP_CANONIZE_CONV tm = match tm with Comb(Comb(Comb(Const("group_mul",_),g),s),t) | Comb(Comb(Comb(Const("group_add",_),g),s),t) | Comb(Comb(Comb(Const("group_pow",_),g),s),t) | Comb(Comb(Comb(Const("group_nmul",_),g),s),t) -> CONJUNCT1(GROUP_TOTALIZE g tm) | Comb(Comb(Const("group_inv",_),g),t) | Comb(Comb(Const("group_neg",_),g),t) -> CONJUNCT1(GROUP_TOTALIZE g tm) | _ -> REFL tm in NUM_REDUCE_CONV THENC INT_REDUCE_CONV THENC GEN_REWRITE_CONV TOP_DEPTH_CONV [GROUP_ZPOW_POW; group_div] THENC GROUP_CANONIZE_CONV in let GROUP_NORM_CONV = let conv = (FIRST_CONV o map GROUP_REWR_CONV o CONJUNCTS o prove) (`(!G x:A. x IN group_carrier G ==> group_add G x (group_neg G x) = group_id G) /\ (!G x:A. x IN group_carrier G ==> group_add G (group_neg G x) x = group_id G) /\ (!G x y:A. x IN group_carrier G ==> group_add G x (group_add G (group_neg G x) y) = y) /\ (!G x y:A. x IN group_carrier G ==> group_add G (group_neg G x) (group_add G x y) = y)`, REWRITE_TAC[GROUP_ADD_ASSOC] THEN SIMP_TAC[GROUP_NEG_EQ_INV; GROUP_ADD_EQ_MUL; GROUP_MUL_LINV; GROUP_MUL_RINV; GROUP_INV; GROUP_ADD_LID]) in let rec GROUP_NMUL_CONV tm = try REWR_CONV (CONJUNCT1 group_nmul) tm with Failure _ -> (LAND_CONV num_CONV THENC REWR_CONV(CONJUNCT2 group_nmul) THENC RAND_CONV GROUP_NMUL_CONV) tm in GROUP_CANONIZE_CONV THENC TOP_DEPTH_CONV GROUP_NMUL_CONV THENC GEN_REWRITE_CONV TOP_DEPTH_CONV [GROUP_NEG_ADD; GROUP_NEG_NEG; GROUP_NEG_ID] THENC GEN_REWRITE_CONV DEPTH_CONV [GROUP_ADD_LID; GROUP_ADD_RID] THENC GEN_REWRITE_CONV TOP_DEPTH_CONV [GSYM GROUP_ADD_ASSOC] THENC TOP_DEPTH_CONV (GEN_REWRITE_CONV I [GROUP_ADD_LID; GROUP_ADD_RID] ORELSEC conv) in let GROUP_EQ_RULE tm = let l,r = dest_eq tm in TRANS (GROUP_NORM_CONV l) (SYM(GROUP_NORM_CONV r)) in let is_groupty ty = match ty with Tyapp("group",[a]) -> true | _ -> false in let rec list_of_gtm tm = match tm with Comb(Const("group_id",_),_) -> [] | Comb(Comb(Const("group_neg",_),_),x) -> [false,x] | Comb(Comb(Comb(Const("group_add",_),_), Comb(Comb(Const("group_neg",_),_),x)),y) -> (false,x)::list_of_gtm y | Comb(Comb(Comb(Const("group_add",_),_),x),y) -> (true,x)::list_of_gtm y | _ -> [true,tm] in let find_rot l l' = find (fun n -> let l1,l2 = chop_list n l in l2@l1 = l') (0--(length l - 1)) in let rec GROUP_REASSOC_CONV n tm = if n = 0 then REFL tm else (REWR_CONV GROUP_ADD_ASSOC THENC GROUP_REASSOC_CONV(n-1)) tm in let GROUP_ROTATE_CONV n = if n = 0 then REFL else LAND_CONV(GROUP_REASSOC_CONV(n - 1)) THENC REWR_CONV GROUP_ADD_EQ_ID THENC LAND_CONV GROUP_NORM_CONV in let rec GROUP_EQ_HYPERNORM_CONV tm = let ts = list_of_gtm(lhand tm) in if length ts > 2 & (let p,v = hd ts and q,w = last ts in not(p = q) && v = w) then (GROUP_ROTATE_CONV 1 THENC GROUP_EQ_HYPERNORM_CONV) tm else REFL tm in fun tm -> let gvs = setify(find_terms (is_groupty o type_of) tm) in if gvs = [] then MESON[] tm else if length gvs > 1 then failwith "GROUP_RULE: Several groups involved" else let g = hd gvs in let GROUP_EQ_NORM_CONV = GROUP_REWR_CONV(GSYM(ISPEC g GROUP_DIV_EQ_ID)) THENC LAND_CONV GROUP_NORM_CONV in let avs,bod = strip_forall tm in let ant,con = if is_imp bod then [lhand bod],rand bod else [],bod in let th1 = if not(is_iff con) then GROUP_EQ_RULE con else let eq1,eq2 = dest_iff con in let th1 = (GROUP_EQ_NORM_CONV THENC GROUP_EQ_HYPERNORM_CONV) eq1 and th2 = (GROUP_EQ_NORM_CONV THENC GROUP_EQ_HYPERNORM_CONV) eq2 in let ls1 = list_of_gtm(lhand(rand(concl th1))) and ls2 = list_of_gtm(lhand(rand(concl th2))) in try let n = find_rot ls1 ls2 in TRANS (CONV_RULE(RAND_CONV(GROUP_ROTATE_CONV n)) th1) (SYM th2) with Failure _ -> let th1' = GEN_REWRITE_RULE (RAND_CONV o TOP_DEPTH_CONV) [GSYM GROUP_ADD_ASSOC] (GEN_REWRITE_RULE (RAND_CONV o TOP_DEPTH_CONV) [GROUP_NEG_ADD; GROUP_NEG_NEG] (GEN_REWRITE_RULE RAND_CONV [GSYM GROUP_NEG_EQ_ID] th1)) and ls1' = map (fun (p,v) -> not p,v) (rev ls1) in let n = find_rot ls1' ls2 in TRANS (CONV_RULE(RAND_CONV(GROUP_ROTATE_CONV n)) th1') (SYM th2) in let th2 = if ant = [] then th1 else itlist PROVE_HYP (CONJUNCTS(ASSUME(hd ant))) th1 in let asl = hyp th2 in let th3 = if asl = [] then th2 else let asm = list_mk_conj asl in DISCH asm (itlist PROVE_HYP (CONJUNCTS(ASSUME asm)) th2) in let th4 = GENL avs th3 in let bvs = frees(concl th4) in GENL (sort (<) bvs) th4;; let GROUP_TAC = REPEAT GEN_TAC THEN TRY(MATCH_MP_TAC(MESON[] `(u = v <=> s = t) ==> (u = v ==> s = t)`)) THEN W(fun (asl,w) -> let th = GROUP_RULE w in (MATCH_ACCEPT_TAC th ORELSE (MATCH_MP_TAC th THEN ASM_REWRITE_TAC[])));; (* ------------------------------------------------------------------------- *) (* Iterated operation on groups, the first one being in a specific *) (* order given as an argument, the latter picking some arbitrary *) (* wellorder, usually with the expectation that it will be immaterial. *) (* ------------------------------------------------------------------------- *) let group_product = new_definition `group_product (G:A group) = iterato (group_carrier G) (group_id G) (group_mul G)`;; let group_sum = new_definition `group_sum (G:A group) = group_product G (@l. woset l /\ fld l = (:K))`;; let GROUP_PRODUCT_EQ = prove (`!G (<<=) k (f:K->A) g. (!i. i IN k ==> f i = g i) ==> group_product G (<<=) k f = group_product G (<<=) k g`, REWRITE_TAC[group_product; ITERATO_EQ]);; let GROUP_SUM_EQ = prove (`!G k (f:K->A) g. (!i. i IN k ==> f i = g i) ==> group_sum G k f = group_sum G k g`, REWRITE_TAC[group_sum; GROUP_PRODUCT_EQ]);; let th = prove (`(!G (<<=) k f (g:K->A). (!i. i IN k ==> f i = g i) ==> group_product G (<<=) k (\i. f i) = group_product G (<<=) k g) /\ (!G k f (g:K->A). (!i. i IN k ==> f i = g i) ==> group_sum G k (\i. f i) = group_sum G k g)`, REWRITE_TAC[ETA_AX; GROUP_PRODUCT_EQ; GROUP_SUM_EQ]) in extend_basic_congs (map SPEC_ALL (CONJUNCTS th));; let GROUP_PRODUCT_CLOSED = prove (`!P G (<<=) k (f:K->A). P(group_id G) /\ (!x y. x IN group_carrier G /\ y IN group_carrier G /\ P x /\ P y ==> P(group_mul G x y)) /\ (!i. i IN k /\ f i IN group_carrier G /\ ~(f i = group_id G) ==> P(f i)) ==> P(group_product G (<<=) k f)`, REPEAT STRIP_TAC THEN REWRITE_TAC[group_product] THEN MP_TAC(ISPECL [`group_carrier G:A->bool`; `group_id G:A`; `group_mul G:A->A->A`; `(<<=):K->K->bool`; `k:K->bool`; `f:K->A`; `\x:A. x IN group_carrier G /\ P x`] ITERATO_CLOSED) THEN ASM_SIMP_TAC[GROUP_ID; GROUP_MUL]);; let GROUP_SUM_CLOSED = prove (`!P G k (f:K->A). P(group_id G) /\ (!x y. x IN group_carrier G /\ y IN group_carrier G /\ P x /\ P y ==> P(group_mul G x y)) /\ (!i. i IN k /\ f i IN group_carrier G /\ ~(f i = group_id G) ==> P(f i)) ==> P(group_sum G k f)`, REWRITE_TAC[group_sum; GROUP_PRODUCT_CLOSED]);; let GROUP_PRODUCT = prove (`!G (<<=) k (f:K->A). group_product G (<<=) k f IN group_carrier G`, REPEAT STRIP_TAC THEN MATCH_MP_TAC (REWRITE_RULE[] (ISPEC `\x:A. x IN group_carrier G` GROUP_PRODUCT_CLOSED)) THEN SIMP_TAC[GROUP_ID; GROUP_MUL]);; let GROUP_SUM = prove (`!G k (f:K->A). group_sum G k f IN group_carrier G`, REWRITE_TAC[group_sum; GROUP_PRODUCT]);; let GROUP_PRODUCT_SUPPORT = prove (`!G (<<=) k (f:K->A). group_product G (<<=) {i | i IN k /\ ~(f i = group_id G)} f = group_product G (<<=) k f`, REPEAT GEN_TAC THEN REWRITE_TAC[group_product] THEN ONCE_REWRITE_TAC[GSYM ITERATO_SUPPORT] THEN AP_THM_TAC THEN AP_TERM_TAC THEN SET_TAC[]);; let GROUP_SUM_SUPPORT = prove (`!G k (f:K->A). group_sum G {i | i IN k /\ ~(f i = group_id G)} f = group_sum G k f`, REWRITE_TAC[group_sum; GROUP_PRODUCT_SUPPORT]);; let GROUP_PRODUCT_RESTRICT = prove (`!G (<<=) k (f:K->A). group_product G (<<=) {i | i IN k /\ f i IN group_carrier G} f = group_product G (<<=) k f`, REPEAT GEN_TAC THEN REWRITE_TAC[group_product] THEN ONCE_REWRITE_TAC[GSYM ITERATO_SUPPORT] THEN AP_THM_TAC THEN AP_TERM_TAC THEN SET_TAC[]);; let GROUP_SUM_RESTRICT = prove (`!G k (f:K->A). group_sum G {i | i IN k /\ f i IN group_carrier G} f = group_sum G k f`, REWRITE_TAC[group_sum; GROUP_PRODUCT_RESTRICT]);; let GROUP_PRODUCT_EXPAND_CASES = prove (`!G (<<=) k (f:K->A). group_product G (<<=) k f = if FINITE {i | i IN k /\ f i IN group_carrier G DIFF {group_id G}} then group_product G (<<=) {i | i IN k /\ f i IN group_carrier G DIFF {group_id G}} f else group_id G`, REPEAT GEN_TAC THEN REWRITE_TAC[group_product] THEN MATCH_ACCEPT_TAC ITERATO_EXPAND_CASES);; let GROUP_SUM_EXPAND_CASES = prove (`!G k (f:K->A). group_sum G k f = if FINITE {i | i IN k /\ f i IN group_carrier G DIFF {group_id G}} then group_sum G {i | i IN k /\ f i IN group_carrier G DIFF {group_id G}} f else group_id G`, REPEAT GEN_TAC THEN REWRITE_TAC[group_sum] THEN MATCH_ACCEPT_TAC GROUP_PRODUCT_EXPAND_CASES);; let GROUP_PRODUCT_RESTRICT_SET = prove (`!G (<<=) P s (f:K->A). group_product G (<<=) {x | x IN s /\ P x} f = group_product G (<<=) s (\x. if P x then f x else group_id G)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM GROUP_PRODUCT_SUPPORT] THEN REWRITE_TAC[MESON[] `~((if p then x else z) = z) <=> p /\ ~(x = z)`] THEN REWRITE_TAC[IN_ELIM_THM; GSYM CONJ_ASSOC] THEN MATCH_MP_TAC GROUP_PRODUCT_EQ THEN SIMP_TAC[IN_ELIM_THM]);; let GROUP_SUM_RESTRICT_SET = prove (`!G P s (f:K->A). group_sum G {x | x IN s /\ P x} f = group_sum G s (\x. if P x then f x else group_id G)`, REWRITE_TAC[group_sum; GROUP_PRODUCT_RESTRICT_SET]);; let GROUP_PRODUCT_SUPERSET = prove (`!G (<<=) s t (f:K->A). t SUBSET s /\ (!x. x IN s /\ ~(x IN t) ==> f x = group_id G) ==> group_product G (<<=) s f = group_product G (<<=) t f`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM GROUP_PRODUCT_SUPPORT] THEN AP_THM_TAC THEN AP_TERM_TAC THEN ASM SET_TAC[]);; let GROUP_SUM_SUPERSET = prove (`!G s t (f:K->A). t SUBSET s /\ (!x. x IN s /\ ~(x IN t) ==> f x = group_id G) ==> group_sum G s f = group_sum G t f`, REWRITE_TAC[group_sum; GROUP_PRODUCT_SUPERSET]);; let GROUP_PRODUCT_CLAUSES = prove (`!G (<<=) (f:K->A). group_product G (<<=) {} f = group_id G /\ (!i k. FINITE {j | j IN k /\ f j IN group_carrier G DIFF {group_id G}} /\ (!j. j IN k ==> i <<= j /\ ~(j <<= i)) ==> group_product G (<<=) (i INSERT k) f = if f i IN group_carrier G ==> i IN k then group_product G (<<=) k f else group_mul G (f i) (group_product G (<<=) k f))`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[group_product; ITERATO_CLAUSES] THEN ASM_CASES_TAC `(i:K) IN k` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `(f:K->A) i = group_id G` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[GROUP_MUL_LID; GSYM group_product; GROUP_PRODUCT; GROUP_ID]);; let GROUP_PRODUCT_CLAUSES_EXISTS = prove (`!G (<<=) (f:K->A). group_product G (<<=) {} f = group_id G /\ (!k. FINITE {i | i IN k /\ f i IN group_carrier G DIFF {group_id G}} /\ ~({i | i IN k /\ f i IN group_carrier G DIFF {group_id G}} = {}) ==> ?i. i IN k /\ f i IN group_carrier G DIFF {group_id G} /\ group_product G (<<=) k f = group_mul G (f i) (group_product G (<<=) (k DELETE i) f))`, REWRITE_TAC[group_product] THEN MATCH_ACCEPT_TAC ITERATO_CLAUSES_EXISTS);; let GROUP_SUM_CLAUSES_EXISTS = prove (`!G (f:K->A). group_sum G {} f = group_id G /\ (!k. FINITE {i | i IN k /\ f i IN group_carrier G DIFF {group_id G}} /\ ~({i | i IN k /\ f i IN group_carrier G DIFF {group_id G}} = {}) ==> ?i. i IN k /\ f i IN group_carrier G DIFF {group_id G} /\ group_sum G k f = group_mul G (f i) (group_sum G (k DELETE i) f))`, REWRITE_TAC[group_sum] THEN MATCH_ACCEPT_TAC GROUP_PRODUCT_CLAUSES_EXISTS);; let GROUP_PRODUCT_EQ_ID = prove (`!(G:A group) (<<=) (s:K->bool) f. (!i. i IN s ==> f i = group_id G) ==> group_product G (<<=) s f = group_id G`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM GROUP_PRODUCT_SUPPORT] THEN ASM_SIMP_TAC[GSYM NOT_IMP; EMPTY_GSPEC] THEN REWRITE_TAC[GROUP_PRODUCT_CLAUSES]);; let GROUP_SUM_EQ_ID = prove (`!(G:A group) (s:K->bool) f. (!i. i IN s ==> f i = group_id G) ==> group_sum G s f = group_id G`, REWRITE_TAC[group_sum; GROUP_PRODUCT_EQ_ID]);; let GROUP_PRODUCT_ID = prove (`!(G:A group) (<<=) (s:K->bool). group_product G (<<=) s (\x. group_id G) = group_id G`, SIMP_TAC[GROUP_PRODUCT_EQ_ID]);; let GROUP_SUM_ID = prove (`!(G:A group) (s:K->bool). group_sum G s (\x. group_id G) = group_id G`, REWRITE_TAC[group_sum; GROUP_PRODUCT_ID]);; let GROUP_COMMUTES_PRODUCT = prove (`!G (<<=) k (f:K->A) z. (!i. i IN k /\ f i IN group_carrier G /\ ~(f i = group_id G) ==> group_mul G (f i) z = group_mul G z (f i)) /\ z IN group_carrier G ==> group_mul G (group_product G (<<=) k f) z = group_mul G z (group_product G (<<=) k f)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(REWRITE_RULE[] (ISPEC `\x:A. group_mul G x z = group_mul G z x` GROUP_PRODUCT_CLOSED)) THEN ASM_SIMP_TAC[GROUP_MUL_LID; GROUP_MUL_RID] THEN ASM_MESON_TAC[GROUP_COMMUTES_MUL]);; let GROUP_COMMUTES_SUM = prove (`!G k (f:K->A) z. (!i. i IN k /\ f i IN group_carrier G /\ ~(f i = group_id G) ==> group_mul G (f i) z = group_mul G z (f i)) /\ z IN group_carrier G ==> group_mul G (group_sum G k f) z = group_mul G z (group_sum G k f)`, REWRITE_TAC[group_sum; GROUP_COMMUTES_PRODUCT]);; let GROUP_PRODUCT_SING = prove (`!G (<<=) i (f:K->A). group_product G (<<=) {i} f = if f i IN group_carrier G then f i else group_id G`, REPEAT GEN_TAC THEN SIMP_TAC[GROUP_PRODUCT_CLAUSES; NOT_IN_EMPTY; EMPTY_GSPEC; FINITE_EMPTY] THEN SIMP_TAC[COND_SWAP; GROUP_MUL_RID]);; let GROUP_SUM_SING = prove (`!G i (f:K->A). group_sum G {i} f = if f i IN group_carrier G then f i else group_id G`, REWRITE_TAC[group_sum; GROUP_PRODUCT_SING]);; let GROUP_PRODUCT_UNION = prove (`!G (<<=) (f:K->A) s t. woset(<<=) /\ fld(<<=) = (:K) /\ (FINITE {i | i IN s /\ f i IN group_carrier G DIFF {group_id G}} <=> FINITE {i | i IN t /\ f i IN group_carrier G DIFF {group_id G}}) /\ (!x y. x IN s /\ y IN t ==> x <<= y /\ ~(x = y)) ==> group_product G (<<=) (s UNION t) f = group_mul G (group_product G (<<=) s f) (group_product G (<<=) t f)`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GROUP_PRODUCT_EXPAND_CASES] THEN REWRITE_TAC[SET_RULE `{x | x IN s UNION t /\ P x} = {x | x IN s /\ P x} UNION {x | x IN t /\ P x}`] THEN REWRITE_TAC[FINITE_UNION] THEN ASM_CASES_TAC `FINITE {i | i IN t /\ (f:K->A) i IN group_carrier G DIFF {group_id G}}` THEN ASM_SIMP_TAC[GROUP_MUL_LID; GROUP_ID] THEN SUBGOAL_THEN `(!i. i IN {i | i IN s /\ (f:K->A) i IN group_carrier G DIFF {group_id G}} ==> f i IN group_carrier G /\ ~(f i = group_id G)) /\ (!i. i IN {i | i IN t /\ (f:K->A) i IN group_carrier G DIFF {group_id G}} ==> f i IN group_carrier G /\ ~(f i = group_id G))` MP_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!x y. x IN {i | i IN s /\ f i IN group_carrier G DIFF {group_id G}} /\ y IN {i | i IN t /\ (f:K->A) i IN group_carrier G DIFF {group_id G}} ==> x <<= y /\ ~(x = y)` MP_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (TAUT `(p <=> q) ==> (q ==> q /\ p)`)) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[]; ALL_TAC] THEN MAP_EVERY UNDISCH_TAC [`fld(<<=) = (:K)`; `woset((<<=):K->K->bool)`] THEN POP_ASSUM_LIST(K ALL_TAC) THEN DISCH_TAC THEN DISCH_TAC THEN SPEC_TAC(`{i | i IN s /\ (f:K->A) i IN group_carrier G DIFF {group_id G}}`, `s:K->bool`) THEN SPEC_TAC(`{i | i IN t /\ (f:K->A) i IN group_carrier G DIFF {group_id G}}`, `t:K->bool`) THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN X_GEN_TAC `t:K->bool` THEN DISCH_TAC THEN ASM_CASES_TAC `!i. i IN t ==> (f:K->A) i IN group_carrier G /\ ~(f i = group_id G)` THEN ASM_REWRITE_TAC[GSYM CONJ_ASSOC; IMP_IMP] THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC(MESON[] `(!n s. FINITE s /\ CARD s = n ==> P s) ==> !s. FINITE s ==> P s`) THEN MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN X_GEN_TAC `s:K->bool` THEN ASM_CASES_TAC `s:K->bool = {}` THEN ASM_REWRITE_TAC[UNION_EMPTY; GROUP_PRODUCT_CLAUSES_EXISTS] THEN SIMP_TAC[GROUP_MUL_LID; GROUP_PRODUCT] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `s:K->bool` o last o CONJUNCTS o GEN_REWRITE_RULE I [woset]) THEN ASM_REWRITE_TAC[SUBSET_UNIV; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `i:K` THEN STRIP_TAC THEN MP_TAC(ISPECL [`G:A group`; `(<<=):K->K->bool`; `f:K->A`] GROUP_PRODUCT_CLAUSES) THEN DISCH_THEN(MP_TAC o SPEC `i:K` o CONJUNCT2) THEN DISCH_THEN(fun th -> MP_TAC(SPEC `s DELETE (i:K)` th) THEN MP_TAC(SPEC `(s DELETE (i:K)) UNION t` th)) THEN ASM_SIMP_TAC[FINITE_DELETE; FINITE_UNION; FINITE_RESTRICT; IN_DELETE; IN_UNION; SET_RULE `i IN s ==> i INSERT (s DELETE i) = s`; SET_RULE `i IN s ==> i INSERT (s DELETE i UNION t) = s UNION t`] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [woset]) THEN ASM_REWRITE_TAC[IN_UNIV] THEN STRIP_TAC THEN ANTS_TAC THENL [ASM_MESON_TAC[]; DISCH_THEN SUBST1_TAC] THEN ANTS_TAC THENL [ASM_MESON_TAC[]; DISCH_THEN SUBST1_TAC] THEN COND_CASES_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `n - 1`) THEN REWRITE_TAC[ARITH_RULE `n - 1 < n <=> ~(n = 0)`] THEN ANTS_TAC THENL [ASM_MESON_TAC[CARD_EQ_0]; ALL_TAC] THEN DISCH_THEN(MP_TAC o SPEC `s DELETE (i:K)`) THEN ASM_SIMP_TAC[FINITE_DELETE; CARD_DELETE; IN_DELETE] THEN ASM_SIMP_TAC[GROUP_MUL_ASSOC; GROUP_MUL; GROUP_PRODUCT]);; let GROUP_PRODUCT_CLAUSES_LEFT = prove (`!G (f:num->A) m n. group_product G (<=) (m..n) f = if m <= n then if f m IN group_carrier G then group_mul G (f m) (group_product G (<=) (m+1..n) f) else group_product G (<=) (m+1..n) f else group_id G`, REPEAT GEN_TAC THEN COND_CASES_TAC THENL [ASM_SIMP_TAC[GSYM NUMSEG_LREC]; ASM_SIMP_TAC[EMPTY_NUMSEG; GSYM NOT_LE; GROUP_PRODUCT_CLAUSES]] THEN ONCE_REWRITE_TAC[SET_RULE `a INSERT s = {a} UNION s`] THEN W(MP_TAC o PART_MATCH (lhand o rand) GROUP_PRODUCT_UNION o lhand o snd) THEN SIMP_TAC[WOSET_num; FLD_num; FINITE_RESTRICT; FINITE_SING; FINITE_NUMSEG; IN_NUMSEG; IN_SING] THEN ANTS_TAC THENL [ARITH_TAC; DISCH_THEN SUBST1_TAC] THEN REWRITE_TAC[GROUP_PRODUCT_SING] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[GROUP_MUL_LID; GROUP_PRODUCT]);; let GROUP_PRODUCT_CLAUSES_RIGHT = prove (`!G (f:num->A) m n. group_product G (<=) (m..n) f = if m <= n then if f n IN group_carrier G then if n = 0 then f 0 else group_mul G (group_product G (<=) (m..n-1) f) (f n) else group_product G (<=) (m..n-1) f else group_id G`, REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL [ASM_SIMP_TAC[CONJUNCT1 LE; SUB_0; NUMSEG_CLAUSES] THEN ASM_CASES_TAC `m = 0` THEN ASM_SIMP_TAC[GROUP_PRODUCT_SING] THEN REWRITE_TAC[GROUP_PRODUCT_CLAUSES]; ASM_REWRITE_TAC[]] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL [ASM_SIMP_TAC[GSYM NUMSEG_RREC]; ASM_SIMP_TAC[EMPTY_NUMSEG; GSYM NOT_LE; GROUP_PRODUCT_CLAUSES]] THEN ONCE_REWRITE_TAC[SET_RULE `a INSERT s = s UNION {a}`] THEN W(MP_TAC o PART_MATCH (lhand o rand) GROUP_PRODUCT_UNION o lhand o snd) THEN SIMP_TAC[WOSET_num; FLD_num; FINITE_RESTRICT; FINITE_SING; FINITE_NUMSEG; IN_NUMSEG; IN_SING] THEN ANTS_TAC THENL [ASM_ARITH_TAC; DISCH_THEN SUBST1_TAC] THEN REWRITE_TAC[GROUP_PRODUCT_SING] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[GROUP_MUL_RID; GROUP_PRODUCT]);; let GROUP_PRODUCT_CLAUSES_NUMSEG = prove (`(!G m f:num->A. group_product G (<=) (m..0) f = if m = 0 /\ f 0 IN group_carrier G then f 0 else group_id G) /\ (!G m n f:num->A. group_product G (<=) (m..SUC n) f = if m <= SUC n /\ f(SUC n) IN group_carrier G then group_mul G (group_product G (<=) (m..n) f) (f(SUC n)) else group_product G (<=) (m..n) f)`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [GROUP_PRODUCT_CLAUSES_RIGHT] THEN SIMP_TAC[CONJUNCT1 LE; NOT_SUC; SUC_SUB1; SUB_0; NUMSEG_SING; GROUP_PRODUCT_SING] THENL [MESON_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `m <= SUC n` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[EMPTY_NUMSEG; ARITH_RULE `~(m <= SUC n) ==> n < m`] THEN REWRITE_TAC[GROUP_PRODUCT_CLAUSES]);; let GROUP_PRODUCT_CLAUSES_COMMUTING = prove (`!G (<<=) i k (f:K->A). woset(<<=) /\ fld(<<=) = (:K) /\ FINITE {j | j IN k /\ f j IN group_carrier G DIFF {group_id G}} /\ (!j. j IN k /\ j <<= i /\ ~(j = i) /\ f i IN group_carrier G /\ f j IN group_carrier G ==> group_mul G (f i) (f j) = group_mul G (f j) (f i)) ==> group_product G (<<=) (i INSERT k) f = if f i IN group_carrier G ==> i IN k then group_product G (<<=) k f else group_mul G (f i) (group_product G (<<=) k f)`, let tac pfn = W(MP_TAC o PART_MATCH (lhand o rand) GROUP_PRODUCT_UNION o pfn o snd) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL [MATCH_MP_TAC(TAUT `p /\ q ==> (p <=> q)`) THEN CONJ_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (MESON[FINITE_INSERT; FINITE_SUBSET] `FINITE s ==> !i. t SUBSET i INSERT s ==> FINITE t`)) THEN EXISTS_TAC `i:K` THEN SET_TAC[]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [woset]) THEN ASM_REWRITE_TAC[IN_UNIV] THEN ASM SET_TAC[];]; DISCH_THEN SUBST1_TAC] in REPEAT STRIP_TAC THEN COND_CASES_TAC THENL [ONCE_REWRITE_TAC[GSYM GROUP_PRODUCT_RESTRICT] THEN ONCE_REWRITE_TAC[GSYM GROUP_PRODUCT_SUPPORT] THEN AP_THM_TAC THEN AP_TERM_TAC THEN ASM SET_TAC[]; FIRST_X_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [NOT_IMP])] THEN SUBGOAL_THEN `k = {j:K | j IN k /\ j <<= i /\ ~(j = i)} UNION {j | j IN k /\ i <<= j /\ ~(j = i)}` SUBST1_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [woset]) THEN ASM_REWRITE_TAC[IN_UNIV] THEN ASM SET_TAC[]; ONCE_REWRITE_TAC[SET_RULE `i INSERT (l UNION r) = (i INSERT l) UNION r`]] THEN tac lhand THEN ONCE_REWRITE_TAC[SET_RULE `i INSERT s = s UNION {i}`] THEN tac (lhand o lhand) THEN tac (rand o rand) THEN ASM_SIMP_TAC[GROUP_MUL_ASSOC; GROUP_PRODUCT] THEN AP_THM_TAC THEN AP_TERM_TAC THEN ASM_REWRITE_TAC[GROUP_PRODUCT_SING] THEN MATCH_MP_TAC GROUP_COMMUTES_PRODUCT THEN ASM SET_TAC[]);; let ABELIAN_GROUP_PRODUCT_CLAUSES = prove (`!G (<<=) i k (f:K->A). woset(<<=) /\ fld(<<=) = (:K) /\ abelian_group G /\ FINITE {j | j IN k /\ f j IN group_carrier G DIFF {group_id G}} ==> group_product G (<<=) (i INSERT k) f = if f i IN group_carrier G ==> i IN k then group_product G (<<=) k f else group_mul G (f i) (group_product G (<<=) k f)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_PRODUCT_CLAUSES_COMMUTING THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[abelian_group]);; let GROUP_SUM_CLAUSES_COMMUTING = prove (`!G i k (f:K->A). FINITE {j | j IN k /\ f j IN group_carrier G DIFF {group_id G}} /\ (!j. j IN k /\ ~(j = i) /\ f i IN group_carrier G /\ f j IN group_carrier G ==> group_mul G (f i) (f j) = group_mul G (f j) (f i)) ==> group_sum G (i INSERT k) f = if f i IN group_carrier G ==> i IN k then group_sum G k f else group_mul G (f i) (group_sum G k f)`, REPEAT STRIP_TAC THEN REWRITE_TAC[group_sum] THEN MATCH_MP_TAC GROUP_PRODUCT_CLAUSES_COMMUTING THEN ASM_SIMP_TAC[] THEN CONV_TAC SELECT_CONV THEN REWRITE_TAC[WO]);; let ABELIAN_GROUP_SUM_CLAUSES = prove (`!G i k (f:K->A). abelian_group G /\ FINITE {j | j IN k /\ f j IN group_carrier G DIFF {group_id G}} ==> group_sum G (i INSERT k) f = if f i IN group_carrier G ==> i IN k then group_sum G k f else group_mul G (f i) (group_sum G k f)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_SUM_CLAUSES_COMMUTING THEN ASM_MESON_TAC[abelian_group]);; let GROUP_PRODUCT_MUL = prove (`!G (<<=) k f (g:K->A). woset(<<=) /\ fld(<<=) = (:K) /\ FINITE {i | i IN k /\ ~(f i = group_id G)} /\ FINITE {i | i IN k /\ ~(g i = group_id G)} /\ (!i. i IN k ==> f i IN group_carrier G /\ g i IN group_carrier G) /\ pairwise (\i j. group_mul G (f i) (g j) = group_mul G (g j) (f i)) k ==> group_product G (<<=) k (\i. group_mul G (f i) (g i)) = group_mul G (group_product G (<<=) k f) (group_product G (<<=) k g)`, GEN_REWRITE_TAC (funpow 2 BINDER_CONV) [SWAP_FORALL_THM] THEN GEN_REWRITE_TAC (funpow 3 BINDER_CONV) [SWAP_FORALL_THM] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM; IMP_CONJ] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN DISCH_TAC THEN GEN_TAC THEN GEN_TAC THEN ONCE_REWRITE_TAC[IMP_IMP] THEN REWRITE_TAC[GSYM FINITE_UNION] THEN X_GEN_TAC `s:K->bool` THEN W(fun (asl,w) -> ABBREV_TAC(mk_eq(`t:K->bool`,rand(lhand w)))) THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `group_product G (<<=) t (\i. group_mul G (f i) (g i)) = group_mul G (group_product G (<<=) t (f:K->A)) (group_product G (<<=) t g)` MP_TAC THENL [SUBGOAL_THEN `!i. i IN t ==> (f:K->A) i IN group_carrier G /\ g i IN group_carrier G` MP_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `t:K->bool` o MATCH_MP (REWRITE_RULE[IMP_CONJ] PAIRWISE_MONO)) THEN ANTS_TAC THENL [ASM SET_TAC[]; UNDISCH_TAC `FINITE(t:K->bool)`] THEN FIRST_X_ASSUM(K ALL_TAC o SYM) THEN FIRST_X_ASSUM(K ALL_TAC o check (is_forall o concl)); MATCH_MP_TAC EQ_IMP THEN BINOP_TAC THENL [ALL_TAC; BINOP_TAC] THEN ONCE_REWRITE_TAC[GSYM GROUP_PRODUCT_RESTRICT] THEN ONCE_REWRITE_TAC[GSYM GROUP_PRODUCT_SUPPORT] THEN AP_THM_TAC THEN AP_TERM_TAC THEN MP_TAC(ISPEC `G:A group` GROUP_MUL_LID) THEN MP_TAC(ISPEC `G:A group` GROUP_MUL_RID) THEN ASM SET_TAC[]] THEN SPEC_TAC(`t:K->bool`,`s:K->bool`) THEN MATCH_MP_TAC(MESON[] `(!n s. FINITE s /\ CARD s = n ==> P s) ==> !s. FINITE s ==> P s`) THEN MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN X_GEN_TAC `s:K->bool` THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN ASM_CASES_TAC `n = 0` THENL [ASM_SIMP_TAC[CARD_EQ_0] THEN REWRITE_TAC[GROUP_PRODUCT_CLAUSES] THEN SIMP_TAC[GROUP_MUL_LID; GROUP_ID]; REPEAT DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP (MESON[CARD_EQ_0] `CARD s = n ==> FINITE s /\ ~(n = 0) ==> ~(s = {})`)) THEN ASM_REWRITE_TAC[]] THEN FIRST_ASSUM(MP_TAC o last o CONJUNCTS o GEN_REWRITE_RULE I [woset]) THEN ASM_REWRITE_TAC[IMP_IMP; SUBSET_UNIV] THEN DISCH_THEN(MP_TAC o MATCH_MP (MESON[] `(!s. ~(s = {}) ==> P s) /\ ~(t = {}) ==> P t`)) THEN DISCH_THEN(X_CHOOSE_THEN `i:K` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `s = {i:K} UNION (s DELETE i)` SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN W(MP_TAC o PART_MATCH (lhand o rand) GROUP_PRODUCT_UNION o lhand o snd) THEN ASM_SIMP_TAC[FINITE_DELETE; FINITE_RESTRICT; FINITE_SING] THEN ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN SUBST1_TAC] THEN W(MP_TAC o PART_MATCH (lhand o rand) GROUP_PRODUCT_UNION o lhand o rand o snd) THEN ASM_SIMP_TAC[FINITE_DELETE; FINITE_RESTRICT; FINITE_SING] THEN ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN SUBST1_TAC] THEN W(MP_TAC o PART_MATCH (lhand o rand) GROUP_PRODUCT_UNION o rand o rand o snd) THEN ASM_SIMP_TAC[FINITE_DELETE; FINITE_RESTRICT; FINITE_SING] THEN ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN SUBST1_TAC] THEN REWRITE_TAC[GROUP_PRODUCT_SING] THEN FIRST_X_ASSUM(MP_TAC o SPEC `n - 1`) THEN REWRITE_TAC[ARITH_RULE `n - 1 < n <=> ~(n = 0)`] THEN ANTS_TAC THENL [ASM_MESON_TAC[CARD_EQ_0]; ALL_TAC] THEN DISCH_THEN(MP_TAC o SPEC `s DELETE (i:K)`) THEN ASM_SIMP_TAC[FINITE_DELETE; CARD_DELETE; IN_DELETE] THEN ANTS_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] PAIRWISE_MONO)) THEN SET_TAC[]; DISCH_THEN SUBST1_TAC] THEN ASM_SIMP_TAC[GSYM GROUP_MUL_ASSOC; GROUP_MUL; GROUP_PRODUCT] THEN AP_TERM_TAC THEN ASM_SIMP_TAC[GROUP_MUL_ASSOC; GROUP_MUL; GROUP_PRODUCT] THEN AP_THM_TAC THEN AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC GROUP_COMMUTES_PRODUCT THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [pairwise]) THEN ASM SET_TAC[]);; let GROUP_SUM_MUL = prove (`!G k f (g:K->A). FINITE {i | i IN k /\ ~(f i = group_id G)} /\ FINITE {i | i IN k /\ ~(g i = group_id G)} /\ (!i. i IN k ==> f i IN group_carrier G /\ g i IN group_carrier G) /\ pairwise (\i j. group_mul G (f i) (g j) = group_mul G (g j) (f i)) k ==> group_sum G k (\i. group_mul G (f i) (g i)) = group_mul G (group_sum G k f) (group_sum G k g)`, REPEAT STRIP_TAC THEN REWRITE_TAC[group_sum] THEN MATCH_MP_TAC GROUP_PRODUCT_MUL THEN ASM_REWRITE_TAC[] THEN CONV_TAC SELECT_CONV THEN REWRITE_TAC[WO]);; let ABELIAN_GROUP_SUM_MUL = prove (`!G k f (g:K->A). abelian_group G /\ FINITE {i | i IN k /\ ~(f i = group_id G)} /\ FINITE {i | i IN k /\ ~(g i = group_id G)} /\ (!i. i IN k ==> f i IN group_carrier G /\ g i IN group_carrier G) ==> group_sum G k (\i. group_mul G (f i) (g i)) = group_mul G (group_sum G k f) (group_sum G k g)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_SUM_MUL THEN ASM_REWRITE_TAC[pairwise] THEN ASM_MESON_TAC[abelian_group]);; let GROUP_SUM_INV = prove (`!G k (f:K->A). FINITE {i | i IN k /\ ~(f i = group_id G)} /\ (!i. i IN k ==> f i IN group_carrier G) /\ pairwise (\i j. group_mul G (f i) (f j) = group_mul G (f j) (f i)) k ==> group_sum G k (\i. group_inv G (f i)) = group_inv G (group_sum G k f)`, REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC GROUP_LINV_UNIQUE THEN REWRITE_TAC[GROUP_SUM] THEN W(MP_TAC o PART_MATCH (rand o rand) GROUP_SUM_MUL o lhand o snd) THEN ANTS_TAC THENL [ASM_SIMP_TAC[GROUP_INV] THEN ASM_SIMP_TAC[GSYM NOT_IMP; GROUP_INV_EQ_ID] THEN ASM_REWRITE_TAC[NOT_IMP] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] PAIRWISE_IMP)) THEN ASM_MESON_TAC[GROUP_COMMUTES_INV]; DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC GROUP_SUM_EQ_ID THEN ASM_SIMP_TAC[GROUP_MUL_RINV]]);; let ABELIAN_GROUP_SUM_INV = prove (`!G k (f:K->A). abelian_group G /\ FINITE {i | i IN k /\ ~(f i = group_id G)} /\ (!i. i IN k ==> f i IN group_carrier G) ==> group_sum G k (\i. group_inv G (f i)) = group_inv G (group_sum G k f)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_SUM_INV THEN ASM_REWRITE_TAC[pairwise] THEN ASM_MESON_TAC[abelian_group]);; let GROUP_SUM_POW = prove (`!G k (f:K->A) n. FINITE {i | i IN k /\ ~(f i = group_id G)} /\ (!i. i IN k ==> f i IN group_carrier G) /\ pairwise (\i j. group_mul G (f i) (f j) = group_mul G (f j) (f i)) k ==> group_sum G k (\i. group_pow G (f i) n) = group_pow G (group_sum G k f) n`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[group_pow; GROUP_SUM_ID] THEN W(MP_TAC o PART_MATCH (lhand o rand) GROUP_SUM_MUL o lhand o snd) THEN ASM_SIMP_TAC[GROUP_POW] THEN DISCH_THEN MATCH_MP_TAC THEN CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_SIMP_TAC[CONTRAPOS_THM; GROUP_POW_ID]; FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] PAIRWISE_IMP)) THEN ASM_MESON_TAC[GROUP_COMMUTES_POW]]);; let ABELIAN_GROUP_SUM_POW = prove (`!G k (f:K->A) n. abelian_group G /\ FINITE {i | i IN k /\ ~(f i = group_id G)} /\ (!i. i IN k ==> f i IN group_carrier G) ==> group_sum G k (\i. group_pow G (f i) n) = group_pow G (group_sum G k f) n`, REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_SUM_POW THEN ASM_REWRITE_TAC[pairwise] THEN ASM_MESON_TAC[abelian_group]);; let GROUP_SUM_ZPOW = prove (`!G k (f:K->A) n. FINITE {i | i IN k /\ ~(f i = group_id G)} /\ (!i. i IN k ==> f i IN group_carrier G) /\ pairwise (\i j. group_mul G (f i) (f j) = group_mul G (f j) (f i)) k ==> group_sum G k (\i. group_zpow G (f i) n) = group_zpow G (group_sum G k f) n`, SIMP_TAC[FORALL_INT_CASES; GROUP_NPOW; GROUP_ZPOW_NEG; GROUP_SUM] THEN REWRITE_TAC[GROUP_SUM_POW] THEN REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH (lhand o rand) GROUP_SUM_INV o lhand o snd) THEN ASM_SIMP_TAC[GROUP_SUM_POW; GROUP_POW] THEN DISCH_THEN MATCH_MP_TAC THEN CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_SIMP_TAC[CONTRAPOS_THM; GROUP_POW_ID]; FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] PAIRWISE_IMP)) THEN ASM_MESON_TAC[GROUP_COMMUTES_POW; GROUP_POW]]);; let ABELIAN_GROUP_SUM_ZPOW = prove (`!G k (f:K->A) n. abelian_group G /\ FINITE {i | i IN k /\ ~(f i = group_id G)} /\ (!i. i IN k ==> f i IN group_carrier G) ==> group_sum G k (\i. group_zpow G (f i) n) = group_zpow G (group_sum G k f) n`, REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_SUM_ZPOW THEN ASM_REWRITE_TAC[pairwise] THEN ASM_MESON_TAC[abelian_group]);; let GROUP_SUM_IMAGE = prove (`!G (f:K->A) (g:A->B) s. abelian_group G /\ (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) ==> group_sum G (IMAGE f s) g = group_sum G s (g o f)`, ONCE_REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC(MESON[] `((!s. FINITE s ==> P s) ==> (!s. P s)) /\ (!s. FINITE s ==> P s) ==> !s. P s`) THEN REWRITE_TAC[IMP_IMP] THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GROUP_SUM_EXPAND_CASES] THEN REWRITE_TAC[o_THM; SET_RULE `{y | y IN IMAGE f s /\ P y} = IMAGE f {x | x IN s /\ P(f x)}`] THEN MATCH_MP_TAC(MESON[] `(p <=> q) /\ (q ==> x = y) ==> (if p then x else z) = (if q then y else z)`) THEN CONJ_TAC THENL [MATCH_MP_TAC FINITE_IMAGE_INJ_EQ THEN ASM SET_TAC[]; DISCH_TAC] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM SET_TAC[]; REWRITE_TAC[INJECTIVE_ON_ALT] THEN ONCE_REWRITE_TAC[IMP_CONJ]] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[GROUP_SUM_CLAUSES_EXISTS; IMAGE_CLAUSES] THEN ASM_SIMP_TAC[ABELIAN_GROUP_SUM_CLAUSES; FINITE_RESTRICT; FINITE_IMAGE] THEN REPEAT GEN_TAC THEN DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN ANTS_TAC THENL [ASM SET_TAC[]; DISCH_TAC] THEN ASM_REWRITE_TAC[o_THM] THEN ASM_CASES_TAC `(f:K->A) x IN IMAGE f s` THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]);; let ABELIAN_GROUP_PRODUCT_ITERATE = prove (`!G (<<=) (x:K->A) k. woset(<<=) /\ fld(<<=) = (:K) /\ abelian_group G /\ (!i. i IN k ==> x i IN group_carrier G) ==> group_product G (<<=) k x = iterate (group_add G) k x`, REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN ONCE_REWRITE_TAC[GROUP_PRODUCT_EXPAND_CASES; ITERATE_EXPAND_CASES] THEN REWRITE_TAC[support; NEUTRAL_GROUP_ADD] THEN ONCE_REWRITE_TAC[TAUT `p /\ q <=> ~(p ==> ~q)`] THEN ASM_SIMP_TAC[IN_DIFF; IN_SING] THEN REWRITE_TAC[NOT_IMP] THEN SUBGOAL_THEN `!i. i IN {j | j IN k /\ ~((x:K->A) j = group_id G)} ==> x i IN group_carrier G /\ ~(x i = group_id G)` MP_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(MESON[] `(p ==> q ==> x = y) ==> q ==> ((if p then x else z) = (if p then y else z))`) THEN FIRST_X_ASSUM(K ALL_TAC o check (is_forall o concl)) THEN SPEC_TAC(`{j | j IN k /\ ~((x:K->A) j = group_id G)}`,`k:K->bool`) THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN ASM_SIMP_TAC[CONJUNCT1(SPEC_ALL GROUP_PRODUCT_CLAUSES_EXISTS); ITERATE_CLAUSES; ABELIAN_GROUP_PRODUCT_CLAUSES; MONOIDAL_GROUP_ADD; FINITE_RESTRICT; FORALL_IN_INSERT; NEUTRAL_GROUP_ADD] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_ADD_EQ_MUL THEN ASM_REWRITE_TAC[GROUP_PRODUCT]);; let ABELIAN_GROUP_SUM_ITERATE = prove (`!G (x:K->A) k. abelian_group G /\ (!i. i IN k ==> x i IN group_carrier G) ==> group_sum G k x = iterate (group_add G) k x`, REPEAT STRIP_TAC THEN REWRITE_TAC[group_sum] THEN MATCH_MP_TAC ABELIAN_GROUP_PRODUCT_ITERATE THEN ASM_REWRITE_TAC[] THEN CONV_TAC SELECT_CONV THEN REWRITE_TAC[WO]);; let ABELIAN_GROUP_ITERATE = prove (`!G (x:K->A) k. abelian_group G /\ (!i. i IN k ==> x i IN group_carrier G) ==> iterate (group_add G) k x IN group_carrier G`, SIMP_TAC[GSYM ABELIAN_GROUP_SUM_ITERATE; GROUP_SUM]);; (* ------------------------------------------------------------------------- *) (* Congugation. *) (* ------------------------------------------------------------------------- *) let group_conjugation = new_definition `group_conjugation G a x = group_mul G a (group_mul G x (group_inv G a))`;; let GROUP_CONJUGATION = prove (`!G x y:A. x IN group_carrier G /\ y IN group_carrier G ==> group_conjugation G x y IN group_carrier G`, SIMP_TAC[group_conjugation; GROUP_MUL; GROUP_INV]);; let GROUP_CONJUGATION_CONJUGATION = prove (`!G a b x:A. a IN group_carrier G /\ b IN group_carrier G /\ x IN group_carrier G ==> group_conjugation G a (group_conjugation G b x) = group_conjugation G (group_mul G a b) x`, SIMP_TAC[group_conjugation] THEN GROUP_TAC);; let GROUP_CONJUGATION_EQ = prove (`!G a x y:A. a IN group_carrier G /\ x IN group_carrier G /\ y IN group_carrier G ==> (group_conjugation G a x = group_conjugation G a y <=> x = y)`, REWRITE_TAC[group_conjugation] THEN GROUP_TAC);; let GROUP_CONJUGATION_EQ_SELF = prove (`!G x y:A. x IN group_carrier G /\ y IN group_carrier G ==> (group_conjugation G x y = y <=> group_mul G x y = group_mul G y x)`, REWRITE_TAC[group_conjugation] THEN GROUP_TAC);; let GROUP_CONJUGATION_EQ_ID = prove (`!G a x:A. a IN group_carrier G /\ x IN group_carrier G ==> (group_conjugation G a x = group_id G <=> x = group_id G)`, REWRITE_TAC[group_conjugation] THEN GROUP_TAC);; let GROUP_CONJUGATION_BY_ID = prove (`!G x:A. x IN group_carrier G ==> group_conjugation G (group_id G) x = x`, REWRITE_TAC[group_conjugation] THEN GROUP_TAC);; let GROUP_CONJUGATION_LINV = prove (`!G a x:A. a IN group_carrier G /\ x IN group_carrier G ==> group_conjugation G (group_inv G a) (group_conjugation G a x) = x`, SIMP_TAC[GROUP_CONJUGATION_CONJUGATION; GROUP_INV] THEN SIMP_TAC[GROUP_MUL_LINV; GROUP_CONJUGATION_BY_ID]);; let GROUP_CONJUGATION_RINV = prove (`!G a x:A. a IN group_carrier G /\ x IN group_carrier G ==> group_conjugation G a (group_conjugation G (group_inv G a) x) = x`, SIMP_TAC[GROUP_CONJUGATION_CONJUGATION; GROUP_INV] THEN SIMP_TAC[GROUP_MUL_RINV; GROUP_CONJUGATION_BY_ID]);; let IN_IMAGE_GROUP_CONJUGATION = prove (`!G s x y:A. x IN group_carrier G /\ y IN group_carrier G /\ s SUBSET group_carrier G ==> (x IN IMAGE (group_conjugation G y) s <=> group_conjugation G (group_inv G y) x IN s)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(SET_RULE `!u. s SUBSET u /\ x IN u /\ (!x. x IN u ==> f(g x) = x /\ g(f x) = x) ==> (x IN IMAGE f s <=> g x IN s)`) THEN EXISTS_TAC `group_carrier G:A->bool` THEN ASM_SIMP_TAC[GROUP_CONJUGATION_LINV; GROUP_CONJUGATION_RINV]);; let IMAGE_GROUP_CONJUGATION_SUBSET = prove (`!G (a:A) s. a IN group_carrier G /\ s SUBSET group_carrier G ==> IMAGE (group_conjugation G a) s SUBSET group_carrier G`, SIMP_TAC[SUBSET; FORALL_IN_IMAGE; GROUP_CONJUGATION]);; let IMAGE_GROUP_CONJUGATION_BY_ID = prove (`!G s:A->bool. s SUBSET group_carrier G ==> IMAGE (group_conjugation G (group_id G)) s = s`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x = x) ==> IMAGE f s = s`) THEN ASM_MESON_TAC[GROUP_CONJUGATION_BY_ID; SUBSET]);; let IMAGE_GROUP_CONJUGATION_BY_MUL = prove (`!G s a b:A. a IN group_carrier G /\ b IN group_carrier G /\ s SUBSET group_carrier G ==> IMAGE (group_conjugation G (group_mul G a b)) s = IMAGE (group_conjugation G a) (IMAGE (group_conjugation G b) s)`, REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM IMAGE_o] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x = g x) ==> IMAGE f s = IMAGE g s`) THEN ASM_MESON_TAC[GROUP_CONJUGATION_CONJUGATION; o_THM; SUBSET]);; let IMAGE_GROUP_CONJUGATION_BY_INV = prove (`!G (a:A) s t. a IN group_carrier G /\ s SUBSET group_carrier G /\ t SUBSET group_carrier G ==> (IMAGE (group_conjugation G (group_inv G a)) s = t <=> IMAGE (group_conjugation G a) t = s)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> g(f x) = x) /\ (!y. y IN t ==> f(g y) = y) ==> (IMAGE f s = t <=> IMAGE g t = s)`) THEN ASM_MESON_TAC[SUBSET; GROUP_CONJUGATION_LINV; GROUP_CONJUGATION_RINV]);; let IMAGE_GROUP_CONJUGATION_EQ_SWAP = prove (`!G (a:A) s t. a IN group_carrier G /\ s SUBSET group_carrier G /\ t SUBSET group_carrier G /\ IMAGE (group_conjugation G (group_inv G a)) s = t ==> IMAGE (group_conjugation G a) t = s`, MESON_TAC[IMAGE_GROUP_CONJUGATION_BY_INV]);; let IMAGE_GROUP_CONJUGATION_EQ_PREIMAGE = prove (`!G (a:A) s t. a IN group_carrier G /\ s SUBSET group_carrier G /\ t SUBSET group_carrier G ==> (IMAGE (group_conjugation G a) s = t <=> {x | x IN group_carrier G /\ group_conjugation G a x IN t} = s)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(SET_RULE `!g. s SUBSET u /\ t SUBSET u /\ (!x. x IN u ==> f(x) IN u /\ g(f x) = x) /\ (!y. y IN u ==> g(y) IN u /\ f(g(y)) = y) ==> (IMAGE f s = t <=> {x | x IN u /\ f x IN t} = s)`) THEN EXISTS_TAC `group_conjugation G (group_inv G (a:A))` THEN ASM_SIMP_TAC[GROUP_CONJUGATION; GROUP_INV; GROUP_CONJUGATION_LINV; GROUP_CONJUGATION_RINV]);; (* ------------------------------------------------------------------------- *) (* Subgroups. We treat them as *sets* which seems to be a common convention. *) (* And "subgroup_generated" can be used in the degenerate case where the set *) (* is closed under the operations to cast from "subset" to "group". *) (* ------------------------------------------------------------------------- *) parse_as_infix ("subgroup_of",(12,"right"));; let subgroup_of = new_definition `(s:A->bool) subgroup_of (G:A group) <=> s SUBSET group_carrier G /\ group_id G IN s /\ (!x. x IN s ==> group_inv G x IN s) /\ (!x y. x IN s /\ y IN s ==> group_mul G x y IN s)`;; let IN_SUBGROUP_ID = prove (`!G h:A->bool. h subgroup_of G ==> group_id G IN h`, SIMP_TAC[subgroup_of]);; let IN_SUBGROUP_INV = prove (`!G h x:A. h subgroup_of G /\ x IN h ==> group_inv G x IN h`, SIMP_TAC[subgroup_of]);; let IN_SUBGROUP_MUL = prove (`!G h x y:A. h subgroup_of G /\ x IN h /\ y IN h ==> group_mul G x y IN h`, SIMP_TAC[subgroup_of]);; let IN_SUBGROUP_DIV = prove (`!G h x y:A. h subgroup_of G /\ x IN h /\ y IN h ==> group_div G x y IN h`, SIMP_TAC[group_div; IN_SUBGROUP_MUL; IN_SUBGROUP_INV]);; let IN_SUBGROUP_POW = prove (`!G h (x:A) n. h subgroup_of G /\ x IN h ==> group_pow G x n IN h`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[group_pow; IN_SUBGROUP_ID; IN_SUBGROUP_MUL]);; let IN_SUBGROUP_ZPOW = prove (`!G h (x:A) n. h subgroup_of G /\ x IN h ==> group_zpow G x n IN h`, REPEAT STRIP_TAC THEN REWRITE_TAC[group_zpow] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[IN_SUBGROUP_INV; IN_SUBGROUP_POW]);; let IN_SUBGROUP_CONJUGATION = prove (`!G h a x:A. h subgroup_of G /\ a IN h /\ x IN h ==> group_conjugation G a x IN h`, SIMP_TAC[subgroup_of; group_conjugation]);; let IN_SUBGROUP_PRODUCT = prove (`!G h (<<=) k (f:K->A). h subgroup_of G /\ (!i. i IN k /\ f i IN group_carrier G ==> f i IN h) ==> group_product G (<<=) k f IN h`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(REWRITE_RULE[] (ISPEC `\x:A. x IN h` GROUP_PRODUCT_CLOSED)) THEN ASM_MESON_TAC[subgroup_of]);; let IN_SUBGROUP_SUM = prove (`!G h k (f:K->A). h subgroup_of G /\ (!i. i IN k /\ f i IN group_carrier G ==> f i IN h) ==> group_sum G k f IN h`, REWRITE_TAC[group_sum; IN_SUBGROUP_PRODUCT]);; let IMAGE_GROUP_CONJUGATION_SUBGROUP = prove (`!G h a:A. h subgroup_of G /\ a IN h ==> IMAGE (group_conjugation G a) h = h`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(SET_RULE `!g. (!x. x IN s ==> f x IN s /\ g x IN s /\ g(f x) = x /\ f(g x) = x) ==> IMAGE f s = s`) THEN EXISTS_TAC `group_conjugation G (group_inv G a:A)` THEN ASM_MESON_TAC[IN_SUBGROUP_CONJUGATION; GROUP_CONJUGATION_LINV; GROUP_INV; GROUP_CONJUGATION_RINV; subgroup_of; SUBSET]);; let SUBGROUP_OF_INTERS = prove (`!G (gs:(A->bool)->bool). (!g. g IN gs ==> g subgroup_of G) /\ ~(gs = {}) ==> (INTERS gs) subgroup_of G`, REWRITE_TAC[subgroup_of; SUBSET; IN_INTERS] THEN SET_TAC[]);; let SUBGROUP_OF_INTER = prove (`!G g h:A->bool. g subgroup_of G /\ h subgroup_of G ==> (g INTER h) subgroup_of G`, REWRITE_TAC[subgroup_of; SUBSET; IN_INTER] THEN SET_TAC[]);; let SUBGROUP_OF_UNIONS = prove (`!G (u:(A->bool)->bool). ~(u = {}) /\ (!h. h IN u ==> h subgroup_of G) /\ (!g h. g IN u /\ h IN u ==> g SUBSET h \/ h SUBSET g) ==> (UNIONS u) subgroup_of G`, REWRITE_TAC[subgroup_of] THEN SET_TAC[]);; let SUBGROUP_OF_OPPOSITE_GROUP = prove (`!G h:A->bool. h subgroup_of opposite_group G <=> h subgroup_of G`, REWRITE_TAC[subgroup_of; OPPOSITE_GROUP] THEN MESON_TAC[]);; let SUBGROUP_OF_IMP_SUBSET = prove (`!G s:A->bool. s subgroup_of G ==> s SUBSET group_carrier G`, SIMP_TAC[subgroup_of]);; let SUBGROUP_OF_IMP_NONEMPTY = prove (`!G s:A->bool. s subgroup_of G ==> ~(s = {})`, REWRITE_TAC[subgroup_of] THEN SET_TAC[]);; let TRIVIAL_SUBGROUP_OF = prove (`!G:A group. {group_id G} subgroup_of G`, SIMP_TAC[subgroup_of; IN_SING; SING_SUBSET] THEN MESON_TAC GROUP_PROPERTIES);; let CARRIER_SUBGROUP_OF = prove (`!G:A group. (group_carrier G) subgroup_of G`, REWRITE_TAC[subgroup_of; SUBSET_REFL] THEN MESON_TAC GROUP_PROPERTIES);; let FINITE_SUBGROUPS = prove (`!(G:A group). FINITE(group_carrier G) ==> FINITE {h | h subgroup_of G}`, REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{h:A->bool | h SUBSET group_carrier G}` THEN ASM_SIMP_TAC[FINITE_POWERSET; subgroup_of] THEN SET_TAC[]);; let FINITE_RESTRICTED_SUBGROUPS = prove (`!P (G:A group). FINITE(group_carrier G) ==> FINITE {h | h subgroup_of G /\ P h}`, REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{h:A->bool | h SUBSET group_carrier G}` THEN ASM_SIMP_TAC[FINITE_POWERSET; subgroup_of] THEN SET_TAC[]);; let subgroup_generated = new_definition `subgroup_generated G (s:A->bool) = group(INTERS {h | h subgroup_of G /\ (group_carrier G INTER s) SUBSET h}, group_id G,group_inv G,group_mul G)`;; let SUBGROUP_GENERATED = prove (`(!G s:A->bool. group_carrier (subgroup_generated G s) = INTERS {h | h subgroup_of G /\ (group_carrier G INTER s) SUBSET h}) /\ (!G s:A->bool. group_id (subgroup_generated G s) = group_id G) /\ (!G s:A->bool. group_inv (subgroup_generated G s) = group_inv G) /\ (!G s:A->bool. group_mul (subgroup_generated G s) = group_mul G)`, REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN MP_TAC(fst(EQ_IMP_RULE (ISPEC(rand(rand(snd(strip_forall(concl subgroup_generated))))) (CONJUNCT2 group_tybij)))) THEN REWRITE_TAC[GSYM subgroup_generated] THEN ANTS_TAC THENL [REWRITE_TAC[INTERS_GSPEC; IN_ELIM_THM] THEN REPLICATE_TAC 2 (GEN_REWRITE_TAC I [CONJ_ASSOC]) THEN CONJ_TAC THENL [MESON_TAC[subgroup_of]; ALL_TAC] THEN REPEAT STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `group_carrier G:A->bool`)) THEN REWRITE_TAC[INTER_SUBSET; SUBSET_REFL; CARRIER_SUBGROUP_OF] THEN MESON_TAC GROUP_PROPERTIES; DISCH_TAC THEN ASM_REWRITE_TAC[group_carrier; group_id; group_inv; group_mul]]);; let SUBGROUP_GENERATED_EQ = prove (`!G s:A->bool. subgroup_generated G s = G <=> group_carrier(subgroup_generated G s) = group_carrier G`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [GROUPS_EQ] THEN REWRITE_TAC[CONJUNCT2 SUBGROUP_GENERATED]);; let GROUP_ID_SUBGROUP = prove (`!G s:A->bool. group_id G IN group_carrier(subgroup_generated G s)`, MESON_TAC[GROUP_ID; SUBGROUP_GENERATED]);; let ABELIAN_SUBGROUP_GENERATED = prove (`!G h:A->bool. abelian_group G ==> abelian_group(subgroup_generated G h)`, SIMP_TAC[abelian_group; SUBGROUP_GENERATED] THEN REWRITE_TAC[IN_INTERS; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `group_carrier(G:A group)`)) THEN ASM_REWRITE_TAC[CARRIER_SUBGROUP_OF; INTER_SUBSET] THEN ASM_MESON_TAC[]);; let GROUP_DIV_SUBGROUP_GENERATED = prove (`!G s:A->bool. group_div (subgroup_generated G s) = group_div G`, REWRITE_TAC[FUN_EQ_THM; group_div; SUBGROUP_GENERATED]);; let GROUP_POW_SUBGROUP_GENERATED = prove (`!G s:A->bool. group_pow (subgroup_generated G s) = group_pow G`, REPEAT GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[group_pow; SUBGROUP_GENERATED]);; let GROUP_ZPOW_SUBGROUP_GENERATED = prove (`!G s:A->bool. group_zpow (subgroup_generated G s) = group_zpow G`, REWRITE_TAC[group_zpow; GROUP_POW_SUBGROUP_GENERATED; SUBGROUP_GENERATED; FUN_EQ_THM]);; let GROUP_CONJUGATION_SUBGROUP_GENERATED = prove (`!G s:A->bool. group_conjugation (subgroup_generated G s) = group_conjugation G`, REWRITE_TAC[group_conjugation; SUBGROUP_GENERATED; FUN_EQ_THM]);; let SUBGROUP_GENERATED_RESTRICT = prove (`!G s:A->bool. subgroup_generated G s = subgroup_generated G (group_carrier G INTER s)`, REWRITE_TAC[subgroup_generated; SET_RULE `g INTER g INTER s = g INTER s`]);; let SUBGROUP_SUBGROUP_GENERATED = prove (`!G s:A->bool. group_carrier(subgroup_generated G s) subgroup_of G`, REPEAT GEN_TAC THEN REWRITE_TAC[SUBGROUP_GENERATED] THEN MATCH_MP_TAC SUBGROUP_OF_INTERS THEN SIMP_TAC[GSYM MEMBER_NOT_EMPTY; IN_ELIM_THM] THEN EXISTS_TAC `group_carrier G:A->bool` THEN REWRITE_TAC[CARRIER_SUBGROUP_OF; INTER_SUBSET]);; let SUBGROUP_GENERATED_MONO = prove (`!G s t:A->bool. s SUBSET t ==> group_carrier(subgroup_generated G s) SUBSET group_carrier(subgroup_generated G t)`, REWRITE_TAC[SUBGROUP_GENERATED] THEN SET_TAC[]);; let SUBGROUP_GENERATED_MINIMAL = prove (`!G h s:A->bool. s SUBSET h /\ h subgroup_of G ==> group_carrier(subgroup_generated G s) SUBSET h`, REWRITE_TAC[SUBGROUP_GENERATED; INTERS_GSPEC] THEN SET_TAC[]);; let SUBGROUPS_GENERATED_EQ = prove (`!G s t:A->bool. s SUBSET group_carrier(subgroup_generated G t) /\ t SUBSET group_carrier(subgroup_generated G s) ==> subgroup_generated G s = subgroup_generated G t`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [GROUPS_EQ] THEN REWRITE_TAC[CONJUNCT2 SUBGROUP_GENERATED] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN ASM_SIMP_TAC[SUBGROUP_GENERATED_MINIMAL; SUBGROUP_SUBGROUP_GENERATED]);; let SUBGROUP_GENERATED_INDUCT = prove (`!G P s:A->bool. (!x. x IN group_carrier G /\ x IN s ==> P x) /\ P(group_id G) /\ (!x. P x ==> P(group_inv G x)) /\ (!x y. P x /\ P y ==> P(group_mul G x y)) ==> !x. x IN group_carrier(subgroup_generated G s) ==> P x`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM IN_INTER] THEN ONCE_REWRITE_TAC[SUBGROUP_GENERATED_RESTRICT] THEN MP_TAC(SET_RULE `group_carrier G INTER (s:A->bool) SUBSET group_carrier G`) THEN SPEC_TAC(`group_carrier G INTER (s:A->bool)`,`s:A->bool`) THEN GEN_TAC THEN DISCH_TAC THEN STRIP_TAC THEN MP_TAC(ISPECL [`G:A group`; `{x:A | x IN group_carrier G /\ P x}`; `s:A->bool`] SUBGROUP_GENERATED_MINIMAL) THEN ANTS_TAC THENL [ALL_TAC; SET_TAC[]] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[subgroup_of; IN_ELIM_THM; SUBSET; GROUP_MUL; GROUP_INV; GROUP_ID]);; let GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET = prove (`!G h:A->bool. group_carrier (subgroup_generated G h) SUBSET group_carrier G`, REPEAT GEN_TAC THEN REWRITE_TAC[SUBGROUP_GENERATED] THEN MATCH_MP_TAC(SET_RULE `a IN s ==> INTERS s SUBSET a`) THEN REWRITE_TAC[IN_ELIM_THM; CARRIER_SUBGROUP_OF; INTER_SUBSET]);; let SUBGROUP_GENERATED_SUPERSET = prove (`!G s:A->bool. subgroup_generated G s = G <=> group_carrier G SUBSET group_carrier(subgroup_generated G s)`, REWRITE_TAC[SUBGROUP_GENERATED_EQ; GSYM SUBSET_ANTISYM_EQ] THEN REWRITE_TAC[GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET]);; let SUBGROUP_OF_SUBGROUP_GENERATED_EQ = prove (`!G h k:A->bool. h subgroup_of (subgroup_generated G k) <=> h subgroup_of G /\ h SUBSET group_carrier(subgroup_generated G k)`, REWRITE_TAC[subgroup_of; CONJUNCT2 SUBGROUP_GENERATED] THEN MESON_TAC[GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET; SUBSET_TRANS]);; let SUBGROUP_GENERATED_INDUCT_STRONG = prove (`!G P s:A->bool. (!x. x IN group_carrier G /\ x IN s ==> P x) /\ P (group_id G) /\ (!x. x IN group_carrier G /\ P x ==> P (group_inv G x)) /\ (!x y. x IN group_carrier G /\ y IN group_carrier G /\ P x /\ P y ==> P (group_mul G x y)) ==> !x. x IN group_carrier (subgroup_generated G s) ==> P x`, REPEAT GEN_TAC THEN STRIP_TAC THEN SUBGOAL_THEN `!x. x IN group_carrier (subgroup_generated G s) ==> (x:A) IN group_carrier G /\ P x` MP_TAC THENL [ALL_TAC; MESON_TAC[]] THEN MATCH_MP_TAC SUBGROUP_GENERATED_INDUCT THEN ASM_SIMP_TAC[GROUP_ID; GROUP_INV; GROUP_MUL]);; let SUBGROUP_GENERATED_INDUCT_ALT = prove (`!G P s:A->bool. P (group_id G) /\ (!x. x IN group_carrier G /\ x IN s ==> P x /\ P(group_inv G x)) /\ (!x y. x IN group_carrier G /\ y IN group_carrier G /\ P x /\ P y ==> P (group_mul G x y)) ==> !x. x IN group_carrier (subgroup_generated G s) ==> P x`, REPEAT GEN_TAC THEN STRIP_TAC THEN SUBGOAL_THEN `!x:A. x IN group_carrier (subgroup_generated G s) ==> P x /\ P(group_inv G x)` MP_TAC THENL [ALL_TAC; MESON_TAC[]] THEN MATCH_MP_TAC SUBGROUP_GENERATED_INDUCT_STRONG THEN ASM_MESON_TAC[GROUP_INV; GROUP_INV_INV; GROUP_INV_MUL; GROUP_INV_ID]);; let SUBGROUP_GENERATED_INDUCT_LEFT = prove (`!G P s:A->bool. P (group_id G) /\ (!x y. x IN group_carrier G /\ x IN s /\ y IN group_carrier G /\ P y ==> P (group_mul G x y) /\ P (group_mul G (group_inv G x) y)) ==> !x. x IN group_carrier(subgroup_generated G s) ==> P x`, REPEAT GEN_TAC THEN STRIP_TAC THEN SUBGOAL_THEN `!x:A. x IN group_carrier (subgroup_generated G s) ==> !y. y IN group_carrier G /\ P y ==> P(group_mul G x y)` MP_TAC THENL [ALL_TAC; ASM_MESON_TAC[GROUP_MUL_RID; GROUP_ID; REWRITE_RULE[SUBSET] GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET]] THEN MATCH_MP_TAC SUBGROUP_GENERATED_INDUCT_ALT THEN ASM_SIMP_TAC[GSYM GROUP_MUL_ASSOC; GROUP_MUL_LID; GROUP_MUL]);; let FINITE_SUBGROUP_GENERATED = prove (`!G s:A->bool. FINITE(group_carrier G) ==> FINITE(group_carrier(subgroup_generated G s))`, MESON_TAC[FINITE_SUBSET; GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET]);; let CARD_LE_SUBGROUP_GENERATED = prove (`!(G:A group) s (k:K->bool). INFINITE k /\ s <=_c k ==> group_carrier(subgroup_generated G s) <=_c k`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LE_C]) THEN REWRITE_TAC[SURJECTIVE_ON_RIGHT_INVERSE; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`gdecmap:K->A`; `gencmap:A->K`] THEN DISCH_TAC THEN (CHOOSE_TAC o prove_general_recursive_function_exists) `?groupel:(bool#K)list->A. groupel [] = group_id G /\ (!x l. groupel (CONS (F,x) l) = group_mul G (gdecmap x) (groupel l)) /\ (!x l. groupel (CONS (T,x) l) = group_mul G (group_inv G (gdecmap x)) (groupel l))` THEN TRANS_TAC CARD_LE_TRANS `IMAGE (groupel:(bool#K)list->A) {l | !x. MEM x l ==> x IN (:bool) CROSS k}` THEN CONJ_TAC THENL [MATCH_MP_TAC CARD_LE_SUBSET THEN REWRITE_TAC[SUBSET; IN_IMAGE; ALL_MEM; IN_ELIM_THM]; W(MP_TAC o PART_MATCH lhand CARD_LE_IMAGE o lhand o snd) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_TRANS) THEN W(MP_TAC o PART_MATCH (lhand o rand) CARD_EQ_LIST_GEN o lhand o snd) THEN ANTS_TAC THENL [ASM_MESON_TAC[INFINITE; FINITE_CROSS_EQ; FINITE_EMPTY; UNIV_NOT_EMPTY]; DISCH_THEN(MP_TAC o MATCH_MP CARD_EQ_IMP_LE)] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_TRANS) THEN MATCH_MP_TAC CARD_EQ_IMP_LE THEN REWRITE_TAC[CROSS; GSYM mul_c] THEN MATCH_MP_TAC CARD_MUL_ABSORB THEN ASM_REWRITE_TAC[UNIV_NOT_EMPTY] THEN MATCH_MP_TAC CARD_LE_FINITE_INFINITE THEN ASM_REWRITE_TAC[FINITE_BOOL]] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN MATCH_MP_TAC SUBGROUP_GENERATED_INDUCT_LEFT THEN CONJ_TAC THENL [EXISTS_TAC `[]:(bool#K)list` THEN ASM_REWRITE_TAC[ALL]; MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(X_CHOOSE_THEN `l:(bool#K)list` STRIP_ASSUME_TAC) THEN CONJ_TAC THENL [EXISTS_TAC `CONS (F,(gencmap:A->K) x) l`; EXISTS_TAC `CONS (T,(gencmap:A->K) x) l`] THEN ASM_SIMP_TAC[ALL; IN_CROSS; IN_UNIV]]);; let COUNTABLE_SUBGROUP_GENERATED = prove (`!G s:A->bool. COUNTABLE(group_carrier G) \/ COUNTABLE s ==> COUNTABLE(group_carrier(subgroup_generated G s))`, REPEAT STRIP_TAC THENL [ASM_MESON_TAC[GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET; COUNTABLE_SUBSET]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COUNTABLE])] THEN REWRITE_TAC[COUNTABLE; ge_c] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CARD_LE_SUBGROUP_GENERATED) THEN REWRITE_TAC[num_INFINITE]);; let SUBGROUP_GENERATED_SUBSET_CARRIER = prove (`!G h:A->bool. group_carrier G INTER h SUBSET group_carrier(subgroup_generated G h)`, REWRITE_TAC[subgroup_of; SUBGROUP_GENERATED; SUBSET_INTERS] THEN SET_TAC[]);; let SUBSET_CARRIER_SUBGROUP_GENERATED = prove (`!G s t:A->bool. s SUBSET group_carrier G /\ s SUBSET t ==> s SUBSET group_carrier(subgroup_generated G t)`, MESON_TAC[SUBSET_TRANS; SUBSET_INTER; SUBGROUP_GENERATED_SUBSET_CARRIER]);; let SUBGROUP_GENERATED_MINIMAL_EQ = prove (`!G h s:A->bool. h subgroup_of G ==> (group_carrier (subgroup_generated G s) SUBSET h <=> group_carrier G INTER s SUBSET h)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] SUBSET_TRANS) THEN REWRITE_TAC[SUBGROUP_GENERATED_SUBSET_CARRIER]; ONCE_REWRITE_TAC[SUBGROUP_GENERATED_RESTRICT] THEN ASM_SIMP_TAC[SUBGROUP_GENERATED_MINIMAL]]);; let CARRIER_SUBGROUP_GENERATED_SUBGROUP = prove (`!G h:A->bool. h subgroup_of G ==> group_carrier (subgroup_generated G h) = h`, REWRITE_TAC[subgroup_of; SUBGROUP_GENERATED; INTERS_GSPEC] THEN REPEAT GEN_TAC THEN SIMP_TAC[SET_RULE `h SUBSET g ==> g INTER h = h`] THEN STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [GEN_REWRITE_TAC I [SUBSET]; ASM SET_TAC[]] THEN X_GEN_TAC `x:A` THEN REWRITE_TAC[IN_ELIM_THM] THEN DISCH_THEN(MP_TAC o SPEC `h:A->bool`) THEN ASM_REWRITE_TAC[SUBSET_REFL]);; let SUBGROUP_OF_SUBGROUP_GENERATED_SUBGROUP_EQ = prove (`!G h k:A->bool. k subgroup_of G ==> (h subgroup_of (subgroup_generated G k) <=> h subgroup_of G /\ h SUBSET k)`, REWRITE_TAC[SUBGROUP_OF_SUBGROUP_GENERATED_EQ] THEN SIMP_TAC[CARRIER_SUBGROUP_GENERATED_SUBGROUP]);; let SUBGROUP_GENERATED_GROUP_CARRIER = prove (`!G:A group. subgroup_generated G (group_carrier G) = G`, GEN_TAC THEN REWRITE_TAC[GROUPS_EQ] THEN SIMP_TAC[CARRIER_SUBGROUP_GENERATED_SUBGROUP; CARRIER_SUBGROUP_OF] THEN REWRITE_TAC[SUBGROUP_GENERATED]);; let SUBGROUP_OF_SUBGROUP_GENERATED = prove (`!G g h:A->bool. g subgroup_of G /\ g SUBSET h ==> g subgroup_of (subgroup_generated G h)`, SIMP_TAC[subgroup_of; SUBGROUP_GENERATED; SUBSET_INTERS] THEN SET_TAC[]);; let SUBGROUP_GENERATED_SUBSET_CARRIER_SUBSET = prove (`!G s:A->bool. s SUBSET group_carrier G ==> s SUBSET group_carrier(subgroup_generated G s)`, MESON_TAC[SUBGROUP_GENERATED_SUBSET_CARRIER; SET_RULE `s SUBSET t <=> t INTER s = s`]);; let SUBGROUP_GENERATED_REFL = prove (`!G s:A->bool. group_carrier G SUBSET s ==> subgroup_generated G s = G`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[SUBGROUP_GENERATED_RESTRICT] THEN ASM_SIMP_TAC[SET_RULE `u SUBSET s ==> u INTER s = u`] THEN REWRITE_TAC[SUBGROUP_GENERATED_GROUP_CARRIER]);; let SUBGROUP_GENERATED_INC = prove (`!G s x:A. s SUBSET group_carrier G /\ x IN s ==> x IN group_carrier(subgroup_generated G s)`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; GSYM SUBSET] THEN REWRITE_TAC[SUBGROUP_GENERATED_SUBSET_CARRIER_SUBSET]);; let SUBGROUP_GENERATED_INC_GEN = prove (`!G s x:A. x IN group_carrier G /\ x IN s ==> x IN group_carrier(subgroup_generated G s)`, MESON_TAC[SUBGROUP_GENERATED_SUBSET_CARRIER; IN_INTER; SUBSET]);; let SUBGROUP_OF_SUBGROUP_GENERATED_REV = prove (`!G g h:A->bool. g subgroup_of (subgroup_generated G h) ==> g subgroup_of G`, SIMP_TAC[subgroup_of; CONJUNCT2 SUBGROUP_GENERATED] THEN MESON_TAC[GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET; SUBSET_TRANS]);; let TRIVIAL_GROUP_SUBGROUP_GENERATED = prove (`!G s:A->bool. trivial_group G ==> trivial_group(subgroup_generated G s)`, REPEAT GEN_TAC THEN REWRITE_TAC[TRIVIAL_GROUP_ALT] THEN MESON_TAC[SUBSET_TRANS; GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET]);; let TRIVIAL_GROUP_SUBGROUP_GENERATED_TRIVIAL = prove (`!G s:A->bool. s SUBSET {group_id G} ==> trivial_group(subgroup_generated G s)`, REPEAT STRIP_TAC THEN REWRITE_TAC[TRIVIAL_GROUP_ALT; SUBGROUP_GENERATED] THEN EXISTS_TAC `group_id G:A` THEN MATCH_MP_TAC INTERS_SUBSET_STRONG THEN EXISTS_TAC `{group_id G:A}` THEN REWRITE_TAC[IN_ELIM_THM; TRIVIAL_SUBGROUP_OF] THEN ASM SET_TAC[]);; let TRIVIAL_GROUP_SUBGROUP_GENERATED_EQ = prove (`!G s:A->bool. trivial_group(subgroup_generated G s) <=> group_carrier G INTER s SUBSET {group_id G}`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[SUBGROUP_GENERATED_RESTRICT] THEN EQ_TAC THEN REWRITE_TAC[TRIVIAL_GROUP_SUBGROUP_GENERATED_TRIVIAL] THEN REWRITE_TAC[TRIVIAL_GROUP_SUBSET] THEN REWRITE_TAC[CONJUNCT2 SUBGROUP_GENERATED] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] SUBSET_TRANS) THEN REWRITE_TAC[GSYM SUBGROUP_GENERATED_RESTRICT] THEN REWRITE_TAC[SUBGROUP_GENERATED_SUBSET_CARRIER]);; let TRIVIAL_GROUP_GENERATED_BY_ANYTHING = prove (`!G s:A->bool. trivial_group G ==> subgroup_generated G s = G`, REPEAT STRIP_TAC THEN REWRITE_TAC[GROUPS_EQ; CONJUNCT2 SUBGROUP_GENERATED] THEN FIRST_ASSUM(MP_TAC o SPEC `s:A->bool` o MATCH_MP TRIVIAL_GROUP_SUBGROUP_GENERATED) THEN POP_ASSUM MP_TAC THEN SIMP_TAC[trivial_group; CONJUNCT2 SUBGROUP_GENERATED]);; let SUBGROUP_GENERATED_BY_SUBGROUP_GENERATED = prove (`!G s:A->bool. subgroup_generated G (group_carrier(subgroup_generated G s)) = subgroup_generated G s`, REPEAT GEN_TAC THEN REWRITE_TAC[GROUPS_EQ; CONJUNCT2 SUBGROUP_GENERATED] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [MATCH_MP_TAC SUBGROUP_GENERATED_MINIMAL THEN REWRITE_TAC[SUBGROUP_SUBGROUP_GENERATED; SUBSET_REFL]; MATCH_MP_TAC SUBGROUP_GENERATED_SUBSET_CARRIER_SUBSET THEN REWRITE_TAC[GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET]]);; let SUBGROUP_GENERATED_INSERT_ID = prove (`!G s:A->bool. subgroup_generated G (group_id G INSERT s) = subgroup_generated G s`, REWRITE_TAC[GROUPS_EQ; SUBGROUP_GENERATED] THEN REWRITE_TAC[EXTENSION; INTERS_GSPEC; IN_ELIM_THM] THEN REWRITE_TAC[SUBSET; IN_INTER; IN_INSERT; TAUT `p /\ (q \/ r) ==> s <=> (q ==> p ==> s) /\ (p /\ r ==> s)`] THEN REWRITE_TAC[FORALL_AND_THM; FORALL_UNWIND_THM2; GROUP_ID] THEN MESON_TAC[subgroup_of]);; let GROUP_CARRIER_SUBGROUP_GENERATED_MONO = prove (`!G s t:A->bool. group_carrier(subgroup_generated (subgroup_generated G s) t) SUBSET group_carrier(subgroup_generated G t)`, ONCE_REWRITE_TAC[SUBGROUP_GENERATED] THEN REWRITE_TAC[SUBGROUP_OF_SUBGROUP_GENERATED_EQ] THEN REPEAT GEN_TAC THEN MATCH_MP_TAC INTERS_ANTIMONO_GEN THEN X_GEN_TAC `h:A->bool` THEN REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN EXISTS_TAC `h INTER group_carrier (subgroup_generated G s):A->bool` THEN REWRITE_TAC[INTER_SUBSET; SUBSET_INTER] THEN ASM_SIMP_TAC[SUBGROUP_OF_INTER; SUBGROUP_SUBGROUP_GENERATED] THEN MP_TAC(ISPECL [`G:A group`; `s:A->bool`] GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET) THEN ASM SET_TAC[]);; let SUBGROUP_GENERATED_IDEMPOT_GEN = prove (`!G s t:A->bool. s SUBSET group_carrier(subgroup_generated G t) ==> subgroup_generated (subgroup_generated G t) s = subgroup_generated G s`, REPEAT STRIP_TAC THEN REWRITE_TAC[GROUPS_EQ; CONJUNCT2 SUBGROUP_GENERATED] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[GROUP_CARRIER_SUBGROUP_GENERATED_MONO] THEN MATCH_MP_TAC SUBGROUP_GENERATED_MINIMAL THEN ASM_SIMP_TAC[SUBGROUP_GENERATED_SUBSET_CARRIER_SUBSET] THEN MESON_TAC[SUBGROUP_OF_SUBGROUP_GENERATED_REV; SUBGROUP_SUBGROUP_GENERATED]);; let SUBGROUP_GENERATED_IDEMPOT = prove (`!G s t:A->bool. s SUBSET t ==> subgroup_generated (subgroup_generated G t) s = subgroup_generated G s`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`G:A group`; `group_carrier G INTER s:A->bool`; `t:A->bool`] SUBGROUP_GENERATED_IDEMPOT_GEN) THEN REWRITE_TAC[GSYM SUBGROUP_GENERATED_RESTRICT] THEN ANTS_TAC THENL [W(MP_TAC o PART_MATCH rand SUBGROUP_GENERATED_SUBSET_CARRIER o rand o snd) THEN ASM SET_TAC[]; DISCH_THEN(SUBST1_TAC o SYM)] THEN ONCE_REWRITE_TAC[SUBGROUP_GENERATED_RESTRICT] THEN AP_TERM_TAC THEN MATCH_MP_TAC(SET_RULE `t SUBSET u ==> t INTER s = t INTER u INTER s`) THEN REWRITE_TAC[GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET]);; let SUBGROUP_GENERATED_BY_SUBGROUP_GENERATED_IDEMPOT = prove (`!G s t:A->bool. s SUBSET t ==> subgroup_generated (subgroup_generated G t) (group_carrier (subgroup_generated G s)) = subgroup_generated G s`, MESON_TAC[SUBGROUP_GENERATED_BY_SUBGROUP_GENERATED; SUBGROUP_GENERATED_IDEMPOT; SUBGROUP_GENERATED_MONO]);; let SUBGROUP_GENERATED_UNION_LEFT = prove (`!G s t:A->bool. subgroup_generated G (group_carrier(subgroup_generated G s) UNION t) = subgroup_generated G (s UNION t)`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC I [GROUPS_EQ] THEN REWRITE_TAC[CONJUNCT2 SUBGROUP_GENERATED] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN SIMP_TAC[SUBGROUP_GENERATED_MINIMAL_EQ; SUBGROUP_SUBGROUP_GENERATED] THEN REWRITE_TAC[UNION_OVER_INTER; UNION_SUBSET] THEN SIMP_TAC[GSYM SUBGROUP_GENERATED_MINIMAL_EQ; SUBGROUP_SUBGROUP_GENERATED] THEN REWRITE_TAC[SUBGROUP_GENERATED_BY_SUBGROUP_GENERATED] THEN REPEAT CONJ_TAC THENL [ALL_TAC; ALL_TAC; GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM SUBGROUP_GENERATED_BY_SUBGROUP_GENERATED]; ALL_TAC] THEN MATCH_MP_TAC SUBGROUP_GENERATED_MONO THEN SET_TAC[]);; let SUBGROUP_GENERATED_UNION_RIGHT = prove (`!G s t:A->bool. subgroup_generated G (s UNION group_carrier(subgroup_generated G t)) = subgroup_generated G (s UNION t)`, ONCE_REWRITE_TAC[UNION_COMM] THEN REWRITE_TAC[SUBGROUP_GENERATED_UNION_LEFT]);; let SUBGROUP_GENERATED_UNION = prove (`!G s t:A->bool. subgroup_generated G (group_carrier(subgroup_generated G s) UNION group_carrier(subgroup_generated G t)) = subgroup_generated G (s UNION t)`, REWRITE_TAC[SUBGROUP_GENERATED_UNION_LEFT; SUBGROUP_GENERATED_UNION_RIGHT]);; let TRIVIAL_GROUP_SUBGROUP_GENERATED_EMPTY = prove (`!G:A group. trivial_group(subgroup_generated G {})`, REWRITE_TAC[TRIVIAL_GROUP_SUBGROUP_GENERATED_EQ] THEN SET_TAC[]);; let SUBGROUP_OF_COMMUTING_ELEMENTS = prove (`!G z:A. z IN group_carrier G ==> {x | x IN group_carrier G /\ group_mul G x z = group_mul G z x} subgroup_of G`, REWRITE_TAC[subgroup_of; SUBSET_RESTRICT; IN_ELIM_THM] THEN SIMP_TAC[GROUP_MUL_LID; GROUP_MUL_RID; GROUP_COMMUTES_MUL; GROUP_COMMUTES_INV; GROUP_MUL; GROUP_INV; GROUP_ID]);; let GROUP_COMMUTES_SUBGROUP_GENERATED_EQ = prove (`!G s z:A. z IN group_carrier G ==> ((!x. x IN group_carrier(subgroup_generated G s) ==> group_mul G x z = group_mul G z x) <=> (!x. x IN group_carrier G /\ x IN s ==> group_mul G x z = group_mul G z x))`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP SUBGROUP_OF_COMMUTING_ELEMENTS) THEN DISCH_THEN(MP_TAC o SPEC `s:A->bool` o MATCH_MP SUBGROUP_GENERATED_MINIMAL_EQ) THEN REWRITE_TAC[IN_GSPEC; GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET; SET_RULE `s SUBSET {x | P x /\ Q x} <=> s SUBSET {x | P x} /\ s SUBSET {x | Q x}`] THEN SET_TAC[]);; let GROUP_COMMUTES_SUBGROUP_GENERATED = prove (`!G s z:A. (!x. x IN s ==> group_mul G x z = group_mul G z x) /\ z IN group_carrier G ==> (!x. x IN group_carrier(subgroup_generated G s) ==> group_mul G x z = group_mul G z x)`, MESON_TAC[GROUP_COMMUTES_SUBGROUP_GENERATED_EQ]);; let GROUP_COMMUTES_SUBGROUPS_GENERATED_EQ = prove (`!G s t:A->bool. (!x y. x IN group_carrier(subgroup_generated G s) /\ y IN group_carrier(subgroup_generated G t) ==> group_mul G x y = group_mul G y x) <=> (!x y. x IN group_carrier G /\ x IN s /\ y IN group_carrier G /\ y IN t ==> group_mul G x y = group_mul G y x)`, REPEAT GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM; TAUT `p /\ q /\ r /\ s ==> t <=> p /\ q ==> r /\ s ==> t`] THEN GEN_REWRITE_TAC (BINOP_CONV o ONCE_DEPTH_CONV) [EQ_SYM_EQ] THEN SIMP_TAC[GSYM GROUP_COMMUTES_SUBGROUP_GENERATED_EQ] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN ONCE_REWRITE_TAC[IMP_CONJ_ALT] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_REWRITE_TAC (BINOP_CONV o ONCE_DEPTH_CONV) [EQ_SYM_EQ] THEN MP_TAC(ISPECL [`G:A group`; `t:A->bool`] GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET) THEN SIMP_TAC[GROUP_COMMUTES_SUBGROUP_GENERATED_EQ; SUBSET]);; let ABELIAN_GROUP_SUBGROUP_GENERATED_GEN = prove (`!G s:A->bool. (!x y. x IN group_carrier G /\ x IN s /\ y IN group_carrier G /\ y IN s ==> group_mul G x y = group_mul G y x) ==> abelian_group (subgroup_generated G s)`, REWRITE_TAC[abelian_group; CONJUNCT2 SUBGROUP_GENERATED] THEN REWRITE_TAC[GROUP_COMMUTES_SUBGROUPS_GENERATED_EQ]);; (* ------------------------------------------------------------------------- *) (* Direct products and sums. *) (* ------------------------------------------------------------------------- *) let prod_group = new_definition `prod_group (G:A group) (G':B group) = group((group_carrier G) CROSS (group_carrier G'), (group_id G,group_id G'), (\(x,x'). group_inv G x,group_inv G' x'), (\(x,x') (y,y'). group_mul G x y,group_mul G' x' y'))`;; let PROD_GROUP = prove (`(!(G:A group) (G':B group). group_carrier (prod_group G G') = (group_carrier G) CROSS (group_carrier G')) /\ (!(G:A group) (G':B group). group_id (prod_group G G') = (group_id G,group_id G')) /\ (!(G:A group) (G':B group). group_inv (prod_group G G') = \(x,x'). group_inv G x,group_inv G' x') /\ (!(G:A group) (G':B group). group_mul (prod_group G G') = \(x,x') (y,y'). group_mul G x y,group_mul G' x' y')`, REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN MP_TAC(fst(EQ_IMP_RULE (ISPEC(rand(rand(snd(strip_forall(concl prod_group))))) (CONJUNCT2 group_tybij)))) THEN REWRITE_TAC[GSYM prod_group] THEN ANTS_TAC THENL [REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS; PAIR_EQ] THEN SIMP_TAC GROUP_PROPERTIES; DISCH_TAC THEN ASM_REWRITE_TAC[group_carrier; group_id; group_inv; group_mul]]);; let GROUP_POW_PROD_GROUP = prove (`!(G:A group) (H:B group) x y n. x IN group_carrier G /\ y IN group_carrier H ==> group_pow (prod_group G H) (x,y) n = (group_pow G x n,group_pow H y n)`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[group_pow; PROD_GROUP]);; let GROUP_ZPOW_PROD_GROUP = prove (`!(G:A group) (H:B group) x y n. x IN group_carrier G /\ y IN group_carrier H ==> group_zpow (prod_group G H) (x,y) n = (group_zpow G x n,group_zpow H y n)`, REWRITE_TAC[FORALL_INT_CASES; GROUP_ZPOW_POW] THEN SIMP_TAC[GROUP_POW_PROD_GROUP; PROD_GROUP]);; let OPPOSITE_PROD_GROUP = prove (`!(G1:A group) (G2:B group). opposite_group(prod_group G1 G2) = prod_group (opposite_group G1) (opposite_group G2)`, REPEAT GEN_TAC THEN REWRITE_TAC[GROUPS_EQ; OPPOSITE_GROUP; PROD_GROUP] THEN REWRITE_TAC[LAMBDA_PAIR_THM]);; let TRIVIAL_PROD_GROUP = prove (`!(G:A group) (H:B group). trivial_group(prod_group G H) <=> trivial_group G /\ trivial_group H`, REWRITE_TAC[TRIVIAL_GROUP_SUBSET; PROD_GROUP; GSYM CROSS_SING] THEN REWRITE_TAC[SUBSET_CROSS; GROUP_CARRIER_NONEMPTY]);; let FINITE_PROD_GROUP = prove (`!(G:A group) (H:B group). FINITE(group_carrier(prod_group G H)) <=> FINITE(group_carrier G) /\ FINITE(group_carrier H)`, REWRITE_TAC[PROD_GROUP; FINITE_CROSS_EQ; GROUP_CARRIER_NONEMPTY]);; let ABELIAN_PROD_GROUP = prove (`!(G:A group) (H:B group). abelian_group(prod_group G H) <=> abelian_group G /\ abelian_group H`, REPEAT GEN_TAC THEN REWRITE_TAC[abelian_group; PROD_GROUP] THEN REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS; PAIR_EQ] THEN MAP_EVERY (MP_TAC o C ISPEC GROUP_CARRIER_NONEMPTY) [`G:A group`; `H:B group`] THEN SET_TAC[]);; let CROSS_SUBGROUP_OF_PROD_GROUP = prove (`!(G1:A group) (G2:B group) h1 h2. (h1 CROSS h2) subgroup_of (prod_group G1 G2) <=> h1 subgroup_of G1 /\ h2 subgroup_of G2`, REPEAT GEN_TAC THEN REWRITE_TAC[subgroup_of; FORALL_PAIR_THM; PROD_GROUP; IN_CROSS] THEN REWRITE_TAC[SUBSET_CROSS] THEN SET_TAC[]);; let PROD_GROUP_SUBGROUP_GENERATED = prove (`!(G1:A group) (G2:B group) h1 h2. h1 subgroup_of G1 /\ h2 subgroup_of G2 ==> (prod_group (subgroup_generated G1 h1) (subgroup_generated G2 h2) = subgroup_generated (prod_group G1 G2) (h1 CROSS h2))`, SIMP_TAC[GROUPS_EQ; CONJUNCT2 PROD_GROUP; CONJUNCT2 SUBGROUP_GENERATED] THEN SIMP_TAC[CARRIER_SUBGROUP_GENERATED_SUBGROUP; CROSS_SUBGROUP_OF_PROD_GROUP; PROD_GROUP]);; let product_group = new_definition `product_group k (G:K->A group) = group(cartesian_product k (\i. group_carrier(G i)), RESTRICTION k (\i. group_id (G i)), (\x. RESTRICTION k (\i. group_inv (G i) (x i))), (\x y. RESTRICTION k (\i. group_mul (G i) (x i) (y i))))`;; let PRODUCT_GROUP = prove (`(!k (G:K->A group). group_carrier(product_group k G) = cartesian_product k (\i. group_carrier(G i))) /\ (!k (G:K->A group). group_id (product_group k G) = RESTRICTION k (\i. group_id (G i))) /\ (!k (G:K->A group). group_inv (product_group k G) = \x. RESTRICTION k (\i. group_inv (G i) (x i))) /\ (!k (G:K->A group). group_mul (product_group k G) = (\x y. RESTRICTION k (\i. group_mul (G i) (x i) (y i))))`, REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN MP_TAC(fst(EQ_IMP_RULE (ISPEC(rand(rand(snd(strip_forall(concl product_group))))) (CONJUNCT2 group_tybij)))) THEN REWRITE_TAC[GSYM product_group] THEN ANTS_TAC THENL [REWRITE_TAC[cartesian_product; RESTRICTION; EXTENSIONAL; IN_ELIM_THM] THEN REWRITE_TAC[FUN_EQ_THM; RESTRICTION] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN ASM_SIMP_TAC GROUP_PROPERTIES; DISCH_TAC THEN ASM_REWRITE_TAC[group_carrier; group_id; group_inv; group_mul]]);; let GROUP_POW_PRODUCT_GROUP = prove (`!(G:K->A group) k x n. group_pow (product_group k G) x n = RESTRICTION k (\i. group_pow (G i) (x i) n)`, REPLICATE_TAC 3 GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[group_pow; PRODUCT_GROUP] THEN REWRITE_TAC[RESTRICTION_EXTENSION] THEN SIMP_TAC[RESTRICTION]);; let GROUP_ZPOW_PRODUCT_GROUP = prove (`!(G:K->A group) k x n. group_zpow (product_group k G) x n = RESTRICTION k (\i. group_zpow (G i) (x i) n)`, REWRITE_TAC[FORALL_INT_CASES; GROUP_ZPOW_POW] THEN SIMP_TAC[GROUP_POW_PRODUCT_GROUP; PRODUCT_GROUP] THEN REWRITE_TAC[RESTRICTION_EXTENSION] THEN SIMP_TAC[RESTRICTION]);; let OPPOSITE_PRODUCT_GROUP = prove (`!(G:K->A group) k. opposite_group(product_group k G) = product_group k (\i. opposite_group(G i))`, REPEAT GEN_TAC THEN REWRITE_TAC[GROUPS_EQ; OPPOSITE_GROUP; PRODUCT_GROUP]);; let GROUP_PRODUCT_INJECTION = prove (`!k (G:K->A group) a i. RESTRICTION k (\j. if j = i then a else group_id (G j)) IN group_carrier(product_group k G) <=> i IN k ==> a IN group_carrier(G i)`, SIMP_TAC[PRODUCT_GROUP; RESTRICTION_IN_CARTESIAN_PRODUCT; IN_ELIM_THM] THEN MESON_TAC[GROUP_ID]);; let TRIVIAL_PRODUCT_GROUP = prove (`!k (G:K->A group). trivial_group(product_group k G) <=> !i. i IN k ==> trivial_group(G i)`, REWRITE_TAC[TRIVIAL_GROUP_SUBSET; PRODUCT_GROUP] THEN REWRITE_TAC[GSYM CARTESIAN_PRODUCT_SINGS_GEN] THEN REWRITE_TAC[SUBSET_CARTESIAN_PRODUCT] THEN REWRITE_TAC[CARTESIAN_PRODUCT_EQ_EMPTY; GROUP_CARRIER_NONEMPTY]);; let CARTESIAN_PRODUCT_SUBGROUP_OF_PRODUCT_GROUP = prove (`!k h G:K->A group. (cartesian_product k h) subgroup_of (product_group k G) <=> !i. i IN k ==> (h i) subgroup_of (G i)`, REWRITE_TAC[subgroup_of; PRODUCT_GROUP; RESTRICTION_IN_CARTESIAN_PRODUCT; SUBSET_CARTESIAN_PRODUCT] THEN REPEAT GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN ASM_CASES_TAC `cartesian_product k (h:K->A->bool) = {}` THEN ASM_REWRITE_TAC[] THENL [FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CARTESIAN_PRODUCT_EQ_EMPTY]) THEN SET_TAC[]; ASM_REWRITE_TAC[REWRITE_RULE[IMP_CONJ; RIGHT_FORALL_IMP_THM] FORALL_CARTESIAN_PRODUCT_ELEMENTS] THEN MESON_TAC[]]);; let PRODUCT_GROUP_SUBGROUP_GENERATED = prove (`!k G (h:K->A->bool). (!i. i IN k ==> (h i) subgroup_of (G i)) ==> product_group k (\i. subgroup_generated (G i) (h i)) = subgroup_generated (product_group k G) (cartesian_product k h)`, REPEAT STRIP_TAC THEN REWRITE_TAC[GROUPS_EQ] THEN REWRITE_TAC[CONJUNCT2 PRODUCT_GROUP; CONJUNCT2 SUBGROUP_GENERATED] THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_SUBGROUP; PRODUCT_GROUP; CARTESIAN_PRODUCT_SUBGROUP_OF_PRODUCT_GROUP] THEN REWRITE_TAC[CARTESIAN_PRODUCT_EQ] THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_SUBGROUP]);; let FINITE_PRODUCT_GROUP = prove (`!k (G:K->A group). FINITE(group_carrier(product_group k G)) <=> FINITE {i | i IN k /\ ~trivial_group(G i)} /\ !i. i IN k ==> FINITE(group_carrier(G i))`, REPEAT GEN_TAC THEN REWRITE_TAC[PRODUCT_GROUP] THEN REWRITE_TAC[FINITE_CARTESIAN_PRODUCT; CARTESIAN_PRODUCT_EQ_EMPTY] THEN REWRITE_TAC[TRIVIAL_GROUP_ALT; GROUP_CARRIER_NONEMPTY]);; let ABELIAN_PRODUCT_GROUP = prove (`!k (G:K->A group). abelian_group(product_group k G) <=> !i. i IN k ==> abelian_group(G i)`, REWRITE_TAC[abelian_group; PRODUCT_GROUP; RESTRICTION_EXTENSION] THEN REPEAT GEN_TAC THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP] THEN ONCE_REWRITE_TAC[TAUT `p /\ q /\ r ==> s <=> p /\ q ==> r ==> s`] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN SIMP_TAC[FORALL_CARTESIAN_PRODUCT_ELEMENTS_EQ; CARTESIAN_PRODUCT_EQ_EMPTY; GROUP_CARRIER_NONEMPTY] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN GEN_REWRITE_TAC (RAND_CONV o BINDER_CONV o RAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_FORALL_THM] THEN SIMP_TAC[IMP_IMP; FORALL_CARTESIAN_PRODUCT_ELEMENTS_EQ; CARTESIAN_PRODUCT_EQ_EMPTY; GROUP_CARRIER_NONEMPTY] THEN MESON_TAC[]);; let sum_group = new_definition `sum_group k (G:K->A group) = subgroup_generated (product_group k G) {x | x IN cartesian_product k (\i. group_carrier(G i)) /\ FINITE {i | i IN k /\ ~(x i = group_id(G i))}}`;; let SUM_GROUP_ALT = prove (`!k (G:K->A group). sum_group k G = subgroup_generated (product_group k G) {x | FINITE {i | i IN k /\ ~(x i = group_id (G i))}}`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[SUBGROUP_GENERATED_RESTRICT] THEN REWRITE_TAC[sum_group] THEN AP_TERM_TAC THEN REWRITE_TAC[PRODUCT_GROUP] THEN SET_TAC[]);; let SUM_GROUP_EQ_PRODUCT_GROUP = prove (`!k (G:K->A group). FINITE k ==> sum_group k G = product_group k G`, SIMP_TAC[sum_group; FINITE_RESTRICT] THEN REWRITE_TAC[GSYM(CONJUNCT1 PRODUCT_GROUP); IN_GSPEC] THEN REWRITE_TAC[SUBGROUP_GENERATED_GROUP_CARRIER]);; let SUBGROUP_SUM_GROUP = prove (`!k (G:K->A group). {x | x IN cartesian_product k (\i. group_carrier(G i)) /\ FINITE {i | i IN k /\ ~(x i = group_id(G i))}} subgroup_of product_group k G`, REWRITE_TAC[subgroup_of; PRODUCT_GROUP; SUBSET_RESTRICT] THEN REWRITE_TAC[RESTRICTION; cartesian_product; IN_ELIM_THM; EXTENSIONAL] THEN ONCE_REWRITE_TAC[TAUT `p /\ ~q <=> ~(p ==> q)`] THEN SIMP_TAC[GROUP_ID; GROUP_INV_EQ_ID; GROUP_INV; GROUP_MUL] THEN REWRITE_TAC[EMPTY_GSPEC; FINITE_EMPTY] THEN REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[IMP_IMP; GSYM FINITE_UNION] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN REWRITE_TAC[NOT_IMP; SUBSET; IN_ELIM_THM; IN_UNION] THEN GEN_TAC THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN REWRITE_TAC[DE_MORGAN_THM] THEN STRIP_TAC THEN REWRITE_TAC[TAUT `~p \/ q <=> p ==> q`] THEN ASM_SIMP_TAC[GROUP_MUL_LID; GROUP_ID]);; let SUM_GROUP_CLAUSES = prove (`(!k (G:K->A group). group_carrier(sum_group k G) = {x | x IN cartesian_product k (\i. group_carrier(G i)) /\ FINITE {i | i IN k /\ ~(x i = group_id(G i))}}) /\ (!k (G:K->A group). group_id (sum_group k G) = RESTRICTION k (\i. group_id (G i))) /\ (!k (G:K->A group). group_inv (sum_group k G) = \x. RESTRICTION k (\i. group_inv (G i) (x i))) /\ (!k (G:K->A group). group_mul (sum_group k G) = (\x y. RESTRICTION k (\i. group_mul (G i) (x i) (y i))))`, SIMP_TAC[sum_group; SUBGROUP_SUM_GROUP; CARRIER_SUBGROUP_GENERATED_SUBGROUP] THEN REWRITE_TAC[SUBGROUP_GENERATED; PRODUCT_GROUP]);; let GROUP_POW_SUM_GROUP = prove (`!(G:K->A group) k x n. group_pow (sum_group k G) x n = RESTRICTION k (\i. group_pow (G i) (x i) n)`, REWRITE_TAC[SUM_GROUP_ALT; GROUP_POW_SUBGROUP_GENERATED] THEN REWRITE_TAC[GROUP_POW_PRODUCT_GROUP]);; let GROUP_ZPOW_SUM_GROUP = prove (`!(G:K->A group) k x n. group_zpow (sum_group k G) x n = RESTRICTION k (\i. group_zpow (G i) (x i) n)`, REWRITE_TAC[SUM_GROUP_ALT; GROUP_ZPOW_SUBGROUP_GENERATED] THEN REWRITE_TAC[GROUP_ZPOW_PRODUCT_GROUP]);; let GROUP_SUM_INJECTION = prove (`!k (G:K->A group) a i. RESTRICTION k (\j. if j = i then a else group_id (G j)) IN group_carrier(sum_group k G) <=> i IN k ==> a IN group_carrier(G i)`, REPEAT GEN_TAC THEN SIMP_TAC[SUM_GROUP_CLAUSES; RESTRICTION_IN_CARTESIAN_PRODUCT; IN_ELIM_THM] THEN MATCH_MP_TAC(TAUT `(p <=> r) /\ q ==> (p /\ q <=> r)`) THEN CONJ_TAC THENL [MESON_TAC[GROUP_ID]; SIMP_TAC[GSYM NOT_IMP; RESTRICTION]] THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{i:K}` THEN REWRITE_TAC[FINITE_SING] THEN SET_TAC[]);; let TRIVIAL_SUM_GROUP = prove (`!k (G:K->A group). trivial_group(sum_group k G) <=> !i. i IN k ==> trivial_group(G i)`, REPEAT GEN_TAC THEN EQ_TAC THENL [GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[TRIVIAL_GROUP_SUBSET] THEN X_GEN_TAC `i:K` THEN REWRITE_TAC[SET_RULE `~(s SUBSET {a}) <=> ?x. x IN s /\ ~(x = a)`] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `RESTRICTION k (\j. if j = i then a else group_id (G j)):K->A` THEN REWRITE_TAC[SUM_GROUP_CLAUSES; RESTRICTION_IN_CARTESIAN_PRODUCT; IN_ELIM_THM] THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[GROUP_ID]; MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{i:K}` THEN REWRITE_TAC[FINITE_SING; SUBSET; IN_ELIM_THM; IN_SING; RESTRICTION] THEN MESON_TAC[]; DISCH_THEN(MP_TAC o C AP_THM `i:K`) THEN ASM_REWRITE_TAC[RESTRICTION]]; DISCH_TAC THEN REWRITE_TAC[sum_group] THEN MATCH_MP_TAC TRIVIAL_GROUP_SUBGROUP_GENERATED THEN ASM_REWRITE_TAC[TRIVIAL_PRODUCT_GROUP]]);; let CARTESIAN_PRODUCT_SUBGROUP_OF_SUM_GROUP = prove (`!k h G:K->A group. (cartesian_product k h) subgroup_of (sum_group k G) <=> (!i. i IN k ==> (h i) subgroup_of (G i)) /\ (!z. z IN cartesian_product k h ==> FINITE {i | i IN k /\ ~(z i = group_id(G i))})`, REPEAT GEN_TAC THEN REWRITE_TAC[sum_group; SUBGROUP_OF_SUBGROUP_GENERATED_EQ] THEN REWRITE_TAC[GSYM sum_group; SUM_GROUP_CLAUSES] THEN REWRITE_TAC[CARTESIAN_PRODUCT_SUBGROUP_OF_PRODUCT_GROUP] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN MATCH_MP_TAC(TAUT `(p ==> (q <=> r)) ==> (p /\ q <=> p /\ r)`) THEN DISCH_TAC THEN MATCH_MP_TAC(SET_RULE `s SUBSET t ==> ((!x. x IN s ==> x IN t /\ P x) <=> (!x. x IN s ==> P x))`) THEN REWRITE_TAC[SUBSET_CARTESIAN_PRODUCT] THEN ASM_MESON_TAC[subgroup_of]);; let SUM_GROUP_SUBGROUP_GENERATED = prove (`!k G (h:K->A->bool). (!i. i IN k ==> (h i) subgroup_of (G i)) ==> sum_group k (\i. subgroup_generated (G i) (h i)) = subgroup_generated (sum_group k G) (cartesian_product k h)`, REPEAT STRIP_TAC THEN REWRITE_TAC[GROUPS_EQ] THEN REWRITE_TAC[CONJUNCT2 SUM_GROUP_CLAUSES; CONJUNCT2 SUBGROUP_GENERATED] THEN REWRITE_TAC[SUM_GROUP_CLAUSES; CONJUNCT2 SUBGROUP_GENERATED] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [SUBGROUP_GENERATED_RESTRICT] THEN W(MP_TAC o PART_MATCH (lhand o rand) CARRIER_SUBGROUP_GENERATED_SUBGROUP o rand o snd) THEN ANTS_TAC THENL [GEN_REWRITE_TAC RAND_CONV [sum_group] THEN REWRITE_TAC[SUBGROUP_OF_SUBGROUP_GENERATED_EQ] THEN CONJ_TAC THENL [MATCH_MP_TAC SUBGROUP_OF_INTER THEN ASM_SIMP_TAC[CARTESIAN_PRODUCT_SUBGROUP_OF_PRODUCT_GROUP] THEN REWRITE_TAC[SUM_GROUP_CLAUSES; SUBGROUP_SUM_GROUP]; SIMP_TAC[SUBGROUP_SUM_GROUP; CARRIER_SUBGROUP_GENERATED_SUBGROUP] THEN REWRITE_TAC[SUM_GROUP_CLAUSES] THEN SET_TAC[]]; DISCH_THEN SUBST1_TAC] THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[SUM_GROUP_CLAUSES; IN_INTER; IN_ELIM_THM; cartesian_product] THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_SUBGROUP] THEN GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[subgroup_of]) THEN ASM SET_TAC[]);; let ABELIAN_SUM_GROUP = prove (`!k (G:K->A group). abelian_group (sum_group k G) <=> (!i. i IN k ==> abelian_group (G i))`, REPEAT GEN_TAC THEN EQ_TAC THENL [REWRITE_TAC[abelian_group] THEN DISCH_TAC THEN X_GEN_TAC `i:K` THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`RESTRICTION k (\j. if j = i then x else group_id (G j)):K->A`; `RESTRICTION k (\j. if j = i then y else group_id (G j)):K->A`]) THEN ASM_REWRITE_TAC[GROUP_SUM_INJECTION] THEN REWRITE_TAC[SUM_GROUP_CLAUSES; RESTRICTION_EXTENSION] THEN DISCH_THEN(MP_TAC o SPEC `i:K`) THEN ASM_REWRITE_TAC[RESTRICTION]; SIMP_TAC[ABELIAN_SUBGROUP_GENERATED; sum_group; ABELIAN_PRODUCT_GROUP]]);; (* ------------------------------------------------------------------------- *) (* Homomorphisms etc. *) (* ------------------------------------------------------------------------- *) let group_homomorphism = new_definition `group_homomorphism (G,G') (f:A->B) <=> IMAGE f (group_carrier G) SUBSET group_carrier G' /\ f (group_id G) = group_id G' /\ (!x. x IN group_carrier G ==> f(group_inv G x) = group_inv G' (f x)) /\ (!x y. x IN group_carrier G /\ y IN group_carrier G ==> f(group_mul G x y) = group_mul G' (f x) (f y))`;; let group_monomorphism = new_definition `group_monomorphism (G,G') (f:A->B) <=> group_homomorphism (G,G') f /\ !x y. x IN group_carrier G /\ y IN group_carrier G /\ f x = f y ==> x = y`;; let group_epimorphism = new_definition `group_epimorphism (G,G') (f:A->B) <=> group_homomorphism (G,G') f /\ IMAGE f (group_carrier G) = group_carrier G'`;; let group_endomorphism = new_definition `group_endomorphism G (f:A->A) <=> group_homomorphism (G,G) f`;; let group_isomorphisms = new_definition `group_isomorphisms (G,G') ((f:A->B),g) <=> group_homomorphism (G,G') f /\ group_homomorphism (G',G) g /\ (!x. x IN group_carrier G ==> g(f x) = x) /\ (!y. y IN group_carrier G' ==> f(g y) = y)`;; let group_isomorphism = new_definition `group_isomorphism (G,G') (f:A->B) <=> ?g. group_isomorphisms (G,G') (f,g)`;; let group_automorphism = new_definition `group_automorphism G (f:A->A) <=> group_isomorphism (G,G) f`;; let GROUP_HOMOMORPHISM_EQ = prove (`!G H (f:A->B) f'. group_homomorphism(G,H) f /\ (!x. x IN group_carrier G ==> f' x = f x) ==> group_homomorphism (G,H) f'`, REWRITE_TAC[group_homomorphism; SUBSET; FORALL_IN_IMAGE] THEN SIMP_TAC[GROUP_ID; GROUP_INV; GROUP_MUL]);; let GROUP_MONOMORPHISM_EQ = prove (`!G H (f:A->B) f'. group_monomorphism(G,H) f /\ (!x. x IN group_carrier G ==> f' x = f x) ==> group_monomorphism (G,H) f'`, REWRITE_TAC[group_monomorphism; group_homomorphism; SUBSET] THEN SIMP_TAC[FORALL_IN_IMAGE; GROUP_ID; GROUP_INV; GROUP_MUL] THEN MESON_TAC[]);; let GROUP_EPIMORPHISM_EQ = prove (`!G H (f:A->B) f'. group_epimorphism(G,H) f /\ (!x. x IN group_carrier G ==> f' x = f x) ==> group_epimorphism (G,H) f'`, REWRITE_TAC[group_epimorphism; group_homomorphism; SUBSET] THEN SIMP_TAC[FORALL_IN_IMAGE; GROUP_ID; GROUP_INV; GROUP_MUL] THEN SET_TAC[]);; let GROUP_ENDOMORPHISM_EQ = prove (`!G (f:A->A) f'. group_endomorphism G f /\ (!x. x IN group_carrier G ==> f' x = f x) ==> group_endomorphism G f'`, REWRITE_TAC[group_endomorphism; GROUP_HOMOMORPHISM_EQ]);; let GROUP_ISOMORPHISMS_EQ = prove (`!G H (f:A->B) g. group_isomorphisms(G,H) (f,g) /\ (!x. x IN group_carrier G ==> f' x = f x) /\ (!y. y IN group_carrier H ==> g' y = g y) ==> group_isomorphisms(G,H) (f',g')`, SIMP_TAC[group_isomorphisms; group_homomorphism; SUBSET] THEN SIMP_TAC[FORALL_IN_IMAGE; GROUP_ID; GROUP_INV; GROUP_MUL] THEN SET_TAC[]);; let GROUP_ISOMORPHISM_EQ = prove (`!G H (f:A->B) f'. group_isomorphism(G,H) f /\ (!x. x IN group_carrier G ==> f' x = f x) ==> group_isomorphism (G,H) f'`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN REWRITE_TAC[group_isomorphism] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[GROUP_ISOMORPHISMS_EQ]);; let GROUP_AUTOMORPHISM_EQ = prove (`!G (f:A->A) f'. group_automorphism G f /\ (!x. x IN group_carrier G ==> f' x = f x) ==> group_automorphism G f'`, REWRITE_TAC[group_automorphism; GROUP_ISOMORPHISM_EQ]);; let GROUP_HOMOMORPHISMS_EQ_ON_GENERATORS = prove (`!G H s (f:A->B) g. group_homomorphism(G,H) f /\ group_homomorphism(G,H) g /\ (!x. x IN group_carrier G /\ x IN s ==> f x = g x) ==> !x. x IN group_carrier(subgroup_generated G s) ==> f x = g x`, REWRITE_TAC[group_homomorphism; SUBSET; FORALL_IN_IMAGE] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC SUBGROUP_GENERATED_INDUCT_STRONG THEN ASM_MESON_TAC[]);; let GROUP_ISOMORPHISMS_SYM = prove (`!G G' (f:A->B) g. group_isomorphisms (G,G') (f,g) <=> group_isomorphisms(G',G) (g,f)`, REWRITE_TAC[group_isomorphisms] THEN MESON_TAC[]);; let GROUP_ISOMORPHISMS_IMP_ISOMORPHISM = prove (`!(f:A->B) g G G'. group_isomorphisms (G,G') (f,g) ==> group_isomorphism (G,G') f`, REWRITE_TAC[group_isomorphism] THEN MESON_TAC[]);; let GROUP_ISOMORPHISMS_IMP_ISOMORPHISM_ALT = prove (`!(f:A->B) g G G'. group_isomorphisms (G,G') (f,g) ==> group_isomorphism (G',G) g`, MESON_TAC[GROUP_ISOMORPHISMS_SYM; GROUP_ISOMORPHISMS_IMP_ISOMORPHISM]);; let GROUP_HOMOMORPHISM = prove (`!G G' f:A->B. group_homomorphism (G,G') (f:A->B) <=> IMAGE f (group_carrier G) SUBSET group_carrier G' /\ (!x y. x IN group_carrier G /\ y IN group_carrier G ==> f(group_mul G x y) = group_mul G' (f x) (f y))`, REPEAT GEN_TAC THEN REWRITE_TAC[group_homomorphism] THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; FORALL_IN_IMAGE]) THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPECL [`group_id G:A`; `group_id G:A`]) THEN SIMP_TAC[GROUP_ID; GROUP_MUL_LID] THEN GEN_REWRITE_TAC LAND_CONV [EQ_SYM_EQ] THEN ASM_MESON_TAC[GROUP_LID_UNIQUE; GROUP_ID]; REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC GROUP_LINV_UNIQUE THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x:A`; `group_inv G x:A`]) THEN ASM_SIMP_TAC[GROUP_INV; GROUP_MUL_RINV]]);; let GROUP_EPIMORPHISM_SUBSET = prove (`!G G' (f:A->B). group_epimorphism(G,G') f <=> group_homomorphism(G,G') f /\ group_carrier G' SUBSET IMAGE f (group_carrier G)`, REWRITE_TAC[group_epimorphism; group_homomorphism] THEN MESON_TAC[SUBSET_ANTISYM_EQ]);; let GROUP_ISOMORPHISMS = prove (`!G H (f:A->B) g. group_isomorphisms(G,H) (f,g) <=> group_homomorphism(G,H) f /\ (!x. x IN group_carrier G ==> g(f x) = x) /\ (!y. y IN group_carrier H ==> g y IN group_carrier G /\ f(g y) = y)`, REWRITE_TAC[group_isomorphisms; group_homomorphism] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN REPEAT GEN_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[] THEN ASM_MESON_TAC[GROUP_ID; GROUP_INV; GROUP_MUL]);; let GROUP_HOMOMORPHISM_OF_ID = prove (`!(f:A->B) G G'. group_homomorphism(G,G') f ==> f (group_id G) = group_id G'`, SIMP_TAC[group_homomorphism]);; let GROUP_HOMOMORPHISM_INV = prove (`!G G' (f:A->B). group_homomorphism(G,G') f ==> !x. x IN group_carrier G ==> f(group_inv G x) = group_inv G' (f x)`, SIMP_TAC[group_homomorphism]);; let GROUP_HOMOMORPHISM_MUL = prove (`!G G' (f:A->B). group_homomorphism(G,G') f ==> !x y. x IN group_carrier G /\ y IN group_carrier G ==> f(group_mul G x y) = group_mul G' (f x) (f y)`, SIMP_TAC[group_homomorphism]);; let GROUP_HOMOMORPHISM_DIV = prove (`!G G' (f:A->B). group_homomorphism(G,G') f ==> !x y. x IN group_carrier G /\ y IN group_carrier G ==> f(group_div G x y) = group_div G' (f x) (f y)`, REWRITE_TAC[group_homomorphism; group_div] THEN MESON_TAC[GROUP_MUL; GROUP_INV]);; let GROUP_HOMOMORPHISM_POW = prove (`!G G' (f:A->B). group_homomorphism(G,G') f ==> !x n. x IN group_carrier G ==> f(group_pow G x n) = group_pow G' (f x) n`, REPEAT GEN_TAC THEN REWRITE_TAC[group_homomorphism] THEN DISCH_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[group_pow; GROUP_POW]);; let GROUP_HOMOMORPHISM_ZPOW = prove (`!G G' (f:A->B). group_homomorphism(G,G') f ==> !x n. x IN group_carrier G ==> f(group_zpow G x n) = group_zpow G' (f x) n`, REPEAT STRIP_TAC THEN REWRITE_TAC[group_zpow] THEN COND_CASES_TAC THEN ASM_MESON_TAC[GROUP_HOMOMORPHISM_POW; GROUP_HOMOMORPHISM_INV; GROUP_POW]);; let GROUP_HOMOMORPHISM_TRIVIAL = prove (`!G H. group_homomorphism (G,H) (\x. group_id H)`, SIMP_TAC[group_homomorphism; SUBSET; FORALL_IN_IMAGE; GROUP_MUL_LID; GROUP_INV_ID; GROUP_ID]);; let GROUP_HOMOMORPHISM_ID = prove (`!G:A group. group_homomorphism (G,G) (\x. x)`, REWRITE_TAC[group_homomorphism; IMAGE_ID; SUBSET_REFL]);; let GROUP_MONOMORPHISM_ID = prove (`!G:A group. group_monomorphism (G,G) (\x. x)`, SIMP_TAC[group_monomorphism; GROUP_HOMOMORPHISM_ID]);; let GROUP_EPIMORPHISM_ID = prove (`!G:A group. group_epimorphism (G,G) (\x. x)`, SIMP_TAC[group_epimorphism; GROUP_HOMOMORPHISM_ID; IMAGE_ID]);; let GROUP_ISOMORPHISMS_ID = prove (`!G:A group. group_isomorphisms (G,G) ((\x. x),(\x. x))`, REWRITE_TAC[group_isomorphisms; GROUP_HOMOMORPHISM_ID]);; let GROUP_ISOMORPHISM_ID = prove (`!G:A group. group_isomorphism (G,G) (\x. x)`, REWRITE_TAC[group_isomorphism] THEN MESON_TAC[GROUP_ISOMORPHISMS_ID]);; let GROUP_HOMOMORPHISM_COMPOSE = prove (`!G1 G2 G3 (f:A->B) (g:B->C). group_homomorphism(G1,G2) f /\ group_homomorphism(G2,G3) g ==> group_homomorphism(G1,G3) (g o f)`, SIMP_TAC[group_homomorphism; SUBSET; FORALL_IN_IMAGE; IMAGE_o; o_THM]);; let GROUP_MONOMORPHISM_COMPOSE = prove (`!G1 G2 G3 (f:A->B) (g:B->C). group_monomorphism(G1,G2) f /\ group_monomorphism(G2,G3) g ==> group_monomorphism(G1,G3) (g o f)`, REWRITE_TAC[group_monomorphism; group_homomorphism; INJECTIVE_ON_ALT] THEN SIMP_TAC[SUBSET; FORALL_IN_IMAGE; IMAGE_o; o_THM]);; let GROUP_MONOMORPHISM_COMPOSE_REV = prove (`!(f:A->B) (g:B->C) A B C. group_homomorphism(A,B) f /\ group_homomorphism(B,C) g /\ group_monomorphism(A,C) (g o f) ==> group_monomorphism(A,B) f`, REWRITE_TAC[group_monomorphism; o_THM] THEN MESON_TAC[]);; let GROUP_EPIMORPHISM_COMPOSE = prove (`!G1 G2 G3 (f:A->B) (g:B->C). group_epimorphism(G1,G2) f /\ group_epimorphism(G2,G3) g ==> group_epimorphism(G1,G3) (g o f)`, SIMP_TAC[group_epimorphism; IMAGE_o] THEN MESON_TAC[GROUP_HOMOMORPHISM_COMPOSE]);; let GROUP_EPIMORPHISM_COMPOSE_REV = prove (`!(f:A->B) (g:B->C) A B C. group_homomorphism(A,B) f /\ group_homomorphism(B,C) g /\ group_epimorphism(A,C) (g o f) ==> group_epimorphism(B,C) g`, REWRITE_TAC[group_epimorphism; group_homomorphism; o_THM; IMAGE_o] THEN SET_TAC[]);; let GROUP_MONOMORPHISM_LEFT_INVERTIBLE = prove (`!G H (f:A->B) g. group_homomorphism(G,H) f /\ (!x. x IN group_carrier G ==> g(f x) = x) ==> group_monomorphism (G,H) f`, REWRITE_TAC[INJECTIVE_ON_LEFT_INVERSE; group_monomorphism] THEN MESON_TAC[]);; let GROUP_EPIMORPHISM_RIGHT_INVERTIBLE = prove (`!G H (f:A->B) g. group_homomorphism(G,H) f /\ group_homomorphism(H,G) g /\ (!x. x IN group_carrier G ==> g(f x) = x) ==> group_epimorphism (H,G) g`, SIMP_TAC[group_epimorphism] THEN REWRITE_TAC[group_homomorphism] THEN SET_TAC[]);; let GROUP_HOMOMORPHISM_INTO_SUBGROUP = prove (`!G G' h (f:A->B). group_homomorphism (G,G') f /\ IMAGE f (group_carrier G) SUBSET h ==> group_homomorphism (G,subgroup_generated G' h) f`, REPEAT GEN_TAC THEN SIMP_TAC[group_homomorphism; SUBGROUP_GENERATED] THEN REWRITE_TAC[INTERS_GSPEC] THEN SET_TAC[]);; let GROUP_HOMOMORPHISM_INTO_SUBGROUP_EQ_GEN = prove (`!(f:A->B) G H s. group_homomorphism(G,subgroup_generated H s) f <=> group_homomorphism(G,H) f /\ IMAGE f (group_carrier G) SUBSET group_carrier(subgroup_generated H s)`, REPEAT GEN_TAC THEN REWRITE_TAC[group_homomorphism] THEN MP_TAC(ISPECL [`H:B group`; `s:B->bool`] GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET) THEN REWRITE_TAC[SUBGROUP_GENERATED] THEN SET_TAC[]);; let GROUP_HOMOMORPHISM_INTO_SUBGROUP_EQ = prove (`!G G' h (f:A->B). h subgroup_of G' ==> (group_homomorphism (G,subgroup_generated G' h) f <=> group_homomorphism (G,G') f /\ IMAGE f (group_carrier G) SUBSET h)`, SIMP_TAC[GROUP_HOMOMORPHISM_INTO_SUBGROUP_EQ_GEN; CARRIER_SUBGROUP_GENERATED_SUBGROUP]);; let GROUP_HOMOMORPHISM_FROM_SUBGROUP_GENERATED = prove (`!(f:A->B) G H s. group_homomorphism (G,H) f ==> group_homomorphism(subgroup_generated G s,H) f`, REPEAT GEN_TAC THEN REWRITE_TAC[group_homomorphism] THEN MP_TAC(ISPECL [`G:A group`; `s:A->bool`] GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET) THEN SIMP_TAC[SUBSET; SUBGROUP_GENERATED] THEN SET_TAC[]);; let GROUP_HOMOMORPHISM_BETWEEN_SUBGROUPS = prove (`!G H g h (f:A->B). group_homomorphism(G,H) f /\ IMAGE f g SUBSET h ==> group_homomorphism(subgroup_generated G g,subgroup_generated H h) f`, REPEAT STRIP_TAC THEN REWRITE_TAC[GROUP_HOMOMORPHISM_INTO_SUBGROUP_EQ_GEN] THEN ASM_SIMP_TAC[GROUP_HOMOMORPHISM_FROM_SUBGROUP_GENERATED] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN ONCE_REWRITE_TAC[TAUT `p ==> q <=> p ==> p /\ q`] THEN MATCH_MP_TAC SUBGROUP_GENERATED_INDUCT THEN RULE_ASSUM_TAC (REWRITE_RULE[group_homomorphism; SUBSET; FORALL_IN_IMAGE]) THEN MP_TAC(REWRITE_RULE[SUBSET] (ISPECL [`G:A group`; `g:A->bool`] GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET)) THEN ASM_SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN REPEAT CONJ_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC(REWRITE_RULE[SUBSET] SUBGROUP_GENERATED_SUBSET_CARRIER) THEN ASM SET_TAC[]; ASM_MESON_TAC[GROUP_ID; SUBGROUP_GENERATED]; ASM_MESON_TAC[GROUP_ID; SUBGROUP_GENERATED]; ASM_MESON_TAC[GROUP_INV; SUBGROUP_GENERATED]; ASM_MESON_TAC[GROUP_MUL; SUBGROUP_GENERATED]]);; let GROUP_HOMOMORPHISM_BETWEEN_SUBGROUPS_ALT = prove (`!G H g h (f:A->B). group_homomorphism(G,H) f /\ IMAGE f (group_carrier G INTER g) SUBSET h ==> group_homomorphism(subgroup_generated G g,subgroup_generated H h) f`, MESON_TAC[SUBGROUP_GENERATED_RESTRICT; GROUP_HOMOMORPHISM_BETWEEN_SUBGROUPS]);; let GROUP_MONOMORPHISM_FROM_SUBGROUP_GENERATED = prove (`!(f:A->B) G H s. group_monomorphism (G,H) f ==> group_monomorphism(subgroup_generated G s,H) f`, REPEAT GEN_TAC THEN REWRITE_TAC[group_monomorphism] THEN MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[GROUP_HOMOMORPHISM_FROM_SUBGROUP_GENERATED] THEN MP_TAC(ISPECL [`G:A group`; `s:A->bool`] GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET) THEN SET_TAC[]);; let GROUP_MONOMORPHISM_BETWEEN_SUBGROUPS = prove (`!G H s t (f:A->B). group_monomorphism(G,H) f /\ IMAGE f s SUBSET t ==> group_monomorphism(subgroup_generated G s,subgroup_generated H t) f`, REPEAT GEN_TAC THEN REWRITE_TAC[group_monomorphism] THEN SIMP_TAC[GROUP_HOMOMORPHISM_BETWEEN_SUBGROUPS] THEN MP_TAC(ISPECL [`G:A group`; `s:A->bool`] GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET) THEN SET_TAC[]);; let GROUP_MONOMORPHISM_INTO_SUPERGROUP = prove (`!G G' t (f:A->B). group_monomorphism(G,subgroup_generated G' t) f ==> group_monomorphism(G,G') f`, REWRITE_TAC[group_monomorphism; GROUP_HOMOMORPHISM_INTO_SUBGROUP_EQ_GEN] THEN MESON_TAC[]);; let GROUP_HOMOMORPHISM_INCLUSION = prove (`!G s:A->bool. group_homomorphism(subgroup_generated G s,G) (\x. x)`, SIMP_TAC[GROUP_HOMOMORPHISM_FROM_SUBGROUP_GENERATED; GROUP_HOMOMORPHISM_ID]);; let GROUP_MONOMORPHISM_INCLUSION = prove (`!G s:A->bool. group_monomorphism(subgroup_generated G s,G) (\x. x)`, SIMP_TAC[GROUP_MONOMORPHISM_FROM_SUBGROUP_GENERATED; GROUP_MONOMORPHISM_ID]);; let SUBGROUP_GENERATED_BY_HOMOMORPHIC_IMAGE = prove (`!G H (f:A->B) s. group_homomorphism(G,H) f /\ s SUBSET group_carrier G ==> group_carrier (subgroup_generated H (IMAGE f s)) = IMAGE f (group_carrier(subgroup_generated G s))`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET] THEN MATCH_MP_TAC SUBGROUP_GENERATED_INDUCT THEN REWRITE_TAC[FORALL_IN_IMAGE_2] THEN ONCE_REWRITE_TAC[IMP_CONJ_ALT] THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN MP_TAC(REWRITE_RULE[SUBSET] (ISPECL [`G:A group`; `s:A->bool`] GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET)) THEN FIRST_X_ASSUM(MP_TAC o GSYM o GEN_REWRITE_RULE I [group_homomorphism]) THEN ASM_SIMP_TAC[SUBGROUP_GENERATED_INC; FUN_IN_IMAGE] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC FUN_IN_IMAGE THEN ASM_MESON_TAC[SUBGROUP_GENERATED; GROUP_ID; GROUP_INV; GROUP_MUL]; FIRST_ASSUM(MP_TAC o ISPECL [`s:A->bool`; `IMAGE (f:A->B) s`] o MATCH_MP (REWRITE_RULE[IMP_CONJ] GROUP_HOMOMORPHISM_BETWEEN_SUBGROUPS)) THEN SIMP_TAC[group_homomorphism; SUBSET_REFL]]);; let GROUP_EPIMORPHISM_BETWEEN_SUBGROUPS = prove (`!G H (f:A->B). group_homomorphism(G,H) f /\ s SUBSET group_carrier G ==> group_epimorphism(subgroup_generated G s, subgroup_generated H (IMAGE f s)) f`, REWRITE_TAC[group_epimorphism; GROUP_HOMOMORPHISM_INTO_SUBGROUP_EQ_GEN] THEN SIMP_TAC[GROUP_HOMOMORPHISM_FROM_SUBGROUP_GENERATED] THEN ASM_SIMP_TAC[SUBGROUP_GENERATED_BY_HOMOMORPHIC_IMAGE; SUBSET_REFL]);; let GROUP_EPIMORPHISM_INTO_SUBGROUP_EQ_GEN = prove (`!(f:A->B) G H s. group_epimorphism(G,subgroup_generated H s) f <=> group_homomorphism(G,H) f /\ IMAGE f (group_carrier G) = group_carrier(subgroup_generated H s)`, REWRITE_TAC[group_epimorphism; GROUP_HOMOMORPHISM_INTO_SUBGROUP_EQ_GEN] THEN SET_TAC[]);; let GROUP_EPIMORPHISM_INTO_SUBGROUP_EQ = prove (`!G G' h (f:A->B). h subgroup_of G' ==> (group_epimorphism (G,subgroup_generated G' h) f <=> group_homomorphism (G,G') f /\ IMAGE f (group_carrier G) = h)`, SIMP_TAC[GROUP_EPIMORPHISM_INTO_SUBGROUP_EQ_GEN; CARRIER_SUBGROUP_GENERATED_SUBGROUP]);; let GROUP_ISOMORPHISM = prove (`!G G' f:A->B. group_isomorphism (G,G') (f:A->B) <=> group_homomorphism (G,G') f /\ IMAGE f (group_carrier G) = group_carrier G' /\ (!x y. x IN group_carrier G /\ y IN group_carrier G /\ f x = f y ==> x = y)`, REPEAT GEN_TAC THEN REWRITE_TAC[group_isomorphism; group_isomorphisms; group_homomorphism] THEN REWRITE_TAC[INJECTIVE_ON_LEFT_INVERSE; RIGHT_AND_EXISTS_THM] THEN AP_TERM_TAC THEN ABS_TAC THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBST1_TAC(SYM(ASSUME `IMAGE (f:A->B) (group_carrier G) = group_carrier G'`)) THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; FORALL_IN_IMAGE_2] THEN ASM_SIMP_TAC[] THEN ASM_MESON_TAC(GROUP_PROPERTIES));; let GROUP_ISOMORPHISM_SUBSET = prove (`!G G' f:A->B. group_isomorphism (G,G') (f:A->B) <=> group_homomorphism (G,G') f /\ (!z. z IN group_carrier G' ==> ?x. x IN group_carrier G /\ f x = z) /\ (!x y. x IN group_carrier G /\ y IN group_carrier G /\ f x = f y ==> x = y)`, REWRITE_TAC[GROUP_ISOMORPHISM; group_homomorphism] THEN SET_TAC[]);; let SUBGROUP_OF_HOMOMORPHIC_IMAGE = prove (`!G G' (f:A->B). group_homomorphism (G,G') f /\ h subgroup_of G ==> IMAGE f h subgroup_of G'`, REWRITE_TAC[group_homomorphism; subgroup_of] THEN SET_TAC[]);; let SUBGROUP_OF_HOMOMORPHIC_PREIMAGE = prove (`!G H (f:A->B) h. group_homomorphism(G,H) f /\ h subgroup_of H ==> {x | x IN group_carrier G /\ f x IN h} subgroup_of G`, REWRITE_TAC[group_homomorphism; subgroup_of; IN_ELIM_THM] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM] THEN MESON_TAC[GROUP_ID; GROUP_INV; GROUP_MUL]);; let SUBGROUP_OF_EPIMORPHIC_PREIMAGE = prove (`!G H (f:A->B) h. group_epimorphism(G,H) f /\ h subgroup_of H ==> {x | x IN group_carrier G /\ f x IN h} subgroup_of G /\ IMAGE f {x | x IN group_carrier G /\ f x IN h} = h`, REWRITE_TAC[group_epimorphism] THEN REWRITE_TAC[group_homomorphism; subgroup_of; IN_ELIM_THM] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_IMAGE] THEN MESON_TAC[GROUP_ID; GROUP_INV; GROUP_MUL]);; let GROUP_MONOMORPHISM_EPIMORPHISM = prove (`!G G' f:A->B. group_monomorphism (G,G') f /\ group_epimorphism (G,G') f <=> group_isomorphism (G,G') f`, REWRITE_TAC[GROUP_ISOMORPHISM; group_monomorphism; group_epimorphism] THEN MESON_TAC[]);; let GROUP_ISOMORPHISM_EPIMORPHISM = prove (`!G G' (f:A->B). group_isomorphism (G,G') f <=> group_epimorphism (G,G') f /\ (!x y. x IN group_carrier G /\ y IN group_carrier G /\ f x = f y ==> x = y)`, REWRITE_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM; group_monomorphism; group_epimorphism] THEN MESON_TAC[]);; let SUBGROUP_MONOMORPHISM_EPIMORPHISM = prove (`!G G' s (f:A->B). group_monomorphism(G,G') f /\ group_epimorphism(G,subgroup_generated G' s) f <=> group_isomorphism(G,subgroup_generated G' s) f`, MESON_TAC[GROUP_MONOMORPHISM_EPIMORPHISM; GROUP_MONOMORPHISM_INTO_SUPERGROUP; GROUP_HOMOMORPHISM_INTO_SUBGROUP; group_monomorphism; group_epimorphism]);; let GROUP_ISOMORPHISM_IMP_MONOMORPHISM = prove (`!G G' (f:A->B). group_isomorphism (G,G') f ==> group_monomorphism (G,G') f`, SIMP_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM]);; let GROUP_ISOMORPHISM_IMP_EPIMORPHISM = prove (`!G G' (f:A->B). group_isomorphism (G,G') f ==> group_epimorphism (G,G') f`, SIMP_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM]);; let GROUP_MONOMORPHISM_IMP_HOMOMORPHISM = prove (`!(f:A->B) G H. group_monomorphism(G,H) f ==> group_homomorphism(G,H) f`, SIMP_TAC[group_monomorphism]);; let GROUP_EPIMORPHISM_IMP_HOMOMORPHISM = prove (`!(f:A->B) G H. group_epimorphism(G,H) f ==> group_homomorphism(G,H) f`, SIMP_TAC[group_epimorphism]);; let GROUP_ISOMORPHISM_IMP_HOMOMORPHISM = prove (`!(f:A->B) G H. group_isomorphism(G,H) f ==> group_homomorphism(G,H) f`, SIMP_TAC[GROUP_ISOMORPHISM]);; let GROUP_AUTOMORPHISM_IMP_ENDOMORPHISM = prove (`!G (f:A->A). group_automorphism G f ==> group_endomorphism G f`, REWRITE_TAC[group_automorphism; group_endomorphism] THEN REWRITE_TAC[GROUP_ISOMORPHISM_IMP_HOMOMORPHISM]);; let GROUP_ISOMORPHISM_EQ_MONOMORPHISM_FINITE = prove (`!G H (f:A->B). FINITE(group_carrier G) /\ FINITE(group_carrier H) /\ CARD(group_carrier G) = CARD(group_carrier H) ==> (group_isomorphism(G,H) f <=> group_monomorphism(G,H) f)`, REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[GROUP_ISOMORPHISM_IMP_MONOMORPHISM] THEN SIMP_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM] THEN SIMP_TAC[group_monomorphism; group_epimorphism] THEN REWRITE_TAC[group_homomorphism] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MP_TAC(ISPECL [`group_carrier G:A->bool`; `group_carrier H:B->bool`; `f:A->B`] SURJECTIVE_IFF_INJECTIVE_GEN) THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]);; let GROUP_ISOMORPHISM_EQ_EPIMORPHISM_FINITE = prove (`!G H (f:A->B). FINITE(group_carrier G) /\ FINITE(group_carrier H) /\ CARD(group_carrier G) = CARD(group_carrier H) ==> (group_isomorphism(G,H) f <=> group_epimorphism(G,H) f)`, REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[GROUP_ISOMORPHISM_IMP_EPIMORPHISM] THEN SIMP_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM] THEN SIMP_TAC[group_monomorphism; group_epimorphism] THEN REWRITE_TAC[group_homomorphism] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MP_TAC(ISPECL [`group_carrier G:A->bool`; `group_carrier H:B->bool`; `f:A->B`] SURJECTIVE_IFF_INJECTIVE_GEN) THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]);; let GROUP_ISOMORPHISMS_CONJUGATION = prove (`!G a:A. a IN group_carrier G ==> group_isomorphisms (G,G) (group_conjugation G a,group_conjugation G (group_inv G a))`, REWRITE_TAC[group_isomorphisms; GROUP_HOMOMORPHISM] THEN SIMP_TAC[SUBSET; FORALL_IN_IMAGE; GROUP_CONJUGATION; GROUP_MUL; GROUP_CONJUGATION_CONJUGATION; GROUP_INV] THEN SIMP_TAC[GROUP_MUL_LINV; GROUP_MUL_RINV; GROUP_CONJUGATION_BY_ID] THEN REWRITE_TAC[group_conjugation] THEN REPEAT STRIP_TAC THEN GROUP_TAC);; let GROUP_AUTOMORPHISM_CONJUGATION = prove (`!G a:A. a IN group_carrier G ==> group_automorphism G (group_conjugation G a)`, REWRITE_TAC[group_automorphism; group_isomorphism] THEN MESON_TAC[GROUP_ISOMORPHISMS_CONJUGATION]);; let GROUP_ISOMORPHISM_CONJUGATION = prove (`!G a:A. a IN group_carrier G ==> group_isomorphism (G,G) (group_conjugation G a)`, REWRITE_TAC[GSYM group_automorphism; GROUP_AUTOMORPHISM_CONJUGATION]);; let GROUP_HOMOMORPHISM_CONJUGATION = prove (`!G a:A. a IN group_carrier G ==> group_homomorphism (G,G) (group_conjugation G a)`, SIMP_TAC[GROUP_ISOMORPHISM_CONJUGATION; GROUP_ISOMORPHISM_IMP_HOMOMORPHISM]);; let CARD_LE_GROUP_MONOMORPHIC_IMAGE = prove (`!G H (f:A->B). group_monomorphism(G,H) f ==> group_carrier G <=_c group_carrier H`, REWRITE_TAC[group_monomorphism; le_c; group_homomorphism] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `f:A->B` THEN ASM SET_TAC[]);; let CARD_LE_GROUP_EPIMORPHIC_IMAGE = prove (`!G H (f:A->B). group_epimorphism(G,H) f ==> group_carrier H <=_c group_carrier G`, REWRITE_TAC[group_epimorphism; LE_C; group_homomorphism] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `f:A->B` THEN ASM SET_TAC[]);; let CARD_EQ_GROUP_ISOMORPHIC_IMAGE = prove (`!G H (f:A->B). group_isomorphism(G,H) f ==> group_carrier G =_c group_carrier H`, REWRITE_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM; GSYM CARD_LE_ANTISYM] THEN MESON_TAC[CARD_LE_GROUP_MONOMORPHIC_IMAGE; CARD_LE_GROUP_EPIMORPHIC_IMAGE]);; let FINITE_GROUP_MONOMORPHIC_PREIMAGE = prove (`!G H (f:A->B). group_monomorphism(G,H) f /\ FINITE(group_carrier H) ==> FINITE(group_carrier G)`, MESON_TAC[CARD_LE_FINITE; CARD_LE_GROUP_MONOMORPHIC_IMAGE]);; let FINITE_GROUP_EPIMORPHIC_IMAGE = prove (`!G H (f:A->B). group_epimorphism(G,H) f /\ FINITE(group_carrier G) ==> FINITE(group_carrier H)`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_FINITE) THEN ASM_MESON_TAC[CARD_LE_GROUP_EPIMORPHIC_IMAGE]);; let CARD_EQ_GROUP_MONOMORPHIC_IMAGE = prove (`!G H (f:A->B). group_monomorphism(G,H) f ==> IMAGE f (group_carrier G) =_c group_carrier G`, REWRITE_TAC[group_monomorphism] THEN MESON_TAC[CARD_EQ_IMAGE]);; let GROUP_ISOMORPHISMS_BETWEEN_SUBGROUPS = prove (`!G H g h (f:A->B) f'. group_isomorphisms(G,H) (f,f') /\ IMAGE f g SUBSET h /\ IMAGE f' h SUBSET g ==> group_isomorphisms (subgroup_generated G g,subgroup_generated H h) (f,f')`, SIMP_TAC[group_isomorphisms; GROUP_HOMOMORPHISM_BETWEEN_SUBGROUPS] THEN MESON_TAC[SUBSET; GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET]);; let GROUP_ISOMORPHISMS_BETWEEN_SUBGROUPS_ALT = prove (`!G H g h (f:A->B) f'. group_isomorphisms(G,H) (f,f') /\ IMAGE f (group_carrier G INTER g) SUBSET h /\ IMAGE f' (group_carrier H INTER h) SUBSET g ==> group_isomorphisms (subgroup_generated G g,subgroup_generated H h) (f,f')`, SIMP_TAC[group_isomorphisms; GROUP_HOMOMORPHISM_BETWEEN_SUBGROUPS_ALT] THEN MESON_TAC[SUBSET; GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET]);; let GROUP_ISOMORPHISM_BETWEEN_SUBGROUPS = prove (`!G H g h (f:A->B). group_isomorphism(G,H) f /\ g SUBSET group_carrier G /\ IMAGE f g = h ==> group_isomorphism(subgroup_generated G g,subgroup_generated H h) f`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN REWRITE_TAC[group_isomorphism] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f':B->A` THEN REWRITE_TAC[group_isomorphisms] THEN REPEAT STRIP_TAC THENL [ASM_SIMP_TAC[GROUP_HOMOMORPHISM_BETWEEN_SUBGROUPS; SUBSET_REFL]; ALL_TAC; ASM_MESON_TAC[GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET; SUBSET]; ASM_MESON_TAC[GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET; SUBSET]] THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [SUBGROUP_GENERATED_RESTRICT] THEN MATCH_MP_TAC GROUP_HOMOMORPHISM_BETWEEN_SUBGROUPS THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[group_homomorphism]) THEN ASM SET_TAC[]);; let GROUP_ISOMORPHISMS_COMPOSE = prove (`!G1 G2 G3 (f1:A->B) (f2:B->C) g1 g2. group_isomorphisms(G1,G2) (f1,g1) /\ group_isomorphisms(G2,G3) (f2,g2) ==> group_isomorphisms(G1,G3) (f2 o f1,g1 o g2)`, SIMP_TAC[group_isomorphisms; group_homomorphism; SUBSET; FORALL_IN_IMAGE; IMAGE_o; o_THM]);; let GROUP_ISOMORPHISM_COMPOSE = prove (`!G1 G2 G3 (f:A->B) (g:B->C). group_isomorphism(G1,G2) f /\ group_isomorphism(G2,G3) g ==> group_isomorphism(G1,G3) (g o f)`, REWRITE_TAC[group_isomorphism] THEN MESON_TAC[GROUP_ISOMORPHISMS_COMPOSE]);; let GROUP_ISOMORPHISM_COMPOSE_REV = prove (`!(f:A->B) (g:B->C) A B C. group_homomorphism(A,B) f /\ group_homomorphism(B,C) g /\ group_isomorphism(A,C) (g o f) ==> group_monomorphism(A,B) f /\ group_epimorphism(B,C) g`, REWRITE_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM] THEN MESON_TAC[GROUP_MONOMORPHISM_COMPOSE_REV; GROUP_EPIMORPHISM_COMPOSE_REV]);; let GROUP_EPIMORPHISM_ISOMORPHISM_COMPOSE_REV = prove (`!(f:A->B) (g:B->C) A B C. group_epimorphism (A,B) f /\ group_homomorphism (B,C) g /\ group_isomorphism (A,C) (g o f) ==> group_isomorphism (A,B) f /\ group_isomorphism (B,C) g`, REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [ASM_MESON_TAC[GROUP_ISOMORPHISM_COMPOSE_REV; group_epimorphism; GROUP_MONOMORPHISM_EPIMORPHISM]; REWRITE_TAC[group_isomorphism; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `f':B->A` THEN DISCH_TAC THEN REWRITE_TAC[GSYM group_isomorphism] THEN MATCH_MP_TAC GROUP_ISOMORPHISM_EQ THEN EXISTS_TAC `(g:B->C) o f o (f':B->A)` THEN CONJ_TAC THENL [REWRITE_TAC[o_ASSOC] THEN MATCH_MP_TAC GROUP_ISOMORPHISM_COMPOSE THEN ASM_MESON_TAC[GROUP_ISOMORPHISMS_SYM; group_isomorphism]; RULE_ASSUM_TAC(REWRITE_RULE [group_isomorphisms; group_homomorphism; SUBSET; FORALL_IN_IMAGE]) THEN ASM_SIMP_TAC[o_THM]]]);; let GROUP_MONOMORPHISM_ISOMORPHISM_COMPOSE_REV = prove (`!(f:A->B) (g:B->C) A B C. group_homomorphism (A,B) f /\ group_monomorphism (B,C) g /\ group_isomorphism (A,C) (g o f) ==> group_isomorphism (A,B) f /\ group_isomorphism (B,C) g`, REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC(TAUT `q /\ (q ==> p) ==> p /\ q`) THEN CONJ_TAC THENL [ASM_MESON_TAC[GROUP_ISOMORPHISM_COMPOSE_REV; group_monomorphism; GROUP_MONOMORPHISM_EPIMORPHISM]; REWRITE_TAC[group_isomorphism; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `g':C->B` THEN DISCH_TAC THEN REWRITE_TAC[GSYM group_isomorphism] THEN MATCH_MP_TAC GROUP_ISOMORPHISM_EQ THEN EXISTS_TAC `(g':C->B) o g o (f:A->B)` THEN CONJ_TAC THENL [MATCH_MP_TAC GROUP_ISOMORPHISM_COMPOSE THEN ASM_MESON_TAC[GROUP_ISOMORPHISMS_SYM; group_isomorphism]; RULE_ASSUM_TAC(REWRITE_RULE [group_isomorphisms; group_homomorphism; SUBSET; FORALL_IN_IMAGE]) THEN ASM_SIMP_TAC[o_THM]]]);; let GROUP_ISOMORPHISM_INVERSE = prove (`!(f:A->B) g G H. group_isomorphism(G,H) f /\ (!x. x IN group_carrier G ==> g(f x) = x) ==> group_isomorphism(H,G) g`, REWRITE_TAC[group_isomorphism; group_isomorphisms; group_homomorphism] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `f:A->B` THEN ASM_SIMP_TAC[] THEN SUBGOAL_THEN `!y. y IN group_carrier H ==> (g:B->A) y IN group_carrier G` ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!y. y IN group_carrier H ==> (f:A->B)(g y) = y` ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN ASM_MESON_TAC[GROUP_ID; GROUP_INV; GROUP_MUL]);; let GROUP_ISOMORPHISMS_OPPOSITE_GROUP = prove (`!G:A group. group_isomorphisms(G,opposite_group G) (group_inv G,group_inv G)`, REWRITE_TAC[group_isomorphisms; group_homomorphism; OPPOSITE_GROUP] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; GROUP_INV_ID] THEN SIMP_TAC[GROUP_INV; GROUP_INV_MUL; GROUP_INV_INV]);; let GROUP_ISOMORPHISM_OPPOSITE_GROUP = prove (`!G:A group. group_isomorphism(G,opposite_group G) (group_inv G)`, REWRITE_TAC[group_isomorphism] THEN MESON_TAC[GROUP_ISOMORPHISMS_OPPOSITE_GROUP]);; let GROUP_HOMOMORPHISM_FROM_TRIVIAL_GROUP = prove (`!(f:A->B) G H. trivial_group G ==> (group_homomorphism(G,H) f <=> f(group_id G) = group_id H)`, REPEAT GEN_TAC THEN SIMP_TAC[trivial_group; group_homomorphism] THEN ASM_CASES_TAC `(f:A->B)(group_id G) = group_id H` THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN ASM_SIMP_TAC[IN_SING; GROUP_MUL_LID; GROUP_ID; SUBSET; FORALL_IN_IMAGE; GROUP_INV_ID]);; let GROUP_MONOMORPHISM_FROM_TRIVIAL_GROUP = prove (`!(f:A->B) G H. trivial_group G ==> (group_monomorphism (G,H) f <=> group_homomorphism (G,H) f)`, REWRITE_TAC[group_monomorphism; trivial_group] THEN SET_TAC[]);; let GROUP_MONOMORPHISM_TO_TRIVIAL_GROUP = prove (`!(f:A->B) G H. trivial_group H ==> (group_monomorphism (G,H) f <=> group_homomorphism (G,H) f /\ trivial_group G)`, SIMP_TAC[group_monomorphism; trivial_group; group_homomorphism] THEN REPEAT GEN_TAC THEN MP_TAC(ISPEC `G:A group` GROUP_ID) THEN SET_TAC[]);; let GROUP_EPIMORPHISM_FROM_TRIVIAL_GROUP = prove (`!(f:A->B) G H. trivial_group G ==> (group_epimorphism (G,H) f <=> group_homomorphism (G,H) f /\ trivial_group H)`, SIMP_TAC[group_epimorphism; trivial_group; group_homomorphism] THEN SET_TAC[]);; let GROUP_EPIMORPHISM_TO_TRIVIAL_GROUP = prove (`!(f:A->B) G H. trivial_group H ==> (group_epimorphism (G,H) f <=> group_homomorphism (G,H) f)`, REWRITE_TAC[group_epimorphism; trivial_group; group_homomorphism] THEN REPEAT GEN_TAC THEN MAP_EVERY(MP_TAC o C ISPEC GROUP_ID) [`G:A group`; `H:B group`] THEN SET_TAC[]);; let GROUP_HOMOMORPHISM_PAIRWISE = prove (`!(f:A->B#C) G H K. group_homomorphism(G,prod_group H K) f <=> group_homomorphism(G,H) (FST o f) /\ group_homomorphism(G,K) (SND o f)`, REWRITE_TAC[group_homomorphism; PROD_GROUP] THEN REWRITE_TAC[FORALL_PAIR_FUN_THM; SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[o_DEF; IN_CROSS; PAIR_EQ] THEN MESON_TAC[]);; let GROUP_HOMOMORPHISM_PAIRED = prove (`!(f:A->B) (g:A->C) G H K. group_homomorphism(G,prod_group H K) (\x. f x,g x) <=> group_homomorphism(G,H) f /\ group_homomorphism(G,K) g`, REWRITE_TAC[GROUP_HOMOMORPHISM_PAIRWISE; o_DEF; ETA_AX]);; let GROUP_HOMOMORPHISM_PAIRED2 = prove (`!(f:A->B) (g:C->D) G H G' H'. group_homomorphism(prod_group G H,prod_group G' H') (\(x,y). f x,g y) <=> group_homomorphism(G,G') f /\ group_homomorphism(H,H') g`, REWRITE_TAC[group_homomorphism; PROD_GROUP; SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[PROD_GROUP; FORALL_PAIR_THM; IN_CROSS; PAIR_EQ] THEN MESON_TAC[GROUP_ID]);; let GROUP_ISOMORPHISMS_PAIRED2 = prove (`!(f:A->B) (g:C->D) f' g' G H G' H'. group_isomorphisms(prod_group G H,prod_group G' H') ((\(x,y). f x,g y),(\(x,y). f' x,g' y)) <=> group_isomorphisms(G,G') (f,f') /\ group_isomorphisms(H,H') (g,g')`, REWRITE_TAC[group_isomorphisms; GROUP_HOMOMORPHISM_PAIRED2] THEN REWRITE_TAC[PROD_GROUP; FORALL_IN_CROSS; PAIR_EQ] THEN MESON_TAC[GROUP_ID]);; let GROUP_ISOMORPHISM_PAIRED2 = prove (`!(f:A->B) (g:C->D) G H G' H'. group_isomorphism(prod_group G H,prod_group G' H') (\(x,y). f x,g y) <=> group_isomorphism(G,G') f /\ group_isomorphism(H,H') g`, REWRITE_TAC[GROUP_ISOMORPHISM; GROUP_HOMOMORPHISM_PAIRED2] THEN REWRITE_TAC[PROD_GROUP; FORALL_PAIR_THM; IN_CROSS; IMAGE_PAIRED_CROSS] THEN REWRITE_TAC[CROSS_EQ; IMAGE_EQ_EMPTY; GROUP_CARRIER_NONEMPTY; PAIR_EQ] THEN MESON_TAC[GROUP_ID]);; let GROUP_HOMOMORPHISM_OF_FST = prove (`!(f:A->C) A (B:B group) C. group_homomorphism (prod_group A B,C) (f o FST) <=> group_homomorphism (A,C) f`, REWRITE_TAC[group_homomorphism; SUBSET; FORALL_IN_IMAGE; PROD_GROUP] THEN REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS; o_DEF] THEN MESON_TAC[GROUP_ID]);; let GROUP_HOMOMORPHISM_OF_SND = prove (`!(f:B->C) (A:A group) B C. group_homomorphism (prod_group A B,C) (f o SND) <=> group_homomorphism (B,C) f`, REWRITE_TAC[group_homomorphism; SUBSET; FORALL_IN_IMAGE; PROD_GROUP] THEN REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS; o_DEF] THEN MESON_TAC[GROUP_ID]);; let GROUP_EPIMORPHISM_OF_FST = prove (`!(f:A->C) A (B:B group) C. group_epimorphism (prod_group A B,C) (f o FST) <=> group_epimorphism (A,C) f`, REWRITE_TAC[group_epimorphism; GROUP_HOMOMORPHISM_OF_FST] THEN REWRITE_TAC[PROD_GROUP; IMAGE_o; IMAGE_FST_CROSS; GROUP_CARRIER_NONEMPTY]);; let GROUP_EPIMORPHISM_OF_SND = prove (`!(f:B->C) (A:A group) B C. group_epimorphism (prod_group A B,C) (f o SND) <=> group_epimorphism (B,C) f`, REWRITE_TAC[group_epimorphism; GROUP_HOMOMORPHISM_OF_SND] THEN REWRITE_TAC[PROD_GROUP; IMAGE_o; IMAGE_SND_CROSS; GROUP_CARRIER_NONEMPTY]);; let GROUP_HOMOMORPHISM_FST = prove (`!(A:A group) (B:B group). group_homomorphism (prod_group A B,A) FST`, REWRITE_TAC[group_homomorphism; SUBSET; FORALL_IN_IMAGE; PROD_GROUP] THEN REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS; o_DEF] THEN MESON_TAC[GROUP_ID]);; let GROUP_HOMOMORPHISM_SND = prove (`!(A:A group) (B:B group). group_homomorphism (prod_group A B,B) SND`, REWRITE_TAC[group_homomorphism; SUBSET; FORALL_IN_IMAGE; PROD_GROUP] THEN REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS; o_DEF] THEN MESON_TAC[GROUP_ID]);; let GROUP_EPIMORPHISM_FST = prove (`!(A:A group) (B:B group). group_epimorphism (prod_group A B,A) FST`, REWRITE_TAC[group_epimorphism; GROUP_HOMOMORPHISM_FST] THEN REWRITE_TAC[PROD_GROUP; IMAGE_o; IMAGE_FST_CROSS; GROUP_CARRIER_NONEMPTY]);; let GROUP_EPIMORPHISM_SND = prove (`!(A:A group) (B:B group). group_epimorphism (prod_group A B,B) SND`, REWRITE_TAC[group_epimorphism; GROUP_HOMOMORPHISM_SND] THEN REWRITE_TAC[PROD_GROUP; IMAGE_o; IMAGE_SND_CROSS; GROUP_CARRIER_NONEMPTY]);; let GROUP_ISOMORPHISM_FST = prove (`!(G:A group) (H:B group). group_isomorphism (prod_group G H,G) FST <=> trivial_group H`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM] THEN REWRITE_TAC[GROUP_EPIMORPHISM_FST] THEN REWRITE_TAC[group_monomorphism; GROUP_HOMOMORPHISM_FST] THEN SIMP_TAC[FORALL_PAIR_THM; PROD_GROUP; IN_CROSS; PAIR_EQ] THEN REWRITE_TAC[TRIVIAL_GROUP_ALT] THEN MP_TAC(ISPEC `G:A group` GROUP_CARRIER_NONEMPTY) THEN SET_TAC[]);; let GROUP_ISOMORPHISM_SND = prove (`!(G:A group) (H:B group). group_isomorphism (prod_group G H,H) SND <=> trivial_group G`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM] THEN REWRITE_TAC[GROUP_EPIMORPHISM_SND] THEN REWRITE_TAC[group_monomorphism; GROUP_HOMOMORPHISM_SND] THEN SIMP_TAC[FORALL_PAIR_THM; PROD_GROUP; IN_CROSS; PAIR_EQ] THEN REWRITE_TAC[TRIVIAL_GROUP_ALT] THEN MP_TAC(ISPEC `H:B group` GROUP_CARRIER_NONEMPTY) THEN SET_TAC[]);; let GROUP_ISOMORPHISMS_PROD_GROUP_SWAP = prove (`!(G:A group) (H:B group). group_isomorphisms (prod_group G H,prod_group H G) ((\(x,y). y,x),(\(y,x). x,y))`, REWRITE_TAC[group_isomorphisms; FORALL_PAIR_THM] THEN REWRITE_TAC[GROUP_HOMOMORPHISM_PAIRWISE; o_DEF; LAMBDA_PAIR] THEN REWRITE_TAC[REWRITE_RULE[o_DEF] GROUP_HOMOMORPHISM_OF_FST; REWRITE_RULE[o_DEF] GROUP_HOMOMORPHISM_OF_SND] THEN REWRITE_TAC[GROUP_HOMOMORPHISM_ID]);; let GROUP_HOMOMORPHISM_COMPONENTWISE = prove (`!G k H (f:A->K->B). group_homomorphism(G,product_group k H) f <=> IMAGE f (group_carrier G) SUBSET EXTENSIONAL k /\ !i. i IN k ==> group_homomorphism (G,H i) (\x. f x i)`, REPEAT GEN_TAC THEN REWRITE_TAC[group_homomorphism; SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[PRODUCT_GROUP; IN_CARTESIAN_PRODUCT] THEN REWRITE_TAC[RESTRICTION_UNIQUE_ALT] THEN REWRITE_TAC[SET_RULE `f IN EXTENSIONAL s <=> EXTENSIONAL s f`] THEN ASM_CASES_TAC `!x. x IN group_carrier G ==> EXTENSIONAL k ((f:A->K->B) x)` THENL [ALL_TAC; ASM_MESON_TAC[]] THEN ASM_SIMP_TAC[GROUP_ID; GROUP_INV; GROUP_MUL] THEN MESON_TAC[]);; let GROUP_HOMOMORPHISM_COMPONENTWISE_UNIV = prove (`!G H (f:A->K->B). group_homomorphism(G,product_group (:K) H) f <=> !i. group_homomorphism (G,H i) (\x. f x i)`, REWRITE_TAC[GROUP_HOMOMORPHISM_COMPONENTWISE; IN_UNIV] THEN REWRITE_TAC[SET_RULE `s SUBSET P <=> !x. x IN s ==> P x`] THEN REWRITE_TAC[EXTENSIONAL_UNIV]);; let GROUP_HOMOMORPHISM_PRODUCT_PROJECTION = prove (`!(G:K->A group) k i. i IN k ==> group_homomorphism (product_group k G,G i) (\x. x i)`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`product_group k (G:K->A group)`; `k:K->bool`; `G:K->A group`; `\x:K->A. x`] GROUP_HOMOMORPHISM_COMPONENTWISE) THEN REWRITE_TAC[GROUP_HOMOMORPHISM_ID] THEN ASM_SIMP_TAC[GROUP_HOMOMORPHISM_COMPONENTWISE]);; let GROUP_HOMOMORPHISM_SUM_PROJECTION = prove (`!(G:K->A group) k i. i IN k ==> group_homomorphism (sum_group k G,G i) (\x. x i)`, REWRITE_TAC[sum_group] THEN SIMP_TAC[GROUP_HOMOMORPHISM_FROM_SUBGROUP_GENERATED; GROUP_HOMOMORPHISM_PRODUCT_PROJECTION]);; let GROUP_HOMOMORPHISM_PRODUCT_INJECTION = prove (`!k (G:K->A group) i. group_homomorphism (G i,product_group k G) (\a. RESTRICTION k (\j. if j = i then a else group_id(G j)))`, REPEAT GEN_TAC THEN REWRITE_TAC[GROUP_HOMOMORPHISM_COMPONENTWISE] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; RESTRICTION_IN_EXTENSIONAL] THEN X_GEN_TAC `j:K` THEN DISCH_TAC THEN ASM_REWRITE_TAC[RESTRICTION] THEN ASM_CASES_TAC `j:K = i` THEN ASM_REWRITE_TAC[GROUP_HOMOMORPHISM_ID; GROUP_HOMOMORPHISM_TRIVIAL]);; let GROUP_HOMOMORPHISM_SUM_INJECTION = prove (`!k (G:K->A group) i. group_homomorphism (G i,sum_group k G) (\a. RESTRICTION k (\j. if j = i then a else group_id(G j)))`, REPEAT GEN_TAC THEN REWRITE_TAC[SUM_GROUP_ALT] THEN MATCH_MP_TAC GROUP_HOMOMORPHISM_INTO_SUBGROUP THEN REWRITE_TAC[GROUP_HOMOMORPHISM_PRODUCT_INJECTION] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{i:K}` THEN REWRITE_TAC[FINITE_SING] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_SING; RESTRICTION] THEN SET_TAC[]);; let GROUP_HOMOMORPHISM_PRODUCT = prove (`!(f:K->A->B) k G H. group_homomorphism (product_group k G,product_group k H) (\x. RESTRICTION k (\i. (f i) (x i))) <=> !i. i IN k ==> group_homomorphism(G i,H i) (f i)`, REPEAT GEN_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THENL [MATCH_MP_TAC GROUP_HOMOMORPHISM_EQ THEN EXISTS_TAC `(\x. x i) o (\x. RESTRICTION k (\i. ((f:K->A->B) i) (x i))) o (\x. RESTRICTION k (\j. if j = i then x else group_id(G j)))` THEN ASM_REWRITE_TAC[o_THM; RESTRICTION] THEN MATCH_MP_TAC GROUP_HOMOMORPHISM_COMPOSE THEN EXISTS_TAC `product_group k (H:K->B group)` THEN ASM_SIMP_TAC[GROUP_HOMOMORPHISM_PRODUCT_PROJECTION] THEN MATCH_MP_TAC GROUP_HOMOMORPHISM_COMPOSE THEN EXISTS_TAC `product_group k (G:K->A group)` THEN ASM_REWRITE_TAC[GROUP_HOMOMORPHISM_PRODUCT_INJECTION]; REWRITE_TAC[GROUP_HOMOMORPHISM_COMPONENTWISE] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; RESTRICTION_IN_EXTENSIONAL] THEN X_GEN_TAC `i:K` THEN DISCH_TAC THEN ASM_REWRITE_TAC[RESTRICTION] THEN MATCH_MP_TAC GROUP_HOMOMORPHISM_EQ THEN EXISTS_TAC `(f:K->A->B) i o (\x. x i)` THEN REWRITE_TAC[o_THM] THEN MATCH_MP_TAC GROUP_HOMOMORPHISM_COMPOSE THEN EXISTS_TAC `(G:K->A group) i` THEN ASM_SIMP_TAC[GROUP_HOMOMORPHISM_PRODUCT_PROJECTION]]);; let GROUP_HOMOMORPHISM_SUM = prove (`!(f:K->A->B) k G H. group_homomorphism (sum_group k G,sum_group k H) (\x. RESTRICTION k (\i. (f i) (x i))) <=> !i. i IN k ==> group_homomorphism(G i,H i) (f i)`, REPEAT GEN_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THENL [MATCH_MP_TAC GROUP_HOMOMORPHISM_EQ THEN EXISTS_TAC `(\x. x i) o (\x. RESTRICTION k (\i. ((f:K->A->B) i) (x i))) o (\x. RESTRICTION k (\j. if j = i then x else group_id(G j)))` THEN ASM_REWRITE_TAC[o_THM; RESTRICTION] THEN MATCH_MP_TAC GROUP_HOMOMORPHISM_COMPOSE THEN EXISTS_TAC `sum_group k (H:K->B group)` THEN ASM_SIMP_TAC[GROUP_HOMOMORPHISM_SUM_PROJECTION] THEN MATCH_MP_TAC GROUP_HOMOMORPHISM_COMPOSE THEN EXISTS_TAC `sum_group k (G:K->A group)` THEN ASM_REWRITE_TAC[GROUP_HOMOMORPHISM_SUM_INJECTION]; GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [SUM_GROUP_ALT] THEN REWRITE_TAC[sum_group] THEN MATCH_MP_TAC GROUP_HOMOMORPHISM_BETWEEN_SUBGROUPS THEN ASM_REWRITE_TAC[GROUP_HOMOMORPHISM_PRODUCT] THEN GEN_REWRITE_TAC I [SUBSET] THEN REWRITE_TAC[FORALL_IN_IMAGE; IN_ELIM_THM] THEN GEN_TAC THEN REWRITE_TAC[IN_CARTESIAN_PRODUCT] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN REWRITE_TAC[SUBSET; RESTRICTION; IN_ELIM_THM] THEN X_GEN_TAC `i:K` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[CONTRAPOS_THM] THEN ASM_MESON_TAC[GROUP_HOMOMORPHISM_OF_ID]]);; let GROUP_EPIMORPHISM_PRODUCT_PROJECTION = prove (`!(G:K->A group) k i. i IN k ==> group_epimorphism (product_group k G,G i) (\x. x i)`, SIMP_TAC[group_epimorphism; GROUP_HOMOMORPHISM_PRODUCT_PROJECTION] THEN SIMP_TAC[IMAGE_PROJECTION_CARTESIAN_PRODUCT; PRODUCT_GROUP; CARTESIAN_PRODUCT_EQ_EMPTY; GROUP_CARRIER_NONEMPTY]);; let GROUP_ISOMORPHISM_PRODUCT_PROJECTION = prove (`!G k. group_isomorphism (product_group {k} G,G k) (\x. x k)`, REPEAT GEN_TAC THEN REWRITE_TAC[GROUP_ISOMORPHISM_EPIMORPHISM] THEN SIMP_TAC[GROUP_EPIMORPHISM_PRODUCT_PROJECTION; IN_SING] THEN REWRITE_TAC[PRODUCT_GROUP; CARTESIAN_PRODUCT_AS_RESTRICTIONS] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN REWRITE_TAC[RESTRICTION_EXTENSION; RESTRICTION; IN_SING] THEN MESON_TAC[]);; let GROUP_EPIMORPHISM_SUM_PROJECTION = prove (`!(G:K->A group) k i. i IN k ==> group_epimorphism (sum_group k G,G i) (\x. x i)`, SIMP_TAC[GROUP_EPIMORPHISM_SUBSET; GROUP_HOMOMORPHISM_SUM_PROJECTION] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[SUBSET; IN_IMAGE; SUM_GROUP_CLAUSES] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN EXISTS_TAC `RESTRICTION k (\j:K. if j = i then x:A else group_id(G j))` THEN REWRITE_TAC[IN_ELIM_THM; RESTRICTION_IN_CARTESIAN_PRODUCT] THEN ASM_REWRITE_TAC[RESTRICTION] THEN CONJ_TAC THENL [ASM_MESON_TAC[GROUP_ID]; ALL_TAC] THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{i:K}` THEN REWRITE_TAC[FINITE_SING] THEN SET_TAC[]);; let GROUP_ISOMORPHISM_SUM_PROJECTION = prove (`!G k. group_isomorphism (sum_group {k} G,G k) (\x. x k)`, REPEAT GEN_TAC THEN REWRITE_TAC[GROUP_ISOMORPHISM_EPIMORPHISM] THEN SIMP_TAC[GROUP_EPIMORPHISM_SUM_PROJECTION; IN_SING] THEN REWRITE_TAC[SUM_GROUP_CLAUSES; CARTESIAN_PRODUCT_AS_RESTRICTIONS] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN REWRITE_TAC[RESTRICTION_EXTENSION; RESTRICTION; IN_SING] THEN MESON_TAC[]);; let ABELIAN_GROUP_EPIMORPHIC_IMAGE = prove (`!G H (f:A->B). group_epimorphism(G,H) f /\ abelian_group G ==> abelian_group H`, REPEAT GEN_TAC THEN SIMP_TAC[group_epimorphism; group_homomorphism; abelian_group] THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE_2] THEN ASM SET_TAC[]);; let ABELIAN_GROUP_HOMOMORPHISM_GROUP_MUL = prove (`!(f:A->B) g A B. abelian_group B /\ group_homomorphism(A,B) f /\ group_homomorphism(A,B) g ==> group_homomorphism(A,B) (\x. group_mul B (f x) (g x))`, REWRITE_TAC[group_homomorphism; ABELIAN_GROUP_MUL_AC] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN SIMP_TAC[GROUP_MUL_LID; GROUP_ID; GROUP_MUL; GROUP_INV_MUL; GROUP_INV]);; let ABELIAN_GROUP_HOMOMORPHISM_INVERSION = prove (`!G:A group. group_homomorphism (G,G) (group_inv G) <=> abelian_group G`, REWRITE_TAC[GROUP_HOMOMORPHISM; SUBSET; FORALL_IN_IMAGE; GROUP_INV] THEN SIMP_TAC[GROUP_INV_MUL; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_IN_GROUP_CARRIER_INV; abelian_group] THEN MESON_TAC[]);; let ABELIAN_GROUP_ISOMORPHISMS_INVERSION = prove (`!G:A group. group_isomorphisms (G,G) (group_inv G,group_inv G) <=> abelian_group G`, SIMP_TAC[GROUP_ISOMORPHISMS; ABELIAN_GROUP_HOMOMORPHISM_INVERSION] THEN SIMP_TAC[GROUP_INV_INV; GROUP_INV]);; let ABELIAN_GROUP_ISOMORPHISM_INVERSION = prove (`!G:A group. group_isomorphism (G,G) (group_inv G) <=> abelian_group G`, GEN_TAC THEN EQ_TAC THENL [MESON_TAC[GROUP_ISOMORPHISM_IMP_HOMOMORPHISM; ABELIAN_GROUP_HOMOMORPHISM_INVERSION]; MESON_TAC[ABELIAN_GROUP_ISOMORPHISMS_INVERSION; group_isomorphism]]);; let ABELIAN_GROUP_MONOMORPHISM_INVERSION = prove (`!G:A group. group_monomorphism (G,G) (group_inv G) <=> abelian_group G`, MESON_TAC[GROUP_ISOMORPHISM_IMP_MONOMORPHISM; GROUP_MONOMORPHISM_IMP_HOMOMORPHISM; ABELIAN_GROUP_HOMOMORPHISM_INVERSION; ABELIAN_GROUP_ISOMORPHISM_INVERSION]);; let ABELIAN_GROUP_EPIMORPHISM_INVERSION = prove (`!G:A group. group_epimorphism (G,G) (group_inv G) <=> abelian_group G`, MESON_TAC[GROUP_ISOMORPHISM_IMP_EPIMORPHISM; GROUP_EPIMORPHISM_IMP_HOMOMORPHISM; ABELIAN_GROUP_HOMOMORPHISM_INVERSION; ABELIAN_GROUP_ISOMORPHISM_INVERSION]);; let ABELIAN_GROUP_HOMOMORPHISM_POWERING = prove (`!(G:A group) n. abelian_group G ==> group_homomorphism(G,G) (\x. group_pow G x n)`, REWRITE_TAC[GROUP_HOMOMORPHISM; SUBSET; FORALL_IN_IMAGE; GROUP_POW] THEN SIMP_TAC[ABELIAN_GROUP_MUL_POW]);; let ABELIAN_GROUP_HOMOMORPHISM_ZPOWERING = prove (`!(G:A group) n. abelian_group G ==> group_homomorphism(G,G) (\x. group_zpow G x n)`, REWRITE_TAC[GROUP_HOMOMORPHISM; SUBSET; FORALL_IN_IMAGE; GROUP_ZPOW] THEN SIMP_TAC[ABELIAN_GROUP_MUL_ZPOW]);; (* ------------------------------------------------------------------------- *) (* Relation of isomorphism. *) (* ------------------------------------------------------------------------- *) parse_as_infix("isomorphic_group",(12, "right"));; let isomorphic_group = new_definition `G isomorphic_group G' <=> ?f:A->B. group_isomorphism (G,G') f`;; let GROUP_ISOMORPHISM_IMP_ISOMORPHIC = prove (`!G H f:A->B. group_isomorphism (G,H) f ==> G isomorphic_group H`, REWRITE_TAC[isomorphic_group] THEN MESON_TAC[]);; let ISOMORPHIC_PRODUCT_GROUP_SING = prove (`!(G:K->A group) k. product_group {k} G isomorphic_group G k`, REWRITE_TAC[isomorphic_group] THEN MESON_TAC[GROUP_ISOMORPHISM_PRODUCT_PROJECTION]);; let ISOMORPHIC_SUM_GROUP_SING = prove (`!(G:K->A group) k. sum_group {k} G isomorphic_group G k`, REWRITE_TAC[isomorphic_group] THEN MESON_TAC[GROUP_ISOMORPHISM_SUM_PROJECTION]);; let ISOMORPHIC_GROUP_REFL = prove (`!G:A group. G isomorphic_group G`, GEN_TAC THEN REWRITE_TAC[isomorphic_group] THEN EXISTS_TAC `\x:A. x` THEN REWRITE_TAC[GROUP_ISOMORPHISM_ID]);; let ISOMORPHIC_GROUP_SYM = prove (`!(G:A group) (H:B group). G isomorphic_group H <=> H isomorphic_group G`, REWRITE_TAC[isomorphic_group; group_isomorphism] THEN MESON_TAC[GROUP_ISOMORPHISMS_SYM]);; let ISOMORPHIC_GROUP_TRANS = prove (`!(G1:A group) (G2:B group) (G3:C group). G1 isomorphic_group G2 /\ G2 isomorphic_group G3 ==> G1 isomorphic_group G3`, REWRITE_TAC[isomorphic_group] THEN MESON_TAC[GROUP_ISOMORPHISM_COMPOSE]);; let ISOMORPHIC_GROUP_OPPOSITE_GROUP = prove (`!G:A group. (opposite_group G) isomorphic_group G`, ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN REWRITE_TAC[isomorphic_group; group_isomorphism] THEN MESON_TAC[GROUP_ISOMORPHISMS_OPPOSITE_GROUP]);; let ISOMORPHIC_GROUP_TRIVIALITY = prove (`!(G:A group) (H:B group). G isomorphic_group H ==> (trivial_group G <=> trivial_group H)`, REWRITE_TAC[isomorphic_group; TRIVIAL_GROUP; group_isomorphism; group_isomorphisms; group_homomorphism] THEN SET_TAC[]);; let ISOMORPHIC_TO_TRIVIAL_GROUP = prove (`(!(G:A group) (H:B group). trivial_group G ==> (G isomorphic_group H <=> trivial_group H)) /\ (!(G:A group) (H:B group). trivial_group H ==> (G isomorphic_group H <=> trivial_group G))`, let lemma = prove (`!(G:A group) (H:B group). trivial_group G ==> (G isomorphic_group H <=> trivial_group H)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [ASM_MESON_TAC[ISOMORPHIC_GROUP_TRIVIALITY]; ALL_TAC] THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[TRIVIAL_GROUP; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `a:A` THEN DISCH_TAC THEN X_GEN_TAC `b:B` THEN DISCH_TAC THEN REWRITE_TAC[isomorphic_group; GROUP_ISOMORPHISM] THEN EXISTS_TAC `(\x. b):A->B` THEN ASM_REWRITE_TAC[group_homomorphism] THEN SIMP_TAC[IN_SING; IMAGE_CLAUSES; SUBSET_REFL] THEN ASM_MESON_TAC[GROUP_ID; GROUP_INV; GROUP_MUL; IN_SING]) in REWRITE_TAC[lemma] THEN ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN REWRITE_TAC[lemma]);; let ISOMORPHIC_TRIVIAL_GROUPS = prove (`!(G:A group) (H:B group). trivial_group G /\ trivial_group H ==> G isomorphic_group H`, MESON_TAC[ISOMORPHIC_TO_TRIVIAL_GROUP]);; let ISOMORPHIC_GROUP_SINGLETON_GROUP = prove (`(!(G:A group) (b:B). G isomorphic_group singleton_group b <=> trivial_group G) /\ (!a:A (G:B group). singleton_group a isomorphic_group G <=> trivial_group G)`, MESON_TAC[ISOMORPHIC_TO_TRIVIAL_GROUP; TRIVIAL_GROUP_SINGLETON_GROUP]);; let ISOMORPHIC_GROUP_PROD_GROUPS = prove (`!(G:A group) (G':B group) (H:C group) (H':D group). G isomorphic_group G' /\ H isomorphic_group H' ==> (prod_group G H) isomorphic_group (prod_group G' H')`, REWRITE_TAC[isomorphic_group; group_isomorphism; RIGHT_AND_EXISTS_THM] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[GSYM GROUP_ISOMORPHISMS_PAIRED2] THEN MESON_TAC[]);; let ISOMORPHIC_GROUP_PROD_GROUP_SYM = prove (`!(G:A group) (H:B group). prod_group G H isomorphic_group prod_group H G`, REWRITE_TAC[isomorphic_group; group_isomorphism] THEN MESON_TAC[GROUP_ISOMORPHISMS_PROD_GROUP_SWAP]);; let ISOMORPHIC_GROUP_PROD_GROUP_SWAP_LEFT = prove (`!(G:A group) (H:B group) (K:C group). prod_group G H isomorphic_group K <=> prod_group H G isomorphic_group K`, REPEAT GEN_TAC THEN EQ_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] ISOMORPHIC_GROUP_TRANS) THEN REWRITE_TAC[ISOMORPHIC_GROUP_PROD_GROUP_SYM]);; let ISOMORPHIC_GROUP_PROD_GROUP_SWAP_RIGHT = prove (`!(G:A group) (H:B group) (K:C group). G isomorphic_group prod_group H K <=> G isomorphic_group prod_group K H`, ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN REWRITE_TAC[ISOMORPHIC_GROUP_PROD_GROUP_SWAP_LEFT]);; let ISOMORPHIC_PROD_TRIVIAL_GROUP = prove (`(!(G:A group) (H:B group). trivial_group G ==> (prod_group G H isomorphic_group H)) /\ (!(G:A group) (H:B group). trivial_group H ==> (prod_group G H isomorphic_group G)) /\ (!(G:A group) (H:B group). trivial_group G ==> (H isomorphic_group prod_group G H)) /\ (!(G:A group) (H:B group). trivial_group H ==> (G isomorphic_group prod_group G H))`, let lemma = prove (`!(G:A group) (H:B group). trivial_group G ==> (prod_group G H isomorphic_group H)`, REPEAT STRIP_TAC THEN REWRITE_TAC[isomorphic_group] THEN EXISTS_TAC `SND:A#B->B` THEN ASM_REWRITE_TAC[GROUP_ISOMORPHISM_SND]) in GEN_REWRITE_TAC I [CONJ_ASSOC] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [ISOMORPHIC_GROUP_SYM] THEN REWRITE_TAC[] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [ISOMORPHIC_GROUP_PROD_GROUP_SWAP_LEFT] THEN REWRITE_TAC[lemma]);; let ISOMORPHIC_PRODUCT_GROUP_SUPPORT = prove (`!k (G:K->A group). product_group {i | i IN k /\ ~trivial_group(G i)} G isomorphic_group product_group k G`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN REWRITE_TAC[isomorphic_group; group_isomorphism; GROUP_ISOMORPHISMS] THEN MAP_EVERY EXISTS_TAC [`\x:K->A. RESTRICTION {i | i IN k /\ ~trivial_group((G:K->A group) i)} x`; `\x. RESTRICTION k (\i. if trivial_group((G:K->A group) i) then group_id(G i) else x i)`] THEN REWRITE_TAC[GROUP_HOMOMORPHISM_COMPONENTWISE] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; RESTRICTION_IN_EXTENSIONAL] THEN REWRITE_TAC[PRODUCT_GROUP; RESTRICTION_IN_CARTESIAN_PRODUCT] THEN REWRITE_TAC[IN_ELIM_THM; IN_CARTESIAN_PRODUCT] THEN REWRITE_TAC[RESTRICTION_UNIQUE] THEN SIMP_TAC[IN_ELIM_THM] THEN SIMP_TAC[RESTRICTION; IN_ELIM_THM; EXTENSIONAL] THEN SIMP_TAC[GROUP_HOMOMORPHISM_PRODUCT_PROJECTION] THEN MESON_TAC[GROUP_ID; trivial_group; IN_SING]);; let ISOMORPHIC_PRODUCT_GROUP_SYMDIFF = prove (`!k l (G:K->A group). (!i. i IN (k DIFF l) UNION (l DIFF k) ==> trivial_group(G i)) ==> product_group k G isomorphic_group product_group l G`, REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH rand ISOMORPHIC_PRODUCT_GROUP_SUPPORT o lhand o snd) THEN GEN_REWRITE_TAC LAND_CONV [ISOMORPHIC_GROUP_SYM] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] ISOMORPHIC_GROUP_TRANS) THEN W(MP_TAC o PART_MATCH rand ISOMORPHIC_PRODUCT_GROUP_SUPPORT o rand o snd) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] ISOMORPHIC_GROUP_TRANS) THEN MATCH_MP_TAC(MESON[ISOMORPHIC_GROUP_REFL] `G = H ==> G isomorphic_group H`) THEN AP_THM_TAC THEN AP_TERM_TAC THEN ASM SET_TAC[]);; let ISOMORPHIC_SUM_GROUP_SUPPORT = prove (`!k (G:K->A group). sum_group {i | i IN k /\ ~trivial_group(G i)} G isomorphic_group sum_group k G`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN REWRITE_TAC[isomorphic_group; group_isomorphism] THEN MAP_EVERY EXISTS_TAC [`\x:K->A. RESTRICTION {i | i IN k /\ ~trivial_group((G:K->A group) i)} x`; `\x. RESTRICTION k (\i. if trivial_group((G:K->A group) i) then group_id(G i) else x i)`] THEN REWRITE_TAC[SUM_GROUP_ALT] THEN MATCH_MP_TAC GROUP_ISOMORPHISMS_BETWEEN_SUBGROUPS THEN CONJ_TAC THENL [REWRITE_TAC[GROUP_ISOMORPHISMS; GROUP_HOMOMORPHISM_COMPONENTWISE] THEN REWRITE_TAC[GROUP_HOMOMORPHISM_COMPONENTWISE] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; RESTRICTION_IN_EXTENSIONAL] THEN REWRITE_TAC[PRODUCT_GROUP; RESTRICTION_IN_CARTESIAN_PRODUCT] THEN REWRITE_TAC[IN_ELIM_THM; IN_CARTESIAN_PRODUCT] THEN REWRITE_TAC[RESTRICTION_UNIQUE] THEN SIMP_TAC[IN_ELIM_THM] THEN SIMP_TAC[RESTRICTION; IN_ELIM_THM; EXTENSIONAL] THEN SIMP_TAC[GROUP_HOMOMORPHISM_PRODUCT_PROJECTION] THEN MESON_TAC[GROUP_ID; trivial_group; IN_SING]; REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM] THEN CONJ_TAC THEN GEN_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `i:K` THEN ASM_CASES_TAC `(i:K) IN k` THEN ASM_REWRITE_TAC[RESTRICTION; IN_ELIM_THM] THEN MESON_TAC[]]);; let ISOMORPHIC_SUM_GROUP_SYMDIFF = prove (`!k l (G:K->A group). (!i. i IN (k DIFF l) UNION (l DIFF k) ==> trivial_group(G i)) ==> sum_group k G isomorphic_group sum_group l G`, REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH rand ISOMORPHIC_SUM_GROUP_SUPPORT o lhand o snd) THEN GEN_REWRITE_TAC LAND_CONV [ISOMORPHIC_GROUP_SYM] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] ISOMORPHIC_GROUP_TRANS) THEN W(MP_TAC o PART_MATCH rand ISOMORPHIC_SUM_GROUP_SUPPORT o rand o snd) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] ISOMORPHIC_GROUP_TRANS) THEN MATCH_MP_TAC(MESON[ISOMORPHIC_GROUP_REFL] `G = H ==> G isomorphic_group H`) THEN AP_THM_TAC THEN AP_TERM_TAC THEN ASM SET_TAC[]);; let ISOMORPHIC_PRODUCT_GROUP_BIJECTIONS,ISOMORPHIC_SUM_GROUP_BIJECTIONS = (CONJ_PAIR o prove) (`(!s (G:K->A group) t (H:L->B group) f g. (!x. x IN s ==> f(x) IN t /\ g(f x) = x) /\ (!y. y IN t ==> g(y) IN s /\ f(g y) = y) /\ (!i. i IN s ==> (G i) isomorphic_group H(f i)) ==> product_group s G isomorphic_group product_group t H) /\ (!s (G:K->A group) t (H:L->B group) f g. (!x. x IN s ==> f(x) IN t /\ g(f x) = x) /\ (!y. y IN t ==> g(y) IN s /\ f(g y) = y) /\ (!i. i IN s ==> (G i) isomorphic_group H(f i)) ==> sum_group s G isomorphic_group sum_group t H)`, CONJ_TAC THEN REPEAT GEN_TAC THEN REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[isomorphic_group; group_isomorphism] THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`h:K->A->B`; `k:K->B->A`] THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [group_isomorphisms; FORALL_AND_THM; TAUT `p ==> q /\ r <=> (p ==> q) /\ (p ==> r)`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`\(x:K->A). RESTRICTION t (\j:L. (h:K->A->B) (g j) (x (g j)))`; `\(y:L->B). RESTRICTION s (\i:K. (k:K->B->A) i (y (f i)))`] THEN REWRITE_TAC[SUM_GROUP_ALT] THENL [ALL_TAC; MATCH_MP_TAC GROUP_ISOMORPHISMS_BETWEEN_SUBGROUPS_ALT THEN CONJ_TAC THENL [ALL_TAC; REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM] THEN SIMP_TAC[GSYM NOT_IMP; RESTRICTION] THEN REWRITE_TAC[NOT_IMP; IN_INTER; PRODUCT_GROUP] THEN REWRITE_TAC[IN_CARTESIAN_PRODUCT; IN_ELIM_THM] THEN CONJ_TAC THENL [X_GEN_TAC `x:K->A`; X_GEN_TAC `y:L->B`] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC(MESON[FINITE_IMAGE; FINITE_SUBSET] `!f. t SUBSET IMAGE f s ==> FINITE s ==> FINITE t`) THENL [EXISTS_TAC `f:K->L`; EXISTS_TAC `g:L->K`] THEN RULE_ASSUM_TAC(REWRITE_RULE[group_homomorphism]) THEN ASM SET_TAC[]]] THEN (REWRITE_TAC[group_isomorphisms] THEN REWRITE_TAC[RESTRICTION_EXTENSION; PRODUCT_GROUP; FORALL_IN_GSPEC; IMP_CONJ; SUM_GROUP_CLAUSES; CARTESIAN_PRODUCT_AS_RESTRICTIONS] THEN ASM_SIMP_TAC[RESTRICTION] THEN REWRITE_TAC[GROUP_HOMOMORPHISM_COMPONENTWISE] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; PRODUCT_GROUP] THEN REWRITE_TAC[RESTRICTION_IN_EXTENSIONAL] THEN SIMP_TAC[RESTRICTION] THEN CONJ_TAC THENL [X_GEN_TAC `j:L`; X_GEN_TAC `i:K`] THEN DISCH_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN MATCH_MP_TAC GROUP_HOMOMORPHISM_COMPOSE THENL [EXISTS_TAC `(G:K->A group) (g(j:L))`; EXISTS_TAC `(H:L->B group) (f(i:K))`] THEN ASM_SIMP_TAC[GROUP_HOMOMORPHISM_PRODUCT_PROJECTION] THEN ASM_MESON_TAC[]));; let ISOMORPHIC_GROUP_PRODUCT_GROUP = prove (`!(G:K->A group) (H:K->B group) k. (!i. i IN k ==> (G i) isomorphic_group (H i)) ==> (product_group k G) isomorphic_group (product_group k H)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC ISOMORPHIC_PRODUCT_GROUP_BIJECTIONS THEN REPEAT(EXISTS_TAC `\x:K. x`) THEN ASM_REWRITE_TAC[]);; let ISOMORPHIC_GROUP_SUM_GROUP = prove (`!(G:K->A group) (H:K->B group) k. (!i. i IN k ==> (G i) isomorphic_group (H i)) ==> (sum_group k G) isomorphic_group (sum_group k H)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC ISOMORPHIC_SUM_GROUP_BIJECTIONS THEN REPEAT(EXISTS_TAC `\x:K. x`) THEN ASM_REWRITE_TAC[]);; let GROUP_ISOMORPHISMS_PRODUCT_GROUP_DISJOINT_UNION = prove (`!(f:K->A group) k l. DISJOINT k l ==> group_isomorphisms (product_group (k UNION l) f, prod_group (product_group k f) (product_group l f)) ((\f. RESTRICTION k f,RESTRICTION l f), (\(f,g) x. if x IN k then f x else g x))`, REPEAT STRIP_TAC THEN REWRITE_TAC[GROUP_ISOMORPHISMS] THEN CONJ_TAC THENL [REWRITE_TAC[GROUP_HOMOMORPHISM_PAIRED; GROUP_HOMOMORPHISM_COMPONENTWISE] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; RESTRICTION_IN_EXTENSIONAL] THEN SIMP_TAC[RESTRICTION; GROUP_HOMOMORPHISM_PRODUCT_PROJECTION; IN_UNION]; REWRITE_TAC[PROD_GROUP; FORALL_PAIR_THM; IN_CROSS; PAIR_EQ] THEN SIMP_TAC[RESTRICTION_UNIQUE; IN_CARTESIAN_PRODUCT; PRODUCT_GROUP] THEN REWRITE_TAC[EXTENSIONAL; IN_ELIM_THM] THEN REWRITE_TAC[FUN_EQ_THM; RESTRICTION] THEN ASM SET_TAC[]]);; let GROUP_ISOMORPHISMS_SUM_GROUP_DISJOINT_UNION = prove (`!(f:K->A group) k l. DISJOINT k l ==> group_isomorphisms (sum_group (k UNION l) f, prod_group (sum_group k f) (sum_group l f)) ((\f. RESTRICTION k f,RESTRICTION l f), (\(f,g) x. if x IN k then f x else g x))`, REPEAT STRIP_TAC THEN SIMP_TAC[sum_group; SUBGROUP_SUM_GROUP; PROD_GROUP_SUBGROUP_GENERATED] THEN REWRITE_TAC[SET_RULE `{x | x IN s /\ P x} = s INTER {x | P x}`] THEN REWRITE_TAC[GSYM INTER_CROSS] THEN REWRITE_TAC[GSYM(CONJUNCT1 PRODUCT_GROUP)] THEN REWRITE_TAC[GSYM(CONJUNCT1 PROD_GROUP)] THEN REWRITE_TAC[GSYM SUBGROUP_GENERATED_RESTRICT] THEN MATCH_MP_TAC GROUP_ISOMORPHISMS_BETWEEN_SUBGROUPS_ALT THEN CONJ_TAC THENL [REWRITE_TAC[GROUP_ISOMORPHISMS] THEN CONJ_TAC THENL [REWRITE_TAC[GROUP_HOMOMORPHISM_PAIRED; GROUP_HOMOMORPHISM_COMPONENTWISE] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; RESTRICTION_IN_EXTENSIONAL] THEN SIMP_TAC[RESTRICTION; GROUP_HOMOMORPHISM_PRODUCT_PROJECTION; IN_UNION]; REWRITE_TAC[PROD_GROUP; FORALL_PAIR_THM; IN_CROSS; PAIR_EQ] THEN SIMP_TAC[RESTRICTION_UNIQUE; IN_CARTESIAN_PRODUCT; PRODUCT_GROUP] THEN REWRITE_TAC[EXTENSIONAL; IN_ELIM_THM] THEN REWRITE_TAC[FUN_EQ_THM; RESTRICTION] THEN ASM SET_TAC[]]; REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; FORALL_PAIR_THM; IN_CROSS; IN_INTER; IN_ELIM_THM] THEN CONJ_TAC THEN REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[GSYM FINITE_UNION] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN REWRITE_TAC[SUBSET; IN_UNION; IN_INTER; IN_ELIM_THM; RESTRICTION] THEN SET_TAC[]]);; let GROUP_ISOMORPHISM_PRODUCT_GROUP_DISJOINT_UNION = prove (`!(f:K->A group) k l. DISJOINT k l ==> group_isomorphism (product_group (k UNION l) f, prod_group (product_group k f) (product_group l f)) (\f. RESTRICTION k f,RESTRICTION l f)`, REWRITE_TAC[group_isomorphism] THEN MESON_TAC[GROUP_ISOMORPHISMS_PRODUCT_GROUP_DISJOINT_UNION]);; let GROUP_ISOMORPHISM_SUM_GROUP_DISJOINT_UNION = prove (`!(f:K->A group) k l. DISJOINT k l ==> group_isomorphism (sum_group (k UNION l) f, prod_group (sum_group k f) (sum_group l f)) (\f. RESTRICTION k f,RESTRICTION l f)`, REWRITE_TAC[group_isomorphism] THEN MESON_TAC[GROUP_ISOMORPHISMS_SUM_GROUP_DISJOINT_UNION]);; let ISOMORPHIC_PRODUCT_GROUP_DISJOINT_UNION = prove (`!(f:K->A group) k l. DISJOINT k l ==> product_group (k UNION l) f isomorphic_group prod_group (product_group k f) (product_group l f)`, REWRITE_TAC[isomorphic_group] THEN MESON_TAC[GROUP_ISOMORPHISM_PRODUCT_GROUP_DISJOINT_UNION]);; let ISOMORPHIC_SUM_GROUP_DISJOINT_UNION = prove (`!(f:K->A group) k l. DISJOINT k l ==> sum_group (k UNION l) f isomorphic_group prod_group (sum_group k f) (sum_group l f)`, REWRITE_TAC[isomorphic_group] THEN MESON_TAC[GROUP_ISOMORPHISM_SUM_GROUP_DISJOINT_UNION]);; let ISOMORPHIC_PRODUCT_GROUP_INSERT = prove (`!(f:K->A group) i k. ~(i IN k) ==> product_group (i INSERT k) f isomorphic_group prod_group (f i) (product_group k f)`, REPEAT STRIP_TAC THEN TRANS_TAC ISOMORPHIC_GROUP_TRANS `prod_group (product_group {i} f) (product_group k (f:K->A group))` THEN SUBST1_TAC(SET_RULE `(i:K) INSERT k = {i} UNION k`) THEN ASM_SIMP_TAC[ISOMORPHIC_PRODUCT_GROUP_DISJOINT_UNION; DISJOINT_SING] THEN MATCH_MP_TAC ISOMORPHIC_GROUP_PROD_GROUPS THEN REWRITE_TAC[ISOMORPHIC_GROUP_REFL; ISOMORPHIC_PRODUCT_GROUP_SING]);; let ISOMORPHIC_SUM_GROUP_INSERT = prove (`!(f:K->A group) i k. ~(i IN k) ==> sum_group (i INSERT k) f isomorphic_group prod_group (f i) (sum_group k f)`, REPEAT STRIP_TAC THEN TRANS_TAC ISOMORPHIC_GROUP_TRANS `prod_group (sum_group {i} f) (sum_group k (f:K->A group))` THEN SUBST1_TAC(SET_RULE `(i:K) INSERT k = {i} UNION k`) THEN ASM_SIMP_TAC[ISOMORPHIC_SUM_GROUP_DISJOINT_UNION; DISJOINT_SING] THEN MATCH_MP_TAC ISOMORPHIC_GROUP_PROD_GROUPS THEN REWRITE_TAC[ISOMORPHIC_GROUP_REFL; ISOMORPHIC_SUM_GROUP_SING]);; let ISOMORPHIC_GROUP_CARD_EQ = prove (`!(G:A group) (H:B group). G isomorphic_group H ==> group_carrier G =_c group_carrier H`, REWRITE_TAC[isomorphic_group; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[CARD_EQ_GROUP_ISOMORPHIC_IMAGE]);; let ISOMORPHIC_GROUP_FINITENESS = prove (`!(G:A group) (H:B group). G isomorphic_group H ==> (FINITE(group_carrier G) <=> FINITE(group_carrier H))`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP ISOMORPHIC_GROUP_CARD_EQ) THEN REWRITE_TAC[CARD_FINITE_CONG]);; let ISOMORPHIC_GROUP_INFINITENESS = prove (`!(G:A group) (H:B group). G isomorphic_group H ==> (INFINITE(group_carrier G) <=> INFINITE(group_carrier H))`, REWRITE_TAC[INFINITE; TAUT `(~p <=> ~q) <=> (p <=> q)`] THEN REWRITE_TAC[ISOMORPHIC_GROUP_FINITENESS]);; let ISOMORPHIC_GROUP_HAS_ORDER = prove (`!(G:A group) (H:B group) n. G isomorphic_group H ==> (group_carrier G HAS_SIZE n <=> group_carrier H HAS_SIZE n)`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP ISOMORPHIC_GROUP_CARD_EQ) THEN MESON_TAC[CARD_HAS_SIZE_CONG]);; let ISOMORPHIC_GROUP_ORDER = prove (`!(G:A group) (H:B group). G isomorphic_group H /\ (FINITE(group_carrier G) \/ FINITE(group_carrier H)) ==> CARD(group_carrier G) = CARD(group_carrier H)`, MESON_TAC[ISOMORPHIC_GROUP_HAS_ORDER; HAS_SIZE; ISOMORPHIC_GROUP_FINITENESS]);; let ISOMORPHIC_GROUP_ABELIANNESS = prove (`!(G:A group) (H:B group). G isomorphic_group H ==> (abelian_group G <=> abelian_group H)`, REPEAT STRIP_TAC THEN EQ_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] ABELIAN_GROUP_EPIMORPHIC_IMAGE) THEN ASM_MESON_TAC[isomorphic_group; ISOMORPHIC_GROUP_SYM; GROUP_MONOMORPHISM_EPIMORPHISM]);; let CREATE_ISOMORPHIC_COPY_OF_GROUP = prove (`!(f:A->B) g G s z i m. z IN s /\ (!x. x IN group_carrier G ==> f x IN s /\ g(f x) = x) /\ (!y. y IN s ==> g y IN group_carrier G /\ f(g y) = y) /\ g z = group_id G /\ (!x. x IN s ==> i x = f(group_inv G (g x))) /\ (!x y. x IN s /\ y IN s ==> m x y = f(group_mul G (g x) (g y))) ==> group_isomorphisms (G,group(s,z,i,m)) (f,g) /\ group_carrier (group(s,z,i,m)) = s /\ group_id (group(s,z,i,m)) = z /\ group_inv (group(s,z,i,m)) = i /\ group_mul (group(s,z,i,m)) = m`, REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC(TAUT `(q ==> p) /\ q ==> p /\ q`) THEN CONJ_TAC THENL [STRIP_TAC THEN ONCE_REWRITE_TAC[GROUP_ISOMORPHISMS_SYM] THEN ASM_REWRITE_TAC[GROUP_ISOMORPHISMS; GROUP_HOMOMORPHISM] THEN ASM_SIMP_TAC[SUBSET; FORALL_IN_IMAGE; GROUP_MUL]; PURE_REWRITE_TAC [GSYM PAIR_EQ; group_carrier; group_id; group_inv; group_mul; BETA_THM; PAIR] THEN REWRITE_TAC[GSYM(CONJUNCT2 group_tybij)] THEN REWRITE_TAC(map (GSYM o REWRITE_RULE[FUN_EQ_THM]) [group_carrier; group_id; group_inv; group_mul]) THEN ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 4) [GROUP_ID; GROUP_MUL; GROUP_INV; GROUP_MUL_ASSOC; GROUP_MUL_LID; GROUP_MUL_RID; GROUP_MUL_LINV; GROUP_MUL_RINV] THEN ASM_MESON_TAC[GROUP_ID]]);; let ISOMORPHIC_COPY_OF_GROUP = prove (`!(G:A group) (s:B->bool). (?G'. group_carrier G' = s /\ G isomorphic_group G') <=> group_carrier G =_c s`, REPEAT GEN_TAC THEN EQ_TAC THENL [MESON_TAC[ISOMORPHIC_GROUP_CARD_EQ; CARD_EQ_TRANS]; REWRITE_TAC[EQ_C_BIJECTIONS; LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`f:A->B`; `g:B->A`] THEN STRIP_TAC THEN MATCH_MP_TAC(MESON[GROUP_ISOMORPHISM_IMP_ISOMORPHIC; group_isomorphism] `(?G'. group_isomorphisms(G,G') (f:A->B,g) /\ group_carrier G' = s) ==> ?G'. group_carrier G' = s /\ G isomorphic_group G'`) THEN EXISTS_TAC `group(s:B->bool, f (group_id G:A), (\x. f(group_inv G (g x))), (\x1 x2. f(group_mul G (g x1) (g x2))))` THEN W(MP_TAC o PART_MATCH (lhand o rand) CREATE_ISOMORPHIC_COPY_OF_GROUP o lhand o snd) THEN ANTS_TAC THENL [ALL_TAC; SIMP_TAC[]] THEN ASM_SIMP_TAC[GROUP_ID]);; (* ------------------------------------------------------------------------- *) (* Perform group operations setwise. *) (* ------------------------------------------------------------------------- *) let group_setinv = new_definition `group_setinv G g = {group_inv G x | x IN g}`;; let group_setmul = new_definition `group_setmul G g h = {group_mul G x y | x IN g /\ y IN h}`;; let GROUP_SETINV_AS_IMAGE = prove (`!G:A group. group_setinv G = IMAGE (group_inv G)`, REWRITE_TAC[FUN_EQ_THM; group_setinv; SIMPLE_IMAGE; ETA_AX]);; let SUBGROUP_OF_SETWISE = prove (`!G s:A->bool. s subgroup_of G <=> s SUBSET group_carrier G /\ group_id G IN s /\ group_setinv G s SUBSET s /\ group_setmul G s s SUBSET s`, REWRITE_TAC[subgroup_of; group_setinv; group_setmul] THEN SET_TAC[]);; let OPPOSITE_GROUP_SETINV = prove (`!G s:A->bool. group_setinv (opposite_group G) s = group_setinv G s`, REPEAT STRIP_TAC THEN REWRITE_TAC[group_setinv; OPPOSITE_GROUP]);; let OPPOSITE_GROUP_SETMUL = prove (`!G s t:A->bool. group_setmul (opposite_group G) s t = group_setmul G t s`, REPEAT STRIP_TAC THEN REWRITE_TAC[group_setmul; OPPOSITE_GROUP] THEN SET_TAC[]);; let GROUP_SETINV_EQ_EMPTY = prove (`!G g:A->bool. group_setinv G g = {} <=> g = {}`, REWRITE_TAC[group_setinv] THEN SET_TAC[]);; let GROUP_SETMUL_EQ_EMPTY = prove (`!G g h:A->bool. group_setmul G g h = {} <=> g = {} \/ h = {}`, REWRITE_TAC[group_setmul] THEN SET_TAC[]);; let GROUP_SETMUL_EMPTY = prove (`(!G s:A->bool. group_setmul G s {} = {}) /\ (!G t:A->bool. group_setmul G {} t = {})`, REWRITE_TAC[GROUP_SETMUL_EQ_EMPTY]);; let GROUP_SETINV_MONO = prove (`!G s s':A->bool. s SUBSET s' ==> group_setinv G s SUBSET group_setinv G s'`, REWRITE_TAC[group_setinv] THEN SET_TAC[]);; let GROUP_SETMUL_MONO = prove (`!G s t s' t':A->bool. s SUBSET s' /\ t SUBSET t' ==> group_setmul G s t SUBSET group_setmul G s' t'`, REWRITE_TAC[group_setmul] THEN SET_TAC[]);; let GROUP_SETMUL_INC_GEN = prove (`(!G s t:A->bool. group_id G IN s /\ t SUBSET group_carrier G ==> t SUBSET group_setmul G s t) /\ (!G s t:A->bool. s SUBSET group_carrier G /\ group_id G IN t ==> s SUBSET group_setmul G s t)`, REPEAT STRIP_TAC THEN REWRITE_TAC[group_setmul; SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THENL [MAP_EVERY EXISTS_TAC [`group_id G:A`; `x:A`]; MAP_EVERY EXISTS_TAC [`x:A`; `group_id G:A`]] THEN ASM_MESON_TAC[SUBSET; GROUP_MUL_LID; GROUP_MUL_RID]);; let GROUP_SETMUL_INC = prove (`(!G s t:A->bool. s subgroup_of G /\ t subgroup_of G ==> t SUBSET group_setmul G s t) /\ (!G s t:A->bool. s subgroup_of G /\ t subgroup_of G ==> s SUBSET group_setmul G s t)`, MESON_TAC[GROUP_SETMUL_INC_GEN; subgroup_of]);; let FINITE_GROUP_SETMUL = prove (`!G s t:A->bool. FINITE s /\ FINITE t ==> FINITE(group_setmul G s t)`, SIMP_TAC[group_setmul; FINITE_PRODUCT_DEPENDENT]);; let GROUP_SETMUL_SYM_ELEMENTWISE = prove (`!G s t u:A->bool. (!a. a IN s ==> group_setmul G {a} t = group_setmul G u {a}) ==> group_setmul G s t = group_setmul G u s`, REWRITE_TAC[group_setmul] THEN SET_TAC[]);; let GROUP_SETINV_SING = prove (`!G x:A. group_setinv G {x} = {group_inv G x}`, REWRITE_TAC[group_setinv] THEN SET_TAC[]);; let GROUP_SETMUL_SING = prove (`!G x y:A. group_setmul G {x} {y} = {group_mul G x y}`, REWRITE_TAC[group_setmul] THEN SET_TAC[]);; let GROUP_SETINV = prove (`!G g:A->bool. g SUBSET group_carrier G ==> group_setinv G g SUBSET group_carrier G`, SIMP_TAC[group_setinv; SUBSET; FORALL_IN_GSPEC; GROUP_INV]);; let GROUP_SETMUL = prove (`!G g h:A->bool. g SUBSET group_carrier G /\ h SUBSET group_carrier G==> group_setmul G g h SUBSET group_carrier G`, SIMP_TAC[group_setmul; SUBSET; FORALL_IN_GSPEC; GROUP_MUL]);; let GROUP_SETMUL_LID = prove (`!G g:A->bool. g SUBSET group_carrier G ==> group_setmul G {group_id G} g = g`, REPEAT STRIP_TAC THEN REWRITE_TAC[group_setmul] THEN MATCH_MP_TAC(SET_RULE `(!y. y IN s ==> f a y = y) ==> {f x y | x IN {a} /\ y IN s} = s`) THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN ASM_SIMP_TAC[GROUP_MUL_LID]);; let GROUP_SETMUL_RID = prove (`!G g:A->bool. g SUBSET group_carrier G ==> group_setmul G g {group_id G} = g`, ONCE_REWRITE_TAC[GSYM OPPOSITE_GROUP_SETMUL] THEN MESON_TAC[GROUP_SETMUL_LID; OPPOSITE_GROUP]);; let GROUP_SETMUL_ASSOC = prove (`!G g h i:A->bool. g SUBSET group_carrier G /\ h SUBSET group_carrier G /\ i SUBSET group_carrier G ==> group_setmul G g (group_setmul G h i) = group_setmul G (group_setmul G g h) i`, REPEAT STRIP_TAC THEN REWRITE_TAC[group_setmul] THEN REWRITE_TAC[SET_RULE `{f x y |x,y| x IN s /\ y IN {g w z | w IN t /\ z IN u}} = {f x (g y z) | x IN s /\ y IN t /\ z IN u}`] THEN REWRITE_TAC[SET_RULE `{f x y |x,y| x IN {g w z | w IN s /\ z IN t} /\ y IN u} = {f (g x y) z | x IN s /\ y IN t /\ z IN u}`] THEN MATCH_MP_TAC(SET_RULE `(!x y z. P x y z ==> f x y z = g x y z) ==> {f x y z | P x y z} = {g x y z | P x y z}`) THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_MUL_ASSOC THEN ASM SET_TAC[]);; let GROUP_SETMUL_SYM = prove (`!G g h:A->bool. abelian_group G /\ g SUBSET group_carrier G /\ h SUBSET group_carrier G ==> group_setmul G g h = group_setmul G h g`, REWRITE_TAC[abelian_group; group_setmul] THEN SET_TAC[]);; let GROUP_SETINV_SUBGROUP = prove (`!G h:A->bool. h subgroup_of G ==> group_setinv G h = h`, REWRITE_TAC[group_setinv; subgroup_of; SUBSET] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x IN s /\ f(f x) = x) ==> {f x | x IN s} = s`) THEN ASM_SIMP_TAC[GROUP_INV_INV]);; let GROUP_SETMUL_LSUBSET = prove (`!G h s:A->bool. h subgroup_of G /\ s SUBSET h /\ ~(s = {}) ==> group_setmul G s h = h`, REWRITE_TAC[group_setmul; subgroup_of; SUBSET] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GSYM SUBSET_ANTISYM_EQ; SUBSET; GROUP_MUL; FORALL_IN_GSPEC] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN FIRST_X_ASSUM(X_CHOOSE_TAC `y:A` o REWRITE_RULE[GSYM MEMBER_NOT_EMPTY]) THEN MAP_EVERY EXISTS_TAC [`y:A`; `group_mul G (group_inv G y) x:A`] THEN ASM_SIMP_TAC[] THEN W(MP_TAC o PART_MATCH (lhand o rand) GROUP_MUL_ASSOC o rand o snd) THEN ASM_SIMP_TAC[GROUP_MUL; GROUP_INV; GROUP_MUL_RINV; GROUP_MUL_LID]);; let GROUP_SETMUL_RSUBSET = prove (`!G h s:A->bool. h subgroup_of G /\ s SUBSET h /\ ~(s = {}) ==> group_setmul G h s = h`, ONCE_REWRITE_TAC[GSYM OPPOSITE_GROUP_SETMUL] THEN SIMP_TAC[GROUP_SETMUL_LSUBSET; SUBGROUP_OF_OPPOSITE_GROUP; OPPOSITE_GROUP]);; let GROUP_SETMUL_LSUBSET_EQ = prove (`!G h s:A->bool. h subgroup_of G /\ s SUBSET group_carrier G ==> (group_setmul G s h = h <=> s SUBSET h /\ ~(s = {}))`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:A->bool = {}` THENL [ASM_MESON_TAC[GROUP_SETMUL_EQ_EMPTY; SUBGROUP_OF_IMP_NONEMPTY]; ASM_REWRITE_TAC[]] THEN EQ_TAC THENL [ALL_TAC; ASM_MESON_TAC[GROUP_SETMUL_LSUBSET]] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[group_setmul; IN_ELIM_THM; SUBSET] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`x:A`; `group_id G:A`] THEN RULE_ASSUM_TAC(REWRITE_RULE[subgroup_of; SUBSET]) THEN ASM_SIMP_TAC[GROUP_MUL_RID]);; let GROUP_SETMUL_RSUBSET_EQ = prove (`!G h s:A->bool. h subgroup_of G /\ s SUBSET group_carrier G ==> (group_setmul G h s = h <=> s SUBSET h /\ ~(s = {}))`, ONCE_REWRITE_TAC[GSYM OPPOSITE_GROUP_SETMUL] THEN SIMP_TAC[GROUP_SETMUL_LSUBSET_EQ; SUBGROUP_OF_OPPOSITE_GROUP; OPPOSITE_GROUP]);; let IMAGE_GROUP_CONJUGATION = prove (`!G (a:A) s. IMAGE (group_conjugation G a) s = group_setmul G {a} (group_setmul G s {group_inv G a})`, REWRITE_TAC[group_conjugation; group_setmul; IMAGE] THEN SET_TAC[]);; let IMAGE_GROUP_CONJUGATION_EQ = prove (`!G (a:A) s t. a IN group_carrier G /\ s SUBSET group_carrier G /\ t SUBSET group_carrier G ==> (IMAGE (group_conjugation G a) s = t <=> group_setmul G {a} s = group_setmul G t {a})`, REPEAT STRIP_TAC THEN REWRITE_TAC[IMAGE_GROUP_CONJUGATION] THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o AP_TERM `\s. group_setmul G s {a:A}`); DISCH_THEN(MP_TAC o AP_TERM `\s. group_setmul G s {group_inv G a:A}`)] THEN ASM_SIMP_TAC[GSYM GROUP_SETMUL_ASSOC; SING_SUBSET; GROUP_SETMUL; GROUP_INV; GROUP_SETMUL_SING; GROUP_MUL_LINV; GROUP_MUL_RINV; GROUP_SETMUL_RID]);; let GROUP_SETMUL_SUBGROUP = prove (`!G h:A->bool. h subgroup_of G ==> group_setmul G h h = h`, REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_SETMUL_LSUBSET THEN ASM_MESON_TAC[SUBGROUP_OF_IMP_NONEMPTY; SUBSET_REFL]);; let GROUP_SETMUL_LCANCEL = prove (`!G g h x:A. x IN group_carrier G /\ g SUBSET group_carrier G /\ h SUBSET group_carrier G ==> (group_setmul G {x} g = group_setmul G {x} h <=> g = h)`, REPEAT STRIP_TAC THEN EQ_TAC THEN SIMP_TAC[] THEN DISCH_THEN(MP_TAC o AP_TERM `group_setmul G {group_inv G x:A}`) THEN ASM_SIMP_TAC[GROUP_SETMUL_ASSOC; SING_SUBSET; GROUP_INV] THEN ASM_SIMP_TAC[GROUP_SETMUL_SING; GROUP_MUL_LINV; GROUP_SETMUL_LID]);; let GROUP_SETMUL_RCANCEL = prove (`!G g h x:A. x IN group_carrier G /\ g SUBSET group_carrier G /\ h SUBSET group_carrier G ==> (group_setmul G g {x} = group_setmul G h {x} <=> g = h)`, ONCE_REWRITE_TAC[GSYM OPPOSITE_GROUP_SETMUL] THEN SIMP_TAC[GROUP_SETMUL_LCANCEL; OPPOSITE_GROUP]);; let GROUP_SETMUL_LCANCEL_SET = prove (`!G h x y:A. x IN group_carrier G /\ y IN group_carrier G /\ h subgroup_of G ==> (group_setmul G h {x} = group_setmul G h {y} <=> group_div G x y IN h)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP SUBGROUP_OF_IMP_SUBSET) THEN TRANS_TAC EQ_TRANS `group_setmul G (group_setmul G h {x}) {group_inv G y} = group_setmul G (group_setmul G h {y:A}) {group_inv G y}` THEN CONJ_TAC THENL [CONV_TAC SYM_CONV THEN MATCH_MP_TAC GROUP_SETMUL_RCANCEL THEN ASM_SIMP_TAC[GROUP_INV; GROUP_SETMUL; SING_SUBSET]; ASM_SIMP_TAC[GSYM GROUP_SETMUL_ASSOC; GROUP_INV; SING_SUBSET] THEN ASM_SIMP_TAC[GROUP_SETMUL_SING; GROUP_MUL_RINV; GROUP_SETMUL_RID] THEN ASM_SIMP_TAC[GROUP_SETMUL_RSUBSET_EQ; SING_SUBSET; group_div; GROUP_INV; GROUP_MUL; NOT_INSERT_EMPTY]]);; let GROUP_SETMUL_RCANCEL_SET = prove (`!G h x y:A. x IN group_carrier G /\ y IN group_carrier G /\ h subgroup_of G ==> (group_setmul G {x} h = group_setmul G {y} h <=> group_mul G (group_inv G x) y IN h)`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [EQ_SYM_EQ] THEN ONCE_REWRITE_TAC[GSYM OPPOSITE_GROUP_SETMUL] THEN ASM_SIMP_TAC[GROUP_SETMUL_LCANCEL_SET; OPPOSITE_GROUP; SUBGROUP_OF_OPPOSITE_GROUP; group_div]);; let SUBGROUP_SETMUL_EQ = prove (`!G g h:A->bool. g subgroup_of G /\ h subgroup_of G ==> ((group_setmul G g h) subgroup_of G <=> group_setmul G g h = group_setmul G h g)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [DISCH_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[SUBSET; group_setmul; FORALL_IN_GSPEC] THEN CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [subgroup_of]) THEN DISCH_THEN(MP_TAC o el 2 o CONJUNCTS) THENL [DISCH_THEN(MP_TAC o SPEC `group_mul G x y:A`) THEN REWRITE_TAC[group_setmul; IN_ELIM_THM] THEN ANTS_TAC THENL [ASM_MESON_TAC[]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`w:A`; `z:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o AP_TERM `group_inv (G:A group)`) THEN RULE_ASSUM_TAC(REWRITE_RULE[subgroup_of; SUBSET]) THEN ASM_SIMP_TAC[GROUP_INV_INV; GROUP_MUL] THEN ASM_SIMP_TAC[GROUP_INV_MUL] THEN ASM_MESON_TAC[]; DISCH_THEN(MP_TAC o SPEC `group_mul G (group_inv G y) (group_inv G x):A`) THEN RULE_ASSUM_TAC(REWRITE_RULE[subgroup_of; SUBSET]) THEN REWRITE_TAC[group_setmul; IN_ELIM_THM] THEN ANTS_TAC THENL [ASM_MESON_TAC[]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN ASM_SIMP_TAC[GROUP_INV_MUL; GROUP_INV; GROUP_MUL; GROUP_INV_INV] THEN ASM_MESON_TAC[]]; DISCH_TAC THEN REWRITE_TAC[SUBGROUP_OF_SETWISE] THEN ASM_SIMP_TAC[GROUP_SETMUL; SUBGROUP_OF_IMP_SUBSET] THEN REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL [REWRITE_TAC[group_setmul; group_setinv; SUBSET; IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN RULE_ASSUM_TAC(REWRITE_RULE[subgroup_of; SUBSET]) THEN ASM_SIMP_TAC[GROUP_INV_MUL; IN_ELIM_THM] THEN CONJ_TAC THENL [ASM_MESON_TAC[GROUP_MUL_LID]; ALL_TAC] THEN X_GEN_TAC `y:A` THEN DISCH_TAC THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP(SET_RULE `s = t ==> !x. x IN s ==> x IN t`)) THEN REWRITE_TAC[group_setmul; FORALL_IN_GSPEC] THEN DISCH_THEN(MP_TAC o SPECL [`group_inv G x:A`; `group_inv G y:A`]) THEN ASM SET_TAC[]; TRANS_TAC SUBSET_TRANS `group_setmul G (group_setmul G h g) (group_setmul G g h):A->bool` THEN CONJ_TAC THENL [ASM_MESON_TAC[SUBSET_REFL]; ALL_TAC] THEN TRANS_TAC SUBSET_TRANS `group_setmul G h (group_setmul G g (group_setmul G g h)):A->bool` THEN CONJ_TAC THENL [ASM_MESON_TAC[GROUP_SETMUL_ASSOC; subgroup_of; GROUP_SETMUL; SUBSET_REFL]; ALL_TAC] THEN TRANS_TAC SUBSET_TRANS `group_setmul G h (group_setmul G (group_setmul G g g) h):A->bool` THEN CONJ_TAC THENL [ASM_MESON_TAC[GROUP_SETMUL_ASSOC; subgroup_of; GROUP_SETMUL; SUBSET_REFL]; ALL_TAC] THEN ASM_SIMP_TAC[GROUP_SETMUL_SUBGROUP] THEN ASM_SIMP_TAC[GROUP_SETMUL_ASSOC; SUBGROUP_OF_IMP_SUBSET] THEN ASM_SIMP_TAC[GROUP_SETMUL_SUBGROUP; SUBSET_REFL]]]);; let SUBGROUP_SETMUL = prove (`!G g h:A->bool. abelian_group G /\ g subgroup_of G /\ h subgroup_of G ==> (group_setmul G g h) subgroup_of G`, MESON_TAC[GROUP_SETMUL_SYM; SUBGROUP_SETMUL_EQ; subgroup_of]);; let SUBGROUP_GENERATED_SETMUL = prove (`!G g h:A->bool. g subgroup_of G /\ h subgroup_of G ==> subgroup_generated G (group_setmul G g h) = subgroup_generated G (g UNION h)`, REPEAT STRIP_TAC THEN REWRITE_TAC[GROUPS_EQ; CONJUNCT2 SUBGROUP_GENERATED] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THEN MATCH_MP_TAC SUBGROUP_GENERATED_MINIMAL THEN REWRITE_TAC[SUBGROUP_SUBGROUP_GENERATED] THEN REWRITE_TAC[SUBSET; group_setmul; FORALL_IN_GSPEC; FORALL_IN_UNION] THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC(MESON[SUBGROUP_GENERATED; GROUP_MUL] `x IN group_carrier(subgroup_generated G s) /\ y IN group_carrier(subgroup_generated G s) ==> group_mul G x y IN group_carrier(subgroup_generated G s)`) THEN CONJ_TAC; REPEAT STRIP_TAC] THEN MATCH_MP_TAC SUBGROUP_GENERATED_INC THEN ASM_SIMP_TAC[UNION_SUBSET; IN_UNION; SUBGROUP_OF_IMP_SUBSET] THEN ASM_SIMP_TAC[GSYM group_setmul; GROUP_SETMUL; SUBGROUP_OF_IMP_SUBSET] THEN REWRITE_TAC[group_setmul; IN_ELIM_THM] THEN ASM_MESON_TAC[GROUP_MUL_LID; GROUP_MUL_RID; subgroup_of; SUBSET]);; let CARRIER_SUBGROUP_GENERATED_UNION = prove (`!G g h:A->bool. g subgroup_of G /\ h subgroup_of G /\ group_setmul G g h = group_setmul G h g ==> group_carrier(subgroup_generated G (g UNION h)) = group_setmul G g h`, MESON_TAC[SUBGROUP_SETMUL_EQ; SUBGROUP_GENERATED_SETMUL; CARRIER_SUBGROUP_GENERATED_SUBGROUP]);; (* ------------------------------------------------------------------------- *) (* Group actions. *) (* ------------------------------------------------------------------------- *) let group_action = new_definition `group_action G s (a:A->X->X) <=> (!g x. g IN group_carrier G /\ x IN s ==> a g x IN s) /\ (!x. x IN s ==> a (group_id G) x = x) /\ (!g h x. g IN group_carrier G /\ h IN group_carrier G /\ x IN s ==> a (group_mul G g h) x = a g (a h x))`;; let GROUP_ACTION_ALT = prove (`!G s (a:A->X->X). group_action G s (a:A->X->X) <=> (!g x. g IN group_carrier G /\ x IN s ==> a g x IN s) /\ (!x. x IN s ==> a (group_id G) x = x) /\ (!g h x. g IN group_carrier G /\ h IN group_carrier G /\ x IN s ==> a g (a h x) = a (group_mul G g h) x)`, REWRITE_TAC[group_action] THEN MESON_TAC[]);; let GROUP_ACTION_MUL = prove (`!G s (a:A->X->X) g h x. group_action G s a /\ g IN group_carrier G /\ h IN group_carrier G /\ x IN s ==> a g (a h x) = a (group_mul G g h) x`, SIMP_TAC[group_action]);; let GROUP_ACTION_LINV = prove (`!G s (a:A->X->X) g x. group_action G s a /\ g IN group_carrier G /\ x IN s ==> a (group_inv G g) (a g x) = x`, REWRITE_TAC[group_action] THEN MESON_TAC[GROUP_MUL_LINV; GROUP_INV]);; let GROUP_ACTION_RINV = prove (`!G s (a:A->X->X) g x. group_action G s a /\ g IN group_carrier G /\ x IN s ==> a g (a (group_inv G g) x) = x`, REWRITE_TAC[group_action] THEN MESON_TAC[GROUP_MUL_RINV; GROUP_INV]);; let GROUP_ACTION_BIJECTIVE = prove (`!G s (a:A->X->X) g. group_action G s a /\ g IN group_carrier G ==> !y. y IN s ==> ?!x. x IN s /\ a g x = y`, MESON_TAC[GROUP_ACTION_LINV; GROUP_INV; GROUP_INV_INV; group_action]);; let GROUP_ACTION_SURJECTIVE = prove (`!G s (a:A->X->X) g y. group_action G s a /\ g IN group_carrier G /\ y IN s ==> ?x. a g x = y`, MESON_TAC[GROUP_ACTION_BIJECTIVE]);; let GROUP_ACTION_INJECTIVE = prove (`!G s (a:A->X->X). group_action G s a /\ g IN group_carrier G /\ x IN s /\ y IN s ==> (a g x = a g y <=> x = y)`, MESON_TAC[GROUP_ACTION_BIJECTIVE; group_action]);; let GROUP_ACTION_ON_SUBSET = prove (`!G s t (a:A->X->X). group_action G s a /\ t SUBSET s /\ (!g x. g IN group_carrier G /\ x IN t ==> a g x IN t) ==> group_action G t a`, REWRITE_TAC[group_action] THEN SET_TAC[]);; let GROUP_ACTION_FROM_SUBGROUP = prove (`!G s h (a:A->X->X). group_action G s a ==> group_action (subgroup_generated G h) s a`, REPEAT GEN_TAC THEN REWRITE_TAC[group_action] THEN MP_TAC(ISPECL [`G:A group`; `h:A->bool`] GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET) THEN REWRITE_TAC[CONJUNCT2 SUBGROUP_GENERATED] THEN SET_TAC[]);; let GROUP_ACTIONS_EQ_ON_GENERATORS = time prove (`!G t s (a:A->X->X) a'. group_action G s a /\ group_action G s a' /\ (!g x. g IN group_carrier G /\ g IN t /\ x IN s ==> a g x = a' g x) ==> !g x. g IN group_carrier(subgroup_generated G t) /\ x IN s ==> a g x = a' g x`, REWRITE_TAC[group_action] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC SUBGROUP_GENERATED_INDUCT_STRONG THEN ASM_SIMP_TAC[] THEN X_GEN_TAC `g:A` THEN STRIP_TAC THEN X_GEN_TAC `x:X` THEN DISCH_TAC THEN MATCH_MP_TAC(MESON[] `!f:X->X. (!x y. x IN s /\ y IN s ==> (f x = f y <=> x = y)) /\ g a IN s /\ h a IN s /\ f(g a) = a /\ f(h a) = a ==> g a = h a`) THEN EXISTS_TAC `(a:A->X->X) g` THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_ACTION_INJECTIVE THEN MAP_EVERY EXISTS_TAC [`G:A group`; `s:X->bool`] THEN ASM_REWRITE_TAC[group_action]; ASM_MESON_TAC[GROUP_ID; GROUP_MUL; GROUP_INV; GROUP_MUL_RINV]]);; let GROUP_ACTION_IMAGE = prove (`!G u s (a:A->X->X). group_action G s a /\ (!t. t IN u ==> t SUBSET s) /\ (!g t. g IN group_carrier G /\ t IN u ==> IMAGE (a g) t IN u) ==> group_action G u (IMAGE o a)`, REWRITE_TAC[group_action; o_DEF] THEN SET_TAC[]);; let GROUP_ACTION_IMAGE_SIZED = prove (`!G s k (a:A->X->X). group_action G s a ==> group_action G {t | t SUBSET s /\ t HAS_SIZE k} (IMAGE o a)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_ACTION_IMAGE THEN EXISTS_TAC `s:X->bool` THEN ASM_SIMP_TAC[IN_ELIM_THM] THEN MAP_EVERY X_GEN_TAC [`g:A`; `t:X->bool`] THEN STRIP_TAC THEN CONJ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[group_action]) THEN ASM SET_TAC[]; MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN ASM_MESON_TAC[GROUP_ACTION_INJECTIVE; SUBSET]]);; let group_stabilizer = new_definition `group_stabilizer G (a:A->X->X) x = {g | g IN group_carrier G /\ a g x = x}`;; let GROUP_STABILIZER_SUBSET_CARRIER = prove (`!G a x. group_stabilizer G a x SUBSET group_carrier G`, REWRITE_TAC[group_stabilizer; SUBSET_RESTRICT]);; let FINITE_GROUP_STABILIZER = prove (`!G (a:A->X->X) x. FINITE(group_carrier G) ==> FINITE(group_stabilizer G a x)`, MESON_TAC[GROUP_STABILIZER_SUBSET_CARRIER; FINITE_SUBSET]);; let SUBGROUP_OF_GROUP_STABILIZER = prove (`!G s (a:A->X->X) x. group_action G s a /\ x IN s ==> group_stabilizer G a x subgroup_of G`, REWRITE_TAC[subgroup_of; group_stabilizer; SUBSET_RESTRICT] THEN SIMP_TAC[group_action; IN_ELIM_THM; GROUP_ID; GROUP_INV; GROUP_MUL] THEN ASM_MESON_TAC[GROUP_MUL_LINV; GROUP_INV]);; let GROUP_STABILIZER_NONEMPTY = prove (`!G (a:A->X->X) s x. group_action G s a /\ x IN s ==> ~(group_stabilizer G a x = {})`, REWRITE_TAC[group_action; GSYM MEMBER_NOT_EMPTY] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `group_id G:A` THEN ASM_SIMP_TAC[group_stabilizer; IN_ELIM_THM; GROUP_ID]);; let GROUP_STABILIZER_SUBGROUP_GENERATED = prove (`!G h (a:A->X->X) x. group_stabilizer (subgroup_generated G h) a x = group_carrier(subgroup_generated G h) INTER group_stabilizer G a x`, REWRITE_TAC[group_stabilizer; EXTENSION; IN_INTER; IN_ELIM_THM] THEN MESON_TAC[GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET; SUBSET]);; let GROUP_STABILIZER_ON_SUBGROUP = prove (`!G h (a:A->X->X) x. h subgroup_of G ==> group_stabilizer (subgroup_generated G h) a x = h INTER group_stabilizer G a x`, SIMP_TAC[GROUP_STABILIZER_SUBGROUP_GENERATED; CARRIER_SUBGROUP_GENERATED_SUBGROUP]);; let GROUP_ACTION_KERNEL_POINTWISE = prove (`!G s (a:A->X->X). {g | g IN group_carrier G /\ !x. x IN s ==> a g x = x} = if s = {} then group_carrier G else INTERS {group_stabilizer G a x | x IN s}`, REPEAT STRIP_TAC THEN REWRITE_TAC[INTERS_GSPEC; group_stabilizer] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]);; let GROUP_ACTION_EQ = prove (`!G s (a:A->X->X) g h x. group_action G s a /\ g IN group_carrier G /\ h IN group_carrier G /\ x IN s ==> (a g x = a h x <=> group_mul G (group_inv G g) h IN group_stabilizer G a x)`, REPEAT STRIP_TAC THEN REWRITE_TAC[group_stabilizer; IN_ELIM_THM] THEN ASM_SIMP_TAC[GROUP_MUL; GROUP_INV] THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o AP_TERM `(a:A->X->X) (group_inv G g)`); DISCH_THEN(MP_TAC o AP_TERM `(a:A->X->X) g`)] THEN RULE_ASSUM_TAC(REWRITE_RULE[GROUP_ACTION_ALT]) THEN ASM_SIMP_TAC[GROUP_MUL; GROUP_INV; GROUP_MUL_LINV; GROUP_MUL_ASSOC; GROUP_MUL_RINV; GROUP_MUL_LID] THEN MESON_TAC[]);; let GROUP_ACTION_FIBRES = prove (`!G s (a:A->X->X) h x. group_action G s a /\ h IN group_carrier G /\ x IN s ==> {g | g IN group_carrier G /\ (a:A->X->X) g x = a h x} = IMAGE (group_mul G h) (group_stabilizer G a x)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(SET_RULE `!g. (!x. x IN u ==> (P x <=> g x IN t)) /\ t SUBSET u /\ (!y. y IN u ==> f y IN u /\ g(f y) = y /\ f(g y) = y) ==> {x | x IN u /\ P x} = IMAGE f t`) THEN EXISTS_TAC `group_mul G (group_inv G h:A)` THEN REWRITE_TAC[GROUP_STABILIZER_SUBSET_CARRIER] THEN CONJ_TAC THENL [ASM_MESON_TAC[GROUP_ACTION_EQ]; ALL_TAC] THEN ASM_SIMP_TAC[GROUP_MUL_LINV; GROUP_MUL_RINV; GROUP_MUL_ASSOC; GROUP_MUL; GROUP_INV; GROUP_MUL_LID]);; let group_orbit = new_definition `group_orbit G s (a:A->X->X) x y <=> x IN s /\ y IN s /\ ?g. g IN group_carrier G /\ a g x = y`;; let GROUP_ORBIT_IN_SET = prove (`!G s (a:A->X->X) x y. group_orbit G s a x y ==> x IN s /\ y IN s`, SIMP_TAC[group_orbit]);; let IN_GROUP_ORBIT = prove (`!G s (a:A->X->X) x y. y IN group_orbit G s a x <=> x IN s /\ y IN s /\ ?g. g IN group_carrier G /\ a g x = y`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [IN] THEN REWRITE_TAC[group_orbit]);; let GROUP_ORBIT = prove (`!G s (a:A->X->X) x. group_action G s a ==> group_orbit G s a x = if x IN s then {a g x | g IN group_carrier G} else {}`, REWRITE_TAC[group_action] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ONCE_REWRITE_TAC[EXTENSION] THEN GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [IN] THEN ASM_REWRITE_TAC[group_orbit; IN_ELIM_THM] THEN ASM SET_TAC[]);; let GROUP_ORBIT_SUBSET = prove (`!G s (a:A->X->X) x. group_orbit G s a x SUBSET s`, REWRITE_TAC[SET_RULE `s SUBSET t <=> !x. s x ==> x IN t`] THEN REWRITE_TAC[group_orbit] THEN SET_TAC[]);; let GROUP_ORBIT_ON_SUBSET = prove (`!G s t (a:A->X->X). t SUBSET s /\ x IN t ==> group_orbit G t a x = t INTER group_orbit G s a x`, REPEAT STRIP_TAC THEN REWRITE_TAC[SET_RULE `u = t INTER v <=> !x. u x <=> x IN t /\ v x`] THEN REWRITE_TAC[group_orbit] THEN ASM SET_TAC[]);; let FINITE_GROUP_ORBIT = prove (`!G s (a:A->X->X) x. FINITE(group_carrier G) \/ FINITE s ==> FINITE(group_orbit G s a x)`, REPEAT STRIP_TAC THENL [ALL_TAC; ASM_MESON_TAC[GROUP_ORBIT_SUBSET; FINITE_SUBSET]] THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `IMAGE (\g. (a:A->X->X) g x) (group_carrier G)` THEN ASM_SIMP_TAC[FINITE_IMAGE; SET_RULE `P SUBSET s <=> !x. P x ==> x IN s`] THEN REWRITE_TAC[IN_IMAGE; group_orbit] THEN SET_TAC[]);; let GROUP_ORBIT_REFL_EQ = prove (`!G s (a:A->X->X) x. group_action G s a ==> (group_orbit G s a x x <=> x IN s)`, REWRITE_TAC[group_action; group_orbit] THEN MESON_TAC[GROUP_ID]);; let GROUP_ORBIT_REFL = prove (`!G s (a:A->X->X) x. group_action G s a /\ x IN s ==> group_orbit G s a x x`, MESON_TAC[GROUP_ORBIT_REFL_EQ]);; let IN_GROUP_ORBIT_SELF = prove (`!G s (a:A->X->X) x. group_action G s a /\ x IN s ==> x IN group_orbit G s a x`, REPEAT STRIP_TAC THEN REWRITE_TAC[IN] THEN ASM_SIMP_TAC[GROUP_ORBIT_REFL]);; let GROUP_ORBIT_EMPTY = prove (`!G s (a:A->X->X) x. ~(x IN s) ==> group_orbit G s a x = {}`, REWRITE_TAC[SET_RULE `s = {} <=> !x. ~s x`] THEN SIMP_TAC[group_orbit]);; let GROUP_ORBIT_EQ_EMPTY = prove (`!G s (a:A->X->X) x. group_action G s a ==> (group_orbit G s a x = {} <=> ~(x IN s))`, REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[GROUP_ORBIT_EMPTY] THEN ASM_MESON_TAC[MEMBER_NOT_EMPTY; IN_GROUP_ORBIT_SELF]);; let GROUP_ORBIT_SYM_EQ = prove (`!G s (a:A->X->X) x y. group_action G s a ==> (group_orbit G s a x y <=> group_orbit G s a y x)`, REWRITE_TAC[group_action; group_orbit] THEN ASM_MESON_TAC[GROUP_INV; GROUP_MUL_LINV]);; let GROUP_ORBIT_SYM = prove (`!G s (a:A->X->X) x y. group_action G s a /\ group_orbit G s a x y ==> group_orbit G s a y x`, MESON_TAC[GROUP_ORBIT_SYM_EQ]);; let GROUP_ORBIT_TRANS = prove (`!G s (a:A->X->X) x y z. group_action G s a /\ group_orbit G s a x y /\ group_orbit G s a y z ==> group_orbit G s a x z`, REWRITE_TAC[group_action; group_orbit] THEN ASM_MESON_TAC[GROUP_MUL]);; let GROUP_ORBIT_EQ = prove (`!G s (a:A->X->X) x y. group_action G s a /\ x IN s /\ y IN s ==> (group_orbit G s a x = group_orbit G s a y <=> group_orbit G s a x y)`, REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[GROUP_ORBIT_REFL_EQ; GROUP_ORBIT_SYM_EQ; GROUP_ORBIT_TRANS]);; let CLOSED_GROUP_ORBIT = prove (`!G s (a:A->X->X) x g. group_action G s a /\ g IN group_carrier G ==> IMAGE (a g) (group_orbit G s a x) SUBSET group_orbit G s a x`, REWRITE_TAC[group_action] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[IN] THEN REWRITE_TAC[group_orbit] THEN ASM_MESON_TAC[GROUP_MUL]);; let GROUP_ORBIT_EQ_SING = prove (`!G s (a:A->X->X) x y. group_action G s a ==> (group_orbit G s a y = {x} <=> x IN s /\ y = x /\ !g. g IN group_carrier G ==> a g x = x)`, REPEAT STRIP_TAC THEN CONV_TAC(ONCE_DEPTH_CONV HAS_SIZE_CONV) THEN ASM_SIMP_TAC[GROUP_ORBIT] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[NOT_INSERT_EMPTY] THEN MP_TAC(ISPEC `G:A group` GROUP_ID) THEN RULE_ASSUM_TAC(REWRITE_RULE[group_action]) THEN ASM SET_TAC[]);; let GROUP_ORBIT_EQ_SING_SELF = prove (`!G s (a:A->X->X) x. group_action G s a ==> (group_orbit G s a x = {x} <=> x IN s /\ !g. g IN group_carrier G ==> a g x = x)`, SIMP_TAC[GROUP_ORBIT_EQ_SING]);; let GROUP_ORBIT_HAS_SIZE_1 = prove (`!G s (a:A->X->X) x. group_action G s a ==> (group_orbit G s a x HAS_SIZE 1 <=> x IN s /\ !g. g IN group_carrier G ==> a g x = x)`, REPEAT STRIP_TAC THEN CONV_TAC(ONCE_DEPTH_CONV HAS_SIZE_CONV) THEN ASM_SIMP_TAC[GROUP_ORBIT_EQ_SING] THEN SET_TAC[]);; let GROUP_ACTION_INVARIANT_SUBSET = prove (`!G s (a:A->X->X) t. group_action G s a /\ t SUBSET s ==> ((!g. g IN group_carrier G ==> IMAGE (a g) t SUBSET t) <=> (!g. g IN group_carrier G ==> IMAGE (a g) t = t))`, REWRITE_TAC[GROUP_ACTION_ALT] THEN REPEAT STRIP_TAC THEN EQ_TAC THEN SIMP_TAC[SUBSET_REFL] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(SET_RULE `!g. (!x. x IN s ==> f(g x) = x /\ g(f x) = x) /\ IMAGE f s SUBSET s /\ IMAGE g s SUBSET s ==> IMAGE f s = s`) THEN EXISTS_TAC `(a:A->X->X) (group_inv G g)` THEN ASM_SIMP_TAC[GROUP_INV] THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN ASM_SIMP_TAC[GROUP_INV; GROUP_MUL_LINV; GROUP_MUL_RINV]);; let GROUP_ACTION_CLOSED = prove (`!G s (a:A->X->X) g. group_action G s a /\ g IN group_carrier G ==> IMAGE (a g) s SUBSET s`, REWRITE_TAC[group_action] THEN SET_TAC[]);; let GROUP_ACTION_INVARIANT = prove (`!G s (a:A->X->X) g. group_action G s a /\ g IN group_carrier G ==> IMAGE (a g) s = s`, MESON_TAC[GROUP_ACTION_CLOSED; GROUP_ACTION_INVARIANT_SUBSET; SUBSET_REFL]);; let INVARIANT_GROUP_ORBIT = prove (`!G s (a:A->X->X) x g. group_action G s a /\ g IN group_carrier G ==> IMAGE (a g) (group_orbit G s a x) = group_orbit G s a x`, MESON_TAC[GROUP_ACTION_INVARIANT_SUBSET; GROUP_ORBIT_SUBSET; CLOSED_GROUP_ORBIT]);; let SUBSET_GROUP_ORBIT_CLOSED = prove (`!G s (a:A->X->X) x t. group_action G s a /\ t SUBSET s /\ (!g. g IN group_carrier G ==> IMAGE (a g) t SUBSET t) ==> (group_orbit G s a x SUBSET t <=> x IN s ==> ~DISJOINT (group_orbit G s a x) t)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `(x:X) IN s` THEN ASM_SIMP_TAC[GROUP_ORBIT_EMPTY; EMPTY_SUBSET] THEN MATCH_MP_TAC(SET_RULE `~(s = {}) /\ (~DISJOINT s t ==> s SUBSET t) ==> (s SUBSET t <=> ~DISJOINT s t)`) THEN ASM_SIMP_TAC[GROUP_ORBIT_EQ_EMPTY; LEFT_IMP_EXISTS_THM; SET_RULE `~DISJOINT s t <=> ?z. z IN t /\ s z`] THEN X_GEN_TAC `z:X` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN W(MP_TAC o PART_MATCH (rand o rand) GROUP_ORBIT_EQ o lhand o snd) THEN ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN(SUBST1_TAC o SYM)] THEN ASM_CASES_TAC `(z:X) IN s` THENL [DISCH_THEN SUBST1_TAC; ASM SET_TAC[]] THEN ASM_SIMP_TAC[GROUP_ORBIT_EQ_EMPTY] THEN ASM_SIMP_TAC[GROUP_ORBIT] THEN RULE_ASSUM_TAC(REWRITE_RULE[group_action]) THEN ASM SET_TAC[]);; let SUBSET_GROUP_ORBIT_INVARIANT = prove (`!G s (a:A->X->X) x t. group_action G s a /\ t SUBSET s /\ (!g. g IN group_carrier G ==> IMAGE (a g) t = t) ==> (group_orbit G s a x SUBSET t <=> x IN s ==> ~DISJOINT (group_orbit G s a x) t)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_GROUP_ORBIT_CLOSED THEN ASM_SIMP_TAC[SUBSET_REFL]);; let GROUP_ORBITS_EQ = prove (`!G s (a:A->X->X) x y. group_action G s a /\ x IN s /\ y IN s ==> (group_orbit G s a x = group_orbit G s a y <=> ~DISJOINT (group_orbit G s a x) (group_orbit G s a y))`, SIMP_TAC[GROUP_ORBIT_EQ; SET_RULE `DISJOINT s t <=> !x. ~(s x /\ t x)`] THEN MESON_TAC[GROUP_ORBIT_REFL_EQ; GROUP_ORBIT_SYM_EQ; GROUP_ORBIT_TRANS]);; let DISJOINT_GROUP_ORBITS = prove (`!G s (a:A->X->X) x y. group_action G s a /\ x IN s /\ y IN s ==> (DISJOINT (group_orbit G s a x) (group_orbit G s a y) <=> ~(group_orbit G s a x = group_orbit G s a y))`, SIMP_TAC[GROUP_ORBITS_EQ]);; let PAIRWISE_DISJOINT_GROUP_ORBITS = prove (`!G s (a:A->X->X). group_action G s a ==> pairwise DISJOINT {group_orbit G s a x |x| x IN s}`, REWRITE_TAC[SIMPLE_IMAGE; PAIRWISE_IMAGE] THEN SIMP_TAC[pairwise; DISJOINT_GROUP_ORBITS]);; let UNIONS_GROUP_ORBITS_CLOSED = prove (`!G s (a:A->X->X) t. group_action G s a /\ t SUBSET s /\ (!g. g IN group_carrier G ==> IMAGE (a g) t SUBSET t) ==> UNIONS {group_orbit G s a x |x| x IN t} = t`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(SET_RULE `(!x. x IN t ==> x IN f x) /\ (!x. x IN t /\ ~DISJOINT (f x) t ==> f x SUBSET t) ==> UNIONS {f x | x IN t} = t`) THEN CONJ_TAC THENL [ASM_MESON_TAC[IN_GROUP_ORBIT_SELF; SUBSET]; ASM_MESON_TAC[SUBSET_GROUP_ORBIT_CLOSED; SUBSET]]);; let UNIONS_GROUP_ORBITS_INVARIANT = prove (`!G s (a:A->X->X) t. group_action G s a /\ t SUBSET s /\ (!g. g IN group_carrier G ==> IMAGE (a g) t = t) ==> UNIONS {group_orbit G s a x |x| x IN t} = t`, REPEAT STRIP_TAC THEN MATCH_MP_TAC UNIONS_GROUP_ORBITS_CLOSED THEN ASM_SIMP_TAC[UNIONS_GROUP_ORBITS_CLOSED; SUBSET_REFL]);; let UNIONS_GROUP_ORBITS = prove (`!G s (a:A->X->X). group_action G s a ==> UNIONS {group_orbit G s a x |x| x IN s} = s`, REPEAT STRIP_TAC THEN MATCH_MP_TAC UNIONS_GROUP_ORBITS_INVARIANT THEN ASM_MESON_TAC[GROUP_ACTION_INVARIANT; SUBSET_REFL]);; let NSUM_CARD_GROUP_ORBITS = prove (`!G s (a:A->X->X). group_action G s a /\ FINITE s ==> nsum {group_orbit G s a x | x | x IN s} CARD = CARD s`, REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN W(MP_TAC o PART_MATCH (rand o rand) CARD_UNIONS o rand o snd) THEN ASM_SIMP_TAC[UNIONS_GROUP_ORBITS; GSYM pairwise] THEN DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[GSYM DISJOINT; ETA_AX] THEN ASM_SIMP_TAC[PAIRWISE_DISJOINT_GROUP_ORBITS] THEN ASM_SIMP_TAC[SIMPLE_IMAGE; FINITE_IMAGE] THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; FINITE_GROUP_ORBIT]);; let ORBIT_STABILIZER_MUL_GEN = prove (`!G s (a:A->X->X) x. group_action G s a /\ x IN s ==> group_orbit G s a x *_c group_stabilizer G a x =_c group_carrier G`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GROUP_ORBIT; SIMPLE_IMAGE] THEN MATCH_MP_TAC CARD_EQ_IMAGE_MUL_FIBRES THEN X_GEN_TAC `g:A` THEN DISCH_TAC THEN REWRITE_TAC[] THEN FIRST_ASSUM (MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] GROUP_ACTION_FIBRES)) THEN ASM_SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN MATCH_MP_TAC CARD_EQ_IMAGE THEN REWRITE_TAC[group_stabilizer; IN_ELIM_THM] THEN ASM_MESON_TAC[GROUP_MUL_LCANCEL_IMP]);; let ORBIT_STABILIZER_MUL = prove (`!G s (a:A->X->X) x. FINITE(group_carrier G) /\ group_action G s a /\ x IN s ==> CARD(group_orbit G s a x) * CARD(group_stabilizer G a x) = CARD(group_carrier G)`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN FIRST_ASSUM(MP_TAC o MATCH_MP ORBIT_STABILIZER_MUL_GEN) THEN ASM_SIMP_TAC[FINITE_GROUP_STABILIZER; FINITE_GROUP_ORBIT; CARD_EQ_CARD; CARD_MUL_FINITE; CARD_MUL_C]);; let CARD_GROUP_ORBIT_DIVIDES = prove (`!G s (a:A->X->X) x. FINITE(group_carrier G) /\ group_action G s a /\ x IN s ==> CARD(group_orbit G s a x) divides CARD(group_carrier G)`, REPEAT GEN_TAC THEN DISCH_THEN(SUBST1_TAC o SYM o MATCH_MP ORBIT_STABILIZER_MUL) THEN CONV_TAC NUMBER_RULE);; let CARD_GROUP_STABILIZER_DIVIDES = prove (`!G s (a:A->X->X) x. FINITE(group_carrier G) /\ group_action G s a /\ x IN s ==> CARD(group_stabilizer G a x) divides CARD(group_carrier G)`, REPEAT GEN_TAC THEN DISCH_THEN(SUBST1_TAC o SYM o MATCH_MP ORBIT_STABILIZER_MUL) THEN CONV_TAC NUMBER_RULE);; let GROUP_STABILIZER_OF_ACTION = prove (`!G s (a:A->X->X) g x. group_action G s a /\ g IN group_carrier G /\ x IN s ==> group_stabilizer G a (a g x) = IMAGE (group_conjugation G g) (group_stabilizer G a x)`, REPEAT STRIP_TAC THEN REWRITE_TAC[group_stabilizer] THEN CONV_TAC SYM_CONV THEN ASM_SIMP_TAC[IMAGE_GROUP_CONJUGATION_EQ_PREIMAGE; SUBSET_RESTRICT] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; group_conjugation] THEN X_GEN_TAC `h:A` THEN ASM_CASES_TAC `(h:A) IN group_carrier G` THEN ASM_SIMP_TAC[GROUP_MUL; GROUP_INV] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GROUP_ACTION_ALT]) THEN ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 4) [GROUP_MUL; GROUP_INV] THEN DISCH_THEN(K ALL_TAC) THEN ASM_SIMP_TAC[GSYM GROUP_MUL_ASSOC; GROUP_MUL; GROUP_INV; GROUP_MUL_LINV; GROUP_MUL_RID] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [group_action]) THEN ASM_SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN MATCH_MP_TAC GROUP_ACTION_INJECTIVE THEN ASM_MESON_TAC[group_action]);; let GROUP_ACTION_SUBGROUP_TRANSLATION = prove (`!G (h:A->bool). group_action (subgroup_generated G h) (group_carrier G) (group_mul G)`, REWRITE_TAC[group_action; CONJUNCT2 SUBGROUP_GENERATED] THEN REPEAT STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[SUBSET] GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET))) THEN ASM_SIMP_TAC[GROUP_MUL; GROUP_MUL_LID; GROUP_MUL_ASSOC]);; let GROUP_STABILIZER_SUBGROUP_TRANSLATION = prove (`!G h a:A. h subgroup_of G /\ a IN group_carrier G ==> group_stabilizer (subgroup_generated G h) (group_mul G) a = {group_id G}`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[group_stabilizer; CARRIER_SUBGROUP_GENERATED_SUBGROUP] THEN MATCH_MP_TAC(SET_RULE `a IN s /\ (!x. x IN s ==> (P x <=> x = a)) ==> {x | x IN s /\ P x} = {a}`) THEN ASM_MESON_TAC[subgroup_of; SUBSET; GROUP_RULE `group_mul G g a = a <=> g = group_id G`]);; let GROUP_ACTION_GROUP_TRANSLATION = prove (`!G. group_action G (group_carrier G) (group_mul G)`, MESON_TAC[GROUP_ACTION_SUBGROUP_TRANSLATION; SUBGROUP_GENERATED_GROUP_CARRIER]);; let GROUP_STABILIZER_GROUP_TRANSLATION = prove (`!G a:A. a IN group_carrier G ==> group_stabilizer G (group_mul G) a = {group_id G}`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`G:A group`; `group_carrier G:A->bool`; `a:A`] GROUP_STABILIZER_SUBGROUP_TRANSLATION) THEN ASM_REWRITE_TAC[CARRIER_SUBGROUP_OF; SUBGROUP_GENERATED_GROUP_CARRIER]);; let GROUP_ACTION_SUBSET_TRANSLATION = prove (`!(G:A group) u. (!s. s IN u ==> s SUBSET group_carrier G) /\ (!a s. a IN group_carrier G /\ s IN u ==> IMAGE (group_mul G a) s IN u) ==> group_action G u (IMAGE o group_mul G)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_ACTION_IMAGE THEN ASM_MESON_TAC[GROUP_ACTION_GROUP_TRANSLATION]);; let GROUP_ACTION_CONJUGATION = prove (`!G:A group. group_action G (group_carrier G) (group_conjugation G)`, REWRITE_TAC[group_action] THEN SIMP_TAC[GROUP_CONJUGATION; GROUP_CONJUGATION_BY_ID; GSYM GROUP_CONJUGATION_CONJUGATION]);; let CARD_GROUP_SETMUL_GEN = prove (`!G g h:A->bool. g subgroup_of G /\ h subgroup_of G ==> (group_setmul G g h) *_c (g INTER h) =_c g *_c h`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`prod_group (subgroup_generated G g) (subgroup_generated G h:A group)`; `group_setmul (G:A group) g h`; `\(x,y) (z:A). group_mul G x (group_mul G z (group_inv G y))`; `group_id G:A`] ORBIT_STABILIZER_MUL_GEN) THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q ==> r) ==> (p ==> q) ==> r`) THEN CONJ_TAC THENL [ASM_SIMP_TAC[group_action; PROD_GROUP; FORALL_PAIR_THM; IN_CROSS; CONJUNCT2 SUBGROUP_GENERATED; CARRIER_SUBGROUP_GENERATED_SUBGROUP] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[group_setmul; FORALL_IN_GSPEC] THEN REWRITE_TAC[IN_ELIM_THM] THEN REPEAT CONJ_TAC THENL [X_GEN_TAC `x1:A` THEN DISCH_TAC THEN X_GEN_TAC `y1:A` THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`x2:A`; `y2:A`] THEN STRIP_TAC THEN EXISTS_TAC `group_mul G x1 x2:A` THEN EXISTS_TAC `group_mul G y2 (group_inv G y1):A` THEN CONJ_TAC THENL [ASM_MESON_TAC[subgroup_of]; ALL_TAC]; ALL_TAC; ALL_TAC; REPEAT(EXISTS_TAC `group_id G:A`) THEN ASM_MESON_TAC[subgroup_of; SUBSET; GROUP_MUL_LID]] THEN REPEAT STRIP_TAC THEN GROUP_TAC THEN ASM_MESON_TAC[subgroup_of; SUBSET]; STRIP_TAC THEN MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC CARD_EQ_CONG THEN ASM_SIMP_TAC[PROD_GROUP; CARRIER_SUBGROUP_GENERATED_SUBGROUP] THEN REWRITE_TAC[CROSS; GSYM mul_c; CARD_EQ_REFL]] THEN MATCH_MP_TAC CARD_MUL_CONG THEN CONJ_TAC THENL [MATCH_MP_TAC CARD_EQ_REFL_IMP THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[GROUP_ORBIT_SUBSET] THEN ASM_SIMP_TAC[GROUP_ORBIT] THEN REWRITE_TAC[SUBSET; group_setmul; FORALL_IN_GSPEC] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN ASM_SIMP_TAC[IN_ELIM_THM; PROD_GROUP; CARRIER_SUBGROUP_GENERATED_SUBGROUP; EXISTS_PAIR_THM; IN_CROSS] THEN MAP_EVERY EXISTS_TAC [`x:A`; `group_inv G y:A`] THEN CONJ_TAC THENL [ASM_MESON_TAC[subgroup_of]; ALL_TAC] THEN GROUP_TAC THEN ASM_MESON_TAC[subgroup_of; SUBSET]; TRANS_TAC CARD_EQ_TRANS `IMAGE (\x:A. x,x) (g INTER h)` THEN SIMP_TAC[CARD_EQ_IMAGE; FORALL_PAIR_THM; PAIR_EQ] THEN MATCH_MP_TAC CARD_EQ_REFL_IMP THEN ASM_SIMP_TAC[IN_ELIM_THM; PROD_GROUP; CARRIER_SUBGROUP_GENERATED_SUBGROUP; group_stabilizer] THEN REWRITE_TAC[CROSS; SET_RULE `{z | z IN {x,y | P x y} /\ Q z} = {x,y | P x y /\ Q(x,y)}`] THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[FORALL_PAIR_THM; IN_IMAGE; PAIR_EQ; IN_ELIM_PAIR_THM] THEN REWRITE_TAC[GSYM CONJ_ASSOC; UNWIND_THM1; IN_INTER] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN ASM_CASES_TAC `(x:A) IN g` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `(y:A) IN h` THEN ASM_REWRITE_TAC[] THENL [ALL_TAC; ASM_MESON_TAC[]] THEN TRANS_TAC EQ_TRANS `y:A = x` THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN GROUP_TAC THEN ASM_MESON_TAC[subgroup_of; SUBSET]]);; let CARD_GROUP_SETMUL_MUL = prove (`!G g h:A->bool. FINITE g /\ FINITE h /\ g subgroup_of G /\ h subgroup_of G ==> CARD(group_setmul G g h) * CARD(g INTER h) = CARD g * CARD h`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`G:A group`; `g:A->bool`; `h:A->bool`] CARD_GROUP_SETMUL_GEN) THEN ASM_SIMP_TAC[CARD_EQ_CARD; FINITE_GROUP_SETMUL; FINITE_INTER; CARD_MUL_FINITE_EQ; CARD_MUL_C]);; let CARD_GROUP_SETMUL = prove (`!G g h:A->bool. FINITE g /\ FINITE h /\ g subgroup_of G /\ h subgroup_of G ==> CARD(group_setmul G g h) = (CARD g * CARD h) DIV CARD(g INTER h)`, REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `0` THEN ASM_SIMP_TAC[ADD_CLAUSES; CARD_GROUP_SETMUL_MUL] THEN MATCH_MP_TAC(ARITH_RULE `~(n = 0) ==> 0 < n`) THEN ASM_SIMP_TAC[CARD_EQ_0; FINITE_INTER] THEN MATCH_MP_TAC SUBGROUP_OF_IMP_NONEMPTY THEN ASM_MESON_TAC[SUBGROUP_OF_INTER]);; let CARD_GROUP_SETMUL_DIVIDES = prove (`!G g h:A->bool. FINITE g /\ FINITE h /\ g subgroup_of G /\ h subgroup_of G ==> CARD(group_setmul G g h) divides CARD(g) * CARD(h)`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GSYM CARD_GROUP_SETMUL_MUL] THEN CONV_TAC NUMBER_RULE);; let GROUP_ORBIT_COMMON_DIVISOR = prove (`!G s (a:A->X->X) n. group_action G s a /\ FINITE s /\ (!x. x IN s ==> n divides CARD(group_orbit G s a x)) ==> n divides CARD s`, REPEAT STRIP_TAC THEN FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP UNIONS_GROUP_ORBITS) THEN W(MP_TAC o PART_MATCH(lhand o rand) CARD_UNIONS o rand o snd) THEN ASM_SIMP_TAC[FINITE_IMAGE; SIMPLE_IMAGE; IMAGE_EQ_EMPTY; IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE; FINITE_GROUP_ORBIT; IMP_CONJ; GSYM DISJOINT; DISJOINT_GROUP_ORBITS] THEN DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC DIVIDES_NSUM THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; FINITE_IMAGE]);; let GROUP_ORBIT_COMMON_INDEX = prove (`!G s (a:A->X->X) p k. group_action G s a /\ FINITE s /\ (s = {} ==> k = 0) /\ (!x. x IN s ==> k <= index p (CARD(group_orbit G s a x))) ==> k <= index p (CARD s)`, REPEAT GEN_TAC THEN REWRITE_TAC[LE_INDEX] THEN SIMP_TAC[FINITE_GROUP_ORBIT; CARD_EQ_0; GROUP_ORBIT_EQ_EMPTY; IMP_CONJ] THEN ASM_CASES_TAC `s:X->bool = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY; CARD_CLAUSES; DIVIDES_0] THEN ASM_MESON_TAC[GROUP_ORBIT_COMMON_DIVISOR; MEMBER_NOT_EMPTY]);; (* ------------------------------------------------------------------------- *) (* Right and left cosets. *) (* ------------------------------------------------------------------------- *) let right_coset = new_definition `right_coset G h x = group_setmul G h {x}`;; let left_coset = new_definition `left_coset G x h = group_setmul G {x} h`;; let LEFT_COSET_AS_IMAGE = prove (`!(x:A) h. left_coset G x h = IMAGE (group_mul G x) h`, REWRITE_TAC[left_coset; group_setmul] THEN SET_TAC[]);; let RIGHT_COSET = prove (`!G h x:A. x IN group_carrier G /\ h SUBSET group_carrier G ==> right_coset G h x SUBSET group_carrier G`, SIMP_TAC[right_coset; GROUP_SETMUL; SING_SUBSET]);; let LEFT_COSET = prove (`!G h x:A. x IN group_carrier G /\ h SUBSET group_carrier G ==> left_coset G x h SUBSET group_carrier G`, SIMP_TAC[left_coset; GROUP_SETMUL; SING_SUBSET]);; let IN_RIGHT_COSET = prove (`!G h x a:A. h SUBSET group_carrier G /\ a IN group_carrier G /\ x IN group_carrier G ==> (x IN right_coset G h a <=> group_mul G x (group_inv G a) IN h)`, REWRITE_TAC[SUBSET] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[right_coset; group_setmul; IN_ELIM_THM; IN_SING] THEN REWRITE_TAC[TAUT `(p /\ q) /\ r <=> q /\ p /\ r`; UNWIND_THM2] THEN EQ_TAC THENL [ALL_TAC; MATCH_MP_TAC(MESON[] `P a ==> a IN h ==> ?y. y IN h /\ P y`)] THEN ASM_SIMP_TAC[LEFT_IMP_EXISTS_THM; GSYM GROUP_MUL_ASSOC; GROUP_MUL_LINV; GROUP_MUL_RINV; GROUP_MUL_RID; GROUP_INV]);; let IN_LEFT_COSET = prove (`!G h x a:A. h SUBSET group_carrier G /\ a IN group_carrier G /\ x IN group_carrier G ==> (x IN left_coset G a h <=> group_mul G (group_inv G a) x IN h)`, REWRITE_TAC[SUBSET] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[left_coset; group_setmul; IN_ELIM_THM; IN_SING] THEN REWRITE_TAC[GSYM CONJ_ASSOC; UNWIND_THM2; RIGHT_EXISTS_AND_THM] THEN EQ_TAC THENL [ALL_TAC; MATCH_MP_TAC(MESON[] `P a ==> a IN h ==> ?y. y IN h /\ P y`)] THEN ASM_SIMP_TAC[LEFT_IMP_EXISTS_THM; GROUP_MUL_ASSOC; GROUP_MUL_LINV; GROUP_MUL_RINV; GROUP_MUL_LID; GROUP_INV]);; let IN_RIGHT_COSET_INV = prove (`!G h x y:A. h SUBSET group_carrier G /\ x IN group_carrier G /\ y IN group_carrier G ==> (x IN right_coset G h (group_inv G y) <=> group_mul G x y IN h)`, SIMP_TAC[IN_RIGHT_COSET; GROUP_INV; GROUP_INV_INV]);; let IN_LEFT_COSET_INV = prove (`!G h x y:A. h SUBSET group_carrier G /\ x IN group_carrier G /\ y IN group_carrier G ==> (x IN left_coset G (group_inv G y) h <=> group_mul G y x IN h)`, SIMP_TAC[IN_LEFT_COSET; GROUP_INV; GROUP_INV_INV]);; let GROUP_SETINV_LEFT_COSET_GEN,GROUP_SETINV_RIGHT_COSET_GEN = (CONJ_PAIR o prove) (`(!G h a:A. h subgroup_of G /\ a IN group_carrier G ==> group_setinv G (left_coset G a h) = right_coset G h (group_inv G a)) /\ (!G h a:A. h subgroup_of G /\ a IN group_carrier G ==> group_setinv G (right_coset G h a) = left_coset G (group_inv G a) h)`, REWRITE_TAC[GROUP_SETINV_AS_IMAGE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [GSYM FORALL_IN_GROUP_CARRIER_INV] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM; AND_FORALL_THM; IMP_IMP] THEN REPEAT GEN_TAC THEN SIMP_TAC[GROUP_INV_INV] THEN REWRITE_TAC[TAUT `(p ==> q) /\ (p ==> r) <=> p ==> q /\ r`] THEN DISCH_TAC THEN MATCH_MP_TAC(SET_RULE `!u. s SUBSET u /\ t SUBSET u /\ (!x. x IN u ==> f(f x) = x) /\ (!x. x IN u ==> (f x IN t <=> x IN s)) /\ (!x. x IN u ==> (f x IN s <=> x IN t)) ==> IMAGE f s = t /\ IMAGE f t = s`) THEN EXISTS_TAC `group_carrier G:A->bool` THEN ASM_SIMP_TAC[IN_LEFT_COSET; IN_RIGHT_COSET; SUBGROUP_OF_IMP_SUBSET; GROUP_INV_INV; GROUP_INV; LEFT_COSET; RIGHT_COSET] THEN REPEAT STRIP_TAC THEN EQ_TAC THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o ISPEC `G:A group` o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] IN_SUBGROUP_INV)) THEN ASM_SIMP_TAC[GROUP_INV_MUL; GROUP_INV_INV; GROUP_INV]);; let RIGHT_COSET_OPPOSITE_GROUP = prove (`!G h x:A. right_coset G h x = left_coset (opposite_group G) x h`, REWRITE_TAC[left_coset; right_coset; OPPOSITE_GROUP_SETMUL]);; let LEFT_COSET_OPPOSITE_GROUP = prove (`!G h x:A. left_coset G x h = right_coset (opposite_group G) h x`, REWRITE_TAC[left_coset; right_coset; OPPOSITE_GROUP_SETMUL]);; let GROUP_CONJUGATION_RIGHT_COSET = prove (`!G h x:A. x IN group_carrier G /\ h SUBSET group_carrier G ==> IMAGE (group_conjugation G x) (right_coset G h x) = left_coset G x h`, REWRITE_TAC[IMAGE_GROUP_CONJUGATION; left_coset; right_coset] THEN SIMP_TAC[GSYM GROUP_SETMUL_ASSOC; SING_SUBSET; GROUP_SETMUL; GROUP_INV; GROUP_SETMUL_SING; GROUP_MUL_RINV; GROUP_SETMUL_RID]);; let RIGHT_COSET_GROUP_CONJUGATION = prove (`!G h x:A. x IN group_carrier G /\ h SUBSET group_carrier G ==> right_coset G (IMAGE (group_conjugation G x) h) x = left_coset G x h`, REWRITE_TAC[IMAGE_GROUP_CONJUGATION; left_coset; right_coset] THEN SIMP_TAC[GSYM GROUP_SETMUL_ASSOC; SING_SUBSET; GROUP_SETMUL; GROUP_INV; GROUP_SETMUL_SING; GROUP_MUL_LINV; GROUP_SETMUL_RID]);; let LEFT_COSET_LEFT_COSET = prove (`!x y h:A->bool. x IN group_carrier G /\ y IN group_carrier G /\ h SUBSET group_carrier G ==> left_coset G x (left_coset G y h) = left_coset G (group_mul G x y) h`, REWRITE_TAC[SUBSET] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[LEFT_COSET_AS_IMAGE; GSYM IMAGE_o; o_DEF] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x = g x) ==> IMAGE f s = IMAGE g s`) THEN ASM_SIMP_TAC[GROUP_MUL_ASSOC; SUBSET]);; let RIGHT_COSET_RIGHT_COSET = prove (`!x y h:A->bool. h SUBSET group_carrier G /\ x IN group_carrier G /\ y IN group_carrier G ==> right_coset G (right_coset G h x) y = right_coset G h (group_mul G x y)`, REWRITE_TAC[RIGHT_COSET_OPPOSITE_GROUP] THEN SIMP_TAC[LEFT_COSET_LEFT_COSET; OPPOSITE_GROUP]);; let RIGHT_COSET_ID = prove (`!G h:A->bool. h SUBSET group_carrier G ==> right_coset G h (group_id G) = h`, SIMP_TAC[right_coset; group_setmul; SET_RULE `{f x y | P x /\ y IN {a}} = {f x a | P x}`] THEN REWRITE_TAC[SUBSET] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x = x) ==> {f x | x IN s} = s`) THEN ASM_SIMP_TAC[GROUP_MUL_RID]);; let LEFT_COSET_ID = prove (`!G h:A->bool. h SUBSET group_carrier G ==> left_coset G (group_id G) h = h`, MESON_TAC[RIGHT_COSET_ID; LEFT_COSET_OPPOSITE_GROUP; OPPOSITE_GROUP]);; let LEFT_COSET_TRIVIAL = prove (`!G x:A. x IN group_carrier G ==> left_coset G x {group_id G} = {x}`, SIMP_TAC[left_coset; GROUP_SETMUL_SING; GROUP_ID; GROUP_MUL_RID]);; let RIGHT_COSET_TRIVIAL = prove (`!G x:A. x IN group_carrier G ==> right_coset G {group_id G} x = {x}`, SIMP_TAC[right_coset; GROUP_SETMUL_SING; GROUP_ID; GROUP_MUL_LID]);; let LEFT_COSET_CARRIER = prove (`!G x:A. x IN group_carrier G ==> left_coset G x (group_carrier G) = group_carrier G`, SIMP_TAC[left_coset; GROUP_SETMUL_LSUBSET; SING_SUBSET; NOT_INSERT_EMPTY; CARRIER_SUBGROUP_OF]);; let RIGHT_COSET_CARRIER = prove (`!G x:A. x IN group_carrier G ==> right_coset G (group_carrier G) x = group_carrier G`, SIMP_TAC[right_coset; GROUP_SETMUL_RSUBSET; SING_SUBSET; NOT_INSERT_EMPTY; CARRIER_SUBGROUP_OF]);; let RIGHT_COSET_EQ = prove (`!G h x y:A. h subgroup_of G /\ x IN group_carrier G /\ y IN group_carrier G ==> (right_coset G h x = right_coset G h y <=> group_div G x y IN h)`, SIMP_TAC[GROUP_SETMUL_LCANCEL_SET; right_coset]);; let LEFT_COSET_EQ = prove (`!G h x y:A. h subgroup_of G /\ x IN group_carrier G /\ y IN group_carrier G ==> (left_coset G x h = left_coset G y h <=> group_mul G (group_inv G x) y IN h)`, SIMP_TAC[GROUP_SETMUL_RCANCEL_SET; left_coset]);; let RIGHT_COSET_EQ_SUBGROUP = prove (`!G h x:A. h subgroup_of G /\ x IN group_carrier G ==> (right_coset G h x = h <=> x IN h)`, SIMP_TAC[right_coset; GROUP_SETMUL_RSUBSET_EQ; SING_SUBSET] THEN REWRITE_TAC[NOT_INSERT_EMPTY]);; let LEFT_COSET_EQ_SUBGROUP = prove (`!G h x:A. h subgroup_of G /\ x IN group_carrier G ==> (left_coset G x h = h <=> x IN h)`, SIMP_TAC[left_coset; GROUP_SETMUL_LSUBSET_EQ; SING_SUBSET] THEN REWRITE_TAC[NOT_INSERT_EMPTY]);; let RIGHT_COSET_EQ_EMPTY = prove (`!G h x:A. right_coset G h x = {} <=> h = {}`, REWRITE_TAC[right_coset; GROUP_SETMUL_EQ_EMPTY; NOT_INSERT_EMPTY]);; let LEFT_COSET_EQ_EMPTY = prove (`!G h x:A. left_coset G x h = {} <=> h = {}`, REWRITE_TAC[left_coset; GROUP_SETMUL_EQ_EMPTY; NOT_INSERT_EMPTY]);; let RIGHT_COSET_NONEMPTY = prove (`!G h x:A. h subgroup_of G ==> ~(right_coset G h x = {})`, REWRITE_TAC[RIGHT_COSET_EQ_EMPTY; SUBGROUP_OF_IMP_NONEMPTY]);; let LEFT_COSET_NONEMPTY = prove (`!G h x:A. h subgroup_of G ==> ~(left_coset G x h = {})`, REWRITE_TAC[LEFT_COSET_EQ_EMPTY; SUBGROUP_OF_IMP_NONEMPTY]);; let IN_RIGHT_COSET_SELF = prove (`!G h x:A. h subgroup_of G /\ x IN group_carrier G ==> x IN right_coset G h x`, REWRITE_TAC[subgroup_of; right_coset; group_setmul; IN_ELIM_THM; IN_SING] THEN MESON_TAC[GROUP_MUL_LID]);; let IN_LEFT_COSET_SELF = prove (`!G h x:A. h subgroup_of G /\ x IN group_carrier G ==> x IN left_coset G x h`, REWRITE_TAC[subgroup_of; left_coset; group_setmul; IN_ELIM_THM; IN_SING] THEN MESON_TAC[GROUP_MUL_RID]);; let UNIONS_RIGHT_COSETS = prove (`!G h:A->bool. h subgroup_of G ==> UNIONS {right_coset G h x |x| x IN group_carrier G} = group_carrier G`, REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; UNIONS_SUBSET; FORALL_IN_GSPEC] THEN ASM_SIMP_TAC[RIGHT_COSET; SUBGROUP_OF_IMP_SUBSET] THEN REWRITE_TAC[UNIONS_GSPEC; IN_ELIM_THM; SUBSET] THEN ASM_MESON_TAC[IN_RIGHT_COSET_SELF]);; let UNIONS_LEFT_COSETS = prove (`!G h:A->bool. h subgroup_of G ==> UNIONS {left_coset G x h |x| x IN group_carrier G} = group_carrier G`, REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; UNIONS_SUBSET; FORALL_IN_GSPEC] THEN ASM_SIMP_TAC[LEFT_COSET; SUBGROUP_OF_IMP_SUBSET] THEN REWRITE_TAC[UNIONS_GSPEC; IN_ELIM_THM; SUBSET] THEN ASM_MESON_TAC[IN_LEFT_COSET_SELF]);; let RIGHT_COSETS_EQ = prove (`!G h x y:A. h subgroup_of G /\ x IN group_carrier G /\ y IN group_carrier G ==> (right_coset G h x = right_coset G h y <=> ~(DISJOINT (right_coset G h x) (right_coset G h y)))`, REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[GSYM DISJOINT_EMPTY_REFL; RIGHT_COSET_NONEMPTY] THEN ASM_SIMP_TAC[RIGHT_COSET_EQ; LEFT_IMP_EXISTS_THM; IMP_CONJ; SET_RULE `~DISJOINT s t <=> ?x. x IN s /\ ?y. y IN t /\ x = y`] THEN REWRITE_TAC[right_coset; group_setmul; FORALL_IN_GSPEC; IN_SING] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_UNWIND_THM2] THEN X_GEN_TAC `u:A` THEN DISCH_TAC THEN X_GEN_TAC `v:A` THEN DISCH_TAC THEN DISCH_THEN(MP_TAC o AP_TERM `group_mul G (group_inv G u):A->A`) THEN RULE_ASSUM_TAC(REWRITE_RULE[subgroup_of; SUBSET]) THEN ASM_SIMP_TAC[GROUP_MUL_ASSOC; GROUP_INV; GROUP_MUL_LINV; GROUP_MUL_LID] THEN DISCH_THEN SUBST1_TAC THEN ASM_SIMP_TAC[group_div; GSYM GROUP_MUL_ASSOC; GROUP_INV; GROUP_MUL; GROUP_MUL_RINV; GROUP_MUL_RID]);; let LEFT_COSETS_EQ = prove (`!G h x y:A. h subgroup_of G /\ x IN group_carrier G /\ y IN group_carrier G ==> (left_coset G x h = left_coset G y h <=> ~(DISJOINT (left_coset G x h) (left_coset G y h)))`, REWRITE_TAC[LEFT_COSET_OPPOSITE_GROUP] THEN SIMP_TAC[RIGHT_COSETS_EQ; SUBGROUP_OF_OPPOSITE_GROUP; OPPOSITE_GROUP]);; let DISJOINT_RIGHT_COSETS = prove (`!G h x y:A. h subgroup_of G /\ x IN group_carrier G /\ y IN group_carrier G ==> (DISJOINT (right_coset G h x) (right_coset G h y) <=> ~(right_coset G h x = right_coset G h y))`, SIMP_TAC[RIGHT_COSETS_EQ]);; let DISJOINT_LEFT_COSETS = prove (`!G h x y:A. h subgroup_of G /\ x IN group_carrier G /\ y IN group_carrier G ==> (DISJOINT (left_coset G x h) (left_coset G y h) <=> ~(left_coset G x h = left_coset G y h))`, SIMP_TAC[LEFT_COSETS_EQ]);; let PAIRWISE_DISJOINT_RIGHT_COSETS = prove (`!G h:A->bool. h subgroup_of G ==> pairwise DISJOINT {right_coset G h a |a| a IN group_carrier G}`, REWRITE_TAC[SIMPLE_IMAGE; PAIRWISE_IMAGE] THEN SIMP_TAC[pairwise; DISJOINT_RIGHT_COSETS]);; let PAIRWISE_DISJOINT_LEFT_COSETS = prove (`!G h:A->bool. h subgroup_of G ==> pairwise DISJOINT {left_coset G a h |a| a IN group_carrier G}`, REWRITE_TAC[SIMPLE_IMAGE; PAIRWISE_IMAGE] THEN SIMP_TAC[pairwise; DISJOINT_LEFT_COSETS]);; let IMAGE_RIGHT_COSET_SWITCH = prove (`!G h x y:A. h subgroup_of G /\ x IN group_carrier G /\ y IN group_carrier G ==> IMAGE (\a. group_mul G a (group_mul G (group_inv G x) y)) (right_coset G h x) = right_coset G h y`, REPEAT STRIP_TAC THEN TRANS_TAC EQ_TRANS `group_setmul G (right_coset G h x) {group_mul G (group_inv G x) y:A}` THEN CONJ_TAC THENL [REWRITE_TAC[group_setmul] THEN SET_TAC[]; ALL_TAC] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP SUBGROUP_OF_IMP_SUBSET) THEN REWRITE_TAC[right_coset] THEN ASM_SIMP_TAC[GSYM GROUP_SETMUL_ASSOC; GROUP_SETMUL; SING_SUBSET; GROUP_MUL; GROUP_INV; GROUP_SETMUL_SING; GROUP_MUL_ASSOC; GROUP_MUL_RINV; GROUP_MUL_LID]);; let IMAGE_LEFT_COSET_SWITCH = prove (`!G h x y:A. h subgroup_of G /\ x IN group_carrier G /\ y IN group_carrier G ==> IMAGE (\a. group_mul G (group_div G y x) a) (left_coset G x h) = left_coset G y h`, REPEAT STRIP_TAC THEN TRANS_TAC EQ_TRANS `group_setmul G {group_div G y x:A} (left_coset G x h)` THEN CONJ_TAC THENL [REWRITE_TAC[group_setmul] THEN SET_TAC[]; ALL_TAC] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP SUBGROUP_OF_IMP_SUBSET) THEN REWRITE_TAC[left_coset; group_div] THEN ASM_SIMP_TAC[GROUP_SETMUL_ASSOC; GROUP_SETMUL; SING_SUBSET; GROUP_MUL; GROUP_INV; GROUP_SETMUL_SING; GSYM GROUP_MUL_ASSOC; GROUP_MUL_LINV; GROUP_MUL_RID]);; let CARD_EQ_LEFT_RIGHT_COSETS = prove (`!G h:A->bool. h subgroup_of G ==> {left_coset G x h |x| x IN group_carrier G} =_c {right_coset G h x |x| x IN group_carrier G}`, REPEAT STRIP_TAC THEN MATCH_MP_TAC EQ_C_INVOLUTION THEN EXISTS_TAC `group_setinv(G:A group)` THEN REWRITE_TAC[FORALL_IN_GSPEC; FORALL_AND_THM; TAUT `p \/ q ==> r <=> (p ==> r) /\ (q ==> r)`] THEN ASM_SIMP_TAC[GROUP_SETINV_LEFT_COSET_GEN; GROUP_SETINV_RIGHT_COSET_GEN; GROUP_INV; GROUP_INV_INV] THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[GROUP_INV]);; let HAS_SIZE_LEFT_RIGHT_COSETS = prove (`!G h:A->bool. h subgroup_of G ==> ({left_coset G x h | x | x IN group_carrier G} HAS_SIZE n <=> {right_coset G h x | x | x IN group_carrier G} HAS_SIZE n)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC CARD_HAS_SIZE_CONG THEN MATCH_MP_TAC CARD_EQ_LEFT_RIGHT_COSETS THEN ASM_REWRITE_TAC[]);; let CARD_EQ_RIGHT_COSETS = prove (`!G h x y:A. h subgroup_of G /\ x IN group_carrier G /\ y IN group_carrier G ==> right_coset G h x =_c right_coset G h y`, let lemma = prove (`!f g. (IMAGE f s = t /\ IMAGE g t = s) /\ (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) ==> s =_c t`, REWRITE_TAC[eq_c; LEFT_FORALL_IMP_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN SET_TAC[]) in REPEAT STRIP_TAC THEN MATCH_MP_TAC lemma THEN EXISTS_TAC `\a:A. group_mul G a (group_mul G (group_inv G x) y)` THEN EXISTS_TAC `\a:A. group_mul G a (group_mul G (group_inv G y) x)` THEN ASM_SIMP_TAC[IMAGE_RIGHT_COSET_SWITCH; INJECTIVE_ON_ALT] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_MUL_RCANCEL THEN ASM_MESON_TAC[GROUP_MUL; GROUP_INV; SUBSET; RIGHT_COSET; SUBGROUP_OF_IMP_SUBSET]);; let GROUP_ID_IN_LEFT_COSET_GEN = prove (`!G h x:A. h SUBSET group_carrier G /\ x IN group_carrier G ==> (group_id G IN left_coset G x h <=> group_inv G x IN h)`, REWRITE_TAC[left_coset; group_setmul; IN_ELIM_THM; IN_SING; SUBSET] THEN MESON_TAC[GROUP_LINV_EQ]);; let GROUP_ID_IN_LEFT_COSET = prove (`!G h x:A. h subgroup_of G /\ x IN group_carrier G ==> (group_id G IN left_coset G x h <=> x IN h)`, SIMP_TAC[subgroup_of; GROUP_ID_IN_LEFT_COSET_GEN] THEN MESON_TAC[GROUP_INV_INV; SUBSET]);; let SUBGROUP_OF_LEFT_COSET = prove (`!G h x:A. h subgroup_of G /\ x IN group_carrier G ==> (left_coset G x h subgroup_of G <=> left_coset G x h = h)`, MESON_TAC[LEFT_COSET_EQ_SUBGROUP; subgroup_of; GROUP_ID_IN_LEFT_COSET]);; let GROUP_ID_IN_RIGHT_COSET_GEN = prove (`!G h x:A. h SUBSET group_carrier G /\ x IN group_carrier G ==> (group_id G IN right_coset G h x <=> group_inv G x IN h)`, REWRITE_TAC[right_coset; group_setmul; IN_ELIM_THM; IN_SING; SUBSET] THEN MESON_TAC[GROUP_RINV_EQ]);; let GROUP_ID_IN_RIGHT_COSET = prove (`!G h x:A. h subgroup_of G /\ x IN group_carrier G ==> (group_id G IN right_coset G h x <=> x IN h)`, SIMP_TAC[subgroup_of; GROUP_ID_IN_RIGHT_COSET_GEN] THEN MESON_TAC[GROUP_INV_INV; SUBSET]);; let SUBGROUP_OF_RIGHT_COSET = prove (`!G h x:A. h subgroup_of G /\ x IN group_carrier G ==> (right_coset G h x subgroup_of G <=> right_coset G h x = h)`, MESON_TAC[RIGHT_COSET_EQ_SUBGROUP; subgroup_of; GROUP_ID_IN_RIGHT_COSET]);; let CARD_EQ_LEFT_COSETS = prove (`!G h x y:A. h subgroup_of G /\ x IN group_carrier G /\ y IN group_carrier G ==> left_coset G x h =_c left_coset G y h`, SIMP_TAC[LEFT_COSET_OPPOSITE_GROUP; SUBGROUP_OF_OPPOSITE_GROUP; OPPOSITE_GROUP; CARD_EQ_RIGHT_COSETS]);; let CARD_EQ_RIGHT_COSET_SUBGROUP = prove (`!G h x y:A. h subgroup_of G /\ x IN group_carrier G /\ y IN group_carrier G ==> right_coset G h x =_c h`, MESON_TAC[CARD_EQ_RIGHT_COSETS; GROUP_ID; RIGHT_COSET_ID; SUBGROUP_OF_IMP_SUBSET]);; let CARD_EQ_LEFT_COSET_SUBGROUP = prove (`!G h x y:A. h subgroup_of G /\ x IN group_carrier G /\ y IN group_carrier G ==> left_coset G x h =_c h`, MESON_TAC[CARD_EQ_LEFT_COSETS; GROUP_ID; LEFT_COSET_ID; SUBGROUP_OF_IMP_SUBSET]);; let GROUP_ORBIT_SUBGROUP_TRANSLATION = prove (`!G h a:A. h subgroup_of G /\ a IN group_carrier G ==> group_orbit (subgroup_generated G h) (group_carrier G) (group_mul G) a = right_coset G h a`, SIMP_TAC[SUBGROUP_OF_IMP_SUBSET; GROUP_ORBIT; GROUP_ACTION_SUBGROUP_TRANSLATION] THEN SIMP_TAC[right_coset; group_setmul; CARRIER_SUBGROUP_GENERATED_SUBGROUP] THEN SET_TAC[]);; let GROUP_ORBIT_GROUP_TRANSLATION = prove (`!G a:A. a IN group_carrier G ==> group_orbit G (group_carrier G) (group_mul G) a = group_carrier G`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`G:A group`; `group_carrier G:A->bool`; `a:A`] GROUP_ORBIT_SUBGROUP_TRANSLATION) THEN ASM_REWRITE_TAC[CARRIER_SUBGROUP_OF; SUBGROUP_GENERATED_GROUP_CARRIER] THEN ASM_SIMP_TAC[RIGHT_COSET_CARRIER]);; let ORBIT_STABILIZER_GEN = prove (`!G s (a:A->X->X) x. group_action G s a /\ x IN s ==> group_orbit G s a x =_c {left_coset G g (group_stabilizer G a x) |g| g IN group_carrier G}`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GROUP_ORBIT; SIMPLE_IMAGE] THEN MATCH_MP_TAC CARD_EQ_IMAGES THEN ASM_MESON_TAC[GROUP_ACTION_EQ; LEFT_COSET_EQ; SUBGROUP_OF_GROUP_STABILIZER]);; let ORBIT_STABILIZER = prove (`!G s (a:A->X->X) x. FINITE(group_carrier G) /\ group_action G s a /\ x IN s ==> CARD (group_orbit G s a x) = CARD {left_coset G g (group_stabilizer G a x) |g| g IN group_carrier G}`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN FIRST_ASSUM(MP_TAC o MATCH_MP ORBIT_STABILIZER_GEN) THEN ASM_SIMP_TAC[FINITE_GROUP_STABILIZER; FINITE_GROUP_ORBIT; CARD_EQ_CARD; SIMPLE_IMAGE; FINITE_IMAGE]);; let GROUP_ACTION_LEFT_COSET_MULTIPLICATION = prove (`!G h:A->bool. h SUBSET group_carrier G ==> group_action G {left_coset G x h | x | x IN group_carrier G} (IMAGE o group_mul G)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_ACTION_SUBSET_TRANSLATION THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN ASM_SIMP_TAC[LEFT_COSET] THEN REWRITE_TAC[LEFT_COSET_AS_IMAGE] THEN X_GEN_TAC `a:A` THEN DISCH_TAC THEN X_GEN_TAC `b:A` THEN DISCH_TAC THEN REWRITE_TAC[IN_ELIM_THM; GSYM IMAGE_o; o_DEF] THEN EXISTS_TAC `group_mul G a b:A` THEN ASM_SIMP_TAC[GROUP_MUL] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x = g x) ==> IMAGE f s = IMAGE g s`) THEN ASM_MESON_TAC[GROUP_MUL_ASSOC; SUBSET]);; let GROUP_ORBIT_LEFT_COSET_MULTIPLICATION = prove (`!G h a:A. a IN group_carrier G /\ h subgroup_of G ==> group_orbit G { left_coset G x h | x | x IN group_carrier G} (IMAGE o group_mul G) (left_coset G a h) = { left_coset G x h | x | x IN group_carrier G}`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP SUBGROUP_OF_IMP_SUBSET) THEN ASM_SIMP_TAC[GROUP_ORBIT; GROUP_ACTION_LEFT_COSET_MULTIPLICATION] THEN COND_CASES_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; SUBSET; FORALL_IN_GSPEC] THEN ASM_SIMP_TAC[GSYM LEFT_COSET_AS_IMAGE; LEFT_COSET_LEFT_COSET; o_DEF] THEN ASM_SIMP_TAC[IN_ELIM_THM; LEFT_COSET_EQ; GROUP_MUL; LEFT_COSET_LEFT_COSET; GROUP_INV_MUL; MESON[] `(?x. P x /\ Q x) <=> ~(!x. P x ==> ~Q x)`] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP] THEN CONJ_TAC THEN X_GEN_TAC `b:A` THEN DISCH_TAC THENL [EXISTS_TAC `group_mul G b a:A`; EXISTS_TAC `group_mul G b (group_inv G a):A`] THEN ASM_SIMP_TAC[GROUP_MUL; GROUP_INV] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (MESON[subgroup_of] `h subgroup_of G ==> x = group_id G ==> x IN h`)) THEN GROUP_TAC);; let GROUP_STABILIZER_LEFT_COSET_MULTIPLICATION = prove (`!G h a:A. a IN group_carrier G /\ h subgroup_of G ==> group_stabilizer G (IMAGE o group_mul G) (left_coset G a h) = IMAGE (group_conjugation G a) h`, REPEAT STRIP_TAC THEN REWRITE_TAC[group_stabilizer] THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [SYM(MATCH_MP GROUP_SETINV_SUBGROUP th)]) THEN REWRITE_TAC[group_setinv; SIMPLE_IMAGE; GSYM IMAGE_o; o_DEF] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP SUBGROUP_OF_IMP_SUBSET) THEN ONCE_REWRITE_TAC[TAUT `p /\ q <=> ~(p ==> ~q)`] THEN REWRITE_TAC[group_stabilizer; o_THM; GSYM LEFT_COSET_AS_IMAGE] THEN ASM_SIMP_TAC[LEFT_COSET_LEFT_COSET; GROUP_MUL; LEFT_COSET_EQ] THEN REWRITE_TAC[NOT_IMP] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f(g x) = x) /\ (!x. x IN s ==> f x IN s /\ g(f x) = x) /\ t SUBSET s ==> {x | x IN s /\ g x IN t} = IMAGE f t`) THEN ASM_SIMP_TAC[group_conjugation; GROUP_INV; GROUP_MUL] THEN REPEAT STRIP_TAC THEN GROUP_TAC);; let GROUP_ORBIT_LEFT_COSET_MULTIPLICATION_ID = prove (`!G h:A->bool. h subgroup_of G ==> group_orbit G { left_coset G x h | x | x IN group_carrier G} (IMAGE o group_mul G) h = { left_coset G x h | x | x IN group_carrier G}`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`G:A group`; `h:A->bool`; `group_id G:A`] GROUP_ORBIT_LEFT_COSET_MULTIPLICATION) THEN ASM_SIMP_TAC[LEFT_COSET_ID; SUBGROUP_OF_IMP_SUBSET; GROUP_ID]);; let GROUP_STABILIZER_LEFT_COSET_MULTIPLICATION_ID = prove (`!G h:A->bool. h subgroup_of G ==> group_stabilizer G (IMAGE o group_mul G) h = h`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`G:A group`; `h:A->bool`; `group_id G:A`] GROUP_STABILIZER_LEFT_COSET_MULTIPLICATION) THEN ASM_SIMP_TAC[LEFT_COSET_ID; SUBGROUP_OF_IMP_SUBSET; GROUP_ID] THEN DISCH_THEN(K ALL_TAC) THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x = x) ==> IMAGE f s = s`) THEN ASM_MESON_TAC[GROUP_CONJUGATION_BY_ID; SUBSET; subgroup_of]);; let LAGRANGE_THEOREM_LEFT_GEN = prove (`!G h:A->bool. h subgroup_of G ==> {left_coset G x h | x | x IN group_carrier G} *_c h =_c group_carrier G`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP SUBGROUP_OF_IMP_SUBSET) THEN FIRST_ASSUM(MP_TAC o MATCH_MP GROUP_ACTION_LEFT_COSET_MULTIPLICATION) THEN DISCH_THEN(MP_TAC o SPEC `h:A->bool` o MATCH_MP (REWRITE_RULE[IMP_CONJ] ORBIT_STABILIZER_MUL_GEN)) THEN ASM_SIMP_TAC[GROUP_ORBIT_LEFT_COSET_MULTIPLICATION_ID; GROUP_STABILIZER_LEFT_COSET_MULTIPLICATION_ID] THEN DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `group_id G:A` THEN ASM_SIMP_TAC[LEFT_COSET_ID; GROUP_ID]);; let LAGRANGE_THEOREM_RIGHT_GEN = prove (`!G h:A->bool. h subgroup_of G ==> {right_coset G h x | x | x IN group_carrier G} *_c h =_c group_carrier G`, REPEAT STRIP_TAC THEN REWRITE_TAC[RIGHT_COSET_OPPOSITE_GROUP] THEN ONCE_REWRITE_TAC[SYM(CONJUNCT1(SPEC_ALL OPPOSITE_GROUP))] THEN MATCH_MP_TAC LAGRANGE_THEOREM_LEFT_GEN THEN ASM_REWRITE_TAC[SUBGROUP_OF_OPPOSITE_GROUP; OPPOSITE_GROUP]);; let LAGRANGE_THEOREM_LEFT = prove (`!G h:A->bool. FINITE(group_carrier G) /\ h subgroup_of G ==> CARD {left_coset G x h |x| x IN group_carrier G} * CARD h = CARD(group_carrier G)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `FINITE(h:A->bool)` ASSUME_TAC THENL [ASM_MESON_TAC[subgroup_of; FINITE_SUBSET]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o MATCH_MP LAGRANGE_THEOREM_LEFT_GEN) THEN ASM_SIMP_TAC[SIMPLE_IMAGE; CARD_EQ_CARD; FINITE_IMAGE; CARD_MUL_FINITE; CARD_MUL_C]);; let LAGRANGE_THEOREM_RIGHT = prove (`!G h:A->bool. FINITE(group_carrier G) /\ h subgroup_of G ==> CARD {right_coset G h x |x| x IN group_carrier G} * CARD h = CARD(group_carrier G)`, REPEAT STRIP_TAC THEN REWRITE_TAC[RIGHT_COSET_OPPOSITE_GROUP] THEN ONCE_REWRITE_TAC[SYM(CONJUNCT1(SPEC_ALL OPPOSITE_GROUP))] THEN MATCH_MP_TAC LAGRANGE_THEOREM_LEFT THEN ASM_REWRITE_TAC[SUBGROUP_OF_OPPOSITE_GROUP; OPPOSITE_GROUP]);; let LAGRANGE_THEOREM = prove (`!G h:A->bool. FINITE(group_carrier G) /\ h subgroup_of G ==> (CARD h) divides CARD(group_carrier G)`, REPEAT GEN_TAC THEN DISCH_THEN(SUBST1_TAC o SYM o MATCH_MP LAGRANGE_THEOREM_RIGHT) THEN NUMBER_TAC);; let CARD_LEFT_COSETS_DIVIDES = prove (`!G h:A->bool. FINITE(group_carrier G) /\ h subgroup_of G ==> CARD {left_coset G x h | x | x IN group_carrier G} divides CARD(group_carrier G)`, MESON_TAC[divides; LAGRANGE_THEOREM_LEFT]);; let CARD_RIGHT_COSETS_DIVIDES = prove (`!G h:A->bool. FINITE(group_carrier G) /\ h subgroup_of G ==> CARD {right_coset G h x | x | x IN group_carrier G} divides CARD(group_carrier G)`, MESON_TAC[divides; LAGRANGE_THEOREM_RIGHT]);; let LAGRANGE_THEOREM_LEFT_DIV = prove (`!G h:A->bool. FINITE(group_carrier G) /\ h subgroup_of G ==> CARD {left_coset G x h | x | x IN group_carrier G} = CARD(group_carrier G) DIV CARD h`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP LAGRANGE_THEOREM_LEFT) THEN ONCE_REWRITE_TAC[MULT_SYM] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC DIV_MULT THEN ASM_MESON_TAC[subgroup_of; FINITE_SUBSET; CARD_EQ_0; SUBGROUP_OF_IMP_NONEMPTY]);; let LAGRANGE_THEOREM_RIGHT_DIV = prove (`!G h:A->bool. FINITE(group_carrier G) /\ h subgroup_of G ==> CARD {right_coset G h x | x | x IN group_carrier G} = CARD(group_carrier G) DIV CARD h`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP LAGRANGE_THEOREM_RIGHT) THEN ONCE_REWRITE_TAC[MULT_SYM] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC DIV_MULT THEN ASM_MESON_TAC[subgroup_of; FINITE_SUBSET; CARD_EQ_0; SUBGROUP_OF_IMP_NONEMPTY]);; let GROUP_SETMUL_PROD_GROUP = prove (`!(G1:A group) (G2:B group) s1 s2 t1 t2. group_setmul (prod_group G1 G2) (s1 CROSS s2) (t1 CROSS t2) = (group_setmul G1 s1 t1) CROSS (group_setmul G2 s2 t2)`, REWRITE_TAC[group_setmul; CROSS; PROD_GROUP; SET_RULE `{f x y | x IN {g a b | P a b} /\ y IN {h c d | Q c d}} = {f (g a b) (h c d) | P a b /\ Q c d}`] THEN SET_TAC[]);; let RIGHT_COSET_PROD_GROUP = prove (`!G1 G2 h1 h2 (x1:A) (x2:B). right_coset (prod_group G1 G2) (h1 CROSS h2) (x1,x2) = (right_coset G1 h1 x1) CROSS (right_coset G2 h2 x2)`, REWRITE_TAC[right_coset; GSYM CROSS_SING; GROUP_SETMUL_PROD_GROUP]);; let LEFT_COSET_PROD_GROUP = prove (`!G1 G2 h1 h2 (x1:A) (x2:B). left_coset (prod_group G1 G2) (x1,x2) (h1 CROSS h2) = (left_coset G1 x1 h1) CROSS (left_coset G2 x2 h2)`, REWRITE_TAC[left_coset; GSYM CROSS_SING; GROUP_SETMUL_PROD_GROUP]);; let GROUP_SETMUL_PRODUCT_GROUP = prove (`!(G:K->A group) k s t. group_setmul (product_group k G) (cartesian_product k s) (cartesian_product k t) = cartesian_product k (\i. group_setmul (G i) (s i) (t i))`, REPEAT GEN_TAC THEN REWRITE_TAC[group_setmul; CARTESIAN_PRODUCT_AS_RESTRICTIONS; PRODUCT_GROUP] THEN REWRITE_TAC[IN_ELIM_THM; SET_RULE `{f x y | x,y | x IN {g x | P x} /\ y IN {g f | Q f}} = {f (g x) (g y) | P x /\ Q y}`] THEN GEN_REWRITE_TAC (RAND_CONV o TOP_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; FORALL_AND_THM; TAUT `p ==> (q /\ r) /\ s <=> (p ==> s) /\ (p ==> q) /\ (p ==> r)`] THEN REWRITE_TAC[GSYM RESTRICTION_EXTENSION; SET_RULE `{RESTRICTION k f | f | ?x y. RESTRICTION k f = RESTRICTION k (g x y) /\ R x y} = {RESTRICTION k (g x y) | R x y}`] THEN MATCH_MP_TAC(SET_RULE `(!x y. R x y ==> f x y = g x y) ==> {f x y | R x y} = {g x y | R x y}`) THEN REWRITE_TAC[RESTRICTION_EXTENSION] THEN SIMP_TAC[RESTRICTION]);; let RIGHT_COSET_PRODUCT_GROUP = prove (`!(G:K->A group) h x k. right_coset (product_group k G) (cartesian_product k h) x = cartesian_product k (\i. right_coset (G i) (h i) (x i))`, REPEAT GEN_TAC THEN REWRITE_TAC[right_coset] THEN REWRITE_TAC[GSYM GROUP_SETMUL_PRODUCT_GROUP] THEN REWRITE_TAC[CARTESIAN_PRODUCT_SINGS_GEN] THEN REWRITE_TAC[group_setmul; PRODUCT_GROUP; SET_RULE `{f x y | x,y | P x /\ y IN {a}} = {f x a | P x}`] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x = g x) ==> {f x | x IN s} = {g x | x IN s}`) THEN REWRITE_TAC[RESTRICTION_EXTENSION] THEN SIMP_TAC[RESTRICTION]);; let LEFT_COSET_PRODUCT_GROUP = prove (`!(G:K->A group) h x k. left_coset (product_group k G) x (cartesian_product k h) = cartesian_product k (\i. left_coset (G i) (x i) (h i))`, REWRITE_TAC[LEFT_COSET_OPPOSITE_GROUP; OPPOSITE_PRODUCT_GROUP] THEN REWRITE_TAC[RIGHT_COSET_PRODUCT_GROUP]);; let GROUP_SETINV_SUBGROUP_GENERATED = prove (`!G h:A->bool. group_setinv (subgroup_generated G h) = group_setinv G`, REWRITE_TAC[group_setinv; FUN_EQ_THM; SUBGROUP_GENERATED]);; let GROUP_SETMUL_SUBGROUP_GENERATED = prove (`!G h:A->bool. group_setmul (subgroup_generated G h) = group_setmul G`, REWRITE_TAC[group_setmul; FUN_EQ_THM; SUBGROUP_GENERATED]);; let RIGHT_COSET_SUBGROUP_GENERATED = prove (`!G h k x. right_coset (subgroup_generated G h) k x = right_coset G k x`, REWRITE_TAC[right_coset; GROUP_SETMUL_SUBGROUP_GENERATED]);; let LEFT_COSET_SUBGROUP_GENERATED = prove (`!G h k x. left_coset (subgroup_generated G h) x k = left_coset G x k`, REWRITE_TAC[left_coset; GROUP_SETMUL_SUBGROUP_GENERATED]);; let SCHREIER_TRANSVERSAL_LEMMA = prove (`!(G:A group) h s t. h subgroup_of G /\ s SUBSET group_carrier G /\ subgroup_generated G s = G /\ (!x. x IN s ==> group_inv G x IN s) /\ t SUBSET group_carrier G /\ UNIONS {right_coset G h x | x IN t} = group_carrier G /\ t INTER h SUBSET {group_id G} ==> group_carrier(subgroup_generated G (h INTER group_setmul G t (group_setmul G s (group_setinv G t)))) = h`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [ASM_SIMP_TAC[SUBGROUP_GENERATED_MINIMAL_EQ] THEN SET_TAC[]; ALL_TAC] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP SUBGROUP_OF_IMP_SUBSET) THEN ABBREV_TAC `k:A->bool = h INTER group_setmul G t (group_setmul G s (group_setinv G t))` THEN SUBGOAL_THEN `!y x. y IN t /\ x IN s ==> ?z y'. z IN group_carrier G /\ y' IN group_carrier G /\ z IN k /\ y' IN t /\ group_mul G y x:A = group_mul G z y'` (LABEL_TAC "*") THENL [MAP_EVERY X_GEN_TAC [`y:A`; `x:A`] THEN STRIP_TAC THEN SUBGOAL_THEN `x IN group_carrier G /\ (y:A) IN group_carrier G` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `group_mul G y (x:A) IN UNIONS {right_coset G h x | x IN t}` MP_TAC THENL [ASM_SIMP_TAC[GROUP_MUL]; REWRITE_TAC[UNIONS_GSPEC]] THEN ASM_REWRITE_TAC[IN_ELIM_THM; right_coset; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `y':A` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [group_setmul] THEN REWRITE_TAC[IN_ELIM_THM; IN_SING] THEN REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM; UNWIND_THM2] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `z:A` THEN STRIP_TAC THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [ASM SET_TAC[]; DISCH_TAC] THEN EXISTS_TAC `y':A` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [ASM SET_TAC[]; DISCH_TAC] THEN EXPAND_TAC "k" THEN REWRITE_TAC[group_setmul; GROUP_SETINV_AS_IMAGE] THEN ASM_REWRITE_TAC[IN_ELIM_THM; IN_INTER] THEN MAP_EVERY EXISTS_TAC [`y:A`; `group_mul G x (group_inv G y'):A`] THEN ASM_REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM] THEN REWRITE_TAC[EXISTS_IN_IMAGE] THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN UNDISCH_TAC `group_mul G y x:A = group_mul G z y'` THEN GROUP_TAC; ALL_TAC] THEN SUBGOAL_THEN `!x:A. x IN group_carrier(subgroup_generated G s) ==> ~(x = group_id G) ==> !y. y IN t ==> ?z y'. z IN group_carrier(subgroup_generated G k) /\ y' IN t /\ group_mul G y x = group_mul G z y'` MP_TAC THENL [MATCH_MP_TAC SUBGROUP_GENERATED_INDUCT_LEFT THEN REWRITE_TAC[] THEN MAP_EVERY X_GEN_TAC [`x:A`; `xs:A`] THEN ASM_CASES_TAC `xs:A = group_id G` THEN ASM_REWRITE_TAC[] THENL [SIMP_TAC[GROUP_MUL_RID; GROUP_INV] THEN STRIP_TAC THEN CONJ_TAC THEN DISCH_THEN(K ALL_TAC) THEN X_GEN_TAC `y:A` THEN DISCH_TAC THEN (SUBGOAL_THEN `(y:A) IN group_carrier G` ASSUME_TAC THENL [ASM SET_TAC[]; ASM_SIMP_TAC[GROUP_MUL_RID; GROUP_INV]]) THENL [REMOVE_THEN "*" (MP_TAC o SPECL [`y:A`; `x:A`]); REMOVE_THEN "*" (MP_TAC o SPECL [`y:A`; `group_inv G x:A`])] THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `z:A` THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `y':A` THEN STRIP_TAC THEN ASM_SIMP_TAC[SUBGROUP_GENERATED_INC_GEN]; REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(LABEL_TAC "+") THEN CONJ_TAC THEN DISCH_THEN(K ALL_TAC) THEN X_GEN_TAC `y:A` THEN DISCH_TAC THEN (SUBGOAL_THEN `(y:A) IN group_carrier G` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THENL [REMOVE_THEN "*" (MP_TAC o SPECL [`y:A`; `x:A`]); REMOVE_THEN "*" (MP_TAC o SPECL [`y:A`; `group_inv G x:A`])] THEN ASM_SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`z:A`; `y':A`] THEN STRIP_TAC THEN REMOVE_THEN "+" (MP_TAC o SPEC `y':A`) THEN ASM_SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`z':A`; `y'':A`] THEN STRIP_TAC THEN (SUBGOAL_THEN `(z':A) IN group_carrier G /\ y'' IN group_carrier G` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[SUBSET; GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET]; ALL_TAC]) THEN MAP_EVERY EXISTS_TAC [`group_mul G z z':A`; `y'':A`] THEN ASM_SIMP_TAC[GROUP_MUL_ASSOC; GROUP_INV] THEN ASM_SIMP_TAC[GSYM GROUP_MUL_ASSOC; GROUP_INV] THEN MATCH_MP_TAC IN_SUBGROUP_MUL THEN ASM_REWRITE_TAC[SUBGROUP_SUBGROUP_GENERATED] THEN MATCH_MP_TAC SUBGROUP_GENERATED_INC_GEN THEN ASM_REWRITE_TAC[]]; ASM_REWRITE_TAC[SUBSET]] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `x:A` THEN ASM_CASES_TAC `x:A = group_id G` THEN ASM_REWRITE_TAC[GROUP_ID_SUBGROUP] THEN MATCH_MP_TAC(TAUT `(p' ==> p) /\ (p /\ p' ==> q ==> q') ==> (p ==> q) ==> (p' ==> q')`) THEN CONJ_TAC THENL [ASM SET_TAC[]; STRIP_TAC] THEN DISCH_THEN(MP_TAC o SPEC `group_id G:A`) THEN ANTS_TAC THENL [SUBGOAL_THEN `(group_id G:A) IN UNIONS {right_coset G h x | x IN t}` MP_TAC THENL [ASM_SIMP_TAC[GROUP_ID]; REWRITE_TAC[UNIONS_GSPEC]] THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN DISCH_THEN(X_CHOOSE_THEN `w:A` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN SUBGOAL_THEN `(w:A) IN group_carrier G` ASSUME_TAC THENL [ASM SET_TAC[]; ASM_SIMP_TAC[GROUP_ID_IN_RIGHT_COSET] THEN ASM SET_TAC[]]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`z:A`; `y':A`] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN SUBGOAL_THEN `(z:A) IN group_carrier G /\ y' IN group_carrier G` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[SUBSET; GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET]; DISCH_THEN(MP_TAC o SYM) THEN ASM_SIMP_TAC[GROUP_MUL_LID]] THEN DISCH_TAC THEN SUBGOAL_THEN `y':A = group_id G` SUBST_ALL_TAC THENL [ALL_TAC; ASM_MESON_TAC[GROUP_MUL_RID]] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `s SUBSET {z} ==> y IN s ==> y = z`)) THEN ASM_REWRITE_TAC[IN_INTER] THEN SUBGOAL_THEN `y':A = group_mul G (group_inv G z) x` SUBST1_TAC THENL [UNDISCH_TAC `group_mul G z y':A = x` THEN GROUP_TAC; ALL_TAC] THEN MATCH_MP_TAC IN_SUBGROUP_MUL THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC IN_SUBGROUP_INV THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `(z:A) IN group_carrier (subgroup_generated G k)` THEN MATCH_MP_TAC(SET_RULE `s SUBSET t ==> x IN s ==> x IN t`) THEN MATCH_MP_TAC SUBGROUP_GENERATED_MINIMAL THEN ASM SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* Normal subgroups. *) (* ------------------------------------------------------------------------- *) parse_as_infix ("normal_subgroup_of",(12,"right"));; let normal_subgroup_of = new_definition `(n:A->bool) normal_subgroup_of (G:A group) <=> n subgroup_of G /\ !x. x IN group_carrier G ==> left_coset G x n = right_coset G n x`;; let NORMAL_SUBGROUP_IMP_SUBGROUP = prove (`!G n:A->bool. n normal_subgroup_of G ==> n subgroup_of G`, SIMP_TAC[normal_subgroup_of]);; let NORMAL_SUBGROUP_OF_IMP_SUBSET = prove (`!G n:A->bool. n normal_subgroup_of G ==> n SUBSET group_carrier G`, MESON_TAC[SUBGROUP_OF_IMP_SUBSET; normal_subgroup_of]);; let NORMAL_SUBGROUP_OF_OPPOSITE_GROUP = prove (`!G n:A->bool. n normal_subgroup_of opposite_group G <=> n normal_subgroup_of G`, REWRITE_TAC[normal_subgroup_of; SUBGROUP_OF_OPPOSITE_GROUP] THEN REWRITE_TAC[GSYM LEFT_COSET_OPPOSITE_GROUP; OPPOSITE_GROUP; GSYM RIGHT_COSET_OPPOSITE_GROUP] THEN MESON_TAC[]);; let ABELIAN_GROUP_NORMAL_SUBGROUP = prove (`!G n:A->bool. abelian_group G ==> (n normal_subgroup_of G <=> n subgroup_of G)`, REWRITE_TAC[normal_subgroup_of; left_coset; right_coset; subgroup_of] THEN MESON_TAC[GROUP_SETMUL_SYM; SING_SUBSET]);; let NORMAL_SUBGROUP_CONJUGATE_ALT = prove (`!G n:A->bool. n normal_subgroup_of G <=> n subgroup_of G /\ !x. x IN group_carrier G ==> group_setmul G {group_inv G x} (group_setmul G n {x}) = n`, REPEAT GEN_TAC THEN REWRITE_TAC[normal_subgroup_of] THEN ASM_CASES_TAC `(n:A->bool) subgroup_of G` THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP SUBGROUP_OF_IMP_SUBSET) THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[left_coset; right_coset] THENL [DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_SIMP_TAC[GROUP_SETMUL_ASSOC; SING_SUBSET; GROUP_INV] THEN ASM_SIMP_TAC[GROUP_SETMUL_SING; GROUP_MUL_LINV; GROUP_SETMUL_LID]; DISCH_THEN(MP_TAC o AP_TERM `group_setmul G {x:A}`) THEN ASM_SIMP_TAC[GROUP_SETMUL_ASSOC; GROUP_INV; GROUP_SETMUL; SING_SUBSET] THEN ASM_SIMP_TAC[GROUP_SETMUL_SING; GROUP_MUL_RINV; GROUP_SETMUL_LID]]);; let NORMAL_SUBGROUP_CONJUGATE_INV = prove (`!G n:A->bool. n normal_subgroup_of G <=> n subgroup_of G /\ !x. x IN group_carrier G ==> group_setmul G {group_inv G x} (group_setmul G n {x}) SUBSET n`, REPEAT GEN_TAC THEN REWRITE_TAC[NORMAL_SUBGROUP_CONJUGATE_ALT] THEN ASM_CASES_TAC `(n:A->bool) subgroup_of G` THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP SUBGROUP_OF_IMP_SUBSET) THEN EQ_TAC THEN SIMP_TAC[GSYM SUBSET_ANTISYM_EQ] THEN DISCH_TAC THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `group_inv G (x:A)`) THEN ASM_SIMP_TAC[GROUP_INV; GROUP_INV_INV] THEN DISCH_THEN(MP_TAC o ISPEC `\y:A. group_mul G (group_inv G x) (group_mul G y x)` o MATCH_MP IMAGE_SUBSET) THEN REWRITE_TAC[group_setmul; SIMPLE_IMAGE; SET_RULE `{f x y | x IN {a} /\ P y} = {f a y | P y}`; SET_RULE `{f x y | P x /\ y IN {a}} = {f x a | P x}`] THEN REWRITE_TAC[GSYM IMAGE_o; o_DEF] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x = x) ==> IMAGE f s SUBSET t ==> s SUBSET t`) THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 4) [GROUP_MUL_ASSOC; GROUP_MUL; GROUP_INV; GROUP_MUL_LINV] THEN ASM_SIMP_TAC[GSYM GROUP_MUL_ASSOC; GROUP_MUL_LINV; GROUP_MUL; GROUP_INV] THEN ASM_SIMP_TAC[GROUP_MUL_LID] THEN ASM_SIMP_TAC[GSYM GROUP_MUL_ASSOC; GROUP_MUL_LINV; GROUP_MUL; GROUP_INV] THEN ASM_SIMP_TAC[GROUP_MUL_RID]);; let NORMAL_SUBGROUP_CONJUGATION_EQ = prove (`!G h:A->bool. h normal_subgroup_of G <=> h subgroup_of G /\ !a. a IN group_carrier G ==> IMAGE (group_conjugation G a) h = h`, REPEAT GEN_TAC THEN REWRITE_TAC[normal_subgroup_of] THEN ASM_CASES_TAC `(h:A->bool) subgroup_of G` THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP SUBGROUP_OF_IMP_SUBSET) THEN REWRITE_TAC[IMAGE_GROUP_CONJUGATION; left_coset; right_coset] THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `x:A` THEN DISCH_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPEC `group_inv G x:A`) THEN ASM_SIMP_TAC[GROUP_INV] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_SIMP_TAC[GROUP_SETMUL_ASSOC; SING_SUBSET; GROUP_INV] THEN ASM_SIMP_TAC[GROUP_SETMUL_SING; GROUP_SETMUL_LID; GROUP_MUL_RINV]; FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(fun th -> GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [SYM th]) THEN ASM_SIMP_TAC[GSYM GROUP_SETMUL_ASSOC; SING_SUBSET; GROUP_INV; GROUP_SETMUL; GROUP_SETMUL_SING; GROUP_MUL_LINV; GROUP_SETMUL_RID]]);; let NORMAL_SUBGROUP_CONJUGATION = prove (`!G h:A->bool. h normal_subgroup_of G <=> h subgroup_of G /\ !a. a IN group_carrier G ==> IMAGE (group_conjugation G a) h SUBSET h`, REPEAT GEN_TAC THEN REWRITE_TAC[NORMAL_SUBGROUP_CONJUGATION_EQ] THEN ASM_CASES_TAC `(h:A->bool) subgroup_of G` THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP SUBGROUP_OF_IMP_SUBSET) THEN EQ_TAC THEN SIMP_TAC[GSYM SUBSET_ANTISYM_EQ] THEN DISCH_TAC THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `group_inv G x:A`) THEN ASM_SIMP_TAC[GROUP_INV] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN h ==> f(g x) = x) ==> IMAGE g h SUBSET h ==> h SUBSET IMAGE f h`) THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN ASM_SIMP_TAC[GROUP_CONJUGATION_CONJUGATION; GROUP_INV] THEN ASM_SIMP_TAC[GROUP_MUL_RINV; GROUP_CONJUGATION_BY_ID]);; let NORMAL_SUBGROUP_CONJUGATION_SUPERSET = prove (`!G h:A->bool. h normal_subgroup_of G <=> h subgroup_of G /\ !a. a IN group_carrier G ==> h SUBSET IMAGE (group_conjugation G a) h`, REPEAT GEN_TAC THEN EQ_TAC THENL [SIMP_TAC[NORMAL_SUBGROUP_CONJUGATION_EQ; SUBSET_REFL]; SIMP_TAC[NORMAL_SUBGROUP_CONJUGATION] THEN STRIP_TAC] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `group_inv G x:A`) THEN ASM_SIMP_TAC[GROUP_INV] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN h ==> g(f x) = x) ==> h SUBSET IMAGE f h ==> IMAGE g h SUBSET h`) THEN RULE_ASSUM_TAC(REWRITE_RULE[subgroup_of; SUBSET]) THEN ASM_SIMP_TAC[GROUP_CONJUGATION_CONJUGATION; GROUP_INV] THEN ASM_SIMP_TAC[GROUP_MUL_RINV; GROUP_CONJUGATION_BY_ID]);; let ABELIAN_GROUP_CONJUGATION = prove (`!G a x:A. abelian_group G /\ a IN group_carrier G /\ x IN group_carrier G ==> group_conjugation G a x = x`, SIMP_TAC[GROUP_CONJUGATION_EQ_SELF; abelian_group]);; let NORMAL_SUBGROUP_OF_INTERS = prove (`!G gs. (!g. g IN gs ==> g normal_subgroup_of G) /\ ~(gs = {}) ==> INTERS gs normal_subgroup_of G`, SIMP_TAC[NORMAL_SUBGROUP_CONJUGATION; SUBGROUP_OF_INTERS] THEN SET_TAC[]);; let NORMAL_SUBGROUP_OF_INTER = prove (`!G g h:A->bool. g normal_subgroup_of G /\ h normal_subgroup_of G ==> g INTER h normal_subgroup_of G`, REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM INTERS_2] THEN MATCH_MP_TAC NORMAL_SUBGROUP_OF_INTERS THEN ASM_REWRITE_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY; NOT_INSERT_EMPTY]);; let NORMAL_SUBGROUP_OF_UNIONS = prove (`!G (u:(A->bool)->bool). ~(u = {}) /\ (!h. h IN u ==> h normal_subgroup_of G) /\ (!g h. g IN u /\ h IN u ==> g SUBSET h \/ h SUBSET g) ==> (UNIONS u) normal_subgroup_of G`, REWRITE_TAC[NORMAL_SUBGROUP_CONJUGATION; subgroup_of] THEN SET_TAC[]);; let NORMAL_SUBGROUP_ACTION_KERNEL = prove (`!G s (a:A->X->X). group_action G s a ==> {g | g IN group_carrier G /\ !x. x IN s ==> a g x = x} normal_subgroup_of G`, REPEAT STRIP_TAC THEN REWRITE_TAC[NORMAL_SUBGROUP_CONJUGATION] THEN CONJ_TAC THENL [REWRITE_TAC[GROUP_ACTION_KERNEL_POINTWISE] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[CARRIER_SUBGROUP_OF] THEN MATCH_MP_TAC SUBGROUP_OF_INTERS THEN ASM_REWRITE_TAC[SIMPLE_IMAGE; FORALL_IN_IMAGE; IMAGE_EQ_EMPTY] THEN ASM_MESON_TAC[SUBGROUP_OF_GROUP_STABILIZER]; X_GEN_TAC `g:A` THEN DISCH_TAC] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM]THEN X_GEN_TAC `h:A` THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [group_action]) THEN ASM_SIMP_TAC[GROUP_ID; GROUP_INV; GROUP_MUL; group_conjugation] THEN ASM_MESON_TAC[GROUP_ACTION_RINV]);; let NORMAL_SUBGROUP_LEFT_EQ_RIGHT_COSETS = prove (`!G n:A->bool. n normal_subgroup_of G <=> n subgroup_of G /\ {left_coset G x n |x| x IN group_carrier G} = {right_coset G n x |x| x IN group_carrier G}`, REPEAT GEN_TAC THEN REWRITE_TAC[normal_subgroup_of] THEN ASM_CASES_TAC `(n:A->bool) subgroup_of G` THEN ASM_REWRITE_TAC[] THEN EQ_TAC THEN STRIP_TAC THENL [MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x = g x) ==> {f x | x IN s} = {g x | x IN s}`) THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> x IN f x /\ x IN g x) /\ (!x y. x IN s /\ y IN s /\ ~(f x = f y) ==> DISJOINT (f x) (f y)) /\ {f x | x IN s} = {g x | x IN s} ==> !x. x IN s ==> f x = g x`) THEN ASM_SIMP_TAC[IN_LEFT_COSET_SELF; IN_RIGHT_COSET_SELF] THEN ASM_SIMP_TAC[DISJOINT_LEFT_COSETS]]);; let NORMAL_SUBGROUP_LEFT_SUBSET_RIGHT_COSETS, NORMAL_SUBGROUP_RIGHT_SUBSET_LEFT_COSETS = (CONJ_PAIR o prove) (`(!G n:A->bool. n normal_subgroup_of G <=> n subgroup_of G /\ {left_coset G x n |x| x IN group_carrier G} SUBSET {right_coset G n x |x| x IN group_carrier G}) /\ (!G n:A->bool. n normal_subgroup_of G <=> n subgroup_of G /\ {right_coset G n x |x| x IN group_carrier G} SUBSET {left_coset G x n |x| x IN group_carrier G})`, REPEAT STRIP_TAC THEN REWRITE_TAC[NORMAL_SUBGROUP_LEFT_EQ_RIGHT_COSETS] THEN ASM_CASES_TAC `(n:A->bool) subgroup_of G` THEN ASM_REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ] THEN EQ_TAC THEN SIMP_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ_ALT] DIFF_UNIONS_PAIRWISE_DISJOINT)) THEN ASM_SIMP_TAC[UNIONS_LEFT_COSETS; UNIONS_RIGHT_COSETS; DIFF_EQ_EMPTY; PAIRWISE_DISJOINT_RIGHT_COSETS; PAIRWISE_DISJOINT_LEFT_COSETS] THEN DISCH_THEN(MP_TAC o SYM) THEN REWRITE_TAC[EMPTY_UNIONS] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN t ==> ~(P x)) ==> (!x. x IN t DIFF s ==> P x) ==> t SUBSET s`) THEN ASM_SIMP_TAC[FORALL_IN_GSPEC; LEFT_COSET_NONEMPTY; RIGHT_COSET_NONEMPTY]);; let NORMAL_SUBGROUP_MUL_SYM = prove (`!G h:A->bool. h normal_subgroup_of G <=> h subgroup_of G /\ !x y. x IN group_carrier G /\ y IN group_carrier G ==> (group_mul G x y IN h <=> group_mul G y x IN h)`, REPEAT GEN_TAC THEN REWRITE_TAC[normal_subgroup_of] THEN ASM_CASES_TAC `(h:A->bool) subgroup_of G` THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC LAND_CONV [GSYM FORALL_IN_GROUP_CARRIER_INV] THEN TRANS_TAC EQ_TRANS `!x y:A. x IN group_carrier G /\ y IN group_carrier G ==> (y IN left_coset G (group_inv G x) h <=> y IN right_coset G h (group_inv G x))` THEN CONJ_TAC THENL [MP_TAC(ISPECL [`G:A group`; `h:A->bool`] LEFT_COSET) THEN MP_TAC(ISPECL [`G:A group`; `h:A->bool`] RIGHT_COSET) THEN ASM_SIMP_TAC[SUBGROUP_OF_IMP_SUBSET] THEN REWRITE_TAC[SUBSET; EXTENSION] THEN MESON_TAC[GROUP_INV]; ASM_SIMP_TAC[IN_LEFT_COSET_INV; IN_RIGHT_COSET_INV; SUBGROUP_OF_IMP_SUBSET]]);; let TRIVIAL_NORMAL_SUBGROUP_OF = prove (`!G:A group. {group_id G} normal_subgroup_of G`, SIMP_TAC[normal_subgroup_of; TRIVIAL_SUBGROUP_OF; RIGHT_COSET_TRIVIAL; LEFT_COSET_TRIVIAL]);; let CARRIER_NORMAL_SUBGROUP_OF = prove (`!G:A group. (group_carrier G) normal_subgroup_of G`, SIMP_TAC[normal_subgroup_of; CARRIER_SUBGROUP_OF] THEN SIMP_TAC[LEFT_COSET_CARRIER; RIGHT_COSET_CARRIER]);; let GROUP_SETINV_RIGHT_COSET = prove (`!G n a:A. n normal_subgroup_of G /\ a IN group_carrier G ==> group_setinv G (right_coset G n a) = right_coset G n (group_inv G a)`, REWRITE_TAC[normal_subgroup_of; left_coset; right_coset] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP SUBGROUP_OF_IMP_SUBSET) THEN TRANS_TAC EQ_TRANS `group_setmul G {group_inv G a} (group_setinv G n):A->bool` THEN CONJ_TAC THENL [REWRITE_TAC[group_setinv; group_setmul; SET_RULE `{f x y | P x /\ y IN {a}} = {f x a | P x}`; SET_RULE `{f x y | x IN {a} /\ P y} = {f a y | P y}`] THEN REWRITE_TAC[SIMPLE_IMAGE; GSYM IMAGE_o] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x = g x) ==> IMAGE f s = IMAGE g s`) THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN ASM_SIMP_TAC[GROUP_INV_MUL; o_DEF]; ASM_SIMP_TAC[GROUP_SETINV_SUBGROUP; GROUP_INV]]);; let GROUP_SETINV_LEFT_COSET = prove (`!G n a:A. n normal_subgroup_of G /\ a IN group_carrier G ==> group_setinv G (left_coset G a n) = left_coset G (group_inv G a) n`, REWRITE_TAC[LEFT_COSET_OPPOSITE_GROUP] THEN ONCE_REWRITE_TAC[GSYM OPPOSITE_GROUP_SETINV] THEN SIMP_TAC[GROUP_SETINV_RIGHT_COSET; NORMAL_SUBGROUP_OF_OPPOSITE_GROUP; OPPOSITE_GROUP]);; let GROUP_SETMUL_RIGHT_COSET = prove (`!G n a b:A. n normal_subgroup_of G /\ a IN group_carrier G /\ b IN group_carrier G ==> group_setmul G (right_coset G n a) (right_coset G n b) = right_coset G n (group_mul G a b)`, REWRITE_TAC[normal_subgroup_of; left_coset; right_coset] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP SUBGROUP_OF_IMP_SUBSET) THEN FIRST_ASSUM(MP_TAC o SPEC `a:A`) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[]; DISCH_THEN(SUBST1_TAC o SYM)] THEN ASM_SIMP_TAC[SING_SUBSET; MESON[GROUP_SETMUL_ASSOC; GROUP_SETMUL; GROUP_SETINV] `a SUBSET group_carrier G /\ b SUBSET group_carrier G /\ c SUBSET group_carrier G /\ d SUBSET group_carrier G ==> group_setmul G (group_setmul G a b) (group_setmul G c d) = group_setmul G a (group_setmul G (group_setmul G b c) d)`] THEN ASM_SIMP_TAC[GROUP_SETMUL_SUBGROUP] THEN FIRST_ASSUM(MP_TAC o SPEC `b:A`) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[]; DISCH_THEN(SUBST1_TAC o SYM)] THEN FIRST_X_ASSUM(MP_TAC o SPEC `group_mul G a b:A`) THEN ASM_SIMP_TAC[GROUP_MUL] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_SIMP_TAC[GROUP_SETMUL_ASSOC; SING_SUBSET; GROUP_SETMUL_SING]);; let GROUP_SETMUL_LEFT_COSET = prove (`!G n a b:A. n normal_subgroup_of G /\ a IN group_carrier G /\ b IN group_carrier G ==> group_setmul G (left_coset G a n) (left_coset G b n) = left_coset G (group_mul G a b) n`, REWRITE_TAC[LEFT_COSET_OPPOSITE_GROUP] THEN ONCE_REWRITE_TAC[GSYM OPPOSITE_GROUP_SETMUL] THEN SIMP_TAC[GROUP_SETMUL_RIGHT_COSET; NORMAL_SUBGROUP_OF_OPPOSITE_GROUP; OPPOSITE_GROUP]);; let CROSS_NORMAL_SUBGROUP_OF_PROD_GROUP = prove (`!(G1:A group) (G2:B group) h1 h2. (h1 CROSS h2) normal_subgroup_of (prod_group G1 G2) <=> h1 normal_subgroup_of G1 /\ h2 normal_subgroup_of G2`, REPEAT GEN_TAC THEN REWRITE_TAC[normal_subgroup_of] THEN REWRITE_TAC[FORALL_PAIR_THM; RIGHT_COSET_PROD_GROUP; LEFT_COSET_PROD_GROUP; CROSS_SUBGROUP_OF_PROD_GROUP; CROSS_EQ; PROD_GROUP; IN_CROSS] THEN ASM_CASES_TAC `(h1:A->bool) subgroup_of G1` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `(h2:B->bool) subgroup_of G2` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[RIGHT_COSET_NONEMPTY; LEFT_COSET_NONEMPTY] THEN MESON_TAC[GROUP_ID]);; let NORMAL_SUBGROUP_OF_SUBGROUP_GENERATED_GEN = prove (`!G s h:A->bool. h normal_subgroup_of G /\ h SUBSET group_carrier(subgroup_generated G s) ==> h normal_subgroup_of (subgroup_generated G s)`, SIMP_TAC[normal_subgroup_of; SUBGROUP_OF_SUBGROUP_GENERATED_EQ] THEN SIMP_TAC[LEFT_COSET_SUBGROUP_GENERATED; RIGHT_COSET_SUBGROUP_GENERATED] THEN MESON_TAC[REWRITE_RULE[SUBSET] GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET]);; let NORMAL_SUBGROUP_OF_SUBGROUP_GENERATED = prove (`!G s h:A->bool. h normal_subgroup_of G /\ h SUBSET s ==> h normal_subgroup_of (subgroup_generated G s)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC NORMAL_SUBGROUP_OF_SUBGROUP_GENERATED_GEN THEN ASM_REWRITE_TAC[] THEN W(MP_TAC o PART_MATCH rand SUBGROUP_GENERATED_SUBSET_CARRIER o rand o snd) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] SUBSET_TRANS) THEN ASM_SIMP_TAC[SUBSET_INTER; NORMAL_SUBGROUP_IMP_SUBGROUP; SUBGROUP_OF_IMP_SUBSET]);; let GROUP_SETMUL_NORMAL_SUBGROUP_LEFT = prove (`!G n h:A->bool. n normal_subgroup_of G /\ h subgroup_of G ==> group_setmul G n h subgroup_of G`, REWRITE_TAC[normal_subgroup_of; left_coset; right_coset] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[SUBGROUP_SETMUL_EQ] THEN RULE_ASSUM_TAC(REWRITE_RULE[group_setmul; subgroup_of]) THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[group_setmul] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> {f x y | y IN t} = {f y x | y IN t}) ==> {f x y | x IN s /\ y IN t} = {f y x | y IN t /\ x IN s}`) THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN REWRITE_TAC[group_setmul; IN_SING] THEN ANTS_TAC THENL [ASM SET_TAC[]; MATCH_MP_TAC EQ_IMP THEN BINOP_TAC] THEN ASM SET_TAC[]);; let GROUP_SETMUL_NORMAL_SUBGROUP_RIGHT = prove (`!G h n:A->bool. h subgroup_of G /\ n normal_subgroup_of G ==> group_setmul G h n subgroup_of G`, REWRITE_TAC[normal_subgroup_of; left_coset; right_coset] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[SUBGROUP_SETMUL_EQ] THEN RULE_ASSUM_TAC(REWRITE_RULE[group_setmul; subgroup_of]) THEN REWRITE_TAC[group_setmul] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> {f x y | y IN t} = {f y x | y IN t}) ==> {f x y | x IN s /\ y IN t} = {f y x | y IN t /\ x IN s}`) THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN REWRITE_TAC[group_setmul; IN_SING] THEN ANTS_TAC THENL [ASM SET_TAC[]; MATCH_MP_TAC EQ_IMP THEN BINOP_TAC] THEN ASM SET_TAC[]);; let GROUP_SETMUL_NORMAL_SUBGROUP = prove (`!G h k:A->bool. h normal_subgroup_of G /\ k normal_subgroup_of G ==> group_setmul G h k normal_subgroup_of G`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GROUP_SETMUL_NORMAL_SUBGROUP_RIGHT; left_coset; right_coset; normal_subgroup_of; NORMAL_SUBGROUP_IMP_SUBGROUP] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [normal_subgroup_of])) THEN REWRITE_TAC[subgroup_of; left_coset; right_coset] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 (ASSUME_TAC o CONJUNCT1) ASSUME_TAC)) THEN ASM_MESON_TAC[GROUP_SETMUL_ASSOC; SING_SUBSET]);; let CARRIER_SUBGROUP_GENERATED_UNION_LEFT = prove (`!G g h:A->bool. g normal_subgroup_of G /\ h subgroup_of G ==> group_carrier(subgroup_generated G (g UNION h)) = group_setmul G g h`, MESON_TAC[GROUP_SETMUL_NORMAL_SUBGROUP_LEFT; SUBGROUP_GENERATED_SETMUL; NORMAL_SUBGROUP_IMP_SUBGROUP; CARRIER_SUBGROUP_GENERATED_SUBGROUP]);; let CARRIER_SUBGROUP_GENERATED_UNION_RIGHT = prove (`!G g h:A->bool. g subgroup_of G /\ h normal_subgroup_of G ==> group_carrier(subgroup_generated G (g UNION h)) = group_setmul G g h`, MESON_TAC[GROUP_SETMUL_NORMAL_SUBGROUP_RIGHT; SUBGROUP_GENERATED_SETMUL; NORMAL_SUBGROUP_IMP_SUBGROUP; CARRIER_SUBGROUP_GENERATED_SUBGROUP]);; (* ------------------------------------------------------------------------- *) (* Congugate subgroups, or more generally subsets. *) (* ------------------------------------------------------------------------- *) let group_conjugate = new_definition `group_conjugate (G:A group) s t <=> s SUBSET group_carrier G /\ t SUBSET group_carrier G /\ ?a. a IN group_carrier G /\ IMAGE (group_conjugation G a) s = t`;; let GROUP_CONJUGATE_REFL = prove (`!G s:A->bool. group_conjugate G s s <=> s SUBSET group_carrier G`, REPEAT GEN_TAC THEN REWRITE_TAC[group_conjugate] THEN MESON_TAC[GROUP_ID; IMAGE_GROUP_CONJUGATION_BY_ID]);; let GROUP_CONJUGATE_SYM = prove (`!G s t:A->bool. group_conjugate G s t <=> group_conjugate G t s`, REPEAT GEN_TAC THEN REWRITE_TAC[group_conjugate] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [GSYM EXISTS_IN_GROUP_CARRIER_INV] THEN MESON_TAC[IMAGE_GROUP_CONJUGATION_BY_INV]);; let GROUP_CONJUGATE_TRANS = prove (`!G s t u:A->bool. group_conjugate G s t /\ group_conjugate G t u ==> group_conjugate G s u`, REWRITE_TAC[group_conjugate] THEN MESON_TAC[GROUP_MUL; IMAGE_GROUP_CONJUGATION_BY_MUL]);; let GROUP_CONJUGATE_SUBGROUPS_GENERATED = prove (`!G s t:A->bool. group_conjugate G s t ==> group_conjugate G (group_carrier(subgroup_generated G s)) (group_carrier(subgroup_generated G t))`, REPEAT GEN_TAC THEN REWRITE_TAC[group_conjugate] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:A` THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN ASM_REWRITE_TAC[GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC SUBGROUP_GENERATED_BY_HOMOMORPHIC_IMAGE THEN ASM_SIMP_TAC[GROUP_HOMOMORPHISM_CONJUGATION]);; let GROUP_CONJUGATE_IMP_ISOMORPHIC = prove (`!G s t:A->bool. group_conjugate G s t ==> (subgroup_generated G s) isomorphic_group (subgroup_generated G t)`, REPEAT GEN_TAC THEN REWRITE_TAC[group_conjugate; RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `a:A` THEN STRIP_TAC THEN REWRITE_TAC[isomorphic_group] THEN EXISTS_TAC `group_conjugation G (a:A)` THEN MATCH_MP_TAC GROUP_ISOMORPHISM_BETWEEN_SUBGROUPS THEN ASM_SIMP_TAC[GROUP_ISOMORPHISM_CONJUGATION]);; let GROUP_CONJUGATE_IMP_CARD_EQ = prove (`!G s t:A->bool. group_conjugate G s t ==> s =_c t`, REWRITE_TAC[group_conjugate] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN MATCH_MP_TAC CARD_EQ_IMAGE THEN ASM_MESON_TAC[GROUP_CONJUGATION_EQ; SUBSET]);; let GROUP_ORBIT_CONJUGATE_STABILIZERS = prove (`!G s (a:A->X->X) x y. group_action G s a /\ group_orbit G s a x y ==> group_conjugate G (group_stabilizer G a x) (group_stabilizer G a y)`, REPEAT GEN_TAC THEN REWRITE_TAC[group_orbit] THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN FIRST_X_ASSUM(X_CHOOSE_THEN `g:A` MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (SUBST1_TAC o SYM)) THEN REWRITE_TAC[group_conjugate; GROUP_STABILIZER_SUBSET_CARRIER] THEN ASM_MESON_TAC[GROUP_STABILIZER_OF_ACTION]);; let CARD_EQ_GROUP_ORBIT_STABILIZERS = prove (`!G s (a:A->X->X) x y. group_action G s a /\ group_orbit G s a x y ==> group_stabilizer G a x =_c group_stabilizer G a y`, MESON_TAC[GROUP_ORBIT_CONJUGATE_STABILIZERS; GROUP_CONJUGATE_IMP_CARD_EQ]);; (* ------------------------------------------------------------------------- *) (* Centralizer and normalizer. *) (* ------------------------------------------------------------------------- *) let group_centralizer = new_definition `group_centralizer G s = {x:A | x IN group_carrier G /\ !y. y IN group_carrier G /\ y IN s ==> group_mul G x y = group_mul G y x}`;; let group_normalizer = new_definition `group_normalizer G s = {x:A | x IN group_carrier G /\ group_setmul G {x} (group_carrier G INTER s) = group_setmul G (group_carrier G INTER s) {x}}`;; let GROUP_CENTRALIZER = prove (`!G s:A->bool. s SUBSET group_carrier G ==> group_centralizer G s = {x | x IN group_carrier G /\ !y. y IN s ==> group_mul G x y = group_mul G y x}`, REWRITE_TAC[group_centralizer] THEN SET_TAC[]);; let GROUP_NORMALIZER = prove (`!G s:A->bool. s SUBSET group_carrier G ==> group_normalizer G s = {x | x IN group_carrier G /\ group_setmul G {x} s = group_setmul G s {x}}`, SIMP_TAC[group_normalizer; SET_RULE `s SUBSET u ==> u INTER s = s`]);; let GROUP_NORMALIZER_CONJUGATION_EQ = prove (`!G s:A->bool. group_normalizer G s = {x | x IN group_carrier G /\ IMAGE (group_conjugation G x) (group_carrier G INTER s) = (group_carrier G INTER s)}`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[group_normalizer; IN_ELIM_THM] THEN MESON_TAC[IMAGE_GROUP_CONJUGATION_EQ; INTER_SUBSET]);; let GROUP_NORMALIZER_CONJUGATION = prove (`!G s:A->bool. s SUBSET group_carrier G ==> group_normalizer G s = {x | x IN group_carrier G /\ IMAGE (group_conjugation G x) s = s}`, SIMP_TAC[GROUP_NORMALIZER_CONJUGATION_EQ; SET_RULE `s SUBSET u ==> u INTER s = s`]);; let GROUP_NORMALIZER_FINITE = prove (`!G s:A->bool. s SUBSET group_carrier G /\ FINITE s ==> group_normalizer G s = {x | x IN group_carrier G /\ IMAGE (group_conjugation G x) s SUBSET s}`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GROUP_NORMALIZER_CONJUGATION] THEN GEN_REWRITE_TAC I [EXTENSION] THEN X_GEN_TAC `a:A` THEN REWRITE_TAC[IN_ELIM_THM] THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN MATCH_MP_TAC CARD_SUBSET_EQ THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CARD_IMAGE_INJ THEN ASM_MESON_TAC[GROUP_CONJUGATION_EQ; SUBSET]);; let GROUP_CENTRALIZER_RESTRICT = prove (`!G s:A->bool. group_centralizer G s = group_centralizer G (group_carrier G INTER s)`, REWRITE_TAC[group_centralizer] THEN SET_TAC[]);; let GROUP_NORMALIZER_RESTRICT = prove (`!G s:A->bool. group_normalizer G s = group_normalizer G (group_carrier G INTER s)`, REWRITE_TAC[group_normalizer; SET_RULE `u INTER u INTER s = u INTER s`]);; let GROUP_CENTRALIZER_SUBSET_CARRIER = prove (`!G s:A->bool. group_centralizer G s SUBSET group_carrier G`, REWRITE_TAC[group_centralizer; SUBSET_RESTRICT]);; let GROUP_NORMALIZER_SUBSET_CARRIER = prove (`!G s:A->bool. group_normalizer G s SUBSET group_carrier G`, REWRITE_TAC[group_normalizer; SUBSET_RESTRICT]);; let FINITE_GROUP_CENTRALIZER = prove (`!(G:A group) s. FINITE(group_carrier G) ==> FINITE(group_centralizer G s)`, MESON_TAC[FINITE_SUBSET; GROUP_CENTRALIZER_SUBSET_CARRIER]);; let FINITE_GROUP_NORMALIZER = prove (`!(G:A group) s. FINITE(group_carrier G) ==> FINITE(group_normalizer G s)`, MESON_TAC[FINITE_SUBSET; GROUP_NORMALIZER_SUBSET_CARRIER]);; let GROUP_CENTRALIZER_SUBSET_NORMALIZER = prove (`!G s:A->bool. group_centralizer G s SUBSET group_normalizer G s`, REWRITE_TAC[group_centralizer; group_normalizer; SUBSET; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC GROUP_SETMUL_SYM_ELEMENTWISE THEN REWRITE_TAC[GROUP_SETMUL_SING] THEN ASM SET_TAC[]);; let SUBGROUP_GROUP_CENTRALIZER = prove (`!G s:A->bool. (group_centralizer G s) subgroup_of G`, REPEAT GEN_TAC THEN REWRITE_TAC[group_centralizer; subgroup_of; IN_ELIM_THM] THEN SIMP_TAC[SUBSET_RESTRICT; GROUP_ID; GROUP_MUL_LID; GROUP_MUL_RID] THEN SIMP_TAC[GROUP_INV; GROUP_MUL] THEN CONJ_TAC THENL [MESON_TAC[GROUP_COMMUTES_INV]; ALL_TAC] THEN SIMP_TAC[GSYM GROUP_MUL_ASSOC; GROUP_MUL] THEN SIMP_TAC[GROUP_MUL_ASSOC; GROUP_MUL] THEN SIMP_TAC[GSYM GROUP_MUL_ASSOC; GROUP_MUL]);; let SUBGROUP_GROUP_NORMALIZER = prove (`!G s:A->bool. (group_normalizer G s) subgroup_of G`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GROUP_NORMALIZER_RESTRICT] THEN MP_TAC(SET_RULE `group_carrier G INTER s SUBSET (group_carrier G:A->bool)`) THEN SPEC_TAC(`group_carrier G INTER s:A->bool`,`s:A->bool`) THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GROUP_NORMALIZER_CONJUGATION] THEN REWRITE_TAC[subgroup_of; IN_ELIM_THM; SUBSET_RESTRICT; GROUP_ID] THEN ASM_SIMP_TAC[IMAGE_GROUP_CONJUGATION_BY_ID; GROUP_INV; GROUP_MUL] THEN ASM_SIMP_TAC[IMAGE_GROUP_CONJUGATION_BY_INV] THEN ASM_SIMP_TAC[IMAGE_GROUP_CONJUGATION_BY_MUL]);; let GROUP_CENTRALIZER_SUBGROUP_GENERATED = prove (`!G h s:A->bool. s SUBSET h /\ h subgroup_of G ==> group_centralizer (subgroup_generated G h) s = h INTER group_centralizer G s`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `(s:A->bool) SUBSET group_carrier G` ASSUME_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[subgroup_of]) THEN ASM SET_TAC[]; ASM_SIMP_TAC[GROUP_CENTRALIZER; CARRIER_SUBGROUP_GENERATED_SUBGROUP]] THEN REWRITE_TAC[CONJUNCT2 SUBGROUP_GENERATED] THEN RULE_ASSUM_TAC(REWRITE_RULE[subgroup_of]) THEN ASM SET_TAC[]);; let GROUP_NORMALIZER_SUBGROUP_GENERATED = prove (`!G h s:A->bool. s SUBSET h /\ h subgroup_of G ==> group_normalizer (subgroup_generated G h) s = h INTER group_normalizer G s`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `(s:A->bool) SUBSET group_carrier G` ASSUME_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[subgroup_of]) THEN ASM SET_TAC[]; ASM_SIMP_TAC[GROUP_NORMALIZER; CARRIER_SUBGROUP_GENERATED_SUBGROUP]] THEN REWRITE_TAC[GROUP_SETMUL_SUBGROUP_GENERATED] THEN RULE_ASSUM_TAC(REWRITE_RULE[subgroup_of]) THEN ASM SET_TAC[]);; let IN_GROUP_CENTRALIZER_ID = prove (`!(G:A group) s. group_id G IN group_centralizer G s`, REWRITE_TAC[group_centralizer; IN_ELIM_THM; GROUP_ID] THEN SIMP_TAC[GROUP_MUL_LID; GROUP_MUL_RID]);; let IN_GROUP_NORMALIZER_ID = prove (`!(G:A group) s. group_id G IN group_normalizer G s`, MESON_TAC[SUBSET; GROUP_CENTRALIZER_SUBSET_NORMALIZER; IN_GROUP_CENTRALIZER_ID]);; let GROUP_CENTRALIZER_NONEMPTY = prove (`!(G:A group) s. ~(group_centralizer G s = {})`, MESON_TAC[IN_GROUP_CENTRALIZER_ID; MEMBER_NOT_EMPTY]);; let GROUP_NORMALIZER_NONEMPTY = prove (`!(G:A group) s. ~(group_normalizer G s = {})`, MESON_TAC[IN_GROUP_NORMALIZER_ID; MEMBER_NOT_EMPTY]);; let GROUP_CENTRALIZER_SUBSET = prove (`!G s:A->bool. s SUBSET group_centralizer G s <=> s SUBSET group_carrier G /\ !a b. a IN s /\ b IN s ==> group_mul G a b = group_mul G b a`, REWRITE_TAC[group_centralizer] THEN SET_TAC[]);; let GROUP_CENTRALIZER_SUBSET_EQ = prove (`!G h:A->bool. h subgroup_of G ==> (h SUBSET group_centralizer G h <=> abelian_group(subgroup_generated G h))`, SIMP_TAC[abelian_group; CARRIER_SUBGROUP_GENERATED_SUBGROUP] THEN REWRITE_TAC[GROUP_CENTRALIZER_SUBSET; subgroup_of; SUBGROUP_GENERATED] THEN SET_TAC[]);; let GROUP_CENTRE_EQ_CARRIER = prove (`!G:A group. group_centralizer G (group_carrier G) = group_carrier G <=> abelian_group G`, REWRITE_TAC[group_centralizer; abelian_group] THEN SET_TAC[]);; let GROUP_CENTRALIZER_CENTRALIZER_SUBSET = prove (`!G s:A->bool. s SUBSET group_centralizer G (group_centralizer G s) <=> s SUBSET group_carrier G`, REWRITE_TAC[group_centralizer] THEN SET_TAC[]);; let GROUP_NORMALIZER_MAXIMAL_GEN = prove (`!G h n:A->bool. h normal_subgroup_of (subgroup_generated G n) <=> h subgroup_of (subgroup_generated G n) /\ group_carrier G INTER n SUBSET group_normalizer G h`, REWRITE_TAC[NORMAL_SUBGROUP_CONJUGATION_EQ; SUBGROUP_OF_SUBGROUP_GENERATED_EQ] THEN SIMP_TAC[GSYM SUBGROUP_GENERATED_MINIMAL_EQ; SUBGROUP_GROUP_NORMALIZER] THEN REPEAT GEN_TAC THEN ASM_CASES_TAC `(h:A->bool) subgroup_of G` THEN ASM_SIMP_TAC[GROUP_NORMALIZER_CONJUGATION; SUBGROUP_OF_IMP_SUBSET; GROUP_CONJUGATION_SUBGROUP_GENERATED] THEN REWRITE_TAC[GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET; SET_RULE `s SUBSET {x | x IN t /\ Q x} <=> s SUBSET t /\ !x. x IN s ==> Q x`]);; let GROUP_NORMALIZER_MAXIMAL = prove (`!G h n:A->bool. n subgroup_of G ==> (h normal_subgroup_of (subgroup_generated G n) <=> h subgroup_of G /\ h SUBSET n /\ n SUBSET group_normalizer G h)`, SIMP_TAC[GROUP_NORMALIZER_MAXIMAL_GEN; CARRIER_SUBGROUP_GENERATED_SUBGROUP; SUBGROUP_OF_SUBGROUP_GENERATED_EQ; SUBGROUP_OF_IMP_SUBSET; SET_RULE `s SUBSET t ==> t INTER s = s`] THEN MESON_TAC[]);; let NORMAL_SUBGROUP_NORMALIZER_CONTAINS_CARRIER = prove (`!G n:A->bool. n normal_subgroup_of G <=> n subgroup_of G /\ group_carrier G SUBSET group_normalizer G n`, REPEAT GEN_TAC THEN MP_TAC(SPECL [`G:A group`; `n:A->bool`; `group_carrier G:A->bool`] GROUP_NORMALIZER_MAXIMAL) THEN REWRITE_TAC[SUBGROUP_GENERATED_GROUP_CARRIER; CARRIER_SUBGROUP_OF] THEN MESON_TAC[SUBGROUP_OF_IMP_SUBSET]);; let NORMAL_SUBGROUP_NORMALIZER_EQ_CARRIER = prove (`!G n:A->bool. n normal_subgroup_of G <=> n subgroup_of G /\ group_normalizer G n = group_carrier G`, REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; GROUP_NORMALIZER_SUBSET_CARRIER] THEN REWRITE_TAC[NORMAL_SUBGROUP_NORMALIZER_CONTAINS_CARRIER]);; let GROUP_NORMALIZER_SUBSET = prove (`!G h:A->bool. h subgroup_of G ==> h SUBSET group_normalizer G h`, SIMP_TAC[GROUP_NORMALIZER_CONJUGATION; SUBGROUP_OF_IMP_SUBSET] THEN SIMP_TAC[SUBSET; IN_ELIM_THM; IMAGE_GROUP_CONJUGATION_SUBGROUP] THEN SIMP_TAC[subgroup_of; SUBSET]);; let NORMAL_SUBGROUP_OF_NORMALIZER = prove (`!G h:A->bool. h normal_subgroup_of (subgroup_generated G (group_normalizer G h)) <=> h subgroup_of G`, SIMP_TAC[GROUP_NORMALIZER_MAXIMAL; SUBGROUP_GROUP_NORMALIZER] THEN REWRITE_TAC[SUBSET_REFL; TAUT `(p /\ q <=> p) <=> p ==> q`] THEN REWRITE_TAC[GROUP_NORMALIZER_SUBSET]);; let GROUP_CENTRALIZER_POINTWISE = prove (`!G s:A->bool. group_centralizer G s = if s = {} then group_carrier G else INTERS {group_centralizer G {x} | x IN s}`, REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[group_centralizer; NOT_IN_EMPTY; IN_GSPEC] THEN REWRITE_TAC[INTERS_GSPEC; IN_ELIM_THM; IN_SING] THEN ASM SET_TAC[]);; let GROUP_CENTRALIZER_ALT = prove (`!G s:A->bool. group_centralizer G s = {x | x IN group_carrier G /\ !y. y IN group_carrier G /\ y IN s ==> group_conjugation G x y = y}`, REWRITE_TAC[group_centralizer; EXTENSION; IN_ELIM_THM] THEN MESON_TAC[GROUP_CONJUGATION_EQ_SELF]);; let NORMAL_SUBGROUP_CENTRALIZER_NORMALIZER = prove (`!G h:A->bool. group_centralizer G h normal_subgroup_of subgroup_generated G (group_normalizer G h)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GROUP_CENTRALIZER_RESTRICT; GROUP_NORMALIZER_RESTRICT] THEN MP_TAC(SET_RULE `group_carrier G INTER (h:A->bool) SUBSET group_carrier G`) THEN SPEC_TAC(`group_carrier G INTER (h:A->bool)`,`h:A->bool`) THEN REPEAT STRIP_TAC THEN REWRITE_TAC[NORMAL_SUBGROUP_CONJUGATION] THEN REWRITE_TAC[GROUP_CONJUGATION_SUBGROUP_GENERATED] THEN SIMP_TAC[SUBGROUP_OF_SUBGROUP_GENERATED_SUBGROUP_EQ; SUBGROUP_GROUP_CENTRALIZER; SUBGROUP_GROUP_NORMALIZER; CARRIER_SUBGROUP_GENERATED_SUBGROUP; GROUP_CENTRALIZER_SUBSET_NORMALIZER] THEN ASM_SIMP_TAC[GROUP_CENTRALIZER_ALT; GROUP_NORMALIZER_CONJUGATION] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM] THEN X_GEN_TAC `a:A` THEN STRIP_TAC THEN X_GEN_TAC `x:A` THEN STRIP_TAC THEN ASM_SIMP_TAC[GROUP_CONJUGATION] THEN X_GEN_TAC `y:A` THEN STRIP_TAC THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [group_conjugation] THEN ASM_SIMP_TAC[GSYM GROUP_CONJUGATION_CONJUGATION; GROUP_MUL; GROUP_INV] THEN MATCH_MP_TAC(MESON[] `f(h y) = y /\ g(h y) = h y ==> f(g(h y)) = y`) THEN ASM_SIMP_TAC[GROUP_CONJUGATION_RINV] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[GROUP_CONJUGATION; GROUP_INV] THEN UNDISCH_TAC `(y:A) IN h` THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN FIRST_X_ASSUM (fun th -> GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [SYM th]) THEN ASM_SIMP_TAC[IN_IMAGE; LEFT_IMP_EXISTS_THM; GROUP_CONJUGATION_LINV]);; let NORMAL_SUBGROUP_CENTRALIZER = prove (`!G n:A->bool. n normal_subgroup_of G ==> group_centralizer G n normal_subgroup_of G`, MESON_TAC[NORMAL_SUBGROUP_NORMALIZER_EQ_CARRIER; SUBGROUP_GENERATED_GROUP_CARRIER; NORMAL_SUBGROUP_CENTRALIZER_NORMALIZER]);; let GROUP_NORMALIZER_SING = prove (`!G a:A. group_normalizer G {a} = group_centralizer G {a}`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GROUP_NORMALIZER_RESTRICT; GROUP_CENTRALIZER_RESTRICT] THEN REWRITE_TAC[group_normalizer; group_centralizer] THEN ASM_CASES_TAC `(a:A) IN group_carrier G` THENL [ASM_SIMP_TAC[GROUP_SETMUL_SING; SET_RULE `a IN s ==> s INTER {a} = {a}`] THEN ASM SET_TAC[]; ASM_SIMP_TAC[SET_RULE `~(a IN s) ==> s INTER {a} = {}`; NOT_IN_EMPTY; INTER_EMPTY; GROUP_SETMUL_EMPTY]]);; let GROUP_CENTRALIZER_GALOIS_EQ = prove (`!G s t:A->bool. s SUBSET group_carrier G /\ t SUBSET group_carrier G ==> (s SUBSET group_centralizer G t <=> t SUBSET group_centralizer G s)`, REWRITE_TAC[group_centralizer] THEN SET_TAC[]);; let GROUP_CENTRALIZER_GALOIS = prove (`!G s t:A->bool. s SUBSET group_carrier G /\ t SUBSET group_centralizer G s ==> s SUBSET group_centralizer G t`, REWRITE_TAC[group_centralizer] THEN SET_TAC[]);; let GROUP_CENTRALIZER_MONO = prove (`!G s t:A->bool. s SUBSET t ==> group_centralizer G t SUBSET group_centralizer G s`, REWRITE_TAC[group_centralizer] THEN SET_TAC[]);; let GROUP_ACTION_CONJUGATION_NORMAL_SUBGROUP = prove (`!G n:A->bool. n normal_subgroup_of G ==> group_action G n (group_conjugation G)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_ACTION_ON_SUBSET THEN EXISTS_TAC `group_carrier G:A->bool` THEN REWRITE_TAC[GROUP_ACTION_CONJUGATION] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NORMAL_SUBGROUP_CONJUGATION]) THEN SIMP_TAC[SUBGROUP_OF_IMP_SUBSET] THEN SET_TAC[]);; let GROUP_STABILIZER_CONJUGATION = prove (`!G a:A. a IN group_carrier G ==> group_stabilizer G (group_conjugation G) a = group_centralizer G {a}`, REWRITE_TAC[group_stabilizer; group_centralizer; IN_SING] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN MESON_TAC[GROUP_CONJUGATION_EQ_SELF]);; let GROUP_ORBIT_CONJUGATION_GEN = prove (`!G s x:A. s SUBSET group_carrier G ==> group_orbit G s (group_conjugation G) x = if x IN s then {y | y IN s /\ group_conjugate G {x} {y}} else {}`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[IN_ELIM_THM; NOT_IN_EMPTY] THEN ASM_REWRITE_TAC[IN_GROUP_ORBIT; group_conjugate] THEN ASM_REWRITE_TAC[SING_SUBSET; IMAGE_CLAUSES] THEN REWRITE_TAC[SET_RULE `{a} = {b} <=> a = b`] THEN ASM SET_TAC[]);; let GROUP_ORBIT_CONJUGATION = prove (`!G x:A. group_orbit G (group_carrier G) (group_conjugation G) x = if x IN group_carrier G then {y | y IN group_carrier G /\ group_conjugate G {x} {y}} else {}`, SIMP_TAC[GROUP_ORBIT_CONJUGATION_GEN; SUBSET_REFL]);; let GROUP_ACTION_IMAGE_CONJUGATION = prove (`!G u:(A->bool)->bool. (!t. t IN u ==> t SUBSET group_carrier G) /\ (!g t. g IN group_carrier G /\ t IN u ==> IMAGE (group_conjugation G g) t IN u) ==> group_action G u (IMAGE o group_conjugation G)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_ACTION_IMAGE THEN EXISTS_TAC `group_carrier G:A->bool` THEN ASM_REWRITE_TAC[GROUP_ACTION_CONJUGATION]);; let GROUP_STABILIZER_IMAGE_CONJUGATION = prove (`!G s:A->bool. s SUBSET group_carrier G ==> group_stabilizer G (IMAGE o group_conjugation G) s = group_normalizer G s`, SIMP_TAC[GROUP_NORMALIZER_CONJUGATION; group_stabilizer; o_THM]);; let GROUP_ACTION_IMAGE_CONJUGATION_CARRIER = prove (`!G:A group. group_action G {s | s SUBSET group_carrier G} (IMAGE o group_conjugation G)`, GEN_TAC THEN MATCH_MP_TAC GROUP_ACTION_IMAGE_CONJUGATION THEN REWRITE_TAC[IN_ELIM_THM; IMAGE_GROUP_CONJUGATION_SUBSET]);; let GROUP_ACTION_IMAGE_CONJUGATION_SUBGROUPS = prove (`!G:A group. group_action G {n | n subgroup_of G} (IMAGE o group_conjugation G)`, GEN_TAC THEN MATCH_MP_TAC GROUP_ACTION_IMAGE_CONJUGATION THEN REWRITE_TAC[IN_ELIM_THM; SUBGROUP_OF_IMP_SUBSET] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBGROUP_OF_HOMOMORPHIC_IMAGE THEN ASM_MESON_TAC[GROUP_HOMOMORPHISM_CONJUGATION]);; let GROUP_ORBIT_IMAGE_CONJUGATION = prove (`!G. group_orbit G {s | s SUBSET group_carrier G} (IMAGE o group_conjugation G) = group_conjugate G`, REWRITE_TAC[FUN_EQ_THM; group_orbit; group_conjugate; IN_ELIM_THM; o_THM]);; let GROUP_ORBIT_IMAGE_CONJUGATION_GEN = prove (`!G u s:A->bool. (!t. t IN u ==> t SUBSET group_carrier G) /\ s IN u ==> group_orbit G u (IMAGE o group_conjugation G) s = \t. t IN u /\ group_conjugate G s t`, REPEAT STRIP_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN REWRITE_TAC[group_orbit; group_conjugate; o_THM] THEN ASM SET_TAC[]);; let CARD_CONJUGATE_SUBSETS_MUL_GEN = prove (`!G s:A->bool. s SUBSET group_carrier G ==> {t | group_conjugate G s t} *_c group_normalizer G s =_c group_carrier G`, REPEAT STRIP_TAC THEN REWRITE_TAC[SET_RULE `{t | P t} = P`] THEN ASM_SIMP_TAC[GSYM GROUP_STABILIZER_IMAGE_CONJUGATION; ETA_AX] THEN ASM_SIMP_TAC[GSYM GROUP_ORBIT_IMAGE_CONJUGATION] THEN MATCH_MP_TAC ORBIT_STABILIZER_MUL_GEN THEN ASM_REWRITE_TAC[IN_ELIM_THM; GROUP_CONJUGATE_REFL] THEN MATCH_MP_TAC GROUP_ACTION_IMAGE_CONJUGATION THEN SIMP_TAC[IN_ELIM_THM; IMAGE_GROUP_CONJUGATION_SUBSET]);; let CARD_CONJUGATE_SUBSETS_MUL = prove (`!G s:A->bool. FINITE(group_carrier G) /\ s SUBSET group_carrier G ==> CARD {t | group_conjugate G s t} * CARD(group_normalizer G s) = CARD(group_carrier G)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP CARD_CONJUGATE_SUBSETS_MUL_GEN) THEN FIRST_ASSUM(MP_TAC o GSYM o MATCH_MP(REWRITE_RULE[IMP_CONJ_ALT] CARD_EQ_CARD_IMP)) THEN FIRST_ASSUM(MP_TAC o MATCH_MP CARD_FINITE_CONG) THEN ASM_REWRITE_TAC[CARD_MUL_FINITE_EQ] THEN REWRITE_TAC[mul_c; GSYM CROSS] THEN STRIP_TAC THEN ASM_SIMP_TAC[CROSS_EMPTY; CARD_CLAUSES; MULT_CLAUSES] THEN ASM_SIMP_TAC[CARD_CROSS]);; let CARD_CONJUGATE_SUBSETS = prove (`!G s:A->bool. FINITE(group_carrier G) /\ s SUBSET group_carrier G ==> CARD {t | group_conjugate G s t} = CARD(group_carrier G) DIV CARD(group_normalizer G s)`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP CARD_CONJUGATE_SUBSETS_MUL) THEN ONCE_REWRITE_TAC[MULT_SYM] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC DIV_MULT THEN ASM_SIMP_TAC[CARD_EQ_0; FINITE_GROUP_NORMALIZER; GROUP_NORMALIZER_NONEMPTY]);; (* ------------------------------------------------------------------------- *) (* Quotient groups. *) (* ------------------------------------------------------------------------- *) let quotient_group = new_definition `quotient_group G (n:A->bool) = group ({right_coset G n x |x| x IN group_carrier G}, n,group_setinv G,group_setmul G)`;; let QUOTIENT_GROUP = prove (`(!G n:A->bool. n normal_subgroup_of G ==> group_carrier(quotient_group G n) = {right_coset G n x |x| x IN group_carrier G}) /\ (!G n:A->bool. n normal_subgroup_of G ==> group_id(quotient_group G n) = n) /\ (!G n:A->bool. n normal_subgroup_of G ==> group_inv(quotient_group G n) = group_setinv G) /\ (!G n:A->bool. n normal_subgroup_of G ==> group_mul(quotient_group G n) = group_setmul G)`, REWRITE_TAC[AND_FORALL_THM; TAUT `(p ==> q) /\ (p ==> r) <=> p ==> q /\ r`] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN MP_TAC(fst(EQ_IMP_RULE (ISPEC(rand(rand(snd(strip_forall(concl quotient_group))))) (CONJUNCT2 group_tybij)))) THEN REWRITE_TAC[GSYM quotient_group] THEN ANTS_TAC THENL [ALL_TAC; SIMP_TAC[group_carrier; group_id; group_inv; group_mul]] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM; IMP_CONJ; FORALL_IN_GSPEC] THEN ASM_SIMP_TAC[GROUP_SETMUL_RIGHT_COSET; GROUP_SETINV_RIGHT_COSET; GROUP_MUL; GROUP_INV] THEN FIRST_ASSUM(STRIP_ASSUME_TAC o REWRITE_RULE[normal_subgroup_of]) THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP SUBGROUP_OF_IMP_SUBSET) THEN REWRITE_TAC[IN_ELIM_THM] THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[RIGHT_COSET_ID; GROUP_ID]; ASM_MESON_TAC[GROUP_INV]; ASM_MESON_TAC[GROUP_MUL]; ASM_SIMP_TAC[GROUP_MUL_ASSOC]; X_GEN_TAC `x:A` THEN DISCH_TAC THEN CONJ_TAC THENL [ASM_SIMP_TAC[right_coset; GROUP_SETMUL_ASSOC; SING_SUBSET]; FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_SIMP_TAC[left_coset; GSYM GROUP_SETMUL_ASSOC; SING_SUBSET]] THEN ASM_SIMP_TAC[GROUP_SETMUL_SUBGROUP]; ASM_SIMP_TAC[GROUP_MUL_LINV; GROUP_MUL_RINV; RIGHT_COSET_ID]]);; let ABELIAN_QUOTIENT_GROUP = prove (`!G n:A->bool. abelian_group G /\ n subgroup_of G ==> abelian_group(quotient_group G n)`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[abelian_group; QUOTIENT_GROUP; ABELIAN_GROUP_NORMAL_SUBGROUP; IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN ASM_SIMP_TAC[GROUP_SETMUL_SYM; RIGHT_COSET; SUBGROUP_OF_IMP_SUBSET]);; let FINITE_QUOTIENT_GROUP = prove (`!G n:A->bool. FINITE(group_carrier G) /\ n normal_subgroup_of G ==> FINITE(group_carrier(quotient_group G n))`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[QUOTIENT_GROUP] THEN ASM_SIMP_TAC[SIMPLE_IMAGE; FINITE_IMAGE]);; let TRIVIAL_QUOTIENT_GROUP = prove (`!G n:A->bool. trivial_group G /\ n normal_subgroup_of G ==> trivial_group(quotient_group G n)`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [trivial_group] THEN STRIP_TAC THEN ASM_SIMP_TAC[TRIVIAL_GROUP; QUOTIENT_GROUP] THEN SET_TAC[]);; let QUOTIENT_GROUP_ID = prove (`!G n:A->bool. n normal_subgroup_of G ==> group_id(quotient_group G n) = n`, REWRITE_TAC[QUOTIENT_GROUP]);; let QUOTIENT_GROUP_INV = prove (`!G n a:A. n normal_subgroup_of G /\ a IN group_carrier G ==> group_inv (quotient_group G n) (right_coset G n a) = right_coset G n (group_inv G a)`, SIMP_TAC[QUOTIENT_GROUP; GROUP_SETINV_RIGHT_COSET]);; let QUOTIENT_GROUP_MUL = prove (`!G n a b:A. n normal_subgroup_of G /\ a IN group_carrier G /\ b IN group_carrier G ==> group_mul (quotient_group G n) (right_coset G n a) (right_coset G n b) = right_coset G n (group_mul G a b)`, SIMP_TAC[QUOTIENT_GROUP; GROUP_SETMUL_RIGHT_COSET]);; let QUOTIENT_GROUP_DIV = prove (`!G n a b:A. n normal_subgroup_of G /\ a IN group_carrier G /\ b IN group_carrier G ==> group_div (quotient_group G n) (right_coset G n a) (right_coset G n b) = right_coset G n (group_div G a b)`, SIMP_TAC[group_div; QUOTIENT_GROUP_INV; QUOTIENT_GROUP_MUL; GROUP_INV]);; let QUOTIENT_GROUP_POW = prove (`!G n (a:A) k. n normal_subgroup_of G /\ a IN group_carrier G ==> group_pow (quotient_group G n) (right_coset G n a) k = right_coset G n (group_pow G a k)`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[group_pow; QUOTIENT_GROUP_MUL; GROUP_POW] THEN ASM_SIMP_TAC[QUOTIENT_GROUP_ID; NORMAL_SUBGROUP_IMP_SUBGROUP; SUBGROUP_OF_IMP_SUBSET; RIGHT_COSET_ID]);; let QUOTIENT_GROUP_ZPOW = prove (`!G n (a:A) k. n normal_subgroup_of G /\ a IN group_carrier G ==> group_zpow (quotient_group G n) (right_coset G n a) k = right_coset G n (group_zpow G a k)`, REPEAT STRIP_TAC THEN REWRITE_TAC[group_zpow] THEN COND_CASES_TAC THEN ASM_MESON_TAC[QUOTIENT_GROUP_INV; QUOTIENT_GROUP_POW; GROUP_POW]);; let GROUP_HOMOMORPHISM_RIGHT_COSET = prove (`!G n:A->bool. n normal_subgroup_of G ==> group_homomorphism (G,quotient_group G n) (right_coset G n)`, SIMP_TAC[group_homomorphism; QUOTIENT_GROUP_INV; QUOTIENT_GROUP_MUL] THEN SIMP_TAC[SUBSET; FORALL_IN_IMAGE; QUOTIENT_GROUP] THEN SIMP_TAC[normal_subgroup_of; subgroup_of; RIGHT_COSET_ID] THEN SET_TAC[]);; let GROUP_EPIMORPHISM_RIGHT_COSET = prove (`!G n:A->bool. n normal_subgroup_of G ==> group_epimorphism (G,quotient_group G n) (right_coset G n)`, SIMP_TAC[group_epimorphism; GROUP_HOMOMORPHISM_RIGHT_COSET] THEN SIMP_TAC[QUOTIENT_GROUP] THEN SET_TAC[]);; let CARD_LE_QUOTIENT_GROUP = prove (`!G n:A->bool. n normal_subgroup_of G ==> group_carrier(quotient_group G n) <=_c group_carrier G`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP GROUP_EPIMORPHISM_RIGHT_COSET) THEN REWRITE_TAC[CARD_LE_GROUP_EPIMORPHIC_IMAGE]);; let CARD_QUOTIENT_GROUP_DIVIDES = prove (`!G n:A->bool. FINITE(group_carrier G) /\ n normal_subgroup_of G ==> CARD(group_carrier(quotient_group G n)) divides CARD(group_carrier G)`, SIMP_TAC[QUOTIENT_GROUP; CARD_RIGHT_COSETS_DIVIDES; NORMAL_SUBGROUP_IMP_SUBGROUP]);; let TRIVIAL_QUOTIENT_GROUP_EQ = prove (`!G n:A->bool. n normal_subgroup_of G ==> (trivial_group(quotient_group G n) <=> n = group_carrier G)`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[TRIVIAL_GROUP_SUBSET; QUOTIENT_GROUP] THEN REWRITE_TAC[SUBSET; FORALL_IN_GSPEC; IN_SING] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP NORMAL_SUBGROUP_IMP_SUBGROUP) THEN SIMP_TAC[RIGHT_COSET_EQ_SUBGROUP] THEN REWRITE_TAC[subgroup_of] THEN SET_TAC[]);; let TRIVIAL_QUOTIENT_GROUP_SELF = prove (`!G:A group. trivial_group(quotient_group G (group_carrier G))`, SIMP_TAC[TRIVIAL_QUOTIENT_GROUP_EQ; CARRIER_NORMAL_SUBGROUP_OF]);; let QUOTIENT_GROUP_TRIVIAL = prove (`!G:A group. quotient_group G {group_id G} isomorphic_group G`, GEN_TAC THEN ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN REWRITE_TAC[isomorphic_group] THEN EXISTS_TAC `right_coset G {group_id G:A}` THEN SIMP_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM; group_monomorphism; GROUP_EPIMORPHISM_RIGHT_COSET; GROUP_HOMOMORPHISM_RIGHT_COSET; TRIVIAL_SUBGROUP_OF; TRIVIAL_NORMAL_SUBGROUP_OF; RIGHT_COSET_EQ; IMP_CONJ; IN_SING; GROUP_DIV_EQ_ID]);; let GROUP_ISOMORPHISM_PROD_QUOTIENT_GROUP = prove (`!(G1:A group) (G2:B group) n1 n2. n1 normal_subgroup_of G1 /\ n2 normal_subgroup_of G2 ==> group_isomorphism(prod_group (quotient_group G1 n1) (quotient_group G2 n2), quotient_group (prod_group G1 G2) (n1 CROSS n2)) (\(s,t). s CROSS t)`, REPEAT STRIP_TAC THEN REWRITE_TAC[GROUP_ISOMORPHISM] THEN REWRITE_TAC[GROUP_HOMOMORPHISM; SET_RULE `(IMAGE f s SUBSET t /\ P) /\ IMAGE f s = t /\ Q <=> IMAGE f s SUBSET t /\ t SUBSET IMAGE f s /\ P /\ Q`] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[PROD_GROUP; FORALL_PAIR_THM; IN_CROSS] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[ONCE_REWRITE_RULE[CONJ_SYM] IN_IMAGE] THEN ASM_SIMP_TAC[CONJUNCT1 QUOTIENT_GROUP; CROSS_NORMAL_SUBGROUP_OF_PROD_GROUP] THEN REWRITE_TAC[EXISTS_PAIR_THM; IN_CROSS] THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM; GSYM CONJ_ASSOC] THEN REWRITE_TAC[FORALL_IN_GSPEC; EXISTS_IN_GSPEC] THEN REWRITE_TAC[RIGHT_COSET_PROD_GROUP; PROD_GROUP; IN_CROSS] THEN REWRITE_TAC[IN_ELIM_THM] THEN REPLICATE_TAC 2 (CONJ_TAC THENL [MESON_TAC[]; ALL_TAC]) THEN ASM_SIMP_TAC[CROSS_EQ; PAIR_EQ; RIGHT_COSET_NONEMPTY; NORMAL_SUBGROUP_IMP_SUBGROUP] THEN ASM_SIMP_TAC[QUOTIENT_GROUP; CROSS_NORMAL_SUBGROUP_OF_PROD_GROUP] THEN REWRITE_TAC[GROUP_SETMUL_PROD_GROUP]);; let ISOMORPHIC_QUOTIENT_PROD_GROUP = prove (`!(G1:A group) (G2:B group) n1 n2. n1 normal_subgroup_of G1 /\ n2 normal_subgroup_of G2 ==> quotient_group (prod_group G1 G2) (n1 CROSS n2) isomorphic_group prod_group (quotient_group G1 n1) (quotient_group G2 n2)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN DISCH_THEN(MP_TAC o MATCH_MP GROUP_ISOMORPHISM_PROD_QUOTIENT_GROUP) THEN REWRITE_TAC[GROUP_ISOMORPHISM_IMP_ISOMORPHIC]);; let CARTESIAN_PRODUCT_NORMAL_SUBGROUP_OF_PRODUCT_GROUP = prove (`!(G:K->A group) h k. (cartesian_product k h) normal_subgroup_of (product_group k G) <=> !i. i IN k ==> (h i) normal_subgroup_of (G i)`, REPEAT GEN_TAC THEN REWRITE_TAC[normal_subgroup_of] THEN REWRITE_TAC[CARTESIAN_PRODUCT_SUBGROUP_OF_PRODUCT_GROUP] THEN REWRITE_TAC[RIGHT_COSET_PRODUCT_GROUP; LEFT_COSET_PRODUCT_GROUP] THEN REWRITE_TAC[CARTESIAN_PRODUCT_EQ; CARTESIAN_PRODUCT_EQ_EMPTY] THEN REWRITE_TAC[MESON[] `(?x. P x /\ Q x) <=> ~(!x. P x ==> ~Q x)`] THEN ASM_CASES_TAC `!i. i IN k ==> (h:K->A->bool) i subgroup_of G i` THENL [ASM_SIMP_TAC[RIGHT_COSET_NONEMPTY]; ASM_MESON_TAC[]] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM; PRODUCT_GROUP; IMP_IMP] THEN REWRITE_TAC[FORALL_CARTESIAN_PRODUCT_ELEMENTS] THEN REWRITE_TAC[CARTESIAN_PRODUCT_EQ_EMPTY; GROUP_CARRIER_NONEMPTY]);; let GROUP_ISOMORPHISM_PRODUCT_QUOTIENT_GROUP = prove (`!(G:K->A group) n k. (!i. i IN k ==> (n i) normal_subgroup_of (G i)) ==> group_isomorphism (product_group k (\i. quotient_group (G i) (n i)), quotient_group (product_group k G) (cartesian_product k n)) (cartesian_product k)`, REPEAT STRIP_TAC THEN REWRITE_TAC[GROUP_ISOMORPHISM] THEN REWRITE_TAC[GROUP_HOMOMORPHISM; SET_RULE `(IMAGE f s SUBSET t /\ P) /\ IMAGE f s = t /\ Q <=> IMAGE f s SUBSET t /\ t SUBSET IMAGE f s /\ P /\ Q`] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[PRODUCT_GROUP; QUOTIENT_GROUP; RIGHT_COSET_PRODUCT_GROUP; CARTESIAN_PRODUCT_NORMAL_SUBGROUP_OF_PRODUCT_GROUP; GROUP_SETMUL_PRODUCT_GROUP; FORALL_IN_GSPEC] THEN REWRITE_TAC[CARTESIAN_PRODUCT_EQ; CARTESIAN_PRODUCT_EQ_EMPTY] THEN REPEAT CONJ_TAC THENL [X_GEN_TAC `x:K->A->bool` THEN REWRITE_TAC[IN_ELIM_THM; CARTESIAN_PRODUCT_EQ] THEN REWRITE_TAC[IN_ELIM_THM; cartesian_product] THEN ASM_SIMP_TAC[QUOTIENT_GROUP; IN_ELIM_THM] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `y:K->A` THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN EXISTS_TAC `RESTRICTION k (y:K->A)` THEN REWRITE_TAC[REWRITE_RULE[IN] RESTRICTION_IN_EXTENSIONAL] THEN SIMP_TAC[RESTRICTION] THEN ASM_MESON_TAC[]; X_GEN_TAC `x:K->A` THEN REWRITE_TAC[IN_ELIM_THM; IN_IMAGE; CARTESIAN_PRODUCT_EQ] THEN REWRITE_TAC[IN_ELIM_THM; cartesian_product] THEN STRIP_TAC THEN EXISTS_TAC `RESTRICTION k (\i. right_coset (G i) (n i) (x i)):K->A->bool` THEN REWRITE_TAC[REWRITE_RULE[IN] RESTRICTION_IN_EXTENSIONAL] THEN ASM_SIMP_TAC[RESTRICTION; QUOTIENT_GROUP] THEN ASM SET_TAC[]; ASM_SIMP_TAC[IN_ELIM_THM; cartesian_product; RESTRICTION; QUOTIENT_GROUP]; REPEAT GEN_TAC THEN GEN_REWRITE_TAC RAND_CONV [FUN_EQ_THM] THEN ASM_SIMP_TAC[IN_ELIM_THM; cartesian_product; EXTENSIONAL; QUOTIENT_GROUP] THEN ASM_MESON_TAC[RIGHT_COSET_EQ_EMPTY; SUBGROUP_OF_IMP_NONEMPTY; normal_subgroup_of]]);; let ISOMORPHIC_QUOTIENT_PRODUCT_GROUP = prove (`!(G:K->A group) n k. (!i. i IN k ==> (n i) normal_subgroup_of (G i)) ==> (quotient_group (product_group k G) (cartesian_product k n)) isomorphic_group (product_group k (\i. quotient_group (G i) (n i)))`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN DISCH_THEN(MP_TAC o MATCH_MP GROUP_ISOMORPHISM_PRODUCT_QUOTIENT_GROUP) THEN REWRITE_TAC[GROUP_ISOMORPHISM_IMP_ISOMORPHIC]);; let SUBGROUP_OF_QUOTIENT_GROUP,SUBGROUP_OF_QUOTIENT_GROUP_ALT = (CONJ_PAIR o prove) (`(!G n h:(A->bool)->bool. n normal_subgroup_of G ==> (h subgroup_of quotient_group G n <=> ?k. k subgroup_of G /\ { right_coset G n x | x IN k} = h)) /\ (!G n h:(A->bool)->bool. n normal_subgroup_of G ==> (h subgroup_of quotient_group G n <=> ?k. k subgroup_of G /\ n SUBSET k /\ { right_coset G n x | x IN k} = h))`, REWRITE_TAC[AND_FORALL_THM; TAUT `(p ==> q) /\ (p ==> r) <=> p ==> q /\ r`] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC(TAUT `(r ==> q) /\ (p ==> r) /\ (q ==> p) ==> (p <=> q) /\ (p <=> r)`) THEN REPEAT CONJ_TAC THENL [MESON_TAC[]; DISCH_TAC THEN EXISTS_TAC `{x:A | x IN group_carrier G /\ right_coset G n x IN h}` THEN MATCH_MP_TAC(TAUT `q /\ p /\ r ==> p /\ q /\ r`) THEN CONJ_TAC THENL [FIRST_ASSUM(MP_TAC o MATCH_MP IN_SUBGROUP_ID) THEN MATCH_MP_TAC(SET_RULE `n SUBSET {x | x IN s /\ f x = z} ==> z IN h ==> n SUBSET {x | x IN s /\ f x IN h}`) THEN ASM_SIMP_TAC[QUOTIENT_GROUP; SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[RIGHT_COSET_EQ_SUBGROUP; normal_subgroup_of; subgroup_of; SUBSET]; REWRITE_TAC[SIMPLE_IMAGE] THEN MATCH_MP_TAC SUBGROUP_OF_EPIMORPHIC_PREIMAGE THEN EXISTS_TAC `quotient_group (G:A group) n` THEN ASM_SIMP_TAC[GROUP_EPIMORPHISM_RIGHT_COSET; ETA_AX]]; DISCH_THEN(X_CHOOSE_THEN `k:A->bool` (CONJUNCTS_THEN2 ASSUME_TAC (SUBST1_TAC o SYM))) THEN REWRITE_TAC[SIMPLE_IMAGE] THEN MATCH_MP_TAC SUBGROUP_OF_HOMOMORPHIC_IMAGE THEN EXISTS_TAC `G:A group` THEN ASM_SIMP_TAC[GROUP_HOMOMORPHISM_RIGHT_COSET; ETA_AX]]);; let SUBGROUP_OF_QUOTIENT_GROUP_GENERATED_BY = prove (`!G n h:(A->bool)->bool. n normal_subgroup_of G /\ h subgroup_of quotient_group G n ==> ?k. k subgroup_of G /\ n SUBSET k /\ quotient_group (subgroup_generated G k) n = subgroup_generated (quotient_group G n) h`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `h:(A->bool)->bool` o MATCH_MP SUBGROUP_OF_QUOTIENT_GROUP_ALT) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:A->bool` THEN STRIP_TAC THEN REWRITE_TAC[] THEN ASM_REWRITE_TAC[GROUPS_EQ] THEN ASM_SIMP_TAC[QUOTIENT_GROUP; CONJUNCT2 SUBGROUP_GENERATED; NORMAL_SUBGROUP_OF_SUBGROUP_GENERATED; CARRIER_SUBGROUP_GENERATED_SUBGROUP] THEN ASM_REWRITE_TAC[GROUP_SETINV_SUBGROUP_GENERATED; GROUP_SETMUL_SUBGROUP_GENERATED; RIGHT_COSET_SUBGROUP_GENERATED]);; let QUOTIENT_GROUP_SUBGROUP_GENERATED = prove (`!G h n:A->bool. n normal_subgroup_of G /\ h subgroup_of G /\ n SUBSET h ==> quotient_group (subgroup_generated G h) n = subgroup_generated (quotient_group G n) {right_coset G n x | x IN h}`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GROUPS_EQ; QUOTIENT_GROUP; CONJUNCT2 SUBGROUP_GENERATED; NORMAL_SUBGROUP_OF_SUBGROUP_GENERATED] THEN REWRITE_TAC[GROUP_SETINV_SUBGROUP_GENERATED; GROUP_SETMUL_SUBGROUP_GENERATED; RIGHT_COSET_SUBGROUP_GENERATED] THEN FIRST_ASSUM(MP_TAC o MATCH_MP GROUP_HOMOMORPHISM_RIGHT_COSET) THEN DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] SUBGROUP_OF_HOMOMORPHIC_IMAGE)) THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_SUBGROUP; SIMPLE_IMAGE; ETA_AX]);; (* ------------------------------------------------------------------------- *) (* Kernels and images of homomorphisms. *) (* ------------------------------------------------------------------------- *) let group_kernel = new_definition `group_kernel (G,G') (f:A->B) = {x | x IN group_carrier G /\ f x = group_id G'}`;; let group_image = new_definition `group_image (G:A group,G':B group) (f:A->B) = IMAGE f (group_carrier G)`;; let GROUP_KERNEL_ID = prove (`!G G' (f:A->B). group_homomorphism(G,G') f ==> group_id G IN group_kernel (G,G') f`, SIMP_TAC[group_homomorphism; group_kernel; IN_ELIM_THM; GROUP_ID]);; let GROUP_KERNEL_NONEMPTY = prove (`!G H (f:A->B). group_homomorphism(G,H) f ==> ~(group_kernel(G,H) f = {})`, MESON_TAC[GROUP_KERNEL_ID; NOT_IN_EMPTY]);; let GROUP_KERNEL_SUBSET_CARRIER = prove (`!G H (f:A->B). group_kernel(G,H) f SUBSET group_carrier G`, REWRITE_TAC[group_kernel; SUBSET_RESTRICT]);; let GROUP_MONOMORPHISM = prove (`!G G' (f:A->B). group_monomorphism(G,G') f <=> group_homomorphism(G,G') f /\ group_kernel (G,G') f = {group_id G}`, REPEAT GEN_TAC THEN REWRITE_TAC[group_monomorphism] THEN REWRITE_TAC[TAUT `(p /\ q <=> p /\ r) <=> p ==> (q <=> r)`] THEN REWRITE_TAC[group_homomorphism; SUBSET; FORALL_IN_IMAGE] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; SING_SUBSET] THEN ASM_REWRITE_TAC[SUBSET; IN_SING; group_kernel; IN_ELIM_THM; GROUP_ID] THEN EQ_TAC THEN DISCH_TAC THENL [X_GEN_TAC `x:A` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x:A`; `group_id G:A`]) THEN ASM_SIMP_TAC[GROUP_ID]; MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `group_div G x y:A`) THEN ASM_SIMP_TAC[group_div; GROUP_MUL; GROUP_INV] THEN REWRITE_TAC[GSYM group_div] THEN W(MP_TAC o PART_MATCH (lhand o rand) GROUP_DIV_EQ_ID o rand o lhand o snd) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN DISCH_THEN MATCH_MP_TAC THEN W(MP_TAC o PART_MATCH (lhand o rand) GROUP_DIV_EQ_ID o snd) THEN ASM_SIMP_TAC[]]);; let GROUP_MONOMORPHISM_ALT = prove (`!G G' (f:A->B). group_monomorphism(G,G') f <=> group_homomorphism(G,G') f /\ !x. x IN group_carrier G /\ f x = group_id G' ==> x = group_id G`, REPEAT GEN_TAC THEN REWRITE_TAC[GROUP_MONOMORPHISM; group_kernel] THEN MP_TAC(ISPEC `G:A group` GROUP_ID) THEN REWRITE_TAC[group_homomorphism] THEN SET_TAC[]);; let GROUP_MONOMORPHISM_ALT_EQ = prove (`!G G' f:A->B. group_monomorphism (G,G') f <=> group_homomorphism (G,G') f /\ !x. x IN group_carrier G ==> (f x = group_id G' <=> x = group_id G)`, MESON_TAC[GROUP_MONOMORPHISM_ALT; group_homomorphism]);; let GROUP_EPIMORPHISM = prove (`!G G' (f:A->B). group_epimorphism(G,G') f <=> group_homomorphism(G,G') f /\ group_image (G,G') f = group_carrier G'`, REWRITE_TAC[group_epimorphism; group_image] THEN MESON_TAC[]);; let GROUP_EPIMORPHISM_ALT = prove (`!G G' (f:A->B). group_epimorphism(G,G') f <=> group_homomorphism(G,G') f /\ group_carrier G' SUBSET group_image (G,G') f`, REWRITE_TAC[GROUP_EPIMORPHISM; group_homomorphism; group_image] THEN MESON_TAC[SUBSET_ANTISYM_EQ]);; let GROUP_ISOMORPHISM_EPIMORPHISM_ALT = prove (`!G G' (f:A->B). group_isomorphism (G,G') f <=> group_epimorphism (G,G') f /\ (!x. x IN group_carrier G /\ f x = group_id G' ==> x = group_id G)`, REWRITE_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM; GROUP_MONOMORPHISM_ALT; group_epimorphism] THEN MESON_TAC[]);; let GROUP_ISOMORPHISM_GROUP_KERNEL_GROUP_IMAGE = prove (`!G G' (f:A->B). group_isomorphism (G,G') f <=> group_homomorphism(G,G') f /\ group_kernel (G,G') f = {group_id G} /\ group_image (G,G') f = group_carrier G'`, REWRITE_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM] THEN REWRITE_TAC[GROUP_MONOMORPHISM; GROUP_EPIMORPHISM] THEN MESON_TAC[]);; let GROUP_ISOMORPHISM_ALT = prove (`!G G' (f:A->B). group_isomorphism (G,G') f <=> IMAGE f (group_carrier G) = group_carrier G' /\ (!x y. x IN group_carrier G /\ y IN group_carrier G ==> f(group_mul G x y) = group_mul G' (f x) (f y)) /\ (!x. x IN group_carrier G /\ f x = group_id G' ==> x = group_id G)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `group_homomorphism (G,G') (f:A->B)` THENL [ALL_TAC; ASM_MESON_TAC[GROUP_HOMOMORPHISM; GROUP_ISOMORPHISM; SUBSET_REFL]] THEN ASM_REWRITE_TAC[GROUP_ISOMORPHISM_GROUP_KERNEL_GROUP_IMAGE; group_kernel; group_image] THEN RULE_ASSUM_TAC(REWRITE_RULE[group_homomorphism]) THEN MP_TAC(ISPEC `G:A group` GROUP_ID) THEN ASM SET_TAC[]);; let SUBGROUP_GROUP_KERNEL = prove (`!G G' (f:A->B). group_homomorphism(G,G') f ==> (group_kernel (G,G') f) subgroup_of G`, SIMP_TAC[group_homomorphism; subgroup_of; group_kernel; IN_ELIM_THM; SUBSET; FORALL_IN_IMAGE; GROUP_MUL_LID; GROUP_ID; GROUP_MUL; GROUP_INV_ID; GROUP_INV]);; let SUBGROUP_GROUP_IMAGE = prove (`!G G' (f:A->B). group_homomorphism(G,G') f ==> (group_image (G,G') f) subgroup_of G'`, SIMP_TAC[group_homomorphism; subgroup_of; group_image; SUBSET; FORALL_IN_IMAGE; FORALL_IN_IMAGE_2; IN_IMAGE] THEN MESON_TAC[GROUP_MUL; GROUP_INV; GROUP_ID]);; let GROUP_KERNEL_TO_SUBGROUP_GENERATED = prove (`!G H s (f:A->B). group_kernel (G,subgroup_generated H s) f = group_kernel(G,H) f`, REWRITE_TAC[group_kernel; SUBGROUP_GENERATED]);; let GROUP_IMAGE_TO_SUBGROUP_GENERATED = prove (`!G H s (f:A->B). group_image (G,subgroup_generated H s) f = group_image(G,H) f`, REWRITE_TAC[group_image]);; let GROUP_KERNEL_FROM_SUBGROUP_GENERATED = prove (`!G H s f:A->B. s subgroup_of G ==> group_kernel(subgroup_generated G s,H) f = group_kernel(G,H) f INTER s`, SIMP_TAC[group_kernel; CARRIER_SUBGROUP_GENERATED_SUBGROUP] THEN REWRITE_TAC[subgroup_of] THEN SET_TAC[]);; let GROUP_IMAGE_FROM_SUBGROUP_GENERATED = prove (`!G H s f:A->B. s subgroup_of G ==> group_image(subgroup_generated G s,H) f = group_image(G,H) f INTER IMAGE f s`, SIMP_TAC[group_image; CARRIER_SUBGROUP_GENERATED_SUBGROUP] THEN REWRITE_TAC[subgroup_of] THEN SET_TAC[]);; let GROUP_ISOMORPHISM_ONTO_IMAGE = prove (`!(f:A->B) G H. group_isomorphism(G,subgroup_generated H (group_image (G,H) f)) f <=> group_monomorphism(G,H) f`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM] THEN REWRITE_TAC[group_monomorphism; group_epimorphism] THEN REWRITE_TAC[GROUP_HOMOMORPHISM_INTO_SUBGROUP_EQ_GEN] THEN ASM_CASES_TAC `group_homomorphism (G,H) (f:A->B)` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_SUBGROUP; SUBGROUP_GROUP_IMAGE] THEN REWRITE_TAC[group_image; SUBSET_REFL]);; let NORMAL_SUBGROUP_GROUP_KERNEL = prove (`!G G' (f:A->B). group_homomorphism(G,G') f ==> (group_kernel (G,G') f) normal_subgroup_of G`, SIMP_TAC[NORMAL_SUBGROUP_CONJUGATE_INV; SUBGROUP_GROUP_KERNEL] THEN REWRITE_TAC[group_homomorphism; group_setmul] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[SIMPLE_IMAGE; GSYM IMAGE_o; o_DEF; SET_RULE `{f x y | P x /\ y IN {a}} = {f x a | P x}`; SET_RULE `{f x y | x IN {a} /\ P y} = {f a y | P y}`] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; group_kernel; IN_ELIM_THM] THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; FORALL_IN_IMAGE]) THEN ASM_SIMP_TAC[GROUP_INV; GROUP_MUL; GROUP_MUL_LID; GROUP_MUL_LINV]);; let GROUP_KERNEL_RIGHT_COSET = prove (`!G n:A->bool. n normal_subgroup_of G ==> group_kernel(G,quotient_group G n) (right_coset G n) = n`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[group_kernel; QUOTIENT_GROUP_ID] THEN FIRST_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [normal_subgroup_of]) THEN REWRITE_TAC[TAUT `p /\ q <=> ~(p ==> ~q)`] THEN ASM_SIMP_TAC[RIGHT_COSET_EQ_SUBGROUP] THEN FIRST_ASSUM(MP_TAC o MATCH_MP SUBGROUP_OF_IMP_SUBSET) THEN SET_TAC[]);; let CARD_EQ_GROUP_IMAGE_KERNEL = prove (`!G H (f:A->B). group_homomorphism(G,H) f ==> group_image(G,H) f *_c group_kernel(G,H) f =_c group_carrier G`, REWRITE_TAC[group_homomorphism; group_image; SUBSET; FORALL_IN_IMAGE] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CARD_EQ_IMAGE_MUL_FIBRES THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN TRANS_TAC CARD_EQ_TRANS `IMAGE (group_mul G x) (group_kernel(G,H) (f:A->B))` THEN CONJ_TAC THENL [MATCH_MP_TAC CARD_EQ_REFL_IMP; MATCH_MP_TAC CARD_EQ_IMAGE THEN REWRITE_TAC[group_kernel; IN_ELIM_THM] THEN ASM_MESON_TAC[GROUP_MUL_LCANCEL_IMP]] THEN MATCH_MP_TAC(SET_RULE `!g. IMAGE f s SUBSET t /\ IMAGE g t SUBSET s /\ (!y. y IN t ==> f(g y) = y) ==> t = IMAGE f s`) THEN EXISTS_TAC `group_mul G (group_inv G x:A)` THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM; group_kernel] THEN ASM_SIMP_TAC[GROUP_MUL; GROUP_INV; GROUP_MUL_RID; GROUP_MUL_LID; GROUP_MUL_LINV; GROUP_MUL_ASSOC; GROUP_MUL_RINV]);; let CARD_DIVIDES_GROUP_MONOMORPHIC_IMAGE = prove (`!G H (f:A->B). group_monomorphism(G,H) f /\ FINITE(group_carrier H) ==> CARD(group_carrier G) divides CARD(group_carrier H)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `CARD(group_carrier G) = CARD(group_image (G,H) (f:A->B))` SUBST1_TAC THENL [CONV_TAC SYM_CONV THEN MATCH_MP_TAC CARD_EQ_CARD_IMP THEN REWRITE_TAC[group_image] THEN ASM_MESON_TAC[CARD_EQ_GROUP_MONOMORPHIC_IMAGE; FINITE_GROUP_MONOMORPHIC_PREIMAGE]; MATCH_MP_TAC LAGRANGE_THEOREM THEN ASM_MESON_TAC[SUBGROUP_GROUP_IMAGE; group_monomorphism]]);; let CARD_DIVIDES_GROUP_EPIMORPHIC_IMAGE = prove (`!G H (f:A->B). group_epimorphism(G,H) f /\ FINITE(group_carrier G) ==> CARD(group_carrier H) divides CARD(group_carrier G)`, REPEAT GEN_TAC THEN REWRITE_TAC[GROUP_EPIMORPHISM] THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN FIRST_ASSUM(MP_TAC o MATCH_MP CARD_EQ_GROUP_IMAGE_KERNEL) THEN DISCH_THEN (MP_TAC o (MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] CARD_EQ_CARD_IMP))) THEN ASM_REWRITE_TAC[group_image; mul_c; GSYM CROSS; group_kernel] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_SIMP_TAC[FINITE_CROSS; CARD_CROSS; FINITE_IMAGE; FINITE_RESTRICT] THEN CONV_TAC NUMBER_RULE);; let QUOTIENT_GROUP_UNIVERSAL_EXPLICIT = prove (`!G G' n (f:A->B). group_homomorphism (G,G') f /\ n normal_subgroup_of G /\ (!x y. x IN group_carrier G /\ y IN group_carrier G /\ right_coset G n x = right_coset G n y ==> f x = f y) ==> ?g. group_homomorphism(quotient_group G n,G') g /\ !x. x IN group_carrier G ==> g(right_coset G n x) = f x`, REWRITE_TAC[group_homomorphism; SUBSET; FORALL_IN_IMAGE] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM (MP_TAC o GSYM o GEN_REWRITE_RULE I [FUNCTION_FACTORS_LEFT_GEN]) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:(A->bool)->B` THEN DISCH_TAC THEN ASM_SIMP_TAC[QUOTIENT_GROUP] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN ASM_SIMP_TAC[GROUP_SETINV_RIGHT_COSET; GROUP_SETMUL_RIGHT_COSET] THEN ASM_SIMP_TAC[GROUP_MUL; GROUP_INV] THEN SUBGOAL_THEN `n = right_coset G n (group_id G:A)` SUBST1_TAC THENL [ASM_MESON_TAC[RIGHT_COSET_ID; normal_subgroup_of; SUBGROUP_OF_IMP_SUBSET]; ASM_SIMP_TAC[GROUP_ID]]);; let QUOTIENT_GROUP_UNIVERSAL = prove (`!G G' n (f:A->B). group_homomorphism (G,G') f /\ n normal_subgroup_of G /\ n SUBSET group_kernel (G,G') f ==> ?g. group_homomorphism(quotient_group G n,G') g /\ !x. x IN group_carrier G ==> g(right_coset G n x) = f x`, REPEAT STRIP_TAC THEN MATCH_MP_TAC QUOTIENT_GROUP_UNIVERSAL_EXPLICIT THEN ASM_REWRITE_TAC[] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `group_div G x y:A` o REWRITE_RULE[SUBSET]) THEN ASM_SIMP_TAC[GSYM RIGHT_COSET_EQ; group_kernel; IN_ELIM_THM; GROUP_DIV; NORMAL_SUBGROUP_IMP_SUBGROUP] THEN ASM_SIMP_TAC[GROUP_HOMOMORPHISM_DIV] THEN MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC GROUP_DIV_EQ_ID THEN RULE_ASSUM_TAC(REWRITE_RULE[group_homomorphism]) THEN ASM SET_TAC[]);; let QUOTIENT_GROUP_UNIVERSAL_EPIMORPHISM = prove (`!G G' n (f:A->B). group_epimorphism (G,G') f /\ n normal_subgroup_of G /\ n SUBSET group_kernel (G,G') f ==> ?g. group_epimorphism(quotient_group G n,G') g /\ !x. x IN group_carrier G ==> g(right_coset G n x) = f x`, REWRITE_TAC[group_epimorphism] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`G:A group`; `G':B group`; `n:A->bool`; `f:A->B`] QUOTIENT_GROUP_UNIVERSAL) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_SIMP_TAC[QUOTIENT_GROUP] THEN ASM SET_TAC[]);; let GROUP_KERNEL_FROM_TRIVIAL_GROUP = prove (`!G H (f:A->B). group_homomorphism (G,H) f /\ trivial_group G ==> group_kernel (G,H) f = group_carrier G`, REWRITE_TAC[trivial_group; group_kernel; group_homomorphism] THEN SET_TAC[]);; let GROUP_IMAGE_FROM_TRIVIAL_GROUP = prove (`!G H (f:A->B). group_homomorphism (G,H) f /\ trivial_group G ==> group_image (G,H) f = {group_id H}`, REWRITE_TAC[trivial_group; group_image; group_homomorphism] THEN SET_TAC[]);; let GROUP_KERNEL_TO_TRIVIAL_GROUP = prove (`!G H (f:A->B). group_homomorphism (G,H) f /\ trivial_group H ==> group_kernel (G,H) f = group_carrier G`, REWRITE_TAC[trivial_group; group_kernel; group_homomorphism] THEN SET_TAC[]);; let GROUP_IMAGE_TO_TRIVIAL_GROUP = prove (`!G H (f:A->B). group_homomorphism (G,H) f /\ trivial_group H ==> group_image (G,H) f = group_carrier H`, REWRITE_TAC[trivial_group; group_image; group_homomorphism] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[SING_SUBSET; IN_IMAGE] THEN ASM_MESON_TAC[GROUP_ID]);; let FIRST_GROUP_ISOMORPHISM_THEOREM = prove (`!G G' (f:A->B). group_homomorphism(G,G') f ==> (quotient_group G (group_kernel (G,G') f)) isomorphic_group (subgroup_generated G' (group_image (G,G') f))`, REPEAT STRIP_TAC THEN REWRITE_TAC[isomorphic_group; GROUP_ISOMORPHISM] THEN FIRST_ASSUM(MP_TAC o SPEC `group_kernel (G,G') (f:A->B)` o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] QUOTIENT_GROUP_UNIVERSAL_EXPLICIT)) THEN ASM_SIMP_TAC[NORMAL_SUBGROUP_GROUP_KERNEL] THEN ANTS_TAC THENL [ASM_SIMP_TAC[IMP_CONJ; RIGHT_COSET_EQ; SUBGROUP_GROUP_KERNEL]; MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:(A->bool)->B` THEN STRIP_TAC THEN ASM_SIMP_TAC[GROUP_HOMOMORPHISM_INTO_SUBGROUP_EQ; SUBGROUP_GROUP_IMAGE; QUOTIENT_GROUP; NORMAL_SUBGROUP_GROUP_KERNEL; CARRIER_SUBGROUP_GENERATED_SUBGROUP; SUBGROUP_GROUP_KERNEL] THEN REWRITE_TAC[group_image] THEN REPEAT(CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN SIMP_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN ASM_SIMP_TAC[RIGHT_COSET_EQ; SUBGROUP_GROUP_KERNEL]] THEN SIMP_TAC[group_kernel; IN_ELIM_THM; GROUP_DIV] THEN RULE_ASSUM_TAC (REWRITE_RULE[group_homomorphism; SUBSET; FORALL_IN_IMAGE]) THEN ASM_SIMP_TAC[group_div; GROUP_INV] THEN ASM_SIMP_TAC[GSYM group_div; GROUP_DIV_EQ_ID]);; let FIRST_GROUP_EPIMORPHISM_THEOREM = prove (`!G G' (f:A->B). group_epimorphism(G,G') f ==> (quotient_group G (group_kernel (G,G') f)) isomorphic_group G'`, REWRITE_TAC[group_epimorphism] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP FIRST_GROUP_ISOMORPHISM_THEOREM) THEN ASM_REWRITE_TAC[group_image; SUBGROUP_GENERATED_GROUP_CARRIER]);; let GROUP_HOMOMORPHISM_PREIMAGE_IMAGE_RIGHT = prove (`!G H (f:A->B) s. group_homomorphism(G,H) f /\ s SUBSET group_carrier G ==> {x | x IN group_carrier G /\ f x IN IMAGE f s} = group_setmul G s (group_kernel(G,H) f)`, REPEAT STRIP_TAC THEN REWRITE_TAC[EXTENSION; group_kernel; IN_ELIM_THM; group_setmul] THEN X_GEN_TAC `z:A` THEN EQ_TAC THENL [STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_IMAGE]) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:A` THEN STRIP_TAC THEN SUBGOAL_THEN `(x:A) IN group_carrier G` ASSUME_TAC THENL [ASM SET_TAC[]; ASM_REWRITE_TAC[]] THEN EXISTS_TAC `group_mul G (group_inv G x) z:A` THEN ASM_SIMP_TAC[GROUP_MUL_ASSOC; GROUP_MUL_RINV; GROUP_MUL_LID; GROUP_INV; GROUP_MUL] THEN FIRST_ASSUM(MP_TAC o MATCH_MP GROUP_HOMOMORPHISM_MUL) THEN FIRST_ASSUM(MP_TAC o MATCH_MP GROUP_HOMOMORPHISM_INV) THEN ASM_SIMP_TAC[GROUP_INV] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_MUL_LINV THEN RULE_ASSUM_TAC(REWRITE_RULE[group_homomorphism]) THEN ASM SET_TAC[]; REWRITE_TAC[IN_IMAGE; RIGHT_AND_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:A` THEN DISCH_THEN(X_CHOOSE_THEN `y:A` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `(x:A) IN group_carrier G` ASSUME_TAC THENL [ASM SET_TAC[]; ASM_SIMP_TAC[GROUP_ADD]] THEN FIRST_ASSUM(MP_TAC o MATCH_MP GROUP_HOMOMORPHISM_MUL) THEN ASM_SIMP_TAC[GROUP_MUL] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_MUL_RID THEN RULE_ASSUM_TAC(REWRITE_RULE[group_homomorphism]) THEN ASM SET_TAC[]]);; let GROUP_HOMOMORPHISM_PREIMAGE_IMAGE_LEFT = prove (`!G H (f:A->B) s. group_homomorphism(G,H) f /\ s SUBSET group_carrier G ==> {x | x IN group_carrier G /\ f x IN IMAGE f s} = group_setmul G (group_kernel(G,H) f) s`, REPEAT STRIP_TAC THEN REWRITE_TAC[EXTENSION; group_kernel; IN_ELIM_THM; group_setmul] THEN X_GEN_TAC `z:A` THEN EQ_TAC THENL [STRIP_TAC THEN GEN_REWRITE_TAC I [SWAP_EXISTS_THM] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_IMAGE]) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:A` THEN STRIP_TAC THEN SUBGOAL_THEN `(x:A) IN group_carrier G` ASSUME_TAC THENL [ASM SET_TAC[]; ASM_REWRITE_TAC[]] THEN EXISTS_TAC `group_mul G z (group_inv G x):A` THEN ASM_SIMP_TAC[GSYM GROUP_MUL_ASSOC; GROUP_MUL_LINV; GROUP_MUL_RID; GROUP_INV; GROUP_MUL] THEN FIRST_ASSUM(MP_TAC o MATCH_MP GROUP_HOMOMORPHISM_MUL) THEN FIRST_ASSUM(MP_TAC o MATCH_MP GROUP_HOMOMORPHISM_INV) THEN ASM_SIMP_TAC[GROUP_INV] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_MUL_RINV THEN RULE_ASSUM_TAC(REWRITE_RULE[group_homomorphism]) THEN ASM SET_TAC[]; REWRITE_TAC[IN_IMAGE; RIGHT_AND_EXISTS_THM] THEN GEN_REWRITE_TAC LAND_CONV [SWAP_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:A` THEN DISCH_THEN(X_CHOOSE_THEN `y:A` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `(x:A) IN group_carrier G` ASSUME_TAC THENL [ASM SET_TAC[]; ASM_SIMP_TAC[GROUP_ADD]] THEN FIRST_ASSUM(MP_TAC o MATCH_MP GROUP_HOMOMORPHISM_MUL) THEN ASM_SIMP_TAC[GROUP_MUL] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_MUL_LID THEN RULE_ASSUM_TAC(REWRITE_RULE[group_homomorphism]) THEN ASM SET_TAC[]]);; let GROUP_HOMOMORPHISM_IMAGE_PREIMAGE = prove (`!G H (f:A->B) t. group_homomorphism(G,H) f ==> IMAGE f {x | x IN group_carrier G /\ f x IN t} = t INTER (group_image(G,H) f)`, REWRITE_TAC[group_homomorphism; group_image] THEN SET_TAC[]);; let GROUP_HOMOMORPHISM_PREIMAGE_IMAGE = prove (`!G H (f:A->B) s. group_homomorphism(G,H) f /\ group_kernel(G,H) f SUBSET s /\ s subgroup_of G ==> {x | x IN group_carrier G /\ f x IN IMAGE f s} = s`, REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN W(MP_TAC o PART_MATCH (lhand o rand) GROUP_HOMOMORPHISM_PREIMAGE_IMAGE_RIGHT o lhand o snd) THEN ANTS_TAC THENL [ASM_MESON_TAC[subgroup_of]; DISCH_THEN SUBST1_TAC] THEN ASM_SIMP_TAC[GROUP_SETMUL_RSUBSET_EQ; GROUP_KERNEL_NONEMPTY; GROUP_KERNEL_SUBSET_CARRIER]);; let GROUP_HOMOMORPHISM_IMAGE_PREIMAGE_EQ = prove (`!G H (f:A->B) t. group_homomorphism(G,H) f /\ t SUBSET group_image(G,H) f ==> IMAGE f {x | x IN group_carrier G /\ f x IN t} = t`, SIMP_TAC[GROUP_HOMOMORPHISM_IMAGE_PREIMAGE] THEN SET_TAC[]);; let GROUP_EPIMORPHISM_SUBGROUP_CORRESPONDENCE = prove (`!G H (f:A->B) k. group_epimorphism(G,H) f ==> (k subgroup_of H <=> ?j. j subgroup_of G /\ group_kernel(G,H) f SUBSET j /\ {x | x IN group_carrier G /\ f x IN k} = j /\ IMAGE f j = k)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP GROUP_EPIMORPHISM_IMP_HOMOMORPHISM) THEN EQ_TAC THEN DISCH_TAC THENL [ALL_TAC; ASM_MESON_TAC[SUBGROUP_OF_HOMOMORPHIC_IMAGE]] THEN EXISTS_TAC `{x | x IN group_carrier G /\ (f:A->B) x IN k}` THEN REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC SUBGROUP_OF_HOMOMORPHIC_PREIMAGE THEN ASM_MESON_TAC[]; ASM_SIMP_TAC[group_kernel; SUBSET; IN_ELIM_THM; IN_SUBGROUP_ID]; RULE_ASSUM_TAC(REWRITE_RULE [GROUP_EPIMORPHISM; group_image; subgroup_of]) THEN ASM SET_TAC[]]);; let GROUP_EPIMORPHISM_SUBGROUP_CORRESPONDENCE_ALT = prove (`!G H (f:A->B) j. group_epimorphism(G,H) f ==> (j subgroup_of G /\ group_kernel(G,H) f SUBSET j <=> ?k. k subgroup_of H /\ {x | x IN group_carrier G /\ f x IN k} = j /\ IMAGE f j = k)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP GROUP_EPIMORPHISM_IMP_HOMOMORPHISM) THEN EQ_TAC THENL [STRIP_TAC THEN EXISTS_TAC `IMAGE (f:A->B) j` THEN CONJ_TAC THENL [ASM_MESON_TAC[SUBGROUP_OF_HOMOMORPHIC_IMAGE]; ASM_REWRITE_TAC[]] THEN MATCH_MP_TAC(SET_RULE `j SUBSET s /\ (!x y. x IN j /\ y IN s /\ f x = f y ==> y IN j) ==> {x | x IN s /\ f x IN IMAGE f j} = j`) THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP SUBGROUP_OF_IMP_SUBSET) THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN SUBGOAL_THEN `y:A = group_mul G (group_div G y x) x` SUBST1_TAC THENL [ASM_SIMP_TAC[group_div; GSYM GROUP_MUL_ASSOC; GROUP_INV; GROUP_MUL_LINV; GROUP_MUL_RID]; MATCH_MP_TAC IN_SUBGROUP_MUL THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[group_kernel; IN_ELIM_THM; GROUP_DIV] THEN FIRST_ASSUM(fun th -> ASM_SIMP_TAC[MATCH_MP GROUP_HOMOMORPHISM_DIV th]) THEN W(MP_TAC o PART_MATCH (lhand o rand) GROUP_DIV_EQ_ID o snd) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[group_homomorphism]) THEN ASM SET_TAC[]]; DISCH_THEN(X_CHOOSE_THEN `k:B->bool` STRIP_ASSUME_TAC) THEN EXPAND_TAC "j" THEN CONJ_TAC THENL [MATCH_MP_TAC SUBGROUP_OF_HOMOMORPHIC_PREIMAGE THEN ASM_MESON_TAC[]; REWRITE_TAC[SUBSET; group_kernel; IN_ELIM_THM] THEN ASM_MESON_TAC[IN_SUBGROUP_ID]]]);; let NORMAL_SUBGROUP_OF_HOMOMORPHIC_PREIMAGE = prove (`!G H (f:A->B) j. group_homomorphism(G,H) f /\ j normal_subgroup_of H ==> {x | x IN group_carrier G /\ f x IN j} normal_subgroup_of G`, REPEAT GEN_TAC THEN REWRITE_TAC[NORMAL_SUBGROUP_MUL_SYM] THEN STRIP_TAC THEN CONJ_TAC THENL [ASM_MESON_TAC[SUBGROUP_OF_HOMOMORPHIC_PREIMAGE]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o MATCH_MP GROUP_HOMOMORPHISM_MUL) THEN SIMP_TAC[IN_ELIM_THM; GROUP_MUL] THEN RULE_ASSUM_TAC(REWRITE_RULE[group_homomorphism]) THEN ASM SET_TAC[]);; let NORMAL_SUBGROUP_OF_EPIMORPHIC_IMAGE = prove (`!G H (f:A->B) n. group_epimorphism(G,H) f /\ n normal_subgroup_of G ==> IMAGE f n normal_subgroup_of H`, REPEAT GEN_TAC THEN REWRITE_TAC[NORMAL_SUBGROUP_CONJUGATE_INV] THEN REWRITE_TAC[group_epimorphism] THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN CONJ_TAC THENL [ASM_MESON_TAC[SUBGROUP_OF_HOMOMORPHIC_IMAGE]; ALL_TAC] THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE] THEN X_GEN_TAC `a:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `a:A`) THEN REWRITE_TAC[group_setmul; SUBSET; FORALL_IN_GSPEC] THEN REWRITE_TAC[IN_SING; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[FORALL_UNWIND_THM2; FORALL_IN_GSPEC] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_UNWIND_THM2] THEN ASM_REWRITE_TAC[FORALL_IN_GSPEC; FORALL_IN_IMAGE] THEN DISCH_TAC THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [group_homomorphism]) THEN FIRST_ASSUM(MP_TAC o MATCH_MP SUBGROUP_OF_IMP_SUBSET) THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN DISCH_TAC THEN DISCH_THEN (CONJUNCTS_THEN2 ASSUME_TAC (STRIP_ASSUME_TAC o GSYM o CONJUNCT2)) THEN ASM_SIMP_TAC[GROUP_MUL; GROUP_INV; FUN_IN_IMAGE]);; let NORMAL_SUBGROUP_OF_EPIMORPHIC_PREIMAGE_EQ = prove (`!G H (f:A->B) j k. group_epimorphism (G,H) f /\ k subgroup_of H /\ {x | x IN group_carrier G /\ f x IN k} = j ==> (j normal_subgroup_of G <=> k normal_subgroup_of H)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [DISCH_TAC; ASM_MESON_TAC[NORMAL_SUBGROUP_OF_HOMOMORPHIC_PREIMAGE; group_epimorphism]] THEN SUBGOAL_THEN `k = IMAGE (f:A->B) j` SUBST1_TAC THENL [ALL_TAC; ASM_MESON_TAC[NORMAL_SUBGROUP_OF_EPIMORPHIC_IMAGE]] THEN RULE_ASSUM_TAC(REWRITE_RULE[subgroup_of; group_epimorphism]) THEN ASM SET_TAC[]);; let GROUP_EPIMORPHISM_NORMAL_SUBGROUP_CORRESPONDENCE = prove (`!G H (f:A->B) k. group_epimorphism(G,H) f ==> (k normal_subgroup_of H <=> ?j. j normal_subgroup_of G /\ group_kernel(G,H) f SUBSET j /\ {x | x IN group_carrier G /\ f x IN k} = j /\ IMAGE f j = k)`, MESON_TAC[GROUP_EPIMORPHISM_SUBGROUP_CORRESPONDENCE; NORMAL_SUBGROUP_OF_EPIMORPHIC_PREIMAGE_EQ; NORMAL_SUBGROUP_IMP_SUBGROUP]);; let GROUP_EPIMORPHISM_NORMAL_SUBGROUP_CORRESPONDENCE_ALT = prove (`!G H (f:A->B) j. group_epimorphism(G,H) f ==> (j normal_subgroup_of G /\ group_kernel(G,H) f SUBSET j <=> ?k. k normal_subgroup_of H /\ {x | x IN group_carrier G /\ f x IN k} = j /\ IMAGE f j = k)`, MESON_TAC[GROUP_EPIMORPHISM_SUBGROUP_CORRESPONDENCE_ALT; NORMAL_SUBGROUP_OF_EPIMORPHIC_PREIMAGE_EQ; NORMAL_SUBGROUP_IMP_SUBGROUP]);; let SUBGROUP_OF_ISOMORPHIC_IMAGE_EQ = prove (`!G H (f:A->B) j. group_isomorphism(G,H) f /\ j SUBSET group_carrier G ==> ((IMAGE f j) subgroup_of H <=> j subgroup_of G)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [DISCH_TAC; ASM_MESON_TAC[GROUP_ISOMORPHISM_IMP_HOMOMORPHISM; SUBGROUP_OF_HOMOMORPHIC_IMAGE]] THEN SUBGOAL_THEN `j = {x | x IN group_carrier G /\ (f:A->B) x IN IMAGE f j}` SUBST1_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[group_isomorphism; group_isomorphisms]) THEN ASM SET_TAC[]; MATCH_MP_TAC SUBGROUP_OF_HOMOMORPHIC_PREIMAGE THEN ASM_MESON_TAC[GROUP_ISOMORPHISM_IMP_HOMOMORPHISM]]);; let NORMAL_SUBGROUP_OF_ISOMORPHIC_IMAGE_EQ = prove (`!G H (f:A->B) j. group_isomorphism(G,H) f /\ j SUBSET group_carrier G ==> ((IMAGE f j) normal_subgroup_of H <=> j normal_subgroup_of G)`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP SUBGROUP_OF_ISOMORPHIC_IMAGE_EQ) THEN MATCH_MP_TAC(TAUT `(q ==> p) /\ (q' ==> p') /\ (p' ==> (q' <=> q)) ==> (p' <=> p) ==> (q' <=> q)`) THEN REWRITE_TAC[NORMAL_SUBGROUP_IMP_SUBGROUP] THEN DISCH_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC NORMAL_SUBGROUP_OF_EPIMORPHIC_PREIMAGE_EQ THEN EXISTS_TAC `f:A->B` THEN ASM_SIMP_TAC[GROUP_ISOMORPHISM_IMP_EPIMORPHISM] THEN RULE_ASSUM_TAC(REWRITE_RULE[group_isomorphism; group_isomorphisms]) THEN ASM SET_TAC[]);; let GROUP_CONJUGATE_SUBGROUP_OF = prove (`!G s t:A->bool. group_conjugate G s t ==> (s subgroup_of G <=> t subgroup_of G)`, REPEAT GEN_TAC THEN REWRITE_TAC[group_conjugate; RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `a:A` THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN CONV_TAC SYM_CONV THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SUBGROUP_OF_ISOMORPHIC_IMAGE_EQ THEN ASM_SIMP_TAC[GROUP_ISOMORPHISM_CONJUGATION]);; let GROUP_CONJUGATE_NORMAL_SUBGROUP_OF = prove (`!G s t:A->bool. group_conjugate G s t ==> (s normal_subgroup_of G <=> t normal_subgroup_of G)`, REPEAT GEN_TAC THEN REWRITE_TAC[group_conjugate; RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `a:A` THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN CONV_TAC SYM_CONV THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC NORMAL_SUBGROUP_OF_ISOMORPHIC_IMAGE_EQ THEN ASM_SIMP_TAC[GROUP_ISOMORPHISM_CONJUGATION]);; let NORMAL_SUBGROUP_CONJUGATE = prove (`!G n:A->bool. n normal_subgroup_of G <=> n subgroup_of G /\ !n'. group_conjugate G n n' ==> n' = n`, REPEAT GEN_TAC THEN REWRITE_TAC[NORMAL_SUBGROUP_CONJUGATION_EQ] THEN REWRITE_TAC[group_conjugate] THEN MESON_TAC[IMAGE_GROUP_CONJUGATION_SUBSET; SUBGROUP_OF_IMP_SUBSET]);; let NORMAL_SUBGROUP_CONJUGATE_EQ = prove (`!G n n':A->bool. n normal_subgroup_of G \/ n' normal_subgroup_of G ==> (group_conjugate G n n' <=> n = n')`, MESON_TAC[NORMAL_SUBGROUP_CONJUGATE; GROUP_CONJUGATE_NORMAL_SUBGROUP_OF; GROUP_CONJUGATE_REFL; NORMAL_SUBGROUP_OF_IMP_SUBSET]);; let QUOTIENT_SUBGROUP_CORRESPONDENCE = prove (`!(G:A group) j k. j normal_subgroup_of G ==> (k subgroup_of (quotient_group G j) <=> ?i. i subgroup_of G /\ j SUBSET i /\ {x | x IN group_carrier G /\ right_coset G j x IN k} = i /\ IMAGE (right_coset G j) i = k)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP GROUP_EPIMORPHISM_RIGHT_COSET) THEN DISCH_THEN(MP_TAC o MATCH_MP GROUP_EPIMORPHISM_SUBGROUP_CORRESPONDENCE) THEN ASM_SIMP_TAC[GROUP_KERNEL_RIGHT_COSET]);; let QUOTIENT_NORMAL_SUBGROUP_CORRESPONDENCE = prove (`!(G:A group) j k. j normal_subgroup_of G ==> (k normal_subgroup_of (quotient_group G j) <=> ?i. i normal_subgroup_of G /\ j SUBSET i /\ {x | x IN group_carrier G /\ right_coset G j x IN k} = i /\ IMAGE (right_coset G j) i = k)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP GROUP_EPIMORPHISM_RIGHT_COSET) THEN DISCH_THEN(MP_TAC o MATCH_MP GROUP_EPIMORPHISM_NORMAL_SUBGROUP_CORRESPONDENCE) THEN ASM_SIMP_TAC[GROUP_KERNEL_RIGHT_COSET]);; let FIRST_GROUP_ISOMORPHISM_THEOREM_GEN = prove (`!G H (f:A->B) j k. group_epimorphism(G,H) f /\ k normal_subgroup_of H /\ {x | x IN group_carrier G /\ f x IN k} = j ==> quotient_group G j isomorphic_group quotient_group H k`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`G:A group`; `quotient_group H (k:B->bool)`; `right_coset H k o (f:A->B)`] FIRST_GROUP_EPIMORPHISM_THEOREM) THEN ANTS_TAC THENL [MATCH_MP_TAC GROUP_EPIMORPHISM_COMPOSE THEN EXISTS_TAC `H:B group` THEN ASM_SIMP_TAC[GROUP_EPIMORPHISM_RIGHT_COSET]; MATCH_MP_TAC EQ_IMP] THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ASM_SIMP_TAC[group_kernel; QUOTIENT_GROUP_ID; o_THM] THEN GEN_REWRITE_TAC I [EXTENSION] THEN EXPAND_TAC "j" THEN X_GEN_TAC `x:A` THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_CASES_TAC `(x:A) IN group_carrier G` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC RIGHT_COSET_EQ_SUBGROUP THEN RULE_ASSUM_TAC(REWRITE_RULE[group_epimorphism; normal_subgroup_of]) THEN ASM SET_TAC[]);; let FIRST_GROUP_ISOMORPHISM_THEOREM_GEN_ALT = prove (`!G H (f:A->B) j k. group_epimorphism(G,H) f /\ j normal_subgroup_of G /\ group_kernel (G,H) f SUBSET j /\ IMAGE f j = k ==> quotient_group G j isomorphic_group quotient_group H k`, REPEAT STRIP_TAC THEN MATCH_MP_TAC FIRST_GROUP_ISOMORPHISM_THEOREM_GEN THEN EXISTS_TAC `f:A->B` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[GROUP_EPIMORPHISM_NORMAL_SUBGROUP_CORRESPONDENCE_ALT]);; let SIMPLE_GROUP_EPIMORPHIC_IMAGE_EQ = prove (`!G H (f:A->B). group_epimorphism(G,H) f ==> ((!k. k normal_subgroup_of H ==> k = {group_id H} \/ k = group_carrier H) <=> (!h. h normal_subgroup_of G /\ group_kernel(G,H) f PSUBSET h ==> h = group_carrier G))`, REPEAT STRIP_TAC THEN REWRITE_TAC[PSUBSET; TAUT `p /\ q /\ ~r ==> s <=> p /\ q ==> r \/ s`] THEN ASM_SIMP_TAC[GROUP_EPIMORPHISM_NORMAL_SUBGROUP_CORRESPONDENCE_ALT] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN ONCE_REWRITE_TAC[TAUT `p /\ q /\ r ==> s <=> q ==> p /\ r ==> s`] THEN REWRITE_TAC[FORALL_UNWIND_THM1] THEN FIRST_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] SUBGROUP_OF_EPIMORPHIC_PREIMAGE)) THEN SIMP_TAC[IMP_CONJ; NORMAL_SUBGROUP_IMP_SUBGROUP] THEN DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[group_kernel] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `k:B->bool` THEN ASM_CASES_TAC `(k:B->bool) normal_subgroup_of H` THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC (REWRITE_RULE[group_epimorphism; subgroup_of; normal_subgroup_of; group_homomorphism]) THEN ASM SET_TAC[]);; let NO_PROPER_SUBGROUP_EPIMORPHIC_IMAGE_EQ = prove (`!G H (f:A->B). group_epimorphism(G,H) f ==> ((!k. k subgroup_of H ==> k = {group_id H} \/ k = group_carrier H) <=> (!h. h subgroup_of G /\ group_kernel(G,H) f PSUBSET h ==> h = group_carrier G))`, REPEAT STRIP_TAC THEN REWRITE_TAC[PSUBSET; TAUT `p /\ q /\ ~r ==> s <=> p /\ q ==> r \/ s`] THEN ASM_SIMP_TAC[GROUP_EPIMORPHISM_SUBGROUP_CORRESPONDENCE_ALT] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN ONCE_REWRITE_TAC[TAUT `p /\ q /\ r ==> s <=> q ==> p /\ r ==> s`] THEN REWRITE_TAC[FORALL_UNWIND_THM1] THEN FIRST_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] SUBGROUP_OF_EPIMORPHIC_PREIMAGE)) THEN SIMP_TAC[IMP_CONJ] THEN DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[group_kernel] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `k:B->bool` THEN ASM_CASES_TAC `(k:B->bool) subgroup_of H` THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC (REWRITE_RULE[group_epimorphism; subgroup_of; group_homomorphism]) THEN ASM SET_TAC[]);; let MAXIMAL_SUBGROUP = prove (`!G n:A->bool. n normal_subgroup_of G ==> ((!h. h subgroup_of G /\ n PSUBSET h ==> h = group_carrier G) <=> (!k. k subgroup_of quotient_group G n ==> k = {group_id(quotient_group G n)} \/ k = group_carrier(quotient_group G n)))`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP GROUP_EPIMORPHISM_RIGHT_COSET) THEN DISCH_THEN(MP_TAC o MATCH_MP NO_PROPER_SUBGROUP_EPIMORPHIC_IMAGE_EQ) THEN DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN ASM_SIMP_TAC[GROUP_KERNEL_RIGHT_COSET]);; let MAXIMAL_NORMAL_SUBGROUP = prove (`!G n:A->bool. n normal_subgroup_of G ==> ((!h. h normal_subgroup_of G /\ n PSUBSET h ==> h = group_carrier G) <=> (!k. k normal_subgroup_of quotient_group G n ==> k = {group_id(quotient_group G n)} \/ k = group_carrier(quotient_group G n)))`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP GROUP_EPIMORPHISM_RIGHT_COSET) THEN DISCH_THEN(MP_TAC o MATCH_MP SIMPLE_GROUP_EPIMORPHIC_IMAGE_EQ) THEN DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN ASM_SIMP_TAC[GROUP_KERNEL_RIGHT_COSET]);; (* ------------------------------------------------------------------------- *) (* Trivial homomorphisms. *) (* ------------------------------------------------------------------------- *) let trivial_homomorphism = new_definition `trivial_homomorphism(G,G') (f:A->B) <=> group_homomorphism(G,G') f /\ !x. x IN group_carrier G ==> f x = group_id G'`;; let GROUP_KERNEL_IMAGE_TRIVIAL = prove (`!(f:A->B) G G'. group_homomorphism (G,G') f ==> (group_kernel(G,G') f = group_carrier G <=> group_image(G,G') f = {group_id G'})`, REPEAT GEN_TAC THEN REWRITE_TAC[group_homomorphism; group_image; group_kernel] THEN MP_TAC(ISPEC `G:A group` GROUP_ID) THEN SET_TAC[]);; let TRIVIAL_HOMOMORPHISM_GROUP_KERNEL = prove (`!(f:A->B) G G'. trivial_homomorphism(G,G') f <=> group_homomorphism(G,G') f /\ group_kernel(G,G') f = group_carrier G`, REPEAT GEN_TAC THEN REWRITE_TAC[trivial_homomorphism; group_kernel; group_homomorphism] THEN SET_TAC[]);; let TRIVIAL_HOMOMORPHISM_GROUP_IMAGE = prove (`!(f:A->B) G G'. trivial_homomorphism(G,G') f <=> group_homomorphism(G,G') f /\ group_image(G,G') f = {group_id G'}`, MESON_TAC[TRIVIAL_HOMOMORPHISM_GROUP_KERNEL; GROUP_KERNEL_IMAGE_TRIVIAL]);; let TRIVIAL_HOMOMORPHISM_TRIVIAL = prove (`!G H. trivial_homomorphism (G,H) (\x. group_id H)`, REWRITE_TAC[trivial_homomorphism; GROUP_HOMOMORPHISM_TRIVIAL]);; let GROUP_MONOMORPHISM_TRIVIAL = prove (`!G H. group_monomorphism (G,H) (\x. group_id H) <=> trivial_group G`, REWRITE_TAC[group_monomorphism; GROUP_HOMOMORPHISM_TRIVIAL] THEN REWRITE_TAC[TRIVIAL_GROUP_ALT] THEN SET_TAC[]);; let GROUP_EPIMORPHISM_TRIVIAL = prove (`!G H. group_epimorphism (G,H) (\x. group_id H) <=> trivial_group H`, REWRITE_TAC[group_epimorphism; GROUP_HOMOMORPHISM_TRIVIAL] THEN SIMP_TAC[GROUP_CARRIER_NONEMPTY; SET_RULE `~(s = {}) ==> IMAGE (\x. a) s = {a}`] THEN REWRITE_TAC[trivial_group; EQ_SYM_EQ]);; let GROUP_ISOMORPHISM_TRIVIAL = prove (`!G H. group_isomorphism (G,H) (\x. group_id H) <=> trivial_group G /\ trivial_group H`, REWRITE_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM] THEN REWRITE_TAC[GROUP_MONOMORPHISM_TRIVIAL; GROUP_EPIMORPHISM_TRIVIAL]);; (* ------------------------------------------------------------------------- *) (* The order of a group element. This is defined as 0 for the infinite case. *) (* This keeps theorems uniform and is analogous to "characteristic zero". *) (* That is, x^n = 1 iff n is divisible by the order of x, in all cases. *) (* ------------------------------------------------------------------------- *) let group_element_order = new_definition `group_element_order G (x:A) = @d. !n. group_pow G x n = group_id G <=> d divides n`;; let GROUP_POW_EQ_ID = prove (`!G (x:A) n. x IN group_carrier G ==> (group_pow G x n = group_id G <=> (group_element_order G x) divides n)`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[group_element_order] THEN CONV_TAC SELECT_CONV THEN ASM_CASES_TAC `!n. group_pow G (x:A) n = group_id G ==> n = 0` THENL [EXISTS_TAC `0` THEN REWRITE_TAC[NUMBER_RULE `0 divides n <=> n = 0`] THEN ASM_MESON_TAC[CONJUNCT1 group_pow]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_FORALL_THM])] THEN GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:num` THEN REWRITE_TAC[NOT_IMP; GSYM LT_NZ; TAUT `p ==> q ==> r <=> ~r /\ p ==> ~q`] THEN STRIP_TAC THEN X_GEN_TAC `n:num` THEN MP_TAC(SPECL [`n:num`; `d:num`] DIVISION) THEN ASM_REWRITE_TAC[GSYM LT_NZ] THEN DISCH_THEN(CONJUNCTS_THEN2 SUBST1_TAC ASSUME_TAC) THEN REWRITE_TAC[NUMBER_RULE `d divides (a * d + b) <=> d divides b`] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN ASM_SIMP_TAC[GROUP_POW_ADD; GROUP_POW_MUL; GROUP_POW_ID] THEN ASM_SIMP_TAC[GROUP_MUL_LID; GROUP_POW] THEN ASM_CASES_TAC `n MOD d = 0` THEN ASM_REWRITE_TAC[CONJUNCT1 group_pow; NUMBER_RULE `n divides 0`] THEN ASM_SIMP_TAC[LT_NZ] THEN DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN ASM_REWRITE_TAC[NOT_LE]);; let GROUP_POW_EQ_ID_DIVISOR = prove (`!G (x:A) m n. x IN group_carrier G /\ group_pow G x m = group_id G /\ m divides n ==> group_pow G x n = group_id G`, SIMP_TAC[IMP_CONJ; GROUP_POW_EQ_ID] THEN CONV_TAC NUMBER_RULE);; let GROUP_POW_ELEMENT_ORDER = prove (`!G x:A. x IN group_carrier G ==> group_pow G x (group_element_order G x) = group_id G`, SIMP_TAC[GROUP_POW_EQ_ID; NUMBER_RULE `(d:num) divides d`]);; let GROUP_ZPOW_EQ_ID = prove (`!G (x:A) n. x IN group_carrier G ==> (group_zpow G x n = group_id G <=> &(group_element_order G x) divides n)`, REPEAT STRIP_TAC THEN DISJ_CASES_THEN (X_CHOOSE_THEN `m:num` SUBST1_TAC) (SPEC `n:int` INT_IMAGE) THEN ASM_SIMP_TAC[GROUP_NPOW; GROUP_ZPOW_NEG; GROUP_INV_EQ_ID; GROUP_POW; GROUP_POW_EQ_ID] THEN REWRITE_TAC[INTEGER_RULE `m divides (--n:int) <=> m divides n`] THEN REWRITE_TAC[num_divides]);; let GROUP_ZPOW_EQ_ID_DIVISOR = prove (`!G (x:A) m n. x IN group_carrier G /\ group_zpow G x m = group_id G /\ m divides n ==> group_zpow G x n = group_id G`, SIMP_TAC[IMP_CONJ; GROUP_ZPOW_EQ_ID] THEN CONV_TAC INTEGER_RULE);; let GROUP_ZPOW_EQ_ALT = prove (`!G (x:A) m n. x IN group_carrier G ==> (group_zpow G x m = group_zpow G x n <=> &(group_element_order G x) divides n - m)`, SIMP_TAC[GSYM GROUP_ZPOW_EQ_ID; GROUP_ZPOW_SUB] THEN SIMP_TAC[GROUP_DIV_EQ_ID; GROUP_ZPOW] THEN MESON_TAC[]);; let GROUP_ZPOW_EQ = prove (`!G (x:A) m n. x IN group_carrier G ==> (group_zpow G x m = group_zpow G x n <=> (m == n) (mod &(group_element_order G x)))`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GROUP_ZPOW_EQ_ALT] THEN CONV_TAC INTEGER_RULE);; let GROUP_POW_EQ = prove (`!G (x:A) m n. x IN group_carrier G ==> (group_pow G x m = group_pow G x n <=> (m == n) (mod (group_element_order G x)))`, SIMP_TAC[GSYM GROUP_NPOW; GROUP_ZPOW_EQ; num_congruent]);; let GROUP_ELEMENT_ORDER_EQ_0 = prove (`!G (x:A). x IN group_carrier G ==> (group_element_order G x = 0 <=> !n. ~(n = 0) ==> ~(group_pow G x n = group_id G))`, SIMP_TAC[GROUP_POW_EQ_ID] THEN MESON_TAC [NUMBER_RULE `0 divides n <=> n = 0`; NUMBER_RULE `!n. n divides n`]);; let GROUP_ELEMENT_ORDER_UNIQUE = prove (`!G (x:A) d. x IN group_carrier G ==> (group_element_order G x = d <=> !n. group_pow G x n = group_id G <=> d divides n)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP GROUP_POW_EQ_ID) THEN EQ_TAC THENL [ASM_MESON_TAC[]; ASM_REWRITE_TAC[]] THEN MESON_TAC[DIVIDES_ANTISYM; NUMBER_RULE `(n:num) divides n`]);; let GROUP_ELEMENT_ORDER_EQ_1 = prove (`!G (x:A). x IN group_carrier G ==> (group_element_order G x = 1 <=> x = group_id G)`, SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE; NUMBER_RULE `1 divides n`] THEN MESON_TAC[GROUP_POW_ID; GROUP_POW_1]);; let GROUP_ELEMENT_ORDER_UNIQUE_PRIME = prove (`!G (x:A) p. x IN group_carrier G /\ prime p ==> (group_element_order G x = p <=> ~(x = group_id G) /\ group_pow G x p = group_id G)`, SIMP_TAC[GROUP_POW_EQ_ID; GSYM GROUP_ELEMENT_ORDER_EQ_1] THEN REWRITE_TAC[prime] THEN MESON_TAC[NUMBER_RULE `1 divides n /\ n divides n`]);; let GROUP_ELEMENT_ORDER_ID = prove (`!G:A group. group_element_order G (group_id G) = 1`, SIMP_TAC[GROUP_ELEMENT_ORDER_EQ_1; GROUP_ID]);; let GROUP_ELEMENT_ORDER_INV = prove (`!G x:A. x IN group_carrier G ==> group_element_order G (group_inv G x) = group_element_order G x`, SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE; GROUP_INV; GSYM GROUP_INV_POW] THEN SIMP_TAC[GROUP_INV_EQ_ID; GROUP_POW; GROUP_POW_EQ_ID]);; let GROUP_POW_GCD_EQ_ID = prove (`!G (x:A) m n. x IN group_carrier G ==> (group_pow G x (gcd(m,n)) = group_id G <=> group_pow G x m = group_id G /\ group_pow G x n = group_id G)`, SIMP_TAC[GROUP_POW_EQ_ID] THEN REPEAT STRIP_TAC THEN NUMBER_TAC);; let GROUP_POW_COPRIME_EQ_ID = prove (`!G (x:A) m n. x IN group_carrier G /\ coprime(m,n) ==> (group_pow G x m = group_id G /\ group_pow G x n = group_id G <=> x = group_id G)`, SIMP_TAC[GSYM GROUP_POW_GCD_EQ_ID; COPRIME_GCD; GROUP_POW_1]);; let FINITE_GROUP_ELEMENT_ORDER_NONZERO = prove (`!G x:A. FINITE(group_carrier G) /\ x IN group_carrier G ==> ~(group_element_order G x = 0)`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN REWRITE_TAC[GSYM INFINITE] THEN DISCH_TAC THEN MATCH_MP_TAC INFINITE_SUPERSET THEN EXISTS_TAC `IMAGE (\n. group_pow G (x:A) n) (:num)` THEN ASM_SIMP_TAC[SUBSET; FORALL_IN_IMAGE; GROUP_POW] THEN MATCH_MP_TAC INFINITE_IMAGE THEN ASM_SIMP_TAC[GROUP_POW_EQ; IN_UNIV; num_INFINITE] THEN CONV_TAC NUMBER_RULE);; let GROUP_ELEMENT_ORDER_POW = prove (`!G (x:A) k. x IN group_carrier G /\ ~(k = 0) /\ k divides group_element_order G x ==> group_element_order G (group_pow G x k) = group_element_order G x DIV k`, SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE; GROUP_POW; GSYM GROUP_POW_MUL] THEN SIMP_TAC[GROUP_POW_EQ_ID] THEN REWRITE_TAC[divides] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM SUBST1_TAC THEN ASM_SIMP_TAC[GSYM divides; DIV_MULT] THEN UNDISCH_TAC `~(k = 0)` THEN CONV_TAC NUMBER_RULE);; let GROUP_ELEMENT_ORDER_POW_GEN = prove (`!G (x:A) k. x IN group_carrier G ==> group_element_order G (group_pow G x k) = if k = 0 then 1 else group_element_order G x DIV gcd(group_element_order G x,k)`, REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[CONJUNCT1 group_pow; GROUP_ELEMENT_ORDER_ID] THEN ASM_SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE; GROUP_POW] THEN ASM_SIMP_TAC[GSYM GROUP_POW_MUL] THEN ASM_SIMP_TAC[GROUP_POW_EQ_ID] THEN X_GEN_TAC `n:num` THEN SPEC_TAC(`group_element_order G (x:A)`,`d:num`) THEN GEN_TAC THEN MP_TAC(NUMBER_RULE `gcd(d:num,k) divides d`) THEN GEN_REWRITE_TAC LAND_CONV [divides] THEN DISCH_THEN(X_CHOOSE_THEN `m:num` MP_TAC) THEN DISCH_THEN(fun th -> GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o LAND_CONV) [th] THEN MP_TAC(SYM th)) THEN ASM_SIMP_TAC[DIV_MULT; NUMBER_RULE `gcd(d,k) = 0 <=> d = 0 /\ k = 0`] THEN UNDISCH_TAC `~(k = 0)` THEN NUMBER_TAC);; let GROUP_ELEMENT_ORDER_MUL_DIVIDES_GEN = prove (`!G x (y:A) n. x IN group_carrier G /\ y IN group_carrier G /\ group_mul G x y = group_mul G y x /\ group_element_order G x divides n /\ group_element_order G y divides n ==> group_element_order G (group_mul G x y) divides n`, REPEAT GEN_TAC THEN SIMP_TAC[GSYM GROUP_POW_EQ_ID; IMP_CONJ; GROUP_MUL] THEN SIMP_TAC[GROUP_MUL_POW; GROUP_MUL_LID; GROUP_ID]);; let ABELIAN_GROUP_ELEMENT_ORDER_MUL_DIVIDES_GEN = prove (`!G x (y:A) n. abelian_group G /\ x IN group_carrier G /\ y IN group_carrier G /\ group_element_order G x divides n /\ group_element_order G y divides n ==> group_element_order G (group_mul G x y) divides n`, REWRITE_TAC[abelian_group] THEN MESON_TAC[GROUP_ELEMENT_ORDER_MUL_DIVIDES_GEN]);; let GROUP_ELEMENT_ORDER_MUL_DIVIDES_LCM = prove (`!G x (y:A). x IN group_carrier G /\ y IN group_carrier G /\ group_mul G x y = group_mul G y x ==> group_element_order G (group_mul G x y) divides lcm(group_element_order G x,group_element_order G y)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_ELEMENT_ORDER_MUL_DIVIDES_GEN THEN ASM_REWRITE_TAC[] THEN CONV_TAC NUMBER_RULE);; let ABELIAN_GROUP_ELEMENT_ORDER_MUL_DIVIDES_LCM = prove (`!G x (y:A). abelian_group G /\ x IN group_carrier G /\ y IN group_carrier G ==> group_element_order G (group_mul G x y) divides lcm(group_element_order G x,group_element_order G y)`, REWRITE_TAC[abelian_group] THEN MESON_TAC[GROUP_ELEMENT_ORDER_MUL_DIVIDES_LCM]);; let GROUP_ELEMENT_ORDER_HOMOMORPHIC_IMAGE = prove (`!G H (f:A->B) x. group_homomorphism(G,H) f /\ x IN group_carrier G ==> group_element_order H (f x) divides group_element_order G x`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o CONJUNCT1 o REWRITE_RULE[group_homomorphism]) THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN STRIP_TAC THEN ASM_SIMP_TAC[GSYM GROUP_POW_EQ_ID] THEN FIRST_ASSUM(MP_TAC o GSYM o MATCH_MP GROUP_HOMOMORPHISM_POW) THEN ASM_SIMP_TAC[GROUP_POW_ELEMENT_ORDER] THEN ASM_MESON_TAC[group_homomorphism]);; let GROUP_ELEMENT_ORDER_MONOMORPHIC_IMAGE = prove (`!(f:A->B) G H x. group_monomorphism(G,H) f /\ x IN group_carrier G ==> group_element_order H (f x) = group_element_order G x`, REWRITE_TAC[GROUP_MONOMORPHISM_ALT_EQ] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[group_element_order] THEN ASM_SIMP_TAC[GSYM GROUP_HOMOMORPHISM_POW; GROUP_POW]);; let ISOMORPHIC_GROUP_TORSION = prove (`!P (G:A group) (H:B group). G isomorphic_group H ==> ((!x. x IN group_carrier G ==> P(group_element_order G x)) <=> (!y. y IN group_carrier H ==> P(group_element_order H y)))`, REWRITE_TAC[isomorphic_group; GSYM GROUP_MONOMORPHISM_EPIMORPHISM] THEN REPEAT GEN_TAC THEN REWRITE_TAC[group_epimorphism] THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE] THEN ASM_MESON_TAC[GROUP_ELEMENT_ORDER_MONOMORPHIC_IMAGE]);; let GROUP_ELEMENT_ORDER_CONJUGATION = prove (`!G x y:A. x IN group_carrier G /\ y IN group_carrier G ==> group_element_order G (group_conjugation G x y) = group_element_order G y`, REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_ELEMENT_ORDER_MONOMORPHIC_IMAGE THEN ASM_REWRITE_TAC[ETA_AX] THEN ASM_MESON_TAC[GROUP_ISOMORPHISM_IMP_MONOMORPHISM; GROUP_AUTOMORPHISM_CONJUGATION; group_automorphism]);; let GROUP_ELEMENT_ORDER_MUL_DIVIDES = prove (`!G x y:A. x IN group_carrier G /\ y IN group_carrier G /\ group_mul G x y = group_mul G y x ==> group_element_order G (group_mul G x y) divides (group_element_order G x * group_element_order G y)`, REPEAT GEN_TAC THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN ASM_SIMP_TAC[GSYM GROUP_POW_EQ_ID; GROUP_MUL] THEN ASM_SIMP_TAC[GROUP_MUL_POW] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o RAND_CONV) [MULT_SYM] THEN ASM_SIMP_TAC[GROUP_POW_MUL; GROUP_POW_ELEMENT_ORDER] THEN SIMP_TAC[GROUP_POW_ID; GROUP_MUL_LID; GROUP_ID]);; let ABELIAN_GROUP_ELEMENT_ORDER_MUL_DIVIDES = prove (`!G x y:A. abelian_group G /\ x IN group_carrier G /\ y IN group_carrier G ==> group_element_order G (group_mul G x y) divides (group_element_order G x * group_element_order G y)`, MESON_TAC[GROUP_ELEMENT_ORDER_MUL_DIVIDES; abelian_group]);; let GROUP_POW_MUL_EQ_ID_SYM = prove (`!G n x y:A. x IN group_carrier G /\ y IN group_carrier G ==> (group_pow G (group_mul G x y) n = group_id G <=> group_pow G (group_mul G y x) n = group_id G)`, REPEAT STRIP_TAC THEN TRANS_TAC EQ_TRANS `group_mul G (group_inv G x) (group_mul G (group_pow G (group_mul G x y) n) x):A = group_id G` THEN CONJ_TAC THENL [ASM_SIMP_TAC[GROUP_MUL; GROUP_POW; GROUP_RULE `group_mul G (group_inv G x) (group_mul G z x) = group_id G <=> z = group_id G`]; AP_THM_TAC THEN AP_TERM_TAC] THEN SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN ASM_SIMP_TAC[group_pow; GROUP_MUL_LID; GROUP_MUL_LINV] THEN ASM_SIMP_TAC[GROUP_POW; GROUP_MUL; GROUP_RULE `group_mul G (group_inv G x) (group_mul G (group_mul G (group_mul G x y) z) x) = group_mul G (group_mul G y x) (group_mul G (group_inv G x) (group_mul G z x))`]);; let GROUP_ELEMENT_ORDER_MUL_SYM = prove (`!G x y:A. x IN group_carrier G /\ y IN group_carrier G ==> group_element_order G (group_mul G x y) = group_element_order G (group_mul G y x)`, REPEAT STRIP_TAC THEN REWRITE_TAC[group_element_order] THEN AP_TERM_TAC THEN ABS_TAC THEN ASM_MESON_TAC[GROUP_POW_MUL_EQ_ID_SYM]);; let GROUP_ELEMENT_ORDER_UNIQUE_ALT = prove (`!G (x:A) n. x IN group_carrier G /\ ~(n = 0) ==> (group_element_order G x = n <=> group_pow G x n = group_id G /\ !m. 0 < m /\ m < n ==> ~(group_pow G x m = group_id G))`, REPEAT STRIP_TAC THEN EQ_TAC THENL [DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_SIMP_TAC[GROUP_POW_ELEMENT_ORDER] THEN ASM_SIMP_TAC[GROUP_POW_EQ_ID] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE) THEN ASM_ARITH_TAC; STRIP_TAC THEN ASM_SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE] THEN X_GEN_TAC `m:num` THEN EQ_TAC THEN DISCH_TAC THENL [UNDISCH_TAC `group_pow G (x:A) m = group_id G` THEN FIRST_ASSUM(MP_TAC o SPEC `m:num` o MATCH_MP DIVISION) THEN DISCH_THEN(CONJUNCTS_THEN2 SUBST1_TAC ASSUME_TAC) THEN ASM_SIMP_TAC[GROUP_POW_ADD; NUMBER_RULE `(n:num) divides (q * n + r) <=> n divides r`] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN ASM_SIMP_TAC[GROUP_POW_MUL; GROUP_POW_ID; GROUP_MUL_LID; GROUP_POW] THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[LE_1; NUMBER_RULE `n divides 0`]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [divides]) THEN ASM_SIMP_TAC[LEFT_IMP_EXISTS_THM; GROUP_POW_MUL; GROUP_POW_ID]]]);; let GROUP_ELEMENT_ORDER_EQ_2 = prove (`!G x:A. x IN group_carrier G ==> (group_element_order G x = 2 <=> ~(x = group_id G) /\ group_pow G x 2 = group_id G)`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE_ALT; ARITH] THEN REWRITE_TAC[ARITH_RULE `0 < m /\ m < 2 <=> m = 1`] THEN ASM_SIMP_TAC[GROUP_POW_1] THEN MESON_TAC[]);; let GROUP_ELEMENT_ORDER_EQ_2_ALT = prove (`!G x:A. x IN group_carrier G ==> (group_element_order G x = 2 <=> ~(x = group_id G) /\ group_inv G x = x)`, SIMP_TAC[GROUP_ELEMENT_ORDER_EQ_2; GROUP_LINV_EQ; GROUP_POW_2]);; let GROUP_ELEMENT_ORDER_POW_DIVIDES = prove (`!G (x:A) n. x IN group_carrier G ==> group_element_order G (group_pow G x n) divides group_element_order G x`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GSYM GROUP_POW_EQ_ID; GROUP_POW] THEN ASM_SIMP_TAC[GROUP_POW_POW] THEN ASM_SIMP_TAC[GROUP_POW_EQ_ID] THEN CONV_TAC NUMBER_RULE);; let GROUP_ELEMENT_ORDER_MUL_EQ = prove (`!G x y:A. x IN group_carrier G /\ y IN group_carrier G /\ group_mul G x y = group_mul G y x /\ coprime(group_element_order G x,group_element_order G y) ==> group_element_order G (group_mul G x y) = group_element_order G x * group_element_order G y`, REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM DIVIDES_ANTISYM] THEN ASM_SIMP_TAC[GROUP_ELEMENT_ORDER_MUL_DIVIDES] THEN MATCH_MP_TAC(NUMBER_RULE `(a:num) divides (b * c) /\ b divides (a * c) /\ coprime(a,b) ==> (a * b) divides c`) THEN ASM_SIMP_TAC[GSYM GROUP_POW_EQ_ID] THEN MATCH_MP_TAC(MESON[] `(group_mul G (group_pow G x m) (group_pow G y m) = group_pow G x m /\ group_mul G (group_pow G x n) (group_pow G y n) = group_pow G y n) /\ (group_mul G (group_pow G x m) (group_pow G y m) = group_id G /\ group_mul G (group_pow G x n) (group_pow G y n) = group_id G) ==> group_pow G x m = group_id G /\ group_pow G y n = group_id G`) THEN CONJ_TAC THENL [ASM_SIMP_TAC[GROUP_POW_MUL; GROUP_POW_ELEMENT_ORDER; GROUP_POW_ID] THEN ASM_SIMP_TAC[GROUP_MUL_LID; GROUP_MUL_RID; GROUP_POW]; ASM_SIMP_TAC[GSYM GROUP_MUL_POW] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN ASM_SIMP_TAC[GROUP_POW_MUL; GROUP_MUL; GROUP_POW_ELEMENT_ORDER] THEN REWRITE_TAC[GROUP_POW_ID]]);; let GROUP_ELEMENT_ORDER_EQ_MUL_GEN = prove (`!G (x:A) k n. x IN group_carrier G /\ ~(k = 0) ==> (group_element_order G x = k * n <=> k divides group_element_order G x /\ group_element_order G (group_pow G x k) = n)`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GROUP_ELEMENT_ORDER_POW_GEN] THEN MATCH_MP_TAC(TAUT `(p ==> q) /\ (q ==> (p <=> r)) ==> (p <=> q /\ r)`) THEN CONJ_TAC THENL [CONV_TAC NUMBER_RULE; SIMP_TAC[DIVIDES_GCD_RIGHT]] THEN REWRITE_TAC[GSYM DIVIDES_GCD_RIGHT] THEN DISCH_TAC THEN MATCH_MP_TAC(NUM_RING `~(k = 0) /\ x' * k = x ==> (x = k * n <=> x' = n)`) THEN ASM_SIMP_TAC[GSYM DIVIDES_DIV_MULT]);; let GROUP_ELEMENT_ORDER_EQ_MUL = prove (`!G (x:A) k n. x IN group_carrier G /\ ~(k = 0) /\ k divides n ==> (group_element_order G x = k * n <=> group_element_order G (group_pow G x k) = n)`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GROUP_ELEMENT_ORDER_EQ_MUL_GEN] THEN ASM_MESON_TAC[GROUP_ELEMENT_ORDER_POW_DIVIDES; DIVIDES_TRANS]);; let ABELIAN_GROUP_ELEMENT_ORDER_MUL_EQ = prove (`!G x y:A. abelian_group G /\ x IN group_carrier G /\ y IN group_carrier G /\ coprime(group_element_order G x,group_element_order G y) ==> group_element_order G (group_mul G x y) = group_element_order G x * group_element_order G y`, REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_ELEMENT_ORDER_MUL_EQ THEN ASM_MESON_TAC[abelian_group]);; let GROUP_ELEMENT_ORDER_LCM_EXISTS = prove (`!G x y:A. x IN group_carrier G /\ y IN group_carrier G /\ group_mul G x y = group_mul G y x ==> ?z. z IN group_carrier G /\ group_element_order G z = lcm(group_element_order G x,group_element_order G y)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `group_element_order G (x:A) = 0` THENL [ASM_MESON_TAC[LCM_0]; ALL_TAC] THEN ASM_CASES_TAC `group_element_order G (y:A) = 0` THENL [ASM_MESON_TAC[LCM_0]; ALL_TAC] THEN MP_TAC(SPECL [`group_element_order G (x:A)`; `group_element_order G (y:A)`] LCM_COPRIME_DECOMP) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN REWRITE_TAC[divides; IMP_CONJ; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `m':num` THEN DISCH_TAC THEN X_GEN_TAC `n':num` THEN DISCH_TAC THEN DISCH_TAC THEN DISCH_THEN(fun th -> SUBST1_TAC(SYM th) THEN ASSUME_TAC(SYM th)) THEN EXISTS_TAC `group_mul G (group_pow G x m') (group_pow G y n'):A` THEN ASM_SIMP_TAC[GROUP_MUL; GROUP_POW] THEN SUBGOAL_THEN `group_element_order G (group_pow G (x:A) m') = m /\ group_element_order G (group_pow G (y:A) n') = n` STRIP_ASSUME_TAC THENL [ASM_SIMP_TAC[GROUP_ELEMENT_ORDER_POW_GEN] THEN CONJ_TAC THEN (COND_CASES_TAC THENL [ASM_MESON_TAC[MULT_CLAUSES]; ALL_TAC]) THEN REWRITE_TAC[NUMBER_RULE `gcd(a * b:num,a) = a /\ gcd(a * b,b) = b`] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN ASM_SIMP_TAC[DIV_MULT]; W(MP_TAC o PART_MATCH (lhand o rand) GROUP_ELEMENT_ORDER_MUL_EQ o lhand o snd) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[GROUP_POW] THEN MATCH_MP_TAC GROUP_COMMUTES_POW THEN ASM_SIMP_TAC[GROUP_POW] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC GROUP_COMMUTES_POW THEN ASM_REWRITE_TAC[]]);; let ABELIAN_GROUP_ELEMENT_ORDER_LCM_EXISTS = prove (`!G x y:A. abelian_group G /\ x IN group_carrier G /\ y IN group_carrier G ==> ?z. z IN group_carrier G /\ group_element_order G z = lcm(group_element_order G x,group_element_order G y)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_ELEMENT_ORDER_LCM_EXISTS THEN ASM_MESON_TAC[abelian_group]);; let ABELIAN_GROUP_ORDER_DIVIDES_MAXIMAL = prove (`!G:A group. abelian_group G /\ FINITE(group_carrier G) ==> ?x. x IN group_carrier G /\ !y. y IN group_carrier G ==> group_element_order G y divides group_element_order G x`, REPEAT STRIP_TAC THEN MP_TAC(fst(EQ_IMP_RULE(ISPEC `IMAGE (group_element_order G) (group_carrier G:A->bool)` num_MAX))) THEN REWRITE_TAC[MESON[IN] `IMAGE f s x <=> x IN IMAGE f s`] THEN ASM_SIMP_TAC[GSYM num_FINITE; FINITE_IMAGE] THEN REWRITE_TAC[MEMBER_NOT_EMPTY; IMAGE_EQ_EMPTY; GROUP_CARRIER_NONEMPTY] THEN REWRITE_TAC[EXISTS_IN_IMAGE; FORALL_IN_IMAGE] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `z:A` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `y:A` THEN DISCH_TAC THEN REWRITE_TAC[DIVIDES_LCM_LEFT] THEN REWRITE_TAC[GSYM LE_ANTISYM] THEN CONJ_TAC THENL [ASM_MESON_TAC[ABELIAN_GROUP_ELEMENT_ORDER_LCM_EXISTS]; ASM_MESON_TAC[DIVIDES_LE; LCM; FINITE_GROUP_ELEMENT_ORDER_NONZERO; LCM_ZERO]]);; let ABELIAN_GROUP_ELEMENT_ORDER_DIVIDES_MAXIMAL_ALT = prove (`!G:A group. abelian_group G /\ FINITE(group_carrier G) ==> ?x. x IN group_carrier G /\ !y. y IN group_carrier G ==> group_pow G y (group_element_order G x) = group_id G`, SIMP_TAC[GROUP_POW_EQ_ID] THEN REWRITE_TAC[ABELIAN_GROUP_ORDER_DIVIDES_MAXIMAL]);; let GROUP_ELEMENT_ORDER_SUBGROUP_GENERATED = prove (`!G h x:A. group_element_order (subgroup_generated G h) x = group_element_order G x`, REWRITE_TAC[group_element_order; GROUP_POW_SUBGROUP_GENERATED; SUBGROUP_GENERATED]);; let GROUP_ELEMENT_ORDER_PROD_GROUP = prove (`!(G:A group) (H:B group) x y. x IN group_carrier G /\ y IN group_carrier H ==> group_element_order (prod_group G H) (x,y) = lcm(group_element_order G x,group_element_order H y)`, SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE; PROD_GROUP; IN_CROSS] THEN SIMP_TAC[GROUP_POW_PROD_GROUP; PAIR_EQ; GROUP_POW_EQ_ID] THEN CONV_TAC NUMBER_RULE);; let GROUP_ELEMENT_ORDER_PROD_GROUP_ALT = prove (`!(G:A group) (H:B group) z. z IN group_carrier(prod_group G H) ==> group_element_order (prod_group G H) z = lcm(group_element_order G (FST z),group_element_order H (SND z))`, REWRITE_TAC[FORALL_PAIR_THM; PROD_GROUP; IN_CROSS] THEN REWRITE_TAC[GROUP_ELEMENT_ORDER_PROD_GROUP]);; let GROUP_ELEMENT_ORDER_SUM_GROUP = prove (`!(G:K->A group) k x. x IN group_carrier(sum_group k G) ==> (group_element_order (sum_group k G) x = iterate (\m n. lcm(m,n)) k (\i. group_element_order (G i) (x i)))`, SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE] THEN REWRITE_TAC[GROUP_POW_SUM_GROUP; SUM_GROUP_CLAUSES] THEN REPEAT GEN_TAC THEN REWRITE_TAC[IN_CARTESIAN_PRODUCT; IN_ELIM_THM] THEN STRIP_TAC THEN X_GEN_TAC `n:num` THEN REWRITE_TAC[RESTRICTION_EXTENSION] THEN ASM_SIMP_TAC[ITERATE_LCM_DIVIDES_GEN; GSYM GROUP_POW_EQ_ID] THEN MATCH_MP_TAC(TAUT `q ==> (p <=> q ==> p)`) THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN ASM_SIMP_TAC[GSYM GROUP_ELEMENT_ORDER_EQ_1]);; let GROUP_ELEMENT_ORDER_SUM_GROUP_EQ_0 = prove (`!G k (x:K->A). x IN group_carrier (sum_group k G) ==> (group_element_order (sum_group k G) x = 0 <=> ?i. i IN k /\ group_element_order (G i) (x i) = 0)`, SIMP_TAC[GROUP_ELEMENT_ORDER_SUM_GROUP; ITERATE_LCM_EQ_0_GEN] THEN REWRITE_TAC[SUM_GROUP_CLAUSES; IN_ELIM_THM; IN_CARTESIAN_PRODUCT] THEN REPEAT GEN_TAC THEN MATCH_MP_TAC(TAUT `(q ==> r ==> s) ==> (p /\ q) /\ r ==> (s /\ t <=> t)`) THEN DISCH_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN ASM_SIMP_TAC[SUBSET; GSYM GROUP_ELEMENT_ORDER_EQ_1; IN_ELIM_THM]);; let GROUP_ELEMENT_ORDER_COPRIME_DECOMP_EXPLICIT = prove (`!G (x:A) m n. coprime(m,n) /\ x IN group_carrier G /\ group_element_order G x = m * n ==> ?r s. group_element_order G (group_zpow G x r) = m /\ group_element_order G (group_zpow G x s) = n /\ group_mul G (group_zpow G x r) (group_zpow G x s) = x`, REWRITE_TAC[num_coprime] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP (INTEGER_RULE `!m n:int. coprime(m,n) ==> ?a b. b * n + a * m = &1`)) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a:int`; `b:int`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`b * &n:int`; `a * &m:int`] THEN ASM_SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE; GROUP_ZPOW] THEN ASM_SIMP_TAC[GSYM GROUP_NPOW; GSYM GROUP_ZPOW_MUL] THEN ASM_SIMP_TAC[GSYM GROUP_ZPOW_ADD; GROUP_ZPOW_1] THEN ASM_SIMP_TAC[GROUP_ZPOW_EQ_ID; GSYM INT_MUL_ASSOC] THEN REWRITE_TAC[num_divides; GSYM INT_OF_NUM_MUL] THEN MAP_EVERY UNDISCH_TAC [`b * &n + a * &m:int = &1`; `coprime(&m:int,&n)`] THEN INTEGER_TAC);; let GROUP_ELEMENT_ORDER_COPRIME_DECOMP_UNIQUE = prove (`!G (z:A) m n. coprime(m,n) /\ z IN group_carrier G /\ group_element_order G z = m * n ==> ?!(x,y). x IN group_carrier G /\ y IN group_carrier G /\ group_mul G x y = z /\ group_mul G y x = z /\ group_element_order G x = m /\ group_element_order G y = n`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM (MP_TAC o MATCH_MP GROUP_ELEMENT_ORDER_COPRIME_DECOMP_EXPLICIT) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; EXISTS_UNIQUE; LAMBDA_PAIR] THEN MAP_EVERY X_GEN_TAC [`r:int`; `s:int`] THEN STRIP_TAC THEN REWRITE_TAC[EXISTS_PAIR_THM; FORALL_PAIR_THM] THEN MAP_EVERY EXISTS_TAC [`group_zpow G (z:A) r`; `group_zpow G (z:A) s`] THEN ASM_SIMP_TAC[GROUP_ZPOW; PAIR_EQ] THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [ASM_MESON_TAC[GROUP_ZPOW_ADD; INT_ADD_SYM]; DISCH_TAC] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN SUBGOAL_THEN `group_mul G (group_inv G x:A) (group_zpow G z r) = group_id G /\ group_mul G y (group_inv G (group_zpow G z s)) = group_id G` MP_TAC THENL [MATCH_MP_TAC(MESON[GROUP_POW_COPRIME_EQ_ID] `coprime(m,n) /\ x IN group_carrier G /\ y IN group_carrier G /\ x = y /\ group_pow G x m = group_id G /\ group_pow G y n = group_id G ==> x = group_id G /\ y = group_id G`); MATCH_MP_TAC MONO_AND THEN CONJ_TAC THEN GROUP_TAC THEN ASM_SIMP_TAC[GROUP_ZPOW]] THEN ASM_SIMP_TAC[GROUP_MUL; GROUP_INV; GROUP_ZPOW; GROUP_RULE `group_mul G (group_inv G x') x = group_mul G y' (group_inv G y) <=> group_mul G x y = group_mul G x' y'`] THEN CONJ_TAC THEN (W(MP_TAC o PART_MATCH (lhand o rand) GROUP_MUL_POW o lhand o snd) THEN ANTS_TAC THENL [ASM_MESON_TAC[GROUP_COMMUTES_ZPOW; GROUP_COMMUTES_INV; GROUP_INV; GROUP_ZPOW; GROUP_MUL_ASSOC]; DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC(MESON[GROUP_MUL_LID; GROUP_ID] `x = group_id G /\ y = group_id G ==> group_mul G x y = group_id G`) THEN ASM_SIMP_TAC[GROUP_POW_EQ_ID; GROUP_ZPOW; GROUP_INV; GROUP_ELEMENT_ORDER_INV; DIVIDES_REFL]]));; let GROUP_ELEMENT_ORDER_COPRIME_DECOMP = prove (`!G (z:A) m n. coprime(m,n) /\ z IN group_carrier G /\ group_element_order G z = m * n ==> ?x y. x IN group_carrier G /\ y IN group_carrier G /\ group_mul G x y = z /\ group_mul G y x = z /\ group_element_order G x = m /\ group_element_order G y = n`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP GROUP_ELEMENT_ORDER_COPRIME_DECOMP_UNIQUE) THEN REWRITE_TAC[EXISTS_UNIQUE_THM; LAMBDA_PAIR] THEN DISCH_THEN(MP_TAC o CONJUNCT1) THEN REWRITE_TAC[EXISTS_PAIR_THM]);; let GROUP_ELEMENT_ORDER_COPRIME_DECOMP_DIVIDES = prove (`!G (z:A) m n. coprime(m,n) /\ z IN group_carrier G /\ group_element_order G z divides m * n ==> ?x y. x IN group_carrier G /\ y IN group_carrier G /\ group_mul G x y = z /\ group_mul G y x = z /\ group_element_order G x divides m /\ group_element_order G y divides n`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`G:A group`; `z:A`; `gcd(group_element_order G (z:A),m)`; `gcd(group_element_order G (z:A),n)`] GROUP_ELEMENT_ORDER_COPRIME_DECOMP) THEN ASM_SIMP_TAC[NUMBER_RULE `coprime(m:num,n) ==> coprime(gcd(d,m),gcd(d,n))`] THEN ASM_SIMP_TAC[NUMBER_RULE `coprime(m:num,n) /\ d divides m * n ==> gcd(d,m) * gcd(d,n) = d`] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN STRIP_TAC THEN ASM_REWRITE_TAC[GCD]);; let GROUP_POW_EQ_ID_DECOMP = prove (`!G (z:A) m n. coprime(m,n) /\ z IN group_carrier G /\ group_pow G z (m * n) = group_id G ==> ?x y. x IN group_carrier G /\ y IN group_carrier G /\ group_mul G x y = z /\ group_mul G y x = z /\ group_pow G x m = group_id G /\ group_pow G y n = group_id G`, METIS_TAC[GROUP_ELEMENT_ORDER_COPRIME_DECOMP_DIVIDES; GROUP_POW_EQ_ID]);; let GROUP_ELEMENT_ORDER_PRIMEPOW_DECOMP = prove (`!G (z:A) p. prime p /\ z IN group_carrier G /\ ~(group_element_order G z = 0) ==> ?x y. x IN group_carrier G /\ y IN group_carrier G /\ group_mul G x y = z /\ group_mul G y x = z /\ (?k. group_element_order G x = p EXP k) /\ coprime(p,group_element_order G y)`, REPEAT STRIP_TAC THEN MP_TAC(SPECL [`group_element_order G (z:A)`; `p:num`] INDEX_DECOMPOSITION) THEN ABBREV_TAC `k = index p (group_element_order G (z:A))` THEN ASM_SIMP_TAC[MESON[PRIME_1] `prime p ==> ~(p = 1)`] THEN DISCH_THEN(X_CHOOSE_THEN `n:num` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`G:A group`; `z:A`; `p EXP k`; `n:num`] GROUP_ELEMENT_ORDER_COPRIME_DECOMP) THEN ASM_REWRITE_TAC[COPRIME_LEXP] THEN ASM_MESON_TAC[PRIME_COPRIME_EQ]);; (* ------------------------------------------------------------------------- *) (* Torsion subgroups in various generalized forms are indeed subgroups. *) (* ------------------------------------------------------------------------- *) let SUBGROUP_OF_TORSION_GENERAL = prove (`!P G:A group. abelian_group G /\ P 1 /\ (!m n p. p divides lcm(m,n) /\ P m /\ P n ==> P p) ==> {x | x IN group_carrier G /\ P(group_element_order G x)} subgroup_of G`, REPEAT STRIP_TAC THEN REWRITE_TAC[subgroup_of; SUBSET; IN_ELIM_THM] THEN SIMP_TAC[GROUP_ELEMENT_ORDER_ID; GROUP_ID; GROUP_INV; GROUP_MUL] THEN ASM_SIMP_TAC[ARITH_EQ; GROUP_ELEMENT_ORDER_INV] THEN REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[GSYM IMP_CONJ_ALT; GSYM DE_MORGAN_THM] THEN FIRST_X_ASSUM (MATCH_MP_TAC o ONCE_REWRITE_RULE[IMP_CONJ]) THEN ASM_SIMP_TAC[ABELIAN_GROUP_ELEMENT_ORDER_MUL_DIVIDES_LCM]);; let SUBGROUP_OF_TORSION_GEN = prove (`!P G:A group. abelian_group G /\ P 1 /\ (!m n p. p divides m * n /\ P m /\ P n ==> P p) ==> {x | x IN group_carrier G /\ P(group_element_order G x)} subgroup_of G`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBGROUP_OF_TORSION_GENERAL THEN ASM_REWRITE_TAC[] THEN REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN FIRST_X_ASSUM (MATCH_MP_TAC o ONCE_REWRITE_RULE[IMP_CONJ]) THEN ASM_MESON_TAC[LCM_DIVIDES_MUL; DIVIDES_TRANS]);; let SUBGROUP_OF_TORSION = prove (`!G:A group. abelian_group G ==> {x | x IN group_carrier G /\ ~(group_element_order G x = 0)} subgroup_of G`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBGROUP_OF_TORSION_GEN THEN ASM_REWRITE_TAC[ARITH_EQ] THEN CONV_TAC NUMBER_RULE);; let SUBGROUP_OF_PRIMES_TORSION = prove (`!(G:A group) Q. abelian_group G ==> {x | x IN group_carrier G /\ !p. prime p /\ p divides group_element_order G x ==> Q p} subgroup_of G`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBGROUP_OF_TORSION_GEN THEN ASM_MESON_TAC[DIVIDES_TRANS; PRIME_DIVPROD; DIVIDES_ONE; PRIME_1]);; let SUBGROUP_OF_PRIME_TORSION = prove (`!(G:A group) p. abelian_group G /\ prime p ==> {x | x IN group_carrier G /\ ?k. group_element_order G x = p EXP k} subgroup_of G`, SIMP_TAC[PRIME_POWER_EXISTS; SUBGROUP_OF_PRIMES_TORSION]);; let SUBGROUP_OF_LOWER_ORDER = prove (`!(G:A group) n. abelian_group G ==> {x | x IN group_carrier G /\ group_element_order G x divides n} subgroup_of G`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBGROUP_OF_TORSION_GENERAL THEN ASM_REWRITE_TAC[GSYM LCM_DIVIDES; DIVIDES_TRANS] THEN CONV_TAC NUMBER_RULE);; let SUBGROUP_OF_LOWER_ORDER_ALT = prove (`!(G:A group) n. abelian_group G ==> {x | x IN group_carrier G /\ group_pow G x n = group_id G} subgroup_of G`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o SPEC `n:num` o MATCH_MP SUBGROUP_OF_LOWER_ORDER) THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN ASM_MESON_TAC[GROUP_POW_EQ_ID]);; let SUBGROUP_OF_NONDIVISIBLE_ORDER = prove (`!(G:A group) p. abelian_group G /\ prime p ==> {x | x IN group_carrier G /\ ~(p divides group_element_order G x)} subgroup_of G`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBGROUP_OF_TORSION_GEN THEN ASM_SIMP_TAC[DIVIDES_ONE; MESON[PRIME_1] `prime p ==> ~(p = 1)`] THEN ASM_MESON_TAC[PRIME_DIVPROD_EQ; DIVIDES_TRANS]);; let SUBGROUP_OF_COPRIME_ORDER = prove (`!(G:A group) n. abelian_group G ==> {x | x IN group_carrier G /\ coprime(n,group_element_order G x)} subgroup_of G`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBGROUP_OF_TORSION_GEN THEN ASM_REWRITE_TAC[] THEN CONV_TAC NUMBER_RULE);; let TORSION_FREE_GROUP = prove (`!G:A group. (!x. x IN group_carrier G ==> group_element_order G x <= 1) <=> (!x. x IN group_carrier G /\ ~(x = group_id G) ==> group_element_order G x = 0)`, REWRITE_TAC[ARITH_RULE `n <= 1 <=> n = 0 \/ n = 1`] THEN SIMP_TAC[GROUP_ELEMENT_ORDER_EQ_1] THEN MESON_TAC[]);; let TORSION_FREE_GROUP_ALT = prove (`!G:A group. (!x. x IN group_carrier G ==> group_element_order G x <= 1) <=> (!x n. x IN group_carrier G /\ group_pow G x n = group_id G ==> x = group_id G \/ n = 0)`, SIMP_TAC[TORSION_FREE_GROUP; GROUP_ELEMENT_ORDER_EQ_0] THEN MESON_TAC[]);; let QUOTIENT_GROUP_POW_EQ_ID = prove (`!(G:A group) n x k. n normal_subgroup_of G /\ x IN group_carrier G ==> (group_pow (quotient_group G n) (right_coset G n x) k = group_id (quotient_group G n) <=> group_pow G x k IN n)`, SIMP_TAC[QUOTIENT_GROUP_POW; QUOTIENT_GROUP] THEN SIMP_TAC[RIGHT_COSET_EQ_SUBGROUP; GROUP_POW; NORMAL_SUBGROUP_IMP_SUBGROUP]);; let TORSION_FREE_QUOTIENT_GROUP = prove (`!(G:A group) H. abelian_group G /\ quotient_group G {x | x IN group_carrier G /\ ~(group_element_order G x = 0)} = H ==> !x. x IN group_carrier H ==> group_element_order H x <= 1`, REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[TORSION_FREE_GROUP] THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN SIMP_TAC[GROUP_ELEMENT_ORDER_EQ_0] THEN ASM_SIMP_TAC[QUOTIENT_GROUP_POW; QUOTIENT_GROUP; FORALL_IN_GSPEC; ABELIAN_GROUP_NORMAL_SUBGROUP; SUBGROUP_OF_TORSION; RIGHT_COSET_EQ_SUBGROUP; GROUP_POW] THEN SIMP_TAC[IN_ELIM_THM; GROUP_POW; GROUP_ELEMENT_ORDER_EQ_0] THEN SIMP_TAC[GROUP_POW_POW] THEN MESON_TAC[MULT_EQ_0]);; let IMAGE_GROUP_CONJUGATION_TORSION_GEN = prove (`!G P a:A. a IN group_carrier G ==> IMAGE (group_conjugation G a) {x | x IN group_carrier G /\ P(group_element_order G x)} = {x | x IN group_carrier G /\ P(group_element_order G x)}`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(SET_RULE `!g. (!x. x IN s ==> f x IN s /\ g(f x) = x) /\ (!x. x IN s ==> g x IN s /\ f(g x) = x) ==> IMAGE f s = s`) THEN EXISTS_TAC `group_conjugation G (group_inv G a:A)` THEN ASM_SIMP_TAC[IN_ELIM_THM; GROUP_ELEMENT_ORDER_CONJUGATION; GROUP_CONJUGATION; GROUP_CONJUGATION_LINV; GROUP_CONJUGATION_RINV; GROUP_INV]);; let NORMAL_SUBGROUP_OF_TORSION_GEN = prove (`!P G:A group. {x | x IN group_carrier G /\ P(group_element_order G x)} normal_subgroup_of G <=> {x | x IN group_carrier G /\ P(group_element_order G x)} subgroup_of G`, GEN_TAC THEN REWRITE_TAC[NORMAL_SUBGROUP_CONJUGATION_EQ] THEN ASM_SIMP_TAC[IMAGE_GROUP_CONJUGATION_TORSION_GEN]);; let NORMAL_SUBGROUP_OF_TORSION = prove (`!G:A group. {x | x IN group_carrier G /\ ~(group_element_order G x = 0)} normal_subgroup_of G <=> {x | x IN group_carrier G /\ ~(group_element_order G x = 0)} subgroup_of G`, REWRITE_TAC[NORMAL_SUBGROUP_OF_TORSION_GEN]);; (* ------------------------------------------------------------------------- *) (* Cyclic groups. *) (* ------------------------------------------------------------------------- *) let SUBGROUP_OF_POWERS = prove (`!G (x:A). x IN group_carrier G ==> {group_zpow G x n | n IN (:int)} subgroup_of G`, REWRITE_TAC[subgroup_of; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[SUBSET; FORALL_IN_GSPEC; IN_UNIV] THEN SIMP_TAC[GROUP_ZPOW; GSYM GROUP_ZPOW_ADD; GSYM GROUP_ZPOW_NEG] THEN REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[GROUP_NPOW; group_pow]);; let CARRIER_SUBGROUP_GENERATED_BY_SING = prove (`!G x:A. x IN group_carrier G ==> group_carrier(subgroup_generated G {x}) = {group_zpow G x n | n IN (:int)}`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [MATCH_MP_TAC SUBGROUP_GENERATED_MINIMAL THEN ASM_SIMP_TAC[SUBGROUP_OF_POWERS; SING_SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[GROUP_ZPOW_1; IN_UNIV]; MP_TAC(ISPECL [`G:A group`; `{x:A}`] SUBGROUP_SUBGROUP_GENERATED) THEN REWRITE_TAC[subgroup_of; SUBSET; FORALL_IN_GSPEC; IN_UNIV] THEN STRIP_TAC THEN X_GEN_TAC `n:int` THEN DISJ_CASES_THEN MP_TAC(SPEC `n:int` INT_IMAGE) THEN DISCH_THEN(X_CHOOSE_THEN `m:num` SUBST1_TAC) THEN ASM_SIMP_TAC[GROUP_ZPOW_NEG; GROUP_NPOW] THEN TRY(FIRST_X_ASSUM MATCH_MP_TAC) THEN SPEC_TAC(`m:num`,`m:num`) THEN INDUCT_TAC THEN ASM_SIMP_TAC[group_pow] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM SING_SUBSET] THEN MATCH_MP_TAC SUBGROUP_GENERATED_SUBSET_CARRIER_SUBSET THEN ASM_REWRITE_TAC[SING_SUBSET]]);; let cyclic_group = new_definition `cyclic_group G <=> ?x. x IN group_carrier G /\ subgroup_generated G {x} = G`;; let CYCLIC_GROUP = prove (`!G:A group. cyclic_group G <=> ?x. x IN group_carrier G /\ group_carrier G = {group_zpow G x n | n IN (:int)}`, GEN_TAC THEN REWRITE_TAC[cyclic_group] THEN MATCH_MP_TAC(MESON[] `(!x. P x ==> (Q x <=> R x)) ==> ((?x. P x /\ Q x) <=> (?x. P x /\ R x))`) THEN SIMP_TAC[GSYM CARRIER_SUBGROUP_GENERATED_BY_SING] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[GROUPS_EQ; CONJUNCT2 SUBGROUP_GENERATED] THEN MESON_TAC[]);; let CYCLIC_IMP_ABELIAN_GROUP = prove (`!G:A group. cyclic_group G ==> abelian_group G`, SIMP_TAC[CYCLIC_GROUP; abelian_group; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN SIMP_TAC[GSYM GROUP_ZPOW_ADD] THEN REWRITE_TAC[INT_ADD_SYM]);; let TRIVIAL_IMP_CYCLIC_GROUP = prove (`!G:A group. trivial_group G ==> cyclic_group G`, REWRITE_TAC[trivial_group; cyclic_group] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `group_id G:A` THEN ASM_MESON_TAC[SUBGROUP_GENERATED_GROUP_CARRIER; GROUP_ID]);; let CYCLIC_GROUP_ALT = prove (`!G:A group. cyclic_group G <=> ?x. subgroup_generated G {x} = G`, GEN_TAC THEN EQ_TAC THENL [MESON_TAC[cyclic_group]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `a:A` MP_TAC) THEN ASM_CASES_TAC `(a:A) IN group_carrier G` THENL [ASM_MESON_TAC[cyclic_group]; ALL_TAC] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC TRIVIAL_IMP_CYCLIC_GROUP THEN REWRITE_TAC[TRIVIAL_GROUP_SUBGROUP_GENERATED_EQ] THEN ASM SET_TAC[]);; let CYCLIC_GROUP_GENERATED = prove (`!G x:A. cyclic_group(subgroup_generated G {x})`, REPEAT GEN_TAC THEN REWRITE_TAC[CYCLIC_GROUP_ALT] THEN EXISTS_TAC `x:A` THEN REWRITE_TAC[GROUPS_EQ; CONJUNCT2 SUBGROUP_GENERATED] THEN SIMP_TAC[SUBGROUP_GENERATED_IDEMPOT; SUBSET_REFL]);; let CYCLIC_GROUP_EPIMORPHIC_IMAGE = prove (`!G H (f:A->B). group_epimorphism(G,H) f /\ cyclic_group G ==> cyclic_group H`, REPEAT GEN_TAC THEN REWRITE_TAC[group_epimorphism] THEN DISCH_THEN(CONJUNCTS_THEN2 (STRIP_ASSUME_TAC o GSYM) MP_TAC) THEN REWRITE_TAC[CYCLIC_GROUP] THEN DISCH_THEN(X_CHOOSE_THEN `x:A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(f:A->B) x` THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP (SET_RULE `t = IMAGE f s ==> !x. x IN s ==> f x IN t`)) THEN FIRST_ASSUM(fun th -> ASM_SIMP_TAC[GSYM(MATCH_MP GROUP_HOMOMORPHISM_ZPOW th)]) THEN SET_TAC[]);; let ISOMORPHIC_GROUP_CYCLICITY = prove (`!(G:A group) (H:B group). G isomorphic_group H ==> (cyclic_group G <=> cyclic_group H)`, REPEAT STRIP_TAC THEN EQ_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CYCLIC_GROUP_EPIMORPHIC_IMAGE) THEN ASM_MESON_TAC[isomorphic_group; ISOMORPHIC_GROUP_SYM; GROUP_MONOMORPHISM_EPIMORPHISM]);; let SUBGROUP_OF_CYCLIC_GROUP_EXPLICIT = prove (`!G h x:A. x IN group_carrier G /\ h subgroup_of (subgroup_generated G {x}) ==> ?k. h = {group_zpow G x (&k * n) | n IN (:int)}`, REPEAT GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN ASM_CASES_TAC `(h:A->bool) subgroup_of G` THENL [ALL_TAC; ASM_MESON_TAC[SUBGROUP_OF_SUBGROUP_GENERATED_REV]] THEN SIMP_TAC[subgroup_of; CARRIER_SUBGROUP_GENERATED_BY_SING] THEN REWRITE_TAC[SUBGROUP_GENERATED] THEN REPEAT STRIP_TAC THEN ASM_CASES_TAC `h SUBSET {group_zpow G (x:A) (&0)}` THENL [EXISTS_TAC `0` THEN ASM_REWRITE_TAC[INT_MUL_LZERO; GSYM SUBSET_ANTISYM_EQ; SET_RULE `{a |x| x IN UNIV} = {a}`] THEN ASM_REWRITE_TAC[GROUP_ZPOW_0; SING_SUBSET]; ALL_TAC] THEN SUBGOAL_THEN `?n. 0 < n /\ group_pow G (x:A) n IN h` MP_TAC THENL [FIRST_ASSUM(MP_TAC o MATCH_MP (SET_RULE `h SUBSET {f x | x IN (:int)} ==> ~(h SUBSET {f(&0)}) ==> ?n. ~(n = &0) /\ f n IN h`)) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `n:int` STRIP_ASSUME_TAC) THEN EXISTS_TAC `num_of_int(abs n)` THEN REWRITE_TAC[GSYM GROUP_NPOW; GSYM INT_OF_NUM_LT] THEN SIMP_TAC[INT_OF_NUM_OF_INT; INT_ABS_POS] THEN ASM_REWRITE_TAC[GSYM INT_ABS_NZ] THEN REWRITE_TAC[INT_ABS] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[GROUP_ZPOW_NEG]; GEN_REWRITE_TAC LAND_CONV [num_WOP]] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:num` THEN REWRITE_TAC[TAUT `(p ==> ~(q /\ r)) <=> q /\ p ==> ~r`] THEN STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN REWRITE_TAC[SUBSET; FORALL_IN_GSPEC] THEN REWRITE_TAC[IN_ELIM_THM; IN_UNIV] THEN MATCH_MP_TAC(TAUT `q /\ (q ==> p) ==> p /\ q`) THEN CONJ_TAC THENL [MP_TAC(ISPECL [`subgroup_generated G (h:A->bool)`; `group_pow G x k:A`] GROUP_ZPOW) THEN REWRITE_TAC[GROUP_ZPOW_SUBGROUP_GENERATED] THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_SUBGROUP] THEN ASM_SIMP_TAC[GROUP_ZPOW_MUL; GROUP_NPOW]; DISCH_THEN(LABEL_TAC "*")] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `h SUBSET {f x | x IN s} ==> (!x. f x IN h ==> P(f x)) ==> !y. y IN h ==> P y`)) THEN X_GEN_TAC `m:int` THEN DISCH_THEN(fun th -> EXISTS_TAC `m div (&k)` THEN MP_TAC th) THEN ONCE_REWRITE_TAC[INT_MUL_SYM] THEN MP_TAC(SPECL [`m:int`; `&k:int`] INT_DIVISION) THEN ASM_REWRITE_TAC[INT_OF_NUM_EQ; GSYM LT_NZ; INT_ABS_NUM] THEN SPEC_TAC(`m div &k`,`q:int`) THEN SPEC_TAC(`m rem &k`,`r:int`) THEN ONCE_REWRITE_TAC[TAUT `p /\ q /\ r ==> s <=> q ==> r /\ p ==> s`] THEN REWRITE_TAC[GSYM INT_FORALL_POS; RIGHT_FORALL_IMP_THM] THEN MAP_EVERY X_GEN_TAC [`m:num`; `q:int`] THEN REWRITE_TAC[INT_OF_NUM_LT] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC SUBST1_TAC) THEN ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[INT_ADD_RID] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `m:num`) THEN ASM_REWRITE_TAC[LT_NZ] THEN MATCH_MP_TAC(TAUT `p ==> ~p ==> q`) THEN REWRITE_TAC[GSYM GROUP_NPOW] THEN SUBST1_TAC(INT_ARITH `&m:int = --(&k * q) + (q * &k + &m)`) THEN W(MP_TAC o PART_MATCH (lhand o rand) GROUP_ZPOW_ADD o lhand o snd) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[GROUP_ZPOW_NEG]);; let SUBGROUP_OF_CYCLIC_GROUP = prove (`!G h:A->bool. cyclic_group G /\ h subgroup_of G ==> cyclic_group(subgroup_generated G h)`, REPEAT STRIP_TAC THEN REWRITE_TAC[CYCLIC_GROUP] THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_SUBGROUP] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [cyclic_group]) THEN DISCH_THEN(X_CHOOSE_THEN `x:A` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`G:A group`; `h:A->bool`; `x:A`] SUBGROUP_OF_CYCLIC_GROUP_EXPLICIT) THEN ASM_REWRITE_TAC[GROUP_ZPOW_SUBGROUP_GENERATED] THEN ASM_SIMP_TAC[GROUP_ZPOW_MUL] THEN DISCH_THEN(X_CHOOSE_TAC `k:num`) THEN EXISTS_TAC `group_zpow G x (&k):A` THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `&1:int` THEN ASM_SIMP_TAC[IN_UNIV; GROUP_ZPOW_1; GROUP_ZPOW]);; let CYCLIC_GROUP_QUOTIENT_GROUP = prove (`!G n:A->bool. cyclic_group G /\ n subgroup_of G ==> cyclic_group(quotient_group G n)`, MESON_TAC[CYCLIC_IMP_ABELIAN_GROUP; CYCLIC_GROUP_EPIMORPHIC_IMAGE; GROUP_EPIMORPHISM_RIGHT_COSET; ABELIAN_GROUP_NORMAL_SUBGROUP]);; let NO_PROPER_SUBGROUPS_IMP_CYCLIC = prove (`!G:A group. (!h. h subgroup_of G ==> h SUBSET {group_id G} \/ h = group_carrier G) ==> cyclic_group G`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `trivial_group(G:A group)` THEN ASM_SIMP_TAC[TRIVIAL_IMP_CYCLIC_GROUP] THEN FIRST_X_ASSUM (MP_TAC o GEN_REWRITE_RULE RAND_CONV [TRIVIAL_GROUP_SUBSET]) THEN REWRITE_TAC[SET_RULE `~(s SUBSET {a}) <=> ?x. x IN s /\ ~(x = a)`] THEN REWRITE_TAC[cyclic_group] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:A` THEN STRIP_TAC THEN ASM_REWRITE_TAC[GROUPS_EQ; CONJUNCT2 SUBGROUP_GENERATED] THEN FIRST_X_ASSUM(MP_TAC o SPEC `group_carrier (subgroup_generated G {a:A})`) THEN REWRITE_TAC[SUBGROUP_SUBGROUP_GENERATED] THEN MATCH_MP_TAC(TAUT `~p ==> p \/ q ==> q`) THEN REWRITE_TAC[SUBSET] THEN DISCH_THEN(MP_TAC o SPEC `a:A`) THEN ASM_SIMP_TAC[IN_SING; SUBGROUP_GENERATED_INC; IN_SING; SING_SUBSET]);; let [FINITE_CYCLIC_SUBGROUP; INFINITE_CYCLIC_SUBGROUP; FINITE_CYCLIC_SUBGROUP_ALT; INFINITE_CYCLIC_SUBGROUP_ALT] = (CONJUNCTS o prove) (`(!G x:A. x IN group_carrier G ==> (FINITE(group_carrier(subgroup_generated G {x})) <=> ?n. ~(n = 0) /\ group_pow G x n = group_id G)) /\ (!G x:A. x IN group_carrier G ==> (INFINITE(group_carrier(subgroup_generated G {x})) <=> !m n. group_pow G x m = group_pow G x n ==> m = n)) /\ (!G x:A. x IN group_carrier G ==> (FINITE(group_carrier(subgroup_generated G {x})) <=> ?n. ~(n = &0) /\ group_zpow G x n = group_id G)) /\ (!G x:A. x IN group_carrier G ==> (INFINITE(group_carrier(subgroup_generated G {x})) <=> !m n. group_zpow G x m = group_zpow G x n ==> m = n))`, REWRITE_TAC[INFINITE; AND_FORALL_THM] THEN REPEAT GEN_TAC THEN ASM_CASES_TAC `(x:A) IN group_carrier G` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `(r ==> ~p) /\ (r' ==> r) /\ (~r' ==> q) /\ (q ==> q') /\ (q' ==> p) ==> (p <=> q) /\ (~p <=> r) /\ (p <=> q') /\ (~p <=> r')`) THEN REPEAT CONJ_TAC THENL [DISCH_THEN(MP_TAC o SPEC `(:num)` o MATCH_MP INFINITE_IMAGE_INJ) THEN ASM_SIMP_TAC[num_INFINITE; CARRIER_SUBGROUP_GENERATED_BY_SING] THEN REWRITE_TAC[INFINITE; CONTRAPOS_THM] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN REWRITE_TAC[GSYM GROUP_NPOW] THEN SET_TAC[]; REWRITE_TAC[GSYM GROUP_NPOW; GSYM INT_OF_NUM_EQ] THEN SET_TAC[]; REWRITE_TAC[NOT_FORALL_THM; LEFT_IMP_EXISTS_THM; NOT_IMP] THEN MATCH_MP_TAC INT_WLOG_LT THEN REWRITE_TAC[] THEN CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`m:int`; `n:int`] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `num_of_int(n - m)` THEN ASM_SIMP_TAC[GSYM GROUP_NPOW; INT_OF_NUM_OF_INT; INT_LT_IMP_LE; INT_SUB_LT; GSYM INT_OF_NUM_EQ; INT_SUB_0; GROUP_ZPOW_SUB; GROUP_DIV_REFL; GROUP_ZPOW]; REWRITE_TAC[GSYM INT_OF_NUM_EQ; GSYM GROUP_NPOW] THEN MESON_TAC[]; DISCH_TAC THEN SUBGOAL_THEN `?n. ~(n = 0) /\ group_pow G (x:A) n = group_id G` STRIP_ASSUME_TAC THENL [FIRST_X_ASSUM(X_CHOOSE_THEN `n:int` STRIP_ASSUME_TAC) THEN EXISTS_TAC `num_of_int(abs n)` THEN REWRITE_TAC[GSYM GROUP_NPOW; GSYM INT_OF_NUM_EQ] THEN SIMP_TAC[INT_OF_NUM_OF_INT; INT_ABS_POS; INT_ABS_ZERO] THEN ASM_REWRITE_TAC[INT_ABS] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[GROUP_ZPOW_NEG; GROUP_INV_ID]; MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `IMAGE (group_pow G (x:A)) (0..n)` THEN ASM_SIMP_TAC[FINITE_IMAGE; FINITE_NUMSEG] THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_BY_SING; SUBSET] THEN REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV; IN_IMAGE; IN_NUMSEG; LE_0] THEN X_GEN_TAC `a:int` THEN MP_TAC(ISPECL [`a:int`; `&n:int`] INT_DIVISION) THEN ASM_REWRITE_TAC[INT_OF_NUM_EQ] THEN DISCH_THEN(CONJUNCTS_THEN2 SUBST1_TAC MP_TAC) THEN SPEC_TAC(`a rem &n`,`b:int`) THEN ONCE_REWRITE_TAC[INT_MUL_SYM] THEN REWRITE_TAC[IMP_CONJ; GSYM INT_FORALL_POS; INT_ABS_NUM; INT_OF_NUM_LT] THEN X_GEN_TAC `m:num` THEN DISCH_TAC THEN EXISTS_TAC `m:num` THEN ASM_SIMP_TAC[LT_IMP_LE; GROUP_ZPOW_ADD; GROUP_ZPOW_MUL] THEN ASM_REWRITE_TAC[GROUP_NPOW; GROUP_ZPOW_ID] THEN ASM_SIMP_TAC[GROUP_MUL_LID; GROUP_POW]]]);; let FINITE_CYCLIC_SUBGROUP_ORDER = prove (`!G x:A. x IN group_carrier G ==> (FINITE(group_carrier(subgroup_generated G {x})) <=> ~(group_element_order G x = 0))`, SIMP_TAC[GROUP_ELEMENT_ORDER_EQ_0; FINITE_CYCLIC_SUBGROUP] THEN MESON_TAC[]);; let INFINITE_CYCLIC_SUBGROUP_ORDER = prove (`!G x:A. x IN group_carrier G ==> (INFINITE (group_carrier(subgroup_generated G {x})) <=> group_element_order G x = 0)`, SIMP_TAC[INFINITE; FINITE_CYCLIC_SUBGROUP_ORDER]);; let FINITE_CYCLIC_SUBGROUP_EXPLICIT = prove (`!G x:A. FINITE(group_carrier(subgroup_generated G {x})) /\ x IN group_carrier G ==> group_carrier(subgroup_generated G {x}) = {group_pow G x n |n| n < group_element_order G x}`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_BY_SING] THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; SUBSET; FORALL_IN_GSPEC] THEN REWRITE_TAC[IN_ELIM_THM; IN_UNIV; GSYM GROUP_NPOW] THEN CONJ_TAC THENL [ASM_SIMP_TAC[GROUP_ZPOW_EQ_ALT]; MESON_TAC[]] THEN X_GEN_TAC `n:int` THEN MP_TAC(ISPECL [`n:int`; `&(group_element_order G (x:A)):int`] INT_DIVISION) THEN SPEC_TAC(`n div &(group_element_order G (x:A))`,`q:int`) THEN SPEC_TAC(`n rem &(group_element_order G (x:A))`,`r:int`) THEN REPEAT GEN_TAC THEN ASM_SIMP_TAC[INT_OF_NUM_EQ; GSYM FINITE_CYCLIC_SUBGROUP_ORDER] THEN REWRITE_TAC[INT_ABS_NUM] THEN STRIP_TAC THEN EXISTS_TAC `num_of_int r` THEN ASM_SIMP_TAC[INT_OF_NUM_OF_INT; GSYM INT_OF_NUM_LT] THEN CONV_TAC INTEGER_RULE);; let FINITE_SUBGROUPS_EQ = prove (`!G:A group. FINITE {h | h subgroup_of G} <=> FINITE(group_carrier G)`, GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[FINITE_SUBGROUPS] THEN DISCH_TAC THEN SUBGOAL_THEN `group_carrier G:A->bool = UNIONS {group_carrier(subgroup_generated G {x}) |x| x IN group_carrier G}` SUBST1_TAC THENL [REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; UNIONS_SUBSET; FORALL_IN_GSPEC] THEN REWRITE_TAC[GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET; UNIONS_GSPEC] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN EXISTS_TAC `x:A` THEN ASM_SIMP_TAC[SUBGROUP_GENERATED_INC_GEN; IN_SING]; REWRITE_TAC[FINITE_UNIONS; FORALL_IN_GSPEC]] THEN CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN REWRITE_TAC[SUBSET; FORALL_IN_GSPEC] THEN SIMP_TAC[SUBGROUP_SUBGROUP_GENERATED; IN_ELIM_THM]; SIMP_TAC[FINITE_CYCLIC_SUBGROUP_ORDER]] THEN X_GEN_TAC `x:A` THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (MESON[INFINITE] `FINITE s ==> INFINITE s ==> F`)) THEN MATCH_MP_TAC INFINITE_SUPERSET THEN EXISTS_TAC `IMAGE (\n. group_carrier(subgroup_generated G {group_pow G (x:A) n})) ((:num) DELETE 0)` THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[IN_ELIM_THM; SUBGROUP_SUBGROUP_GENERATED] THEN MATCH_MP_TAC INFINITE_IMAGE THEN REWRITE_TAC[INFINITE; FINITE_DELETE] THEN REWRITE_TAC[num_INFINITE; GSYM INFINITE; IN_UNIV; IN_DELETE] THEN MATCH_MP_TAC WLOG_LT THEN REPEAT(CONJ_TAC THENL [MESON_TAC[]; ALL_TAC]) THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN DISCH_TAC THEN REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN MATCH_MP_TAC(SET_RULE `!a. a IN s /\ ~(a IN t) ==> s = t ==> P`) THEN EXISTS_TAC `group_pow G (x:A) m` THEN ASM_SIMP_TAC[SUBGROUP_GENERATED_INC_GEN; IN_SING; GROUP_POW] THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_BY_SING; GROUP_POW] THEN REWRITE_TAC[IN_ELIM_THM; IN_UNIV; GSYM GROUP_NPOW] THEN ASM_SIMP_TAC[GROUP_ZPOW_EQ; GSYM GROUP_ZPOW_MUL] THEN REWRITE_TAC[GSYM num_divides; INTEGER_RULE `(?n:int. (a == b * n) (mod (&0))) <=> b divides a`] THEN DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN ASM_ARITH_TAC);; let CARD_CYCLIC_SUBGROUP_ORDER = prove (`!G x:A. FINITE(group_carrier(subgroup_generated G {x})) /\ x IN group_carrier G ==> CARD(group_carrier(subgroup_generated G {x})) = group_element_order G x`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[FINITE_CYCLIC_SUBGROUP_EXPLICIT] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN GEN_REWRITE_TAC RAND_CONV [GSYM CARD_NUMSEG_LT] THEN MATCH_MP_TAC CARD_IMAGE_INJ THEN REWRITE_TAC[FINITE_NUMSEG_LT; IN_ELIM_THM] THEN MATCH_MP_TAC WLOG_LE THEN CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[GSYM GROUP_NPOW; GROUP_ZPOW_EQ_ALT; INT_OF_NUM_SUB] THEN REWRITE_TAC[GSYM num_divides] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE) THEN ASM_ARITH_TAC);; let PRIME_ORDER_IMP_NO_PROPER_SUBGROUPS = prove (`!(G:A group) p. (group_carrier G) HAS_SIZE p /\ (p = 1 \/ prime p) ==> !h. h subgroup_of G ==> h = {group_id G} \/ h = group_carrier G`, REPEAT GEN_TAC THEN REWRITE_TAC[HAS_SIZE; ONE_OR_PRIME] THEN REPEAT STRIP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[TAUT `p ==> q \/ r <=> p /\ ~q ==> r`]) THEN MATCH_MP_TAC(SET_RULE `z IN s /\ (!x. x IN s /\ ~(x = z) ==> s = t) ==> s = {z} \/ s = t`) THEN ASM_SIMP_TAC[IN_SUBGROUP_ID] THEN X_GEN_TAC `x:A` THEN STRIP_TAC THEN MATCH_MP_TAC CARD_SUBSET_EQ THEN ASM_SIMP_TAC[SUBGROUP_OF_IMP_SUBSET] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN MP_TAC(ISPECL [`G:A group`; `h:A->bool`] LAGRANGE_THEOREM) THEN ASM_SIMP_TAC[] THEN DISCH_TAC THEN MATCH_MP_TAC(ARITH_RULE `2 <= n ==> ~(n = 1)`) THEN TRANS_TAC LE_TRANS `CARD {group_id G:A,x}` THEN CONJ_TAC THENL [SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN ASM_REWRITE_TAC[IN_SING; NOT_IN_EMPTY; ARITH]; MATCH_MP_TAC CARD_SUBSET THEN ASM_REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET] THEN ASM_MESON_TAC[subgroup_of; FINITE_SUBSET]]);; let PRIME_ORDER_EQ_NO_PROPER_SUBGROUPS, NO_PROPER_SUBGROUPS_EQ_CYCLIC_PRIME_ORDER = (CONJ_PAIR o prove) (`(!(G:A group). FINITE(group_carrier G) /\ (CARD(group_carrier G) = 1 \/ prime(CARD(group_carrier G))) <=> !h. h subgroup_of G ==> h = {group_id G} \/ h = group_carrier G) /\ (!(G:A group). (!h. h subgroup_of G ==> h = {group_id G} \/ h = group_carrier G) <=> cyclic_group G /\ FINITE(group_carrier G) /\ (CARD(group_carrier G) = 1 \/ prime(CARD(group_carrier G))))`, REWRITE_TAC[AND_FORALL_THM] THEN GEN_TAC THEN MATCH_MP_TAC(TAUT `(p ==> n) /\ (n ==> c) /\ (c /\ n ==> p) ==> (p <=> n) /\ (n <=> c /\ p)`) THEN REPEAT CONJ_TAC THENL [DISCH_TAC THEN MATCH_MP_TAC PRIME_ORDER_IMP_NO_PROPER_SUBGROUPS THEN REWRITE_TAC[HAS_SIZE] THEN ASM_MESON_TAC[]; DISCH_TAC THEN MATCH_MP_TAC NO_PROPER_SUBGROUPS_IMP_CYCLIC THEN ASM SET_TAC[]; STRIP_TAC THEN REWRITE_TAC[ONE_OR_PRIME]] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [cyclic_group]) THEN DISCH_THEN(X_CHOOSE_THEN `x:A` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`G:A group`; `x:A`] INFINITE_CYCLIC_SUBGROUP_ALT) THEN ASM_REWRITE_TAC[INFINITE] THEN DISCH_THEN(MP_TAC o MATCH_MP (TAUT `(~p <=> q) ==> ~q ==> p`)) THEN ANTS_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPEC `{group_zpow G (group_zpow G (x:A) (&2)) n | n IN (:int)}`) THEN ASM_SIMP_TAC[SUBGROUP_OF_POWERS; GROUP_ZPOW; GSYM GROUP_ZPOW_MUL] THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL [DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE `{f n | n IN (:int)} = {a} ==> f(&1) = a`)) THEN DISCH_TAC THEN DISCH_THEN(MP_TAC o SPECL [`&2 * &1:int`; `&0:int`]) THEN ASM_REWRITE_TAC[GROUP_ZPOW_0] THEN CONV_TAC INT_ARITH; REWRITE_TAC[EXTENSION] THEN DISCH_THEN(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[IN_ELIM_THM; IN_UNIV] THEN DISCH_THEN(X_CHOOSE_THEN `n:int` (STRIP_ASSUME_TAC o GSYM)) THEN DISCH_THEN(MP_TAC o SPECL [`&2 * n:int`; `&1:int`]) THEN ASM_SIMP_TAC[GROUP_ZPOW_1] THEN MATCH_MP_TAC(INT_ARITH `n:int <= &0 \/ &1 <= n ==> ~(&2 * n = &1)`) THEN INT_ARITH_TAC]; DISCH_TAC THEN ASM_REWRITE_TAC[]] THEN X_GEN_TAC `n:num` THEN ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[CARD_EQ_0;GROUP_CARRIER_NONEMPTY; NUMBER_RULE `0 divides n <=> n = 0`] THEN DISCH_TAC THEN ABBREV_TAC `m = CARD(group_carrier(G:A group)) DIV n` THEN SUBGOAL_THEN `~(m = 0)` ASSUME_TAC THENL [EXPAND_TAC "m" THEN ASM_SIMP_TAC[DIV_EQ_0] THEN FIRST_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE) THEN ASM_SIMP_TAC[CARD_EQ_0; GROUP_CARRIER_NONEMPTY; NOT_LT]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o SPEC `group_carrier(subgroup_generated G {group_pow G x m:A})`) THEN SUBGOAL_THEN `group_element_order G (group_pow G (x:A) m) = n` ASSUME_TAC THENL [W(MP_TAC o PART_MATCH (lhand o rand) GROUP_ELEMENT_ORDER_POW o lhand o snd) THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `CARD(group_carrier G:A->bool) DIV n = m` THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [divides]) THEN ASM_SIMP_TAC[GSYM CARD_CYCLIC_SUBGROUP_ORDER] THEN DISCH_THEN(X_CHOOSE_THEN `r:num` SUBST1_TAC) THEN ASM_SIMP_TAC[DIV_MULT] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN ASM_SIMP_TAC[DIV_MULT] THEN DISCH_TAC THEN DISCH_THEN MATCH_MP_TAC THEN CONV_TAC NUMBER_RULE; ALL_TAC] THEN SUBGOAL_THEN `FINITE(group_carrier (subgroup_generated G {group_pow G x m:A}))` ASSUME_TAC THENL [ASM_SIMP_TAC[FINITE_CYCLIC_SUBGROUP_ORDER; GROUP_POW] THEN ASM_SIMP_TAC[GROUP_ELEMENT_ORDER_POW]; ALL_TAC] THEN REWRITE_TAC[SUBGROUP_SUBGROUP_GENERATED] THEN MATCH_MP_TAC MONO_OR THEN CONJ_TAC THEN DISCH_THEN(MP_TAC o AP_TERM `CARD:(A->bool)->num`) THEN ASM_SIMP_TAC[CARD_CYCLIC_SUBGROUP_ORDER; GROUP_POW; CARD_SING]);; let ABELIAN_SIMPLE_GROUP = prove (`!G:A group. abelian_group G ==> ((!h. h normal_subgroup_of G ==> h = {group_id G} \/ h = group_carrier G) <=> FINITE(group_carrier G) /\ (CARD (group_carrier G) = 1 \/ prime(CARD(group_carrier G))))`, REWRITE_TAC[PRIME_ORDER_EQ_NO_PROPER_SUBGROUPS] THEN SIMP_TAC[ABELIAN_GROUP_NORMAL_SUBGROUP]);; let PRIME_ORDER_IMP_CYCLIC_GROUP = prove (`!G:A group. FINITE(group_carrier G) /\ (CARD(group_carrier G) = 1 \/ prime(CARD(group_carrier G))) ==> cyclic_group G`, REWRITE_TAC[PRIME_ORDER_EQ_NO_PROPER_SUBGROUPS] THEN REWRITE_TAC[NO_PROPER_SUBGROUPS_EQ_CYCLIC_PRIME_ORDER] THEN SIMP_TAC[]);; let GROUP_ELEMENT_ORDER_DIVIDES_GROUP_ORDER = prove (`!G x:A. x IN group_carrier G /\ FINITE(group_carrier G) ==> (group_element_order G x) divides CARD(group_carrier G)`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GSYM CARD_CYCLIC_SUBGROUP_ORDER; FINITE_SUBGROUP_GENERATED] THEN MATCH_MP_TAC LAGRANGE_THEOREM THEN ASM_REWRITE_TAC[SUBGROUP_SUBGROUP_GENERATED]);; let GROUP_POW_GROUP_ORDER = prove (`!G x:A. x IN group_carrier G /\ FINITE(group_carrier G) ==> group_pow G x (CARD(group_carrier G)) = group_id G`, SIMP_TAC[GROUP_POW_EQ_ID; GROUP_ELEMENT_ORDER_DIVIDES_GROUP_ORDER]);; let SUBGROUP_OF_FINITE_CYCLIC_GROUP = prove (`!G h a:A. FINITE(group_carrier G) /\ a IN group_carrier G /\ subgroup_generated G {a} = G ==> (h subgroup_of G <=> ?d. d divides CARD(group_carrier G) /\ h = group_carrier(subgroup_generated G {group_pow G a d}))`, REPEAT STRIP_TAC THEN EQ_TAC THENL [DISCH_TAC; MESON_TAC[SUBGROUP_SUBGROUP_GENERATED]] THEN MP_TAC(ISPECL [`G:A group`; `h:A->bool`; `a:A`] SUBGROUP_OF_CYCLIC_GROUP_EXPLICIT) THEN ASM_SIMP_TAC[GROUP_ZPOW_MUL] THEN ASM_SIMP_TAC[GSYM CARRIER_SUBGROUP_GENERATED_BY_SING; GROUP_ZPOW] THEN DISCH_THEN(X_CHOOSE_TAC `k:num`) THEN EXISTS_TAC `gcd(k,CARD(group_carrier G:A->bool))` THEN ASM_REWRITE_TAC[GCD] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THEN MATCH_MP_TAC SUBGROUP_GENERATED_MINIMAL THEN ASM_SIMP_TAC[SUBGROUP_SUBGROUP_GENERATED] THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_BY_SING; GROUP_POW; GROUP_NPOW] THEN REWRITE_TAC[SING_SUBSET; IN_ELIM_THM; IN_UNIV] THEN ASM_SIMP_TAC[GSYM GROUP_NPOW; GSYM GROUP_ZPOW_MUL; GROUP_ZPOW_EQ] THEN REWRITE_TAC[NUM_GCD] THENL [CONV_TAC INTEGER_RULE; ALL_TAC] THEN MP_TAC(ISPECL [`G:A group`; `a:A`] CARD_CYCLIC_SUBGROUP_ORDER) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN CONV_TAC INTEGER_RULE);; let COUNT_FINITE_CYCLIC_GROUP_SUBGROUPS = prove (`!(G:A group) d. FINITE(group_carrier G) /\ cyclic_group G ==> (CARD {h | h subgroup_of G /\ CARD h = d} = if d divides CARD(group_carrier G) then 1 else 0)`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM (X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC o REWRITE_RULE[cyclic_group]) THEN COND_CASES_TAC THENL [MATCH_MP_TAC(MESON[HAS_SIZE] `s HAS_SIZE 1 ==> CARD s = 1`); ASM_SIMP_TAC[CARD_EQ_0; FINITE_RESTRICTED_SUBGROUPS] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN ASM_MESON_TAC[LAGRANGE_THEOREM]] THEN CONV_TAC HAS_SIZE_CONV THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [divides]) THEN DISCH_THEN(X_CHOOSE_THEN `k:num` (ASSUME_TAC o SYM)) THEN SUBGOAL_THEN `~(d * k = 0)` MP_TAC THENL [ASM_SIMP_TAC[CARD_EQ_0; GROUP_CARRIER_NONEMPTY]; REWRITE_TAC[DE_MORGAN_THM; MULT_EQ_0] THEN STRIP_TAC] THEN MP_TAC(ISPECL [`G:A group`; `a:A`] CARD_CYCLIC_SUBGROUP_ORDER) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(ASSUME_TAC o SYM) THEN MATCH_MP_TAC(SET_RULE `(?x. P x) /\ (!x. P x ==> !x'. P x' ==> x = x') ==> ?a. {x | P x} = {a}`) THEN MP_TAC(GEN `h:A->bool` (ISPECL [`G:A group`; `h:A->bool`; `a:A`] SUBGROUP_OF_FINITE_CYCLIC_GROUP)) THEN ASM_SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN CONJ_TAC THENL [REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN GEN_REWRITE_TAC I [SWAP_EXISTS_THM] THEN REWRITE_TAC[TAUT `(p /\ q) /\ r <=> q /\ p /\ r`] THEN EXISTS_TAC `k:num` THEN REWRITE_TAC[UNWIND_THM2] THEN ASM_SIMP_TAC[CARD_CYCLIC_SUBGROUP_ORDER; FINITE_SUBGROUP_GENERATED; GROUP_POW] THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [ASM_MESON_TAC[divides; MULT_SYM]; ALL_TAC] THEN ASM_SIMP_TAC[GROUP_ELEMENT_ORDER_POW_GEN] THEN SIMP_TAC[NUMBER_RULE `k divides g ==> gcd(g:num,k) = k`] THEN ASM_MESON_TAC[MULT_SYM; DIV_MULT]; REWRITE_TAC[LEFT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[TAUT `(p /\ q) /\ r <=> q /\ p /\ r`] THEN GEN_REWRITE_TAC I [SWAP_FORALL_THM] THEN X_GEN_TAC `k1:num` THEN GEN_REWRITE_TAC BINDER_CONV [IMP_CONJ] THEN REWRITE_TAC[FORALL_UNWIND_THM2] THEN STRIP_TAC THEN GEN_REWRITE_TAC I [SWAP_FORALL_THM] THEN X_GEN_TAC `k2:num` THEN GEN_REWRITE_TAC BINDER_CONV [IMP_CONJ] THEN REWRITE_TAC[FORALL_UNWIND_THM2] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [SYM th]) THEN ASM_SIMP_TAC[CARD_CYCLIC_SUBGROUP_ORDER; GROUP_POW; FINITE_SUBGROUP_GENERATED; GROUP_ELEMENT_ORDER_POW_GEN] THEN COND_CASES_TAC THENL [ASM_MESON_TAC[DIVIDES_ZERO; MULT_EQ_0]; ALL_TAC] THEN COND_CASES_TAC THENL [ASM_MESON_TAC[DIVIDES_ZERO; MULT_EQ_0]; ALL_TAC] THEN ASM_SIMP_TAC[NUMBER_RULE `k divides g ==> gcd(g:num,k) = k`] THEN DISCH_THEN(MP_TAC o MATCH_MP (NUM_RING `g DIV k2 = g DIV k1 ==> g DIV k1 * k1 = g /\ g DIV k2 * k2 = g /\ ~(g = 0) ==> k1 = k2`)) THEN ASM_REWRITE_TAC[GSYM DIVIDES_DIV_MULT] THEN ASM_SIMP_TAC[CARD_EQ_0; GROUP_CARRIER_NONEMPTY]]);; let COUNT_FINITE_CYCLIC_GROUP_SUBGROUPS_ALL = prove (`!G:A group. FINITE(group_carrier G) /\ cyclic_group G ==> CARD {h | h subgroup_of G} = CARD {d | d divides CARD(group_carrier G)}`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(MESON[CARD_IMAGE_INJ] `!f. FINITE s /\ t = IMAGE f s /\ (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) ==> CARD s = CARD t`) THEN EXISTS_TAC `CARD:(A->bool)->num` THEN ASM_SIMP_TAC[FINITE_SUBGROUPS] THEN MATCH_MP_TAC(SET_RULE `(!y. y IN t ==> ?a. {x | x IN s /\ f x = y} = {a}) /\ (!y. ~(y IN t) ==> {x | x IN s /\ f x = y} = {}) ==> t = IMAGE f s /\ (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)`) THEN REWRITE_TAC[GSYM(HAS_SIZE_CONV `s HAS_SIZE 1`); GSYM HAS_SIZE_0] THEN ASM_SIMP_TAC[IN_ELIM_THM; HAS_SIZE; FINITE_RESTRICTED_SUBGROUPS] THEN ASM_SIMP_TAC[COUNT_FINITE_CYCLIC_GROUP_SUBGROUPS]);; let MAXIMAL_SUBGROUP_PRIME_INDEX = prove (`!G n:A->bool. n normal_subgroup_of G ==> ((!h. h subgroup_of G /\ n PSUBSET h ==> h = group_carrier G) <=> FINITE {right_coset G n x | x | x IN group_carrier G} /\ (CARD {right_coset G n x | x | x IN group_carrier G} = 1 \/ prime(CARD {right_coset G n x | x | x IN group_carrier G})))`, SIMP_TAC[MAXIMAL_SUBGROUP; GSYM PRIME_ORDER_EQ_NO_PROPER_SUBGROUPS] THEN SIMP_TAC[QUOTIENT_GROUP]);; let PRIME_INDEX_MAXIMAL_PROPER_SUBGROUP = prove (`!G n:A->bool. n normal_subgroup_of G ==> (FINITE {right_coset G n x | x | x IN group_carrier G} /\ prime(CARD {right_coset G n x | x | x IN group_carrier G}) <=> ~(n = group_carrier G) /\ !h. h subgroup_of G /\ n PSUBSET h ==> h = group_carrier G)`, SIMP_TAC[MAXIMAL_SUBGROUP_PRIME_INDEX] THEN SIMP_TAC[GSYM TRIVIAL_QUOTIENT_GROUP_EQ] THEN SIMP_TAC[TRIVIAL_GROUP_HAS_SIZE_1; QUOTIENT_GROUP; HAS_SIZE] THEN MESON_TAC[prime]);; let MAXIMAL_PROPER_SUBGROUP_PRIME_INDEX = prove (`!G n:A->bool. n normal_subgroup_of G /\ ~(n = group_carrier G) ==> ((!h. h subgroup_of G /\ n PSUBSET h ==> h = group_carrier G) <=> FINITE {right_coset G n x | x | x IN group_carrier G} /\ prime(CARD {right_coset G n x | x | x IN group_carrier G}))`, SIMP_TAC[PRIME_INDEX_MAXIMAL_PROPER_SUBGROUP]);; let GROUP_ZPOW_CANCEL = prove (`!G n x y:A. FINITE(group_carrier G) /\ coprime(n,&(CARD(group_carrier G))) /\ x IN group_carrier G /\ y IN group_carrier G /\ group_zpow G x n = group_zpow G y n ==> x = y`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM; IMP_CONJ] THEN REPEAT DISCH_TAC THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM CONJ_ASSOC] THEN MATCH_MP_TAC(SET_RULE `(?g. (!x. x IN s ==> g(f x) = x)) ==> !x y. x IN s /\ y IN s /\ f x = f y ==> x = y`) THEN FIRST_ASSUM(X_CHOOSE_TAC `m:int` o MATCH_MP (INTEGER_RULE `coprime(n:int,g) ==> ?m. (n * m == &1) (mod g)`)) THEN EXISTS_TAC `\x:A. group_zpow G x m` THEN SIMP_TAC[GSYM GROUP_ZPOW_MUL] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN TRANS_TAC EQ_TRANS `group_zpow G (x:A) (&1)` THEN ASM_SIMP_TAC[GROUP_ZPOW_EQ] THEN ASM_SIMP_TAC[GROUP_ZPOW_1] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (INTEGER_RULE `(a:int == b) (mod d) ==> e divides d ==> (a == b) (mod e)`)) THEN ASM_SIMP_TAC[GSYM num_divides; GROUP_ELEMENT_ORDER_DIVIDES_GROUP_ORDER]);; let GROUP_POW_CANCEL = prove (`!G n x y:A. FINITE(group_carrier G) /\ coprime(n,CARD(group_carrier G)) /\ x IN group_carrier G /\ y IN group_carrier G /\ group_pow G x n = group_pow G y n ==> x = y`, REWRITE_TAC[num_coprime; GSYM GROUP_NPOW; GROUP_ZPOW_CANCEL]);; (* ------------------------------------------------------------------------- *) (* Finitely generated groups. *) (* ------------------------------------------------------------------------- *) let finitely_generated_group = new_definition `finitely_generated_group (G:A group) <=> ?s. FINITE s /\ subgroup_generated G s = G`;; let FINITELY_GENERATED_GROUP = prove (`!G:A group. finitely_generated_group G <=> ?s. FINITE s /\ s SUBSET group_carrier G /\ subgroup_generated G s = G`, GEN_TAC THEN REWRITE_TAC[finitely_generated_group] THEN MESON_TAC[SUBGROUP_GENERATED_RESTRICT; FINITE_INTER; INTER_SUBSET]);; let CYCLIC_IMP_FINITELY_GENERATED_GROUP = prove (`!G:A group. cyclic_group G ==> finitely_generated_group G`, REWRITE_TAC[cyclic_group; finitely_generated_group] THEN MESON_TAC[FINITE_SING; SING_SUBSET]);; let FINITE_IMP_FINITELY_GENERATED_GROUP = prove (`!G:A group. FINITE(group_carrier G) ==> finitely_generated_group G`, REWRITE_TAC[finitely_generated_group] THEN MESON_TAC[SUBGROUP_GENERATED_GROUP_CARRIER]);; let TRIVIAL_IMP_FINITELY_GENERATED_GROUP = prove (`!G:A group. trivial_group G ==> finitely_generated_group G`, REWRITE_TAC[trivial_group] THEN MESON_TAC[FINITE_IMP_FINITELY_GENERATED_GROUP; FINITE_SING]);; let FINITELY_GENERATED_GROUP_EPIMORPHIC_IMAGE = prove (`!G H (f:A->B). group_epimorphism(G,H) f /\ finitely_generated_group G ==> finitely_generated_group H`, REPEAT GEN_TAC THEN REWRITE_TAC[group_epimorphism] THEN DISCH_THEN(CONJUNCTS_THEN2 (STRIP_ASSUME_TAC o GSYM) MP_TAC) THEN REWRITE_TAC[FINITELY_GENERATED_GROUP] THEN DISCH_THEN(X_CHOOSE_THEN `s:A->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `IMAGE (f:A->B) s` THEN ASM_SIMP_TAC[FINITE_IMAGE] THEN CONJ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[group_homomorphism]) THEN ASM SET_TAC[]; REWRITE_TAC[GROUPS_EQ; CONJUNCT2 SUBGROUP_GENERATED] THEN ASM_MESON_TAC[SUBGROUP_GENERATED_BY_HOMOMORPHIC_IMAGE]]);; let ISOMORPHIC_GROUP_FINITE_GENERATION = prove (`!(G:A group) (H:B group). G isomorphic_group H ==> (finitely_generated_group G <=> finitely_generated_group H)`, REPEAT STRIP_TAC THEN EQ_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] FINITELY_GENERATED_GROUP_EPIMORPHIC_IMAGE) THEN ASM_MESON_TAC[isomorphic_group; ISOMORPHIC_GROUP_SYM; GROUP_MONOMORPHISM_EPIMORPHISM]);; let FINITELY_GENERATED_GROUP_QUOTIENT_GROUP = prove (`!G n:A->bool. finitely_generated_group G /\ n normal_subgroup_of G ==> finitely_generated_group(quotient_group G n)`, MESON_TAC[FINITELY_GENERATED_GROUP_EPIMORPHIC_IMAGE; GROUP_EPIMORPHISM_RIGHT_COSET]);; let FINITELY_GENERATED_IMP_COUNTABLE_GROUP = prove (`!G:A group. finitely_generated_group G ==> COUNTABLE(group_carrier G)`, REWRITE_TAC[finitely_generated_group] THEN MESON_TAC[COUNTABLE_SUBGROUP_GENERATED; FINITE_IMP_COUNTABLE]);; let FINITELY_GENERATED_PROD_GROUP = prove (`!(G:A group) (H:B group). finitely_generated_group(prod_group G H) <=> finitely_generated_group G /\ finitely_generated_group H`, REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_THEN(fun th -> CONJ_TAC THEN MP_TAC th) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] FINITELY_GENERATED_GROUP_EPIMORPHIC_IMAGE) THEN MESON_TAC[GROUP_EPIMORPHISM_FST; GROUP_EPIMORPHISM_SND]; REWRITE_TAC[FINITELY_GENERATED_GROUP]] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `s:A->bool` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `t:B->bool` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `IMAGE (\x:A. (x,group_id H)) s UNION IMAGE (\y:B. (group_id G,y)) t` THEN ASM_SIMP_TAC[FINITE_IMAGE; FINITE_UNION; UNION_SUBSET] THEN REWRITE_TAC[SUBGROUP_GENERATED_SUPERSET; PROD_GROUP] THEN SIMP_TAC[SUBSET; IN_CROSS; FORALL_PAIR_THM; FORALL_IN_IMAGE; GROUP_ID] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:B`] THEN STRIP_TAC THEN SUBGOAL_THEN `(x,y):A#B = group_mul (prod_group G H) (x,group_id H) (group_id G,y)` SUBST1_TAC THENL [ASM_SIMP_TAC[PROD_GROUP; PAIR_EQ; GROUP_MUL_LID; GROUP_MUL_RID]; MATCH_MP_TAC IN_SUBGROUP_MUL THEN REWRITE_TAC[SUBGROUP_SUBGROUP_GENERATED]] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [UNION_COMM] THEN CONJ_TAC THEN MATCH_MP_TAC(SET_RULE `group_carrier(subgroup_generated G s) SUBSET group_carrier(subgroup_generated G (s UNION t)) /\ x IN group_carrier(subgroup_generated G s) ==> x IN group_carrier(subgroup_generated G (s UNION t))`) THEN SIMP_TAC[SUBGROUP_GENERATED_MONO; SUBSET_UNION] THENL [MP_TAC(ISPECL [`G:A group`; `prod_group (G:A group) (H:B group)`; `(\x. x,group_id H):A->A#B`; `s:A->bool`] SUBGROUP_GENERATED_BY_HOMOMORPHIC_IMAGE); MP_TAC(ISPECL [`H:B group`; `prod_group (G:A group) (H:B group)`; `(\y. group_id G,y):B->A#B`; `t:B->bool`] SUBGROUP_GENERATED_BY_HOMOMORPHIC_IMAGE)] THEN ASM_REWRITE_TAC[GROUP_HOMOMORPHISM_PAIRED] THEN REWRITE_TAC[GROUP_HOMOMORPHISM_TRIVIAL; GROUP_HOMOMORPHISM_ID] THEN DISCH_THEN SUBST1_TAC THEN ASM SET_TAC[]);; let FINITELY_GENERATED_PRODUCT_GROUP = prove (`!k (G:K->A group). finitely_generated_group(product_group k G) <=> FINITE {i | i IN k /\ ~trivial_group(G i)} /\ !i. i IN k ==> finitely_generated_group(G i)`, REPEAT GEN_TAC THEN W(MP_TAC o PART_MATCH rand ISOMORPHIC_PRODUCT_GROUP_SUPPORT o rand o lhand o snd) THEN DISCH_THEN(SUBST1_TAC o SYM o MATCH_MP ISOMORPHIC_GROUP_FINITE_GENERATION) THEN MATCH_MP_TAC(TAUT `(p ==> q) /\ (q ==> (p <=> r)) ==> (p <=> q /\ r)`) THEN CONJ_TAC THENL [MP_TAC(SET_RULE `!i. i IN {i | i IN k /\ ~trivial_group (G i)} ==> ~trivial_group((G:K->A group) i)`) THEN SPEC_TAC(`{i | i IN k /\ ~trivial_group ((G:K->A group) i)}`, `k:K->bool`) THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(TAUT `(~p ==> F) ==> p`) THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP FINITELY_GENERATED_IMP_COUNTABLE_GROUP) THEN REWRITE_TAC[PRODUCT_GROUP; COUNTABLE_CARTESIAN_PRODUCT] THEN REWRITE_TAC[CARTESIAN_PRODUCT_EQ_EMPTY; GROUP_CARRIER_NONEMPTY] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (TAUT `~p ==> (p' <=> p) ==> ~(p' /\ q)`)) THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM TRIVIAL_GROUP_ALT] THEN ASM SET_TAC[]; DISCH_TAC THEN ONCE_REWRITE_TAC[MESON[TRIVIAL_IMP_FINITELY_GENERATED_GROUP] `(!i. P i ==> finitely_generated_group(G i)) <=> (!i. P i /\ ~trivial_group(G i) ==> finitely_generated_group(G i))`] THEN ONCE_REWRITE_TAC[SET_RULE `i IN s /\ ~P i ==> Q i <=> i IN {i | i IN s /\ ~P i} ==> Q i`] THEN POP_ASSUM MP_TAC THEN SPEC_TAC(`{i | i IN k /\ ~trivial_group ((G:K->A group) i)}`, `k:K->bool`) THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[TRIVIAL_IMP_FINITELY_GENERATED_GROUP; FORALL_IN_INSERT; TRIVIAL_PRODUCT_GROUP; NOT_IN_EMPTY] THEN REPEAT GEN_TAC THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN ASM_REWRITE_TAC[GSYM FINITELY_GENERATED_PROD_GROUP] THEN MATCH_MP_TAC ISOMORPHIC_GROUP_FINITE_GENERATION THEN ASM_SIMP_TAC[ISOMORPHIC_PRODUCT_GROUP_INSERT]]);; let FINITELY_GENERATED_SUM_GROUP = prove (`!k (G:K->A group). finitely_generated_group(sum_group k G) <=> FINITE {i | i IN k /\ ~trivial_group(G i)} /\ !i. i IN k ==> finitely_generated_group(G i)`, REPEAT GEN_TAC THEN MATCH_MP_TAC(TAUT `(p ==> q) /\ (q ==> (p <=> r)) ==> (p <=> q /\ r)`) THEN CONJ_TAC THENL [REWRITE_TAC[FINITELY_GENERATED_GROUP] THEN REWRITE_TAC[SUM_GROUP_CLAUSES; IN_ELIM_THM; IN_CARTESIAN_PRODUCT; SUBSET; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `s:(K->A)->bool` THEN STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `UNIONS {{i | i IN k /\ ~((f:K->A) i = group_id(G i))} | f IN s}` THEN ASM_SIMP_TAC[FINITE_UNIONS; FORALL_IN_GSPEC] THEN ASM_SIMP_TAC[FINITE_IMAGE; SIMPLE_IMAGE; UNIONS_IMAGE] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `i:K` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [TRIVIAL_GROUP_SUBSET]) THEN REWRITE_TAC[SUBSET; IN_SING; NOT_IMP; NOT_FORALL_THM] THEN DISCH_THEN(X_CHOOSE_THEN `x:A` STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[GSYM NOT_IMP; GSYM NOT_FORALL_THM] THEN DISCH_TAC THEN SUBGOAL_THEN `!f:K->A. f IN group_carrier(subgroup_generated (sum_group k G) s) ==> f i = group_id(G i)` MP_TAC THENL [MATCH_MP_TAC SUBGROUP_GENERATED_INDUCT THEN ASM_SIMP_TAC[] THEN REWRITE_TAC[CONJUNCT2 SUM_GROUP_CLAUSES] THEN UNDISCH_TAC `(i:K) IN k` THEN SIMP_TAC[RESTRICTION] THEN SIMP_TAC[GROUP_MUL_LID; GROUP_ID; GROUP_INV_ID]; ASM_REWRITE_TAC[]] THEN DISCH_THEN(MP_TAC o SPEC `RESTRICTION k (\j. if j = i then x else group_id((G:K->A group) j))`) THEN ASM_REWRITE_TAC[GROUP_SUM_INJECTION] THEN ASM_REWRITE_TAC[RESTRICTION]; DISCH_TAC] THEN W(MP_TAC o PART_MATCH rand ISOMORPHIC_SUM_GROUP_SUPPORT o rand o lhand o snd) THEN DISCH_THEN(SUBST1_TAC o SYM o MATCH_MP ISOMORPHIC_GROUP_FINITE_GENERATION) THEN ONCE_REWRITE_TAC[MESON[TRIVIAL_IMP_FINITELY_GENERATED_GROUP] `(!i. P i ==> finitely_generated_group(G i)) <=> (!i. P i /\ ~trivial_group(G i) ==> finitely_generated_group(G i))`] THEN ONCE_REWRITE_TAC[SET_RULE `i IN s /\ ~P i ==> Q i <=> i IN {i | i IN s /\ ~P i} ==> Q i`] THEN POP_ASSUM MP_TAC THEN SPEC_TAC(`{i | i IN k /\ ~trivial_group ((G:K->A group) i)}`, `k:K->bool`) THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[TRIVIAL_IMP_FINITELY_GENERATED_GROUP; FORALL_IN_INSERT; TRIVIAL_SUM_GROUP; NOT_IN_EMPTY] THEN REPEAT GEN_TAC THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN ASM_REWRITE_TAC[GSYM FINITELY_GENERATED_PROD_GROUP] THEN MATCH_MP_TAC ISOMORPHIC_GROUP_FINITE_GENERATION THEN ASM_SIMP_TAC[ISOMORPHIC_SUM_GROUP_INSERT]);; let FINITE_GROUP_ACTIONS = prove (`!G s (f:(A->X->X)->B). finitely_generated_group G /\ FINITE s /\ (!a a'. (!g x. g IN group_carrier G /\ x IN s ==> a g x = a' g x) ==> f a = f a') ==> FINITE {f a | group_action G s a}`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [FINITELY_GENERATED_GROUP]) THEN DISCH_THEN(X_CHOOSE_THEN `t:A->bool` STRIP_ASSUME_TAC) THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN MATCH_MP_TAC(ISPEC `\a:A->X->X. RESTRICTION (t CROSS s) (\(g,x). a g x)` FINITE_IMAGE_GEN) THEN EXISTS_TAC `cartesian_product ((t:A->bool) CROSS (s:X->bool)) (\x. s)` THEN ASM_SIMP_TAC[FINITE_CARTESIAN_PRODUCT; FINITE_CROSS; FINITE_RESTRICT] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; RESTRICTION_IN_CARTESIAN_PRODUCT] THEN REWRITE_TAC[RESTRICTION_EXTENSION; IN_ELIM_THM] THEN REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS] THEN CONJ_TAC THENL [REWRITE_TAC[group_action] THEN ASM SET_TAC[]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`a:A->X->X`; `a':A->X->X`] THEN STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN MATCH_MP_TAC GROUP_ACTIONS_EQ_ON_GENERATORS THEN ASM_MESON_TAC[]);; let FINITELY_GENERATED_FIXED_INDEX_SUBGROUPS = prove (`!(G:A group) n. finitely_generated_group G ==> FINITE {h | h subgroup_of G /\ {right_coset G h x |x| x IN group_carrier G} HAS_SIZE n}`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `n = 0` THENL [ASM_REWRITE_TAC[HAS_SIZE_0; SIMPLE_IMAGE; IMAGE_EQ_EMPTY; GROUP_CARRIER_NONEMPTY; EMPTY_GSPEC; FINITE_EMPTY]; RULE_ASSUM_TAC(REWRITE_RULE[ARITH_RULE `~(n = 0) <=> 1 <= n`])] THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{ group_stabilizer (G:A group) a 1 |a| group_action G (1..n) a}` THEN CONJ_TAC THENL [MATCH_MP_TAC FINITE_GROUP_ACTIONS THEN ASM_REWRITE_TAC[group_stabilizer; FINITE_NUMSEG; IN_NUMSEG] THEN MP_TAC LE_REFL THEN ASM SET_TAC[]; REWRITE_TAC[SUBSET; IN_ELIM_THM]] THEN X_GEN_TAC `h:A->bool` THEN SIMP_TAC[IMP_CONJ; GSYM HAS_SIZE_LEFT_RIGHT_COSETS] THEN REPEAT DISCH_TAC THEN ABBREV_TAC `c = {left_coset G x h | x | (x:A) IN group_carrier G}` THEN ABBREV_TAC `a = (IMAGE o group_mul (G:A group))` THEN MP_TAC(ISPECL [`G:A group`; `h:A->bool`; `group_id G:A`] GROUP_STABILIZER_LEFT_COSET_MULTIPLICATION) THEN MP_TAC(ISPECL [`G:A group`; `h:A->bool`] GROUP_ACTION_LEFT_COSET_MULTIPLICATION) THEN ASM_SIMP_TAC[SUBGROUP_OF_IMP_SUBSET; GROUP_ID; LEFT_COSET_ID; IMAGE_GROUP_CONJUGATION_BY_ID] THEN REPEAT DISCH_TAC THEN FIRST_X_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [HAS_SIZE]) THEN MP_TAC(ISPECL [`c:(A->bool)->bool`; `1..n`; `h:A->bool`; `1`] CARD_EQ_BIJECTIONS_SPECIAL) THEN ASM_REWRITE_TAC[CARD_NUMSEG_1; IN_NUMSEG; LE_REFL; FINITE_NUMSEG] THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q ==> r) ==> (p ==> q) ==> r`) THEN CONJ_TAC THENL [EXPAND_TAC "c" THEN REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `group_id G:A` THEN ASM_SIMP_TAC[SUBGROUP_OF_IMP_SUBSET; LEFT_COSET_ID; GROUP_ID]; DISCH_TAC THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; GSYM IN_NUMSEG]] THEN MAP_EVERY X_GEN_TAC [`f:(A->bool)->num`; `g:num->A->bool`] THEN STRIP_TAC THEN EXISTS_TAC `\x i. (f:(A->bool)->num) (a (x:A) ((g:num->A->bool) i))` THEN CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [group_action]) THEN REWRITE_TAC[group_action] THEN ASM_SIMP_TAC[]; FIRST_X_ASSUM(SUBST1_TAC o SYM o GEN_REWRITE_RULE LAND_CONV [group_stabilizer]) THEN ASM_REWRITE_TAC[group_stabilizer] THEN RULE_ASSUM_TAC(REWRITE_RULE[group_action]) THEN MATCH_MP_TAC SUBSET_ANTISYM THEN ASM_SIMP_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[]]);; let FINITELY_GENERATED_FINITE_INDEX_SUBGROUP = prove (`!G h:A->bool. finitely_generated_group G /\ h subgroup_of G /\ FINITE {right_coset G h x | x | x IN group_carrier G} ==> finitely_generated_group(subgroup_generated G h)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `?s:A->bool. FINITE s /\ s SUBSET group_carrier G /\ subgroup_generated G s = G /\ (!x. x IN s ==> group_inv G x IN s)` STRIP_ASSUME_TAC THENL [FIRST_X_ASSUM(X_CHOOSE_THEN `s:A->bool` STRIP_ASSUME_TAC o REWRITE_RULE[FINITELY_GENERATED_GROUP]) THEN EXISTS_TAC `s UNION group_setinv G (s:A->bool)` THEN ASM_SIMP_TAC[FINITE_UNION; FORALL_IN_UNION; FINITE_IMAGE; GROUP_SETINV_AS_IMAGE; FORALL_IN_IMAGE; UNION_SUBSET] THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN ASM_SIMP_TAC[SUBSET; FORALL_IN_IMAGE; IN_UNION; FUN_IN_IMAGE] THEN ASM_SIMP_TAC[GROUP_INV_INV; GROUP_INV] THEN REWRITE_TAC[SUBGROUP_GENERATED_SUPERSET] THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [SYM th]) THEN MATCH_MP_TAC SUBGROUP_GENERATED_MONO THEN SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `?t:A->bool. FINITE t /\ t SUBSET group_carrier G /\ UNIONS {right_coset G h x | x IN t} = group_carrier G /\ t INTER h SUBSET {group_id G}` STRIP_ASSUME_TAC THENL [FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [REWRITE_RULE[GSYM SIMPLE_IMAGE] FINITE_IMAGE_EQ]) THEN DISCH_THEN(X_CHOOSE_THEN `t:A->bool` MP_TAC) THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(MP_TAC o AP_TERM `UNIONS:((A->bool)->bool)->A->bool` o SYM) THEN ASM_SIMP_TAC[UNIONS_RIGHT_COSETS] THEN DISCH_TAC THEN EXISTS_TAC `(group_id G:A) INSERT (t DIFF h)` THEN ASM_SIMP_TAC[FINITE_INSERT; FINITE_DIFF; INSERT_SUBSET; GROUP_ID] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP SUBGROUP_OF_IMP_SUBSET) THEN REPEAT CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC; ASM SET_TAC[]] THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; UNIONS_SUBSET; FORALL_IN_GSPEC] THEN CONJ_TAC THENL [REWRITE_TAC[IN_INSERT] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC RIGHT_COSET THEN ASM_REWRITE_TAC[GROUP_ID] THEN ASM SET_TAC[]; FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [SYM th])] THEN MATCH_MP_TAC SUBSET_UNIONS THEN REWRITE_TAC[SUBSET; FORALL_IN_GSPEC; IN_INSERT; IN_INTER; IN_DIFF] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_CASES_TAC `(x:A) IN h` THENL [ALL_TAC; ASM_MESON_TAC[]] THEN EXISTS_TAC `group_id G:A` THEN ASM_SIMP_TAC[RIGHT_COSET_ID] THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN ASM_SIMP_TAC[RIGHT_COSET_ID; RIGHT_COSET_EQ_SUBGROUP]; ALL_TAC] THEN REWRITE_TAC[finitely_generated_group] THEN EXISTS_TAC `h INTER group_setmul G t (group_setmul G s (group_setinv G t)):A->bool` THEN CONJ_TAC THENL [MATCH_MP_TAC FINITE_INTER THEN DISJ2_TAC THEN MATCH_MP_TAC FINITE_GROUP_SETMUL THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC FINITE_GROUP_SETMUL THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[GROUP_SETINV_AS_IMAGE; FINITE_IMAGE]; SIMP_TAC[SUBGROUP_GENERATED_IDEMPOT; INTER_SUBSET] THEN GEN_REWRITE_TAC LAND_CONV [GSYM SUBGROUP_GENERATED_BY_SUBGROUP_GENERATED] THEN AP_TERM_TAC THEN MATCH_MP_TAC SCHREIER_TRANSVERSAL_LEMMA THEN ASM_REWRITE_TAC[]]);; let FINITELY_GENERATED_ABELIAN_SUBGROUP_EXPLICIT = prove (`!G s h:A->bool. FINITE s /\ s SUBSET group_carrier G /\ abelian_group G /\ h subgroup_of subgroup_generated G s ==> ?t. FINITE t /\ t SUBSET group_carrier G /\ CARD t <= CARD s /\ subgroup_generated G t = subgroup_generated G h`, SUBGOAL_THEN `!n G s h:A->bool. s SUBSET group_carrier G /\ s HAS_SIZE n /\ abelian_group G /\ h subgroup_of subgroup_generated G s ==> ?t. FINITE t /\ t SUBSET group_carrier G /\ CARD t <= n /\ subgroup_generated G t = subgroup_generated G h` ASSUME_TAC THENL [ALL_TAC; REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN EXISTS_TAC `s:A->bool` THEN ASM_REWRITE_TAC[HAS_SIZE]] THEN REWRITE_TAC[HAS_SIZE; GSYM CONJ_ASSOC] THEN MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN SUBGOAL_THEN `!G s h:A->bool. s SUBSET group_carrier G /\ FINITE s /\ CARD s = n /\ subgroup_generated G s = G /\ abelian_group G /\ h subgroup_of G ==> ?t. FINITE t /\ t SUBSET group_carrier G /\ CARD t <= n /\ subgroup_generated G t = subgroup_generated G h` ASSUME_TAC THENL [ALL_TAC; MAP_EVERY X_GEN_TAC [`G:A group`; `s:A->bool`; `h:A->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`subgroup_generated G (s:A->bool)`; `s:A->bool`; `h:A->bool`]) THEN ASM_SIMP_TAC[ABELIAN_SUBGROUP_GENERATED] THEN ASM_SIMP_TAC[SUBGROUP_GENERATED_IDEMPOT; SUBSET_REFL] THEN ASM_SIMP_TAC[SUBGROUP_GENERATED_SUBSET_CARRIER_SUBSET] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `t:A->bool` THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ASM_SIMP_TAC[SUBGROUP_GENERATED_IDEMPOT_GEN; SUBGROUP_OF_IMP_SUBSET] THEN ASM_MESON_TAC[GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET; SUBSET_TRANS]] THEN MAP_EVERY X_GEN_TAC [`G:A group`; `s:A->bool`; `h:A->bool`] THEN ASM_CASES_TAC `s:A->bool = {}` THENL [ASM_REWRITE_TAC[] THEN STRIP_TAC THEN EXISTS_TAC `{}:A->bool` THEN ASM_REWRITE_TAC[FINITE_EMPTY; CARD_CLAUSES; LE_0] THEN REWRITE_TAC[GROUPS_EQ; CONJUNCT2 SUBGROUP_GENERATED] THEN ASM_MESON_TAC[TRIVIAL_GROUP_SUBGROUP_GENERATED; TRIVIAL_GROUP_SUBGROUP_GENERATED_EMPTY; trivial_group; CONJUNCT2 SUBGROUP_GENERATED]; STRIP_TAC] THEN SUBGOAL_THEN `(h:A->bool) SUBSET group_carrier G` ASSUME_TAC THENL [ASM_MESON_TAC[SUBGROUP_OF_IMP_SUBSET]; ALL_TAC] THEN ASM_CASES_TAC `n = 0` THENL [ASM_MESON_TAC[CARD_EQ_0]; ALL_TAC] THEN FIRST_ASSUM(X_CHOOSE_TAC `a:A` o REWRITE_RULE[GSYM MEMBER_NOT_EMPTY]) THEN ABBREV_TAC `c = group_carrier(subgroup_generated G {a:A})` THEN ABBREV_TAC `G' = quotient_group G (c:A->bool)` THEN ABBREV_TAC `h' = IMAGE (right_coset G c) (h:A->bool)` THEN SUBGOAL_THEN `(c:A->bool) subgroup_of G` ASSUME_TAC THENL [ASM_MESON_TAC[SUBGROUP_SUBGROUP_GENERATED]; ALL_TAC] THEN SUBGOAL_THEN `(c:A->bool) normal_subgroup_of G` ASSUME_TAC THENL [ASM_MESON_TAC[ABELIAN_GROUP_NORMAL_SUBGROUP]; ALL_TAC] THEN SUBGOAL_THEN `(c:A->bool) SUBSET group_carrier G` ASSUME_TAC THENL [ASM_MESON_TAC[SUBGROUP_OF_IMP_SUBSET]; ALL_TAC] THEN SUBGOAL_THEN `abelian_group(G':(A->bool)group)` ASSUME_TAC THENL [ASM_MESON_TAC[ABELIAN_QUOTIENT_GROUP]; ALL_TAC] THEN SUBGOAL_THEN `(h':(A->bool)->bool) subgroup_of G'` ASSUME_TAC THENL [EXPAND_TAC "h'" THEN MATCH_MP_TAC SUBGROUP_OF_HOMOMORPHIC_IMAGE THEN ASM_MESON_TAC[GROUP_HOMOMORPHISM_RIGHT_COSET]; ALL_TAC] THEN SUBGOAL_THEN `(h':(A->bool)->bool) SUBSET group_carrier G'` ASSUME_TAC THENL [ASM_MESON_TAC[SUBGROUP_OF_IMP_SUBSET]; ALL_TAC] THEN MP_TAC(ISPECL [`G:A group`; `c:A->bool`] GROUP_EPIMORPHISM_RIGHT_COSET) THEN ASM_REWRITE_TAC[group_epimorphism] THEN STRIP_TAC THEN SUBGOAL_THEN `?t:(A->bool)->bool. FINITE t /\ CARD t < n /\ t SUBSET group_carrier(subgroup_generated G' h') /\ subgroup_generated (subgroup_generated G' h') t = subgroup_generated G' h'` MP_TAC THENL [SUBGOAL_THEN `?d:A->bool. group_carrier(G':(A->bool)group) =_c d` MP_TAC THENL [ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN REWRITE_TAC[CARD_LE_EQ_SUBSET_UNIV] THEN EXPAND_TAC "G'" THEN ASM_SIMP_TAC[QUOTIENT_GROUP] THEN REWRITE_TAC[SIMPLE_IMAGE] THEN W(MP_TAC o PART_MATCH lhand CARD_LE_IMAGE o lhand o snd) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_TRANS) THEN REWRITE_TAC[CARD_LE_UNIV]; REWRITE_TAC[GSYM ISOMORPHIC_COPY_OF_GROUP]] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[LEFT_EXISTS_AND_THM; GSYM EXISTS_REFL] THEN DISCH_THEN(X_CHOOSE_TAC `G'':A group`) THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [isomorphic_group]) THEN REWRITE_TAC[group_isomorphism; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`f:(A->bool)->A`; `g:A->(A->bool)`] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `CARD(IMAGE (f:(A->bool)->A) (IMAGE (right_coset G c) (s DELETE a)))`) THEN ANTS_TAC THENL [REWRITE_TAC[GSYM IMAGE_o] THEN TRANS_TAC LET_TRANS `CARD(s DELETE (a:A))` THEN ASM_SIMP_TAC[CARD_IMAGE_LE; FINITE_DELETE] THEN ASM_SIMP_TAC[CARD_DELETE; ARITH_RULE `n - 1 < n <=> ~(n = 0)`]; DISCH_THEN(MP_TAC o SPEC `G'':A group`)] THEN DISCH_THEN(MP_TAC o SPECL [`IMAGE (f:(A->bool)->A) (IMAGE (right_coset G c) (s DELETE a))`; `IMAGE (f:(A->bool)->A) h'`]) THEN ASM_SIMP_TAC[FINITE_IMAGE; FINITE_DELETE] THEN ANTS_TAC THENL [SUBGOAL_THEN `subgroup_generated G'' (IMAGE (f:(A->bool)->A) (IMAGE (right_coset G c) (s DELETE a))) = G''` SUBST1_TAC THENL [REWRITE_TAC[SUBGROUP_GENERATED_SUPERSET] THEN MP_TAC(ISPECL [`G':(A->bool)group`; `G'':A group`; `f:(A->bool)->A`] SUBGROUP_GENERATED_BY_HOMOMORPHIC_IMAGE) THEN DISCH_THEN(fun th -> W(MP_TAC o PART_MATCH (lhand o rand) th o rand o snd)) THEN ANTS_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[group_isomorphisms]) THEN ASM_REWRITE_TAC[] THEN EXPAND_TAC "G'" THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[QUOTIENT_GROUP; IN_ELIM_THM] THEN ASM SET_TAC[]; DISCH_THEN SUBST1_TAC] THEN TRANS_TAC SUBSET_TRANS `IMAGE (f:(A->bool)->A) (group_carrier G')` THEN CONJ_TAC THENL [ASM_MESON_TAC[GROUP_ISOMORPHISMS_IMP_ISOMORPHISM; group_epimorphism; SUBSET_REFL; GROUP_ISOMORPHISM_IMP_EPIMORPHISM]; MATCH_MP_TAC IMAGE_SUBSET] THEN TRANS_TAC SUBSET_TRANS `IMAGE (right_coset G c) (group_carrier(subgroup_generated G (s:A->bool)))` THEN CONJ_TAC THENL [ASM_REWRITE_TAC[SUBSET_REFL]; ALL_TAC] THEN MP_TAC(ISPECL [`G:A group`; `{a:A}`; `s DELETE (a:A)`] SUBGROUP_GENERATED_UNION) THEN SUBGOAL_THEN `{a:A} UNION s DELETE a = s` SUBST1_TAC THENL [ASM SET_TAC[]; DISCH_THEN(SUBST1_TAC o SYM)] THEN W(MP_TAC o PART_MATCH (lhand o rand) CARRIER_SUBGROUP_GENERATED_UNION_LEFT o rand o lhand o snd) THEN ASM_SIMP_TAC[ABELIAN_GROUP_NORMAL_SUBGROUP; SUBGROUP_SUBGROUP_GENERATED] THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[group_setmul; FORALL_IN_GSPEC] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN SUBGOAL_THEN `(x:A) IN group_carrier G /\ y IN group_carrier G` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[SUBSET; GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET]; ALL_TAC] THEN FIRST_ASSUM(fun th -> W(MP_TAC o PART_MATCH (lhand o rand) (MATCH_MP GROUP_HOMOMORPHISM_MUL th) o lhand o snd)) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC IN_SUBGROUP_MUL THEN REWRITE_TAC[SUBGROUP_SUBGROUP_GENERATED] THEN CONJ_TAC THENL [MATCH_MP_TAC(MESON[GROUP_ID_SUBGROUP] `x = group_id G ==> x IN group_carrier(subgroup_generated G s)`) THEN EXPAND_TAC "G'" THEN ASM_SIMP_TAC[QUOTIENT_GROUP] THEN ASM_SIMP_TAC[RIGHT_COSET_EQ_SUBGROUP]; ALL_TAC] THEN MP_TAC(ISPECL [`G:A group`; `G':(A->bool)group`; `right_coset G (c:A->bool)`] SUBGROUP_GENERATED_BY_HOMOMORPHIC_IMAGE) THEN DISCH_THEN(fun th -> W(MP_TAC o PART_MATCH (lhand o rand) th o rand o snd)) THEN ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN SUBST1_TAC THEN ASM SET_TAC[]]; ALL_TAC] THEN REPEAT CONJ_TAC THENL [TRANS_TAC SUBSET_TRANS `IMAGE (f:(A->bool)->A) (group_carrier G')` THEN CONJ_TAC THENL [MATCH_MP_TAC IMAGE_SUBSET THEN EXPAND_TAC "G'" THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[QUOTIENT_GROUP; IN_ELIM_THM] THEN ASM SET_TAC[]; RULE_ASSUM_TAC(REWRITE_RULE [group_isomorphisms; group_homomorphism]) THEN ASM SET_TAC[]]; UNDISCH_TAC `abelian_group(G':(A->bool)group)` THEN MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC ISOMORPHIC_GROUP_ABELIANNESS THEN ASM_MESON_TAC[isomorphic_group; group_isomorphism]; MATCH_MP_TAC SUBGROUP_OF_HOMOMORPHIC_IMAGE THEN RULE_ASSUM_TAC(REWRITE_RULE [group_isomorphisms]) THEN ASM_MESON_TAC[]]; DISCH_THEN(X_CHOOSE_THEN `t:A->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `IMAGE (g:A->(A->bool)) t` THEN CONJ_TAC THENL [MATCH_MP_TAC FINITE_IMAGE THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [W(MP_TAC o PART_MATCH (lhand o rand) CARD_IMAGE_LE o lhand o snd) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] LET_TRANS) THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] LET_TRANS)) THEN REWRITE_TAC[GSYM IMAGE_o] THEN W(MP_TAC o PART_MATCH (lhand o rand) CARD_IMAGE_LE o lhand o snd) THEN ASM_SIMP_TAC[FINITE_DELETE; CARD_DELETE] THEN UNDISCH_TAC `~(n = 0)` THEN ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [TRANS_TAC SUBSET_TRANS `IMAGE (g:A->(A->bool)) (group_carrier(subgroup_generated G'' t))` THEN CONJ_TAC THENL [MATCH_MP_TAC IMAGE_SUBSET THEN MATCH_MP_TAC SUBGROUP_GENERATED_SUBSET_CARRIER_SUBSET THEN ASM_REWRITE_TAC[]; ASM_REWRITE_TAC[]] THEN MP_TAC(ISPECL [`G'':A group`; `G':(A->bool)group`; `g:A->(A->bool)`; `IMAGE (f:(A->bool)->A) h'`] SUBGROUP_GENERATED_BY_HOMOMORPHIC_IMAGE) THEN ANTS_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[group_isomorphisms]) THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[group_homomorphism]) THEN ASM SET_TAC[]; DISCH_THEN(SUBST1_TAC o SYM)] THEN MATCH_MP_TAC(SET_RULE `s = t ==> s SUBSET t`) THEN AP_TERM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM IMAGE_o] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x = x) ==> IMAGE f s = s`) THEN RULE_ASSUM_TAC(REWRITE_RULE[group_isomorphisms]) THEN REWRITE_TAC[o_THM] THEN ASM SET_TAC[]; SIMP_TAC[SUBGROUP_GENERATED_IDEMPOT_GEN] THEN DISCH_TAC] THEN REWRITE_TAC[GROUPS_EQ; CONJUNCT2 SUBGROUP_GENERATED] THEN MP_TAC(ISPECL [`G'':A group`; `G':(A->bool)group`; `g:A->(A->bool)`; `t:A->bool`] SUBGROUP_GENERATED_BY_HOMOMORPHIC_IMAGE) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[group_isomorphisms]) THEN ASM_MESON_TAC[]; DISCH_THEN SUBST1_TAC] THEN MP_TAC(ISPECL [`G'':A group`; `G':(A->bool)group`; `g:A->(A->bool)`; `IMAGE (f:(A->bool)->A) h'`] SUBGROUP_GENERATED_BY_HOMOMORPHIC_IMAGE) THEN ANTS_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[group_isomorphisms]) THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[group_homomorphism]) THEN ASM SET_TAC[]; DISCH_THEN(SUBST1_TAC o SYM)] THEN AP_TERM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM IMAGE_o] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x = x) ==> IMAGE f s = s`) THEN RULE_ASSUM_TAC(REWRITE_RULE[group_isomorphisms]) THEN REWRITE_TAC[o_THM] THEN ASM SET_TAC[]]; ALL_TAC] THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_SUBGROUP] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; IMP_CONJ] THEN SIMP_TAC[SUBGROUP_GENERATED_IDEMPOT] THEN REWRITE_TAC[IMP_IMP] THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[GSYM CONJ_ASSOC] THEN EXPAND_TAC "h'" THEN REWRITE_TAC[FORALL_SMALL_SUBSET_IMAGE] THEN X_GEN_TAC `t:A->bool` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN SUBGOAL_THEN `?b:A. b IN group_carrier G /\ b IN h /\ group_carrier(subgroup_generated G {a}) INTER h SUBSET group_carrier(subgroup_generated G {b})` STRIP_ASSUME_TAC THENL [MP_TAC(ISPECL [`subgroup_generated G {a:A}`; `group_carrier(subgroup_generated G {a:A}) INTER h`] SUBGROUP_OF_CYCLIC_GROUP) THEN ANTS_TAC THENL [REWRITE_TAC[CYCLIC_GROUP_GENERATED] THEN GEN_REWRITE_TAC RAND_CONV [GSYM SUBGROUP_GENERATED_BY_SUBGROUP_GENERATED] THEN MATCH_MP_TAC SUBGROUP_OF_SUBGROUP_GENERATED THEN REWRITE_TAC[INTER_SUBSET] THEN MATCH_MP_TAC SUBGROUP_OF_INTER THEN ASM_REWRITE_TAC[SUBGROUP_SUBGROUP_GENERATED]; REWRITE_TAC[cyclic_group; SUBGROUP_GENERATED_SUPERSET] THEN REWRITE_TAC[GSYM SUBGROUP_GENERATED_RESTRICT]] THEN DISCH_THEN(X_CHOOSE_THEN `b:A` MP_TAC) THEN ASM_CASES_TAC `(b:A) IN h` THENL [SUBGOAL_THEN `(b:A) IN group_carrier G` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(fun th -> EXISTS_TAC `b:A` THEN MP_TAC(CONJUNCT2 th)) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(SET_RULE `u SUBSET s /\ t SUBSET v ==> s SUBSET t ==> u SUBSET v`) THEN CONJ_TAC THENL [ONCE_REWRITE_TAC[SUBGROUP_GENERATED_RESTRICT] THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SUBSET_CARRIER_SUBGROUP_GENERATED THEN REWRITE_TAC[SUBSET_REFL] THEN EXPAND_TAC "c" THEN SET_TAC[]; MESON_TAC[GROUP_CARRIER_SUBGROUP_GENERATED_MONO; SUBSET_TRANS]]; DISCH_THEN(fun th -> EXISTS_TAC `group_id G:A` THEN MP_TAC(CONJUNCT2 th)) THEN ASM_SIMP_TAC[IN_SUBGROUP_ID; GROUP_ID] THEN MATCH_MP_TAC(SET_RULE `u SUBSET s /\ t SUBSET v ==> s SUBSET t ==> u SUBSET v`) THEN CONJ_TAC THENL [ONCE_REWRITE_TAC[SUBGROUP_GENERATED_RESTRICT] THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC SUBSET_CARRIER_SUBGROUP_GENERATED THEN REWRITE_TAC[SUBSET_REFL] THEN EXPAND_TAC "c" THEN SET_TAC[]; SIMP_TAC[CARRIER_SUBGROUP_GENERATED_SUBGROUP; TRIVIAL_SUBGROUP_OF] THEN W(MP_TAC o PART_MATCH (lhand o rand) TRIVIAL_GROUP_SUBSET o lhand o snd) THEN REWRITE_TAC[CONJUNCT2 SUBGROUP_GENERATED] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[TRIVIAL_GROUP_SUBGROUP_GENERATED_EQ] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `~(b IN h) ==> s SUBSET h ==> s INTER {b} SUBSET t`)) THEN TRANS_TAC SUBSET_TRANS `group_carrier(subgroup_generated G h):A->bool` THEN REWRITE_TAC[GROUP_CARRIER_SUBGROUP_GENERATED_MONO] THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_SUBGROUP; SUBSET_REFL]]]; ALL_TAC] THEN EXISTS_TAC `(b:A) INSERT t` THEN ASM_REWRITE_TAC[FINITE_INSERT] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[CARD_CLAUSES] THEN CONJ_TAC THENL [UNDISCH_TAC `CARD(t:A->bool) < n` THEN ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[GROUPS_EQ; CONJUNCT2 SUBGROUP_GENERATED] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [MATCH_MP_TAC SUBGROUP_GENERATED_MONO THEN ASM SET_TAC[]; MATCH_MP_TAC SUBGROUP_GENERATED_MINIMAL] THEN REWRITE_TAC[SUBGROUP_SUBGROUP_GENERATED] THEN REWRITE_TAC[SUBSET] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN SUBGOAL_THEN `(x:A) IN group_carrier G` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MP_TAC(ISPECL [`G:A group`; `G':(A->bool) group`; `right_coset G (c:A->bool)`; `group_carrier (subgroup_generated G t):A->bool`] GROUP_HOMOMORPHISM_PREIMAGE_IMAGE_RIGHT) THEN ASM_REWRITE_TAC[GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET] THEN DISCH_THEN(MP_TAC o SPEC `x:A` o MATCH_MP (SET_RULE `{x | P x} = s ==> !x. P x ==> x IN s`)) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [MP_TAC(ISPECL [`G:A group`; `G':(A->bool) group`; `right_coset G (c:A->bool)`; `t:A->bool`] SUBGROUP_GENERATED_BY_HOMOMORPHIC_IMAGE) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN(SUBST1_TAC o SYM)] THEN EXPAND_TAC "h'" THEN MP_TAC(ISPECL [`G:A group`; `G':(A->bool) group`; `right_coset G (c:A->bool)`; `h:A->bool`] SUBGROUP_GENERATED_BY_HOMOMORPHIC_IMAGE) THEN ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN SUBST1_TAC] THEN MATCH_MP_TAC FUN_IN_IMAGE THEN MATCH_MP_TAC SUBGROUP_GENERATED_INC_GEN THEN ASM_REWRITE_TAC[]; REWRITE_TAC[group_setmul; IN_ELIM_THM; LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`y:A`; `z:A`] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC (ASSUME_TAC o SYM)) THEN EXPAND_TAC "G'" THEN ASM_SIMP_TAC[GROUP_KERNEL_RIGHT_COSET] THEN STRIP_TAC THEN ASM_SIMP_TAC[SUBGROUP_GENERATED_IDEMPOT; INSERT_SUBSET] THEN EXPAND_TAC "x" THEN MATCH_MP_TAC IN_SUBGROUP_MUL THEN REWRITE_TAC[SUBGROUP_SUBGROUP_GENERATED] THEN CONJ_TAC THENL [UNDISCH_TAC `(y:A) IN group_carrier (subgroup_generated G t)` THEN MATCH_MP_TAC(SET_RULE `s SUBSET t ==> x IN s ==> x IN t`) THEN MATCH_MP_TAC SUBGROUP_GENERATED_MONO THEN SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(SET_RULE `!s. s SUBSET t /\ z IN s ==> z IN t`) THEN EXISTS_TAC `group_carrier (subgroup_generated G {b:A})` THEN CONJ_TAC THENL [MATCH_MP_TAC SUBGROUP_GENERATED_MONO THEN SET_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `s SUBSET t ==> x IN s ==> x IN t`)) THEN ASM_REWRITE_TAC[IN_INTER] THEN SUBGOAL_THEN `z:A = group_mul G (group_inv G y) x` SUBST1_TAC THENL [EXPAND_TAC "x" THEN GROUP_TAC THEN ASM_MESON_TAC[SUBSET; GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET]; ALL_TAC] THEN MATCH_MP_TAC IN_SUBGROUP_MUL THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC IN_SUBGROUP_INV THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `(y:A) IN group_carrier (subgroup_generated G t)` THEN MATCH_MP_TAC(SET_RULE `s SUBSET t ==> x IN s ==> x IN t`) THEN MATCH_MP_TAC SUBGROUP_GENERATED_MINIMAL THEN ASM_REWRITE_TAC[]);; let FINITELY_GENERATED_ABELIAN_SUBGROUP = prove (`!G h:A->bool. finitely_generated_group G /\ abelian_group G /\ h subgroup_of G ==> finitely_generated_group(subgroup_generated G h)`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [FINITELY_GENERATED_GROUP]) THEN DISCH_THEN(X_CHOOSE_THEN `s:A->bool` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`G:A group`; `s:A->bool`; `h:A->bool`] FINITELY_GENERATED_ABELIAN_SUBGROUP_EXPLICIT) THEN ASM_REWRITE_TAC[finitely_generated_group] THEN MESON_TAC[SUBGROUP_GENERATED_IDEMPOT; SUBSET_REFL]);; let MAXIMAL_SUBGROUP_EXISTS = prove (`!G:A group. finitely_generated_group G /\ ~trivial_group G ==> ?h. h subgroup_of G /\ ~(h = group_carrier G) /\ !h'. h' subgroup_of G /\ h PSUBSET h' ==> h' = group_carrier G`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [FINITELY_GENERATED_GROUP]) THEN DISCH_THEN(X_CHOOSE_THEN `s:A->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `WF(\t t':A->bool. t' PSUBSET t /\ t SUBSET s)` MP_TAC THENL [MATCH_MP_TAC WF_FINITE THEN REWRITE_TAC[] THEN REPEAT(CONJ_TAC THENL [SET_TAC[]; ALL_TAC]) THEN GEN_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{t:A->bool | t SUBSET s}` THEN ASM_REWRITE_TAC[FINITE_POWERSET_EQ] THEN SET_TAC[]; REWRITE_TAC[WF] THEN DISCH_THEN(MP_TAC o SPEC `\t:A->bool. t SUBSET s /\ ?h. h subgroup_of G /\ ~(h = group_carrier G) /\ t SUBSET h`)] THEN REWRITE_TAC[] THEN ANTS_TAC THENL [EXISTS_TAC `{}:A->bool` THEN REWRITE_TAC[EMPTY_SUBSET] THEN EXISTS_TAC `{group_id G:A}` THEN REWRITE_TAC[TRIVIAL_SUBGROUP_OF] THEN ASM_MESON_TAC[trivial_group]; REWRITE_TAC[NOT_EXISTS_THM; RIGHT_IMP_FORALL_THM; RIGHT_AND_EXISTS_THM; LEFT_AND_EXISTS_THM; TAUT `p ==> ~(q /\ ~r /\ s) <=> p /\ q /\ s ==> r`] THEN REWRITE_TAC[GSYM CONJ_ASSOC; LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`t:A->bool`; `n:A->bool`] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(LABEL_TAC "*") THEN MP_TAC(ISPEC `\h:A->bool. n SUBSET h /\ h subgroup_of G /\ ~(h = group_carrier G)` ZL_SUBSETS_UNIONS_NONEMPTY) THEN REWRITE_TAC[] THEN ANTS_TAC THENL [CONJ_TAC THENL [ASM_MESON_TAC[SUBSET_REFL]; ALL_TAC]; MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `h:A->bool` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `h':A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `h':A->bool`) THEN ASM SET_TAC[]] THEN X_GEN_TAC `c:(A->bool)->bool` THEN REWRITE_TAC[MEMBER_NOT_EMPTY] THEN STRIP_TAC THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [MATCH_MP_TAC SUBGROUP_OF_UNIONS THEN ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `?a:A. a IN s /\ a IN group_carrier G /\ ~(a IN t)` STRIP_ASSUME_TAC THENL [MATCH_MP_TAC(SET_RULE `~(s SUBSET t) /\ s SUBSET u ==> ?a. a IN s /\ a IN u /\ ~(a IN t)`) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN SUBGOAL_THEN `group_carrier(subgroup_generated G (s:A->bool)) SUBSET n` MP_TAC THENL [MATCH_MP_TAC SUBGROUP_GENERATED_MINIMAL THEN ASM_MESON_TAC[subgroup_of; SUBSET_TRANS]; ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(SET_RULE `s SUBSET t /\ ~(s = t) ==> ~(t SUBSET s)`) THEN ASM_MESON_TAC[SUBGROUP_OF_IMP_SUBSET]]; DISCH_THEN(MP_TAC o SPEC `a:A` o GEN_REWRITE_RULE I [EXTENSION])] THEN ASM_REWRITE_TAC[IN_UNIONS] THEN DISCH_THEN(X_CHOOSE_THEN `h:A->bool` STRIP_ASSUME_TAC) THEN REMOVE_THEN "*" (MP_TAC o SPECL [`(a:A) INSERT t`; `h:A->bool`]) THEN ASM_REWRITE_TAC[NOT_IMP] THEN ASM SET_TAC[]);; let MAXIMAL_NORMAL_SUBGROUP_EXISTS = prove (`!G:A group. finitely_generated_group G /\ ~trivial_group G ==> ?h. h normal_subgroup_of G /\ ~(h = group_carrier G) /\ !h'. h' normal_subgroup_of G /\ h PSUBSET h' ==> h' = group_carrier G`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [FINITELY_GENERATED_GROUP]) THEN DISCH_THEN(X_CHOOSE_THEN `s:A->bool` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `WF(\t t':A->bool. t' PSUBSET t /\ t SUBSET s)` MP_TAC THENL [MATCH_MP_TAC WF_FINITE THEN REWRITE_TAC[] THEN REPEAT(CONJ_TAC THENL [SET_TAC[]; ALL_TAC]) THEN GEN_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{t:A->bool | t SUBSET s}` THEN ASM_REWRITE_TAC[FINITE_POWERSET_EQ] THEN SET_TAC[]; REWRITE_TAC[WF] THEN DISCH_THEN(MP_TAC o SPEC `\t:A->bool. t SUBSET s /\ ?h. h normal_subgroup_of G /\ ~(h = group_carrier G) /\ t SUBSET h`)] THEN REWRITE_TAC[] THEN ANTS_TAC THENL [EXISTS_TAC `{}:A->bool` THEN REWRITE_TAC[EMPTY_SUBSET] THEN EXISTS_TAC `{group_id G:A}` THEN REWRITE_TAC[TRIVIAL_NORMAL_SUBGROUP_OF] THEN ASM_MESON_TAC[trivial_group]; REWRITE_TAC[NOT_EXISTS_THM; RIGHT_IMP_FORALL_THM; RIGHT_AND_EXISTS_THM; LEFT_AND_EXISTS_THM; TAUT `p ==> ~(q /\ ~r /\ s) <=> p /\ q /\ s ==> r`] THEN REWRITE_TAC[GSYM CONJ_ASSOC; LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`t:A->bool`; `n:A->bool`] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_THEN(LABEL_TAC "*") THEN MP_TAC(ISPEC `\h:A->bool. n SUBSET h /\ h normal_subgroup_of G /\ ~(h = group_carrier G)` ZL_SUBSETS_UNIONS_NONEMPTY) THEN REWRITE_TAC[] THEN ANTS_TAC THENL [CONJ_TAC THENL [ASM_MESON_TAC[SUBSET_REFL]; ALL_TAC]; MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `h:A->bool` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `h':A->bool` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `h':A->bool`) THEN ASM SET_TAC[]] THEN X_GEN_TAC `c:(A->bool)->bool` THEN REWRITE_TAC[MEMBER_NOT_EMPTY] THEN STRIP_TAC THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [MATCH_MP_TAC NORMAL_SUBGROUP_OF_UNIONS THEN ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `?a:A. a IN s /\ a IN group_carrier G /\ ~(a IN t)` STRIP_ASSUME_TAC THENL [MATCH_MP_TAC(SET_RULE `~(s SUBSET t) /\ s SUBSET u ==> ?a. a IN s /\ a IN u /\ ~(a IN t)`) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN SUBGOAL_THEN `group_carrier(subgroup_generated G (s:A->bool)) SUBSET n` MP_TAC THENL [MATCH_MP_TAC SUBGROUP_GENERATED_MINIMAL THEN ASM_MESON_TAC[normal_subgroup_of; SUBSET_TRANS]; ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(SET_RULE `s SUBSET t /\ ~(s = t) ==> ~(t SUBSET s)`) THEN ASM_MESON_TAC[NORMAL_SUBGROUP_OF_IMP_SUBSET]]; DISCH_THEN(MP_TAC o SPEC `a:A` o GEN_REWRITE_RULE I [EXTENSION])] THEN ASM_REWRITE_TAC[IN_UNIONS] THEN DISCH_THEN(X_CHOOSE_THEN `h:A->bool` STRIP_ASSUME_TAC) THEN REMOVE_THEN "*" (MP_TAC o SPECL [`(a:A) INSERT t`; `h:A->bool`]) THEN ASM_REWRITE_TAC[NOT_IMP] THEN ASM SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* The additive group of integers. *) (* ------------------------------------------------------------------------- *) let integer_group = new_definition `integer_group = group((:int),&0,(--),(+))`;; let INTEGER_GROUP = prove (`group_carrier integer_group = (:int) /\ group_id integer_group = &0 /\ group_inv integer_group = (--) /\ group_mul integer_group = (+)`, MP_TAC(fst(EQ_IMP_RULE (ISPEC(rand(rand(snd(strip_forall(concl integer_group))))) (CONJUNCT2 group_tybij)))) THEN REWRITE_TAC[GSYM integer_group] THEN REWRITE_TAC[IN_UNIV] THEN ANTS_TAC THENL [INT_ARITH_TAC; ALL_TAC] THEN SIMP_TAC[group_carrier; group_id; group_inv; group_mul]);; let ABELIAN_INTEGER_GROUP = prove (`abelian_group integer_group`, REWRITE_TAC[abelian_group; INTEGER_GROUP; INT_ADD_SYM]);; let INFINITE_INTEGER_GROUP = prove (`INFINITE(group_carrier integer_group)`, REWRITE_TAC[INTEGER_GROUP; int_INFINITE]);; let GROUP_POW_INTEGER_GROUP = prove (`!x n. group_pow integer_group x n = &n * x`, GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[group_pow; INTEGER_GROUP; GSYM INT_OF_NUM_SUC] THEN INT_ARITH_TAC);; let GROUP_ZPOW_INTEGER_GROUP = prove (`!x n. group_zpow integer_group x n = n * x`, GEN_TAC THEN SIMP_TAC[FORALL_INT_CASES; GROUP_ZPOW_NEG; GROUP_NPOW; INTEGER_GROUP; GROUP_POW_INTEGER_GROUP; IN_UNIV] THEN INT_ARITH_TAC);; let GROUP_ELEMENT_ORDER_INTEGER_GROUP = prove (`!n. group_element_order integer_group n = if n = &0 then 1 else 0`, GEN_TAC THEN COND_CASES_TAC THEN SIMP_TAC[GROUP_ELEMENT_ORDER_EQ_0; GROUP_ELEMENT_ORDER_EQ_1; INTEGER_GROUP; GROUP_POW_INTEGER_GROUP; IN_UNIV] THEN ASM_REWRITE_TAC[CONTRAPOS_THM; INT_ENTIRE] THEN REWRITE_TAC[INT_OF_NUM_EQ]);; let GROUP_ENDOMORPHISM_INTEGER_GROUP_MUL = prove (`!c. group_endomorphism integer_group (\x. c * x)`, REWRITE_TAC[group_endomorphism; group_homomorphism; INTEGER_GROUP] THEN REWRITE_TAC[IN_UNIV; SUBSET_UNIV] THEN INT_ARITH_TAC);; let GROUP_ENDOMORPHISM_INTEGER_GROUP_EXPLICIT = prove (`!f. group_endomorphism integer_group f ==> f = \x. f(&1) * x`, REWRITE_TAC[group_endomorphism; group_homomorphism; INTEGER_GROUP] THEN REWRITE_TAC[IN_UNIV; SUBSET_UNIV] THEN REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `x:int` THEN REWRITE_TAC[] THEN MP_TAC(SPEC `x:int` INT_IMAGE) THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THEN SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN SPEC_TAC(`x:int`,`x:int`) THEN GEN_REWRITE_TAC I [SWAP_FORALL_THM] THEN ASM_REWRITE_TAC[FORALL_UNWIND_THM2; INT_ARITH `--x:int = y * --z <=> x = y * z`] THEN INDUCT_TAC THEN ASM_REWRITE_TAC[INT_MUL_RZERO] THEN ASM_REWRITE_TAC[GSYM INT_OF_NUM_SUC] THEN INT_ARITH_TAC);; let GROUP_ENDOMORPHISM_INTEGER_GROUP_EQ, GROUP_ENDOMORPHISM_INTEGER_GROUP_EQ_ALT = (CONJ_PAIR o prove) (`(!f. group_endomorphism integer_group f <=> ?c. f = \x. c * x) /\ (!f. group_endomorphism integer_group f <=> ?!c. f = \x. c * x)`, REWRITE_TAC[AND_FORALL_THM] THEN GEN_TAC THEN MATCH_MP_TAC(MESON[] `(!c. P(m c)) /\ (!f. P f ==> ?c. f = m c) /\ (!c d. m c = m d ==> c = d) ==> (P f <=> ?c. f = m c) /\ (P f <=> ?!c. f = m c)`) THEN REWRITE_TAC[GROUP_ENDOMORPHISM_INTEGER_GROUP_MUL] THEN CONJ_TAC THENL [X_GEN_TAC `f:int->int` THEN DISCH_TAC THEN EXISTS_TAC `(f:int->int) (&1)` THEN MATCH_MP_TAC GROUP_ENDOMORPHISM_INTEGER_GROUP_EXPLICIT THEN ASM_REWRITE_TAC[]; REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[INT_MUL_RID]]);; let GROUP_HOMOMORPHISM_GROUP_ZPOW = prove (`!G x:A. x IN group_carrier G ==> group_homomorphism(integer_group,G) (group_zpow G x)`, REWRITE_TAC[group_homomorphism; INTEGER_GROUP; SUBSET; FORALL_IN_IMAGE] THEN SIMP_TAC[IN_UNIV; GROUP_ZPOW_ADD; GROUP_ZPOW_NEG; GROUP_ZPOW_0; GROUP_ZPOW]);; let GROUP_EPIMORPHISM_GROUP_ZPOW = prove (`!G x:A. x IN group_carrier G ==> group_epimorphism (integer_group,subgroup_generated G {x}) (group_zpow G x)`, SIMP_TAC[group_epimorphism; INTEGER_GROUP; SIMPLE_IMAGE; ETA_AX; CARRIER_SUBGROUP_GENERATED_BY_SING] THEN REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM SUBGROUP_GENERATED_BY_SUBGROUP_GENERATED] THEN MATCH_MP_TAC GROUP_HOMOMORPHISM_INTO_SUBGROUP THEN ASM_SIMP_TAC[GROUP_HOMOMORPHISM_GROUP_ZPOW] THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_BY_SING; INTEGER_GROUP] THEN SET_TAC[]);; let GROUP_ISOMORPHISM_GROUP_ZPOW = prove (`!G x:A. INFINITE(group_carrier(subgroup_generated G {x})) /\ x IN group_carrier G ==> group_isomorphism (integer_group,subgroup_generated G {x}) (group_zpow G x)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP GROUP_EPIMORPHISM_GROUP_ZPOW) THEN SIMP_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM; group_monomorphism; group_epimorphism] THEN DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[INTEGER_GROUP; IN_UNIV] THEN ASM_MESON_TAC[INFINITE_CYCLIC_SUBGROUP_ALT]);; let ISOMORPHIC_GROUP_INFINITE_CYCLIC_INTEGER = prove (`!G:A group. cyclic_group G /\ INFINITE(group_carrier G) ==> G isomorphic_group integer_group`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [cyclic_group]) THEN DISCH_THEN(X_CHOOSE_THEN `x:A` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`G:A group`; `x:A`] GROUP_ISOMORPHISM_GROUP_ZPOW) THEN ASM_REWRITE_TAC[GROUP_ISOMORPHISM_IMP_ISOMORPHIC]);; let ISOMORPHIC_INFINITE_CYCLIC_GROUPS = prove (`!(G:A group) (H:B group). cyclic_group G /\ INFINITE(group_carrier G) /\ cyclic_group H /\ INFINITE(group_carrier H) ==> G isomorphic_group H`, REPEAT STRIP_TAC THEN TRANS_TAC ISOMORPHIC_GROUP_TRANS `integer_group` THEN GEN_REWRITE_TAC RAND_CONV [ISOMORPHIC_GROUP_SYM] THEN ASM_SIMP_TAC[ISOMORPHIC_GROUP_INFINITE_CYCLIC_INTEGER]);; (* ------------------------------------------------------------------------- *) (* Additive group of integers modulo n (n = 0 gives just the integers). *) (* ------------------------------------------------------------------------- *) let integer_mod_group = new_definition `integer_mod_group n = if n = 0 then integer_group else group({m | &0 <= m /\ m < &n}, &0, (\a. --a rem &n), (\a b. (a + b) rem &n))`;; let INTEGER_MOD_GROUP = prove (`(group_carrier(integer_mod_group 0) = (:int)) /\ (!n. 0 < n ==> group_carrier(integer_mod_group n) = {m | &0 <= m /\ m < &n}) /\ (!n. group_id(integer_mod_group n) = &0) /\ (!n. group_inv(integer_mod_group n) = \a. --a rem &n) /\ (!n. group_mul(integer_mod_group n) = \a b. (a + b) rem &n)`, REWRITE_TAC[integer_mod_group; INTEGER_GROUP] THEN REWRITE_TAC[AND_FORALL_THM] THEN X_GEN_TAC `n:num` THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[INTEGER_GROUP; LT_REFL; INT_REM_0] THENL [REWRITE_TAC[FUN_EQ_THM]; ASM_SIMP_TAC[LE_1]] THEN REWRITE_TAC[group_carrier; group_id; group_inv; group_mul] THEN REWRITE_TAC[GSYM PAIR_EQ; GSYM(CONJUNCT2 group_tybij)] THEN MP_TAC(GEN `m:int` (SPECL [`m:int`; `&n:int`] INT_DIVISION)) THEN ASM_REWRITE_TAC[INT_OF_NUM_EQ; INT_ABS_NUM; FORALL_AND_THM] THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN ASM_REWRITE_TAC[IN_ELIM_THM; PAIR_EQ; INT_LE_REFL] THEN ASM_SIMP_TAC[INT_OF_NUM_LT; LE_1; INT_ADD_LID; INT_ADD_RID] THEN SIMP_TAC[INT_REM_LT] THEN ONCE_REWRITE_TAC[GSYM INT_ADD_REM] THEN REWRITE_TAC[INT_REM_REM] THEN REWRITE_TAC[INT_ADD_REM; INT_ADD_ASSOC] THEN REWRITE_TAC[INT_ADD_LINV; INT_ADD_RINV; INT_REM_ZERO]);; let INTEGER_MOD_GROUP_TRIVIAL = prove (`integer_mod_group 0 = integer_group`, REWRITE_TAC[integer_mod_group]);; let GROUP_CARRIER_INTEGER_MOD_GROUP = prove (`!n. group_carrier (integer_mod_group n) = IMAGE (\x. x rem &n) (:int)`, GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[INTEGER_MOD_GROUP; INT_REM_0; IMAGE_ID; LE_1] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x = x) /\ (!x. f x IN s) ==> s = IMAGE f UNIV`) THEN SIMP_TAC[IN_ELIM_THM; INT_REM_LT] THEN REWRITE_TAC[INT_REM_POS_EQ; INT_LT_REM_EQ] THEN ASM_SIMP_TAC[INT_OF_NUM_EQ; INT_OF_NUM_LT; LE_1]);; let GROUP_POW_INTEGER_MOD_GROUP = prove (`!n x m. group_pow (integer_mod_group n) x m = (&m * x) rem &n`, GEN_TAC THEN GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL [ASM_REWRITE_TAC[INT_REM_0; integer_mod_group; GROUP_POW_INTEGER_GROUP]; INDUCT_TAC THEN ASM_REWRITE_TAC[group_pow; INTEGER_MOD_GROUP; INT_MUL_LZERO; INT_REM_ZERO; GSYM INT_OF_NUM_SUC; INT_ADD_RDISTRIB; INT_MUL_LID] THEN ONCE_REWRITE_TAC[GSYM INT_ADD_REM] THEN REWRITE_TAC[INT_REM_REM] THEN REWRITE_TAC[INT_ADD_SYM]]);; let GROUP_ZPOW_INTEGER_MOD_GROUP = prove (`!n x m. group_zpow (integer_mod_group n) x m = (m * x) rem &n`, REWRITE_TAC[FORALL_INT_CASES] THEN REWRITE_TAC[GROUP_ZPOW_POW; GROUP_POW_INTEGER_MOD_GROUP] THEN REWRITE_TAC[INTEGER_MOD_GROUP; INT_REM_EQ; INTEGER_RULE `(--x:int == y) (mod n) <=> (x == --y) (mod n)`] THEN REWRITE_TAC[INT_MUL_LNEG; INT_MUL_RNEG; INT_NEG_NEG] THEN REWRITE_TAC[INT_REM_MOD_SELF]);; let ABELIAN_INTEGER_MOD_GROUP = prove (`!n. abelian_group(integer_mod_group n)`, REWRITE_TAC[abelian_group; INTEGER_MOD_GROUP; INT_ADD_SYM]);; let INTEGER_MOD_GROUP_0 = prove (`!n. &0 IN group_carrier(integer_mod_group n)`, MESON_TAC[INTEGER_MOD_GROUP; GROUP_ID]);; let INTEGER_MOD_GROUP_1R = prove (`!n x. (x rem &n) IN group_carrier(integer_mod_group n)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[INTEGER_MOD_GROUP; LE_1; IN_UNIV; IN_ELIM_THM] THEN REWRITE_TAC[INT_REM_POS_EQ; INT_LT_REM_EQ] THEN ASM_SIMP_TAC[INT_OF_NUM_EQ; INT_OF_NUM_LT; LE_1]);; let INTEGER_MOD_GROUP_1 = prove (`!n. &1 IN group_carrier(integer_mod_group n) <=> ~(n = 1)`, GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL [ASM_REWRITE_TAC[integer_mod_group; INTEGER_GROUP; IN_UNIV] THEN CONV_TAC NUM_REDUCE_CONV; ASM_SIMP_TAC[LE_1; INTEGER_MOD_GROUP; IN_ELIM_THM] THEN REWRITE_TAC[INT_OF_NUM_LE; INT_OF_NUM_LT] THEN ASM_ARITH_TAC]);; let GROUP_HOMOMORPHISM_PROD_INTEGER_MOD_GROUP = prove (`!m n. group_homomorphism (integer_mod_group (m * n), prod_group (integer_mod_group m) (integer_mod_group n)) (\a. (a rem &m),(a rem &n))`, REPEAT GEN_TAC THEN REWRITE_TAC[GROUP_HOMOMORPHISM] THEN SIMP_TAC[PROD_GROUP; SUBSET; FORALL_IN_IMAGE; IN_CROSS; PAIR_EQ] THEN SIMP_TAC[INTEGER_MOD_GROUP; GSYM INT_OF_NUM_MUL; INT_REM_REM_MUL] THEN CONV_TAC INT_REM_DOWN_CONV THEN REWRITE_TAC[INTEGER_MOD_GROUP_1R]);; let TRIVIAL_INTEGER_MOD_GROUP = prove (`!n. trivial_group(integer_mod_group n) <=> n = 1`, GEN_TAC THEN ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[] THENL [SIMP_TAC[TRIVIAL_GROUP_SUBSET; INTEGER_MOD_GROUP; ARITH] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_SING] THEN INT_ARITH_TAC; REWRITE_TAC[TRIVIAL_GROUP_ALT] THEN MATCH_MP_TAC(SET_RULE `!a b. (a IN s /\ b IN s /\ ~(a = b)) ==> ~(?c. s SUBSET {c})`) THEN MAP_EVERY EXISTS_TAC [`&0:int`; `&1:int`] THEN ASM_REWRITE_TAC[INTEGER_MOD_GROUP_0; INTEGER_MOD_GROUP_1] THEN CONV_TAC INT_REDUCE_CONV]);; let NON_TRIVIAL_INTEGER_GROUP = prove (`~(trivial_group integer_group)`, MP_TAC(SPEC `0` TRIVIAL_INTEGER_MOD_GROUP) THEN CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[integer_mod_group]);; let GROUP_ELEMENT_ORDER_INTEGER_MOD_GROUP_1 = prove (`!n. group_element_order (integer_mod_group n) (&1) = n`, SIMP_TAC[group_element_order; INTEGER_MOD_GROUP] THEN SIMP_TAC[GROUP_POW_INTEGER_MOD_GROUP] THEN REWRITE_TAC[INT_OF_NUM_MUL; MULT_CLAUSES; INT_OF_NUM_REM] THEN REWRITE_TAC[INT_OF_NUM_EQ; GSYM DIVIDES_MOD] THEN GEN_TAC THEN MATCH_MP_TAC SELECT_UNIQUE THEN GEN_TAC THEN EQ_TAC THEN SIMP_TAC[] THEN MESON_TAC[DIVIDES_ANTISYM]);; let GROUP_ELEMENT_ORDER_INTEGER_MOD_GROUP_1R = prove (`!n. group_element_order (integer_mod_group n) (&1 rem &n) = n`, SIMP_TAC[group_element_order; INTEGER_MOD_GROUP] THEN SIMP_TAC[GROUP_POW_INTEGER_MOD_GROUP] THEN CONV_TAC INT_REM_DOWN_CONV THEN REWRITE_TAC[INT_OF_NUM_MUL; MULT_CLAUSES; INT_OF_NUM_REM] THEN REWRITE_TAC[INT_OF_NUM_EQ; GSYM DIVIDES_MOD] THEN GEN_TAC THEN MATCH_MP_TAC SELECT_UNIQUE THEN GEN_TAC THEN EQ_TAC THEN SIMP_TAC[] THEN MESON_TAC[DIVIDES_ANTISYM]);; let GROUP_ELEMENT_ORDER_INTEGER_MOD_GROUP = prove (`!n m. group_element_order (integer_mod_group n) (&m) = if m = 0 /\ n = 0 then 1 else n DIV gcd(n,m)`, REPEAT GEN_TAC THEN TRANS_TAC EQ_TRANS `group_element_order (integer_mod_group n) ((&m * &1 rem &n) rem &n)` THEN CONJ_TAC THENL [REWRITE_TAC[group_element_order; GROUP_POW_INTEGER_MOD_GROUP] THEN CONV_TAC INT_REM_DOWN_CONV THEN REWRITE_TAC[INT_MUL_RID]; ALL_TAC] THEN REWRITE_TAC[GSYM GROUP_POW_INTEGER_MOD_GROUP] THEN SIMP_TAC[GROUP_ELEMENT_ORDER_POW_GEN; INTEGER_MOD_GROUP_1R] THEN REWRITE_TAC[GROUP_ELEMENT_ORDER_INTEGER_MOD_GROUP_1R] THEN ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[DIV_REFL; NUMBER_RULE `gcd(n,0) = n`]);; let INTEGER_MOD_SUBGROUP_GENERATED_BY_1R = prove (`!n. subgroup_generated (integer_mod_group n) {&1 rem &n} = integer_mod_group n`, GEN_TAC THEN REWRITE_TAC[GROUPS_EQ; CONJUNCT2 SUBGROUP_GENERATED] THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_BY_SING; INTEGER_MOD_GROUP_1R] THEN REWRITE_TAC[GROUP_ZPOW_INTEGER_MOD_GROUP] THEN CONV_TAC INT_REM_DOWN_CONV THEN REWRITE_TAC[INT_MUL_RID] THEN ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[INTEGER_MOD_GROUP; INT_REM_0; IN_GSPEC; LE_1] THEN MATCH_MP_TAC(SET_RULE `(!x. f x IN s) /\ (!x. x IN s ==> f x = x) ==> {f x | x IN UNIV} = s`) THEN ASM_SIMP_TAC[IN_ELIM_THM; INT_DIVISION; INT_OF_NUM_EQ; INT_LT_REM; INT_OF_NUM_LT; LE_1; INT_REM_LT]);; let INTEGER_MOD_SUBGROUP_GENERATED_BY_1 = prove (`!n. subgroup_generated (integer_mod_group n) {&1} = integer_mod_group n`, REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 1` THEN ASM_SIMP_TAC[TRIVIAL_GROUP_GENERATED_BY_ANYTHING; TRIVIAL_INTEGER_MOD_GROUP] THEN GEN_REWRITE_TAC RAND_CONV [GSYM INTEGER_MOD_SUBGROUP_GENERATED_BY_1R] THEN AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[INT_REM_EQ_SELF] THEN REWRITE_TAC[INT_OF_NUM_EQ; INT_OF_NUM_LE; INT_OF_NUM_LT; INT_ABS_NUM] THEN ASM_ARITH_TAC);; let CYCLIC_GROUP_INTEGER_MOD_GROUP = prove (`!n. cyclic_group(integer_mod_group n)`, ONCE_REWRITE_TAC[GSYM INTEGER_MOD_SUBGROUP_GENERATED_BY_1] THEN REWRITE_TAC[CYCLIC_GROUP_GENERATED]);; let CYCLIC_INTEGER_GROUP = prove (`cyclic_group integer_group`, MP_TAC(SPEC `0` CYCLIC_GROUP_INTEGER_MOD_GROUP) THEN REWRITE_TAC[integer_mod_group]);; let FINITE_INTEGER_MOD_GROUP = prove (`!n. FINITE(group_carrier(integer_mod_group n)) <=> ~(n = 0)`, GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[INTEGER_MOD_GROUP; LE_1; int_INFINITE; GSYM INFINITE] THEN REWRITE_TAC[FINITE_INT_SEG]);; let GROUP_EPIMORPHISM_INTEGER_MOD_GROUP_ZPOW = prove (`!n. ~(n = 1) ==> group_epimorphism (integer_group,integer_mod_group n) (group_zpow (integer_mod_group n) (&1))`, MESON_TAC[INTEGER_MOD_GROUP_1; INTEGER_MOD_SUBGROUP_GENERATED_BY_1; GROUP_EPIMORPHISM_GROUP_ZPOW; GROUP_ZPOW_SUBGROUP_GENERATED]);; let GROUP_ISOMORPHISM_GROUP_ZPOW_GEN = prove (`!G x:A. x IN group_carrier G ==> group_isomorphism (integer_mod_group (group_element_order G x), subgroup_generated G {x}) (group_zpow G x)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `group_element_order G (x:A) = 0` THENL [ASM_REWRITE_TAC[integer_mod_group] THEN MATCH_MP_TAC GROUP_ISOMORPHISM_GROUP_ZPOW THEN ASM_SIMP_TAC[INFINITE; FINITE_CYCLIC_SUBGROUP_ORDER]; REWRITE_TAC[GROUP_ISOMORPHISM_ALT] THEN ASM_SIMP_TAC[INTEGER_MOD_GROUP; LE_1; CONJUNCT2 SUBGROUP_GENERATED]] THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[SET_RULE `y IN IMAGE f {x | P x} <=> ?x. P x /\ f x = y`] THEN REWRITE_TAC[FORALL_IN_GSPEC; RIGHT_FORALL_IMP_THM; IMP_CONJ] THEN ASM_SIMP_TAC[GROUP_ZPOW_EQ_ID; GSYM GROUP_ZPOW_ADD; GROUP_ZPOW_EQ_ALT] THEN REWRITE_TAC[GSYM INT_FORALL_POS; GSYM INT_EXISTS_POS; GSYM CONJ_ASSOC] THEN ASM_SIMP_TAC[GROUP_ZPOW; INT_OF_NUM_LT] THEN ASM_SIMP_TAC[FINITE_CYCLIC_SUBGROUP_EXPLICIT; FINITE_CYCLIC_SUBGROUP_ORDER; FORALL_IN_GSPEC; GROUP_ZPOW_POW; INT_REM_DIV] THEN REWRITE_TAC[INTEGER_RULE `(d:int) divides (n - (n - q * d))`] THEN REPEAT(CONJ_TAC THENL [SET_TAC[]; ALL_TAC]) THEN REWRITE_TAC[GSYM num_divides; INT_OF_NUM_EQ] THEN MESON_TAC[DIVIDES_LE; NOT_LE]);; let ISOMORPHIC_GROUP_CYCLIC_INTEGER = prove (`!G:A group. cyclic_group G <=> ?n. G isomorphic_group integer_mod_group n`, GEN_TAC THEN EQ_TAC THENL [REWRITE_TAC[cyclic_group] THEN MESON_TAC[GROUP_ISOMORPHISM_GROUP_ZPOW_GEN; ISOMORPHIC_GROUP_SYM; isomorphic_group]; MESON_TAC[ISOMORPHIC_GROUP_CYCLICITY; CYCLIC_GROUP_INTEGER_MOD_GROUP]]);; let ORDER_INTEGER_MOD_GROUP = prove (`!n. ~(n = 0) ==> CARD(group_carrier(integer_mod_group n)) = n`, SIMP_TAC[INTEGER_MOD_GROUP; LE_1] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `{m:int | &0 <= m /\ m < &n} = IMAGE (&) {i | i < n}` SUBST1_TAC THENL [REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; SUBSET; FORALL_IN_IMAGE] THEN SIMP_TAC[IN_ELIM_THM; IN_IMAGE; INT_OF_NUM_LT; INT_POS] THEN REWRITE_TAC[GSYM INT_FORALL_POS; IMP_CONJ] THEN REWRITE_TAC[INT_OF_NUM_LT; INT_OF_NUM_EQ; UNWIND_THM1]; SIMP_TAC[CARD_IMAGE_INJ; INT_OF_NUM_EQ; FINITE_NUMSEG_LT] THEN REWRITE_TAC[CARD_NUMSEG_LT]]);; let ISOMORPHIC_FINITE_CYCLIC_INTEGER_MOD_GROUP = prove (`!G:A group. cyclic_group G /\ FINITE(group_carrier G) ==> G isomorphic_group integer_mod_group (CARD(group_carrier G))`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(X_CHOOSE_TAC `n:num` o GEN_REWRITE_RULE I [ISOMORPHIC_GROUP_CYCLIC_INTEGER]) THEN FIRST_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] ISOMORPHIC_GROUP_ORDER)) THEN FIRST_ASSUM(MP_TAC o MATCH_MP ISOMORPHIC_GROUP_FINITENESS) THEN ASM_SIMP_TAC[FINITE_INTEGER_MOD_GROUP; ORDER_INTEGER_MOD_GROUP]);; let ISOMORPHIC_GROUP_INTEGER_MOD_GROUP = prove (`(!(G:A group) n. G isomorphic_group integer_mod_group n <=> cyclic_group G /\ (n = 0 /\ INFINITE(group_carrier G) \/ ~(n = 0) /\ (group_carrier G) HAS_SIZE n)) /\ (!(G:A group) n. integer_mod_group n isomorphic_group G <=> cyclic_group G /\ (n = 0 /\ INFINITE(group_carrier G) \/ ~(n = 0) /\ (group_carrier G) HAS_SIZE n))`, GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [ISOMORPHIC_GROUP_SYM] THEN REWRITE_TAC[] THEN GEN_TAC THEN REWRITE_TAC[ISOMORPHIC_GROUP_CYCLIC_INTEGER] THEN MATCH_MP_TAC(MESON[] `(!m n. R m /\ R n ==> P m ==> P n) /\ (!n. P n ==> R n) ==> !n. P n <=> (?m. P m) /\ R n`) THEN REWRITE_TAC[HAS_SIZE; INFINITE] THEN CONJ_TAC THENL [MESON_TAC[]; REPEAT STRIP_TAC] THEN FIRST_ASSUM(MP_TAC o MATCH_MP ISOMORPHIC_GROUP_FINITENESS) THEN FIRST_ASSUM(MP_TAC o SPEC `n:num` o MATCH_MP (REWRITE_RULE[IMP_CONJ] ISOMORPHIC_GROUP_HAS_ORDER)) THEN REWRITE_TAC[FINITE_INTEGER_MOD_GROUP; HAS_SIZE] THEN MESON_TAC[ORDER_INTEGER_MOD_GROUP]);; let ISOMORPHIC_INTEGER_MOD_GROUPS = prove (`!m n. integer_mod_group m isomorphic_group integer_mod_group n <=> m = n`, REWRITE_TAC[ISOMORPHIC_GROUP_INTEGER_MOD_GROUP; HAS_SIZE; INFINITE; FINITE_INTEGER_MOD_GROUP; CYCLIC_GROUP_INTEGER_MOD_GROUP] THEN REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[ORDER_INTEGER_MOD_GROUP] THEN ASM_ARITH_TAC);; let ISOMORPHIC_FINITE_CYCLIC_GROUPS = prove (`!(G:A group) (H:B group). cyclic_group G /\ cyclic_group H /\ FINITE(group_carrier G) /\ FINITE(group_carrier H) /\ CARD(group_carrier G) = CARD(group_carrier H) ==> G isomorphic_group H`, REPEAT STRIP_TAC THEN TRANS_TAC ISOMORPHIC_GROUP_TRANS `integer_mod_group(CARD(group_carrier G:A->bool))` THEN REWRITE_TAC[ISOMORPHIC_GROUP_INTEGER_MOD_GROUP] THEN ASM_SIMP_TAC[INFINITE; HAS_SIZE; CARD_EQ_0; GROUP_CARRIER_NONEMPTY]);; let CYCLIC_IMP_COUNTABLE_GROUP = prove (`!G:A group. cyclic_group G ==> COUNTABLE(group_carrier G)`, REWRITE_TAC[CYCLIC_GROUP] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[SIMPLE_IMAGE] THEN SIMP_TAC[COUNTABLE_IMAGE; INT_COUNTABLE]);; let SUBGROUP_GENERATED_ELEMENT_ORDER = prove (`!G a:A. FINITE(group_carrier G) /\ a IN group_carrier G ==> (subgroup_generated G {a} = G <=> group_element_order G a = CARD(group_carrier G))`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `FINITE (group_carrier (subgroup_generated G {a:A}))` ASSUME_TAC THENL [ASM_MESON_TAC[FINITE_SUBSET; GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET]; ALL_TAC] THEN EQ_TAC THENL [ASM_MESON_TAC[CARD_CYCLIC_SUBGROUP_ORDER]; DISCH_TAC] THEN REWRITE_TAC[SUBGROUP_GENERATED_EQ] THEN MATCH_MP_TAC CARD_SUBSET_EQ THEN ASM_REWRITE_TAC[GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET] THEN ASM_SIMP_TAC[CARD_CYCLIC_SUBGROUP_ORDER]);; let CYCLIC_GROUP_ELEMENT_ORDER = prove (`!G:A group. FINITE(group_carrier G) ==> (cyclic_group G <=> ?a. a IN group_carrier G /\ group_element_order G a = CARD(group_carrier G))`, REPEAT STRIP_TAC THEN REWRITE_TAC[cyclic_group] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `a:A` THEN ASM_CASES_TAC `(a:A) IN group_carrier G` THEN ASM_SIMP_TAC[SUBGROUP_GENERATED_ELEMENT_ORDER]);; let [CYCLIC_PROD_INTEGER_MOD_GROUP; ISOMORPHIC_PROD_INTEGER_MOD_GROUP; GROUP_ISOMORPHISM_PROD_INTEGER_MOD_GROUP] = (CONJUNCTS o prove) (`(!m n. cyclic_group (prod_group (integer_mod_group m) (integer_mod_group n)) <=> coprime(m,n)) /\ (!m n. prod_group (integer_mod_group m) (integer_mod_group n) isomorphic_group integer_mod_group (m * n) <=> coprime(m,n)) /\ (!m n. group_isomorphism (integer_mod_group (m * n), prod_group (integer_mod_group m) (integer_mod_group n)) (\a. (a rem &m),(a rem &n)) <=> coprime(m,n))`, REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN MATCH_MP_TAC(TAUT `(r ==> q) /\ (q ==> p) /\ (p ==> c) /\ (c ==> r) ==> (p <=> c) /\ (q <=> c) /\ (r <=> c)`) THEN REPEAT CONJ_TAC THENL [ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN REWRITE_TAC[GROUP_ISOMORPHISM_IMP_ISOMORPHIC]; DISCH_THEN(MP_TAC o MATCH_MP ISOMORPHIC_GROUP_CYCLICITY) THEN REWRITE_TAC[CYCLIC_GROUP_INTEGER_MOD_GROUP]; GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN DISCH_TAC THEN REWRITE_TAC[CYCLIC_GROUP] THEN REWRITE_TAC[MESON[] `~(?x. P x /\ Q x) <=> !x. P x ==> ~Q x`] THEN SIMP_TAC[FORALL_PAIR_THM; PROD_GROUP; IN_CROSS; GROUP_ZPOW_INTEGER_MOD_GROUP; GROUP_ZPOW_PROD_GROUP] THEN REWRITE_TAC[GROUP_CARRIER_INTEGER_MOD_GROUP] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE; IN_UNIV] THEN MAP_EVERY X_GEN_TAC [`a:int`; `b:int`] THEN MATCH_MP_TAC(SET_RULE `!z. z IN s /\ ~(z IN t) ==> ~(s = t)`) THEN REWRITE_TAC[EXISTS_PAIR_THM; EXISTS_IN_IMAGE; RIGHT_EXISTS_AND_THM; IN_CROSS; GSYM CONJ_ASSOC; IN_UNIV; IN_ELIM_THM] THEN CONV_TAC INT_REM_DOWN_CONV THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN REWRITE_TAC[PAIR_EQ; INT_REM_EQ] THEN POP_ASSUM MP_TAC THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN REWRITE_TAC[num_coprime; NOT_EXISTS_THM] THEN MESON_TAC[INTEGER_RULE `(x * a == &1) (mod m) /\ (x * b == &1) (mod n) /\ (y * a == &0) (mod m) /\ (y * b == &1) (mod n) ==> coprime(m,n)`]; REWRITE_TAC[GROUP_ISOMORPHISM_SUBSET] THEN REWRITE_TAC[GROUP_HOMOMORPHISM_PROD_INTEGER_MOD_GROUP] THEN REWRITE_TAC[PROD_GROUP; FORALL_PAIR_THM; IN_CROSS; PAIR_EQ] THEN ASM_CASES_TAC `m = 0` THENL [ASM_SIMP_TAC[INT_REM_0; MULT_CLAUSES; INT_REM_1; NUMBER_RULE `coprime(0,n) <=> n = 1`] THEN SIMP_TAC[INTEGER_MOD_GROUP; ARITH; IN_UNIV; IN_ELIM_THM] THEN REWRITE_TAC[UNWIND_THM2] THEN INT_ARITH_TAC; ALL_TAC] THEN ASM_CASES_TAC `n = 0` THENL [ASM_SIMP_TAC[INT_REM_0; MULT_CLAUSES; INT_REM_1; NUMBER_RULE `coprime(n,0) <=> n = 1`] THEN SIMP_TAC[INTEGER_MOD_GROUP; ARITH; IN_UNIV; IN_ELIM_THM] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[UNWIND_THM2] THEN INT_ARITH_TAC; ALL_TAC] THEN DISCH_TAC THEN ASM_SIMP_TAC[INTEGER_MOD_GROUP; LE_1; MULT_EQ_0] THEN REWRITE_TAC[IN_ELIM_THM] THEN CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`a:int`; `b:int`] THENL [STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [num_coprime]) THEN DISCH_THEN(MP_TAC o SPECL [`a:int`; `b:int`] o MATCH_MP (INTEGER_RULE `coprime(m:int,n) ==> !a b. ?c. (c == a) (mod m) /\ (c == b) (mod n)`)) THEN ASM_SIMP_TAC[GSYM INT_REM_EQ; INT_REM_LT] THEN DISCH_THEN(X_CHOOSE_THEN `c:int` STRIP_ASSUME_TAC) THEN EXISTS_TAC `c rem &(m * n)` THEN REWRITE_TAC[INT_REM_POS_EQ; INT_LT_REM_EQ] THEN ASM_SIMP_TAC[INT_OF_NUM_EQ; INT_OF_NUM_LT; MULT_EQ_0; LE_1] THEN ASM_REWRITE_TAC[GSYM INT_OF_NUM_MUL; INT_REM_REM_MUL]; STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [num_coprime]) THEN DISCH_THEN(MP_TAC o SPECL [`a:int`; `b:int`] o MATCH_MP (INTEGER_RULE `coprime(m:int,n) ==> !a b. (a == b) (mod m) /\ (a == b) (mod n) ==> (a == b) (mod (m * n))`)) THEN ASM_REWRITE_TAC[GSYM INT_REM_EQ] THEN MATCH_MP_TAC EQ_IMP THEN BINOP_TAC THEN MATCH_MP_TAC INT_REM_LT THEN ASM_REWRITE_TAC[INT_OF_NUM_MUL]]]);; let CYCLIC_PROD_GROUP = prove (`!(G:A group) (H:B group). cyclic_group (prod_group G H) <=> cyclic_group G /\ cyclic_group H /\ (trivial_group G \/ trivial_group H \/ FINITE(group_carrier G) /\ FINITE(group_carrier H) /\ coprime(CARD(group_carrier G),CARD(group_carrier H)))`, REPEAT GEN_TAC THEN ASM_CASES_TAC `cyclic_group(G:A group)` THENL [ALL_TAC; ASM_REWRITE_TAC[] THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[CONTRAPOS_THM] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CYCLIC_GROUP_EPIMORPHIC_IMAGE) THEN EXISTS_TAC `FST:A#B->A` THEN REWRITE_TAC[GROUP_EPIMORPHISM_FST]] THEN ASM_CASES_TAC `cyclic_group(H:B group)` THENL [ALL_TAC; ASM_REWRITE_TAC[] THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[CONTRAPOS_THM] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CYCLIC_GROUP_EPIMORPHIC_IMAGE) THEN EXISTS_TAC `SND:A#B->B` THEN REWRITE_TAC[GROUP_EPIMORPHISM_SND]] THEN ASM_REWRITE_TAC[] THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ o rev) THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [ISOMORPHIC_GROUP_CYCLIC_INTEGER] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN DISCH_TAC THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP ISOMORPHIC_GROUP_CYCLICITY o MATCH_MP ISOMORPHIC_GROUP_PROD_GROUPS) THEN FIRST_ASSUM(CONJUNCTS_THEN (SUBST1_TAC o MATCH_MP ISOMORPHIC_GROUP_TRIVIALITY)) THEN FIRST_ASSUM(CONJUNCTS_THEN (MP_TAC o MATCH_MP(REWRITE_RULE[IMP_CONJ] ISOMORPHIC_GROUP_ORDER))) THEN FIRST_X_ASSUM(CONJUNCTS_THEN (SUBST1_TAC o MATCH_MP ISOMORPHIC_GROUP_FINITENESS)) THEN SIMP_TAC[FINITE_INTEGER_MOD_GROUP; CYCLIC_PROD_INTEGER_MOD_GROUP; TRIVIAL_INTEGER_MOD_GROUP; ORDER_INTEGER_MOD_GROUP] THEN ASM_CASES_TAC `m = 1` THEN ASM_REWRITE_TAC[NUMBER_RULE `coprime(1,n)`] THEN ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[NUMBER_RULE `coprime(n,1)`] THEN ASM_CASES_TAC `m = 0` THEN ASM_SIMP_TAC[NUMBER_RULE `coprime(0,n) <=> n = 1`] THEN ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[NUMBER_RULE `coprime(n,0) <=> n = 1`]);; let CYCLIC_PRIME_ORDER_GROUP = prove (`!G (a:A). FINITE (group_carrier G) /\ (CARD(group_carrier G) = 1 \/ prime(CARD(group_carrier G))) /\ a IN group_carrier G /\ ~(a = group_id G) ==> subgroup_generated G {a} = G`, REWRITE_TAC[ONE_OR_PRIME] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[SUBGROUP_GENERATED_ELEMENT_ORDER] THEN FIRST_X_ASSUM(MP_TAC o SPEC `group_element_order G (a:A)`) THEN ASM_SIMP_TAC[GROUP_ELEMENT_ORDER_DIVIDES_GROUP_ORDER] THEN ASM_SIMP_TAC[GROUP_ELEMENT_ORDER_EQ_1]);; let GENERATOR_INTEGER_MOD_GROUP = prove (`!n a. subgroup_generated (integer_mod_group n) {a} = integer_mod_group n <=> (n <= 1 \/ &0 <= a /\ a < &n) /\ coprime(&n,a)`, REPEAT STRIP_TAC THEN REWRITE_TAC[GROUPS_EQ; CONJUNCT2 SUBGROUP_GENERATED] THEN ASM_CASES_TAC `a IN group_carrier(integer_mod_group n)` THENL [ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_BY_SING] THEN REWRITE_TAC[GROUP_CARRIER_INTEGER_MOD_GROUP] THEN REWRITE_TAC[GROUP_ZPOW_INTEGER_MOD_GROUP] THEN MATCH_MP_TAC(TAUT `q /\ (p <=> r) ==> (p <=> q /\ r)`) THEN CONJ_TAC THENL [POP_ASSUM MP_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[INTEGER_MOD_GROUP; LE_1; IN_ELIM_THM; ARITH]; REWRITE_TAC[INT_REM_EQ; SET_RULE `{(x * a) rem &n | x IN (:int)} = IMAGE (\x. x rem &n) (:int) <=> !x. ?y. (y * a) rem &n = x rem &n`] THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o SPEC `&1:int`); ALL_TAC] THEN CONV_TAC INTEGER_RULE]; SUBGOAL_THEN `trivial_group (subgroup_generated (integer_mod_group n) {a})` MP_TAC THENL [REWRITE_TAC[TRIVIAL_GROUP_SUBGROUP_GENERATED_EQ] THEN ASM SET_TAC[]; REWRITE_TAC[trivial_group] THEN DISCH_THEN SUBST1_TAC] THEN REWRITE_TAC[SUBGROUP_GENERATED] THEN GEN_REWRITE_TAC LAND_CONV [EQ_SYM_EQ] THEN REWRITE_TAC[GSYM trivial_group; TRIVIAL_INTEGER_MOD_GROUP] THEN POP_ASSUM MP_TAC THEN ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[LE_REFL] THENL [CONV_TAC INTEGER_RULE; ALL_TAC] THEN ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[INTEGER_MOD_GROUP; LE_1; IN_UNIV; IN_ELIM_THM] THEN ASM_ARITH_TAC]);; let CYCLIC_GROUP_PRIME_ORDER_EQ = prove (`!(G:A group). (!a. a IN group_carrier G /\ ~(a = group_id G) ==> subgroup_generated G {a} = G) <=> FINITE(group_carrier G) /\ (CARD (group_carrier G) = 1 \/ prime (CARD (group_carrier G)))`, GEN_TAC THEN EQ_TAC THEN SIMP_TAC[CYCLIC_PRIME_ORDER_GROUP] THEN DISCH_TAC THEN ASM_CASES_TAC `trivial_group(G:A group)` THENL [RULE_ASSUM_TAC(REWRITE_RULE[trivial_group]) THEN ASM_REWRITE_TAC[FINITE_SING; CARD_SING]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [TRIVIAL_GROUP_SUBSET])] THEN REWRITE_TAC[SUBSET; IN_SING; NOT_FORALL_THM; NOT_IMP] THEN DISCH_THEN(X_CHOOSE_THEN `z:A` STRIP_ASSUME_TAC) THEN MATCH_MP_TAC(TAUT `p /\ (p ==> r) ==> p /\ (q \/ r)`) THEN SUBGOAL_THEN `G = subgroup_generated G {z:A}` MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(fun th -> SUBST1_TAC th THEN ASM_SIMP_TAC[CARD_CYCLIC_SUBGROUP_ORDER] THEN REWRITE_TAC[TAUT `p /\ (p ==> q) <=> p /\ q`] THEN SUBST1_TAC th THEN ASM_SIMP_TAC[FINITE_CYCLIC_SUBGROUP_ORDER]) THEN ABBREV_TAC `d = group_element_order G (z:A)` THEN MATCH_MP_TAC(TAUT `(p ==> ~q) /\ q ==> ~p /\ q`) THEN CONJ_TAC THENL [DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[prime; ARITH_EQ] THEN DISCH_THEN(MP_TAC o SPEC `2`) THEN REWRITE_TAC[ARITH_EQ] THEN CONV_TAC NUMBER_RULE; ALL_TAC] THEN MP_TAC(SPEC `d:num` ONE_OR_PRIME_DIVIDES_OR_COPRIME) THEN EXPAND_TAC "d" THEN ASM_SIMP_TAC[GROUP_ELEMENT_ORDER_EQ_1] THEN DISCH_THEN SUBST1_TAC THEN X_GEN_TAC `n:num` THEN ASM_CASES_TAC `(d:num) divides n` THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o SPEC `group_pow G (z:A) n`) THEN ASM_SIMP_TAC[GROUP_POW_EQ_ID; GROUP_POW] THEN DISCH_THEN(MP_TAC o AP_TERM `group_carrier:A group->A->bool`) THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_BY_SING; GROUP_POW] THEN GEN_REWRITE_TAC LAND_CONV [EXTENSION] THEN DISCH_THEN(MP_TAC o SPEC `z:A`) THEN ASM_REWRITE_TAC[IN_ELIM_THM; IN_UNIV; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `m:int` THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [SYM(MATCH_MP GROUP_POW_1 th)]) THEN REWRITE_TAC[GSYM GROUP_NPOW; num_coprime] THEN ASM_SIMP_TAC[GSYM GROUP_ZPOW_MUL; GROUP_ZPOW_EQ_ALT] THEN CONV_TAC INTEGER_RULE);; (* ------------------------------------------------------------------------- *) (* p-groups, Sylow's theorems, Cauchy's theorem etc. *) (* ------------------------------------------------------------------------- *) let pgroup = new_definition `pgroup s (G:A group) <=> !p x. prime p /\ x IN group_carrier G /\ p divides group_element_order G x ==> p IN s`;; let PGROUP_MONOMORPHIC_PREIMAGE = prove (`!G H (f:A->B) s. group_monomorphism (G,H) f /\ pgroup s H ==> pgroup s G`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN FIRST_ASSUM(MP_TAC o CONJUNCT1 o CONJUNCT1 o REWRITE_RULE[group_monomorphism; group_homomorphism]) THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; pgroup] THEN ASM_MESON_TAC[GROUP_ELEMENT_ORDER_MONOMORPHIC_IMAGE]);; let PGROUP_EPIMORPHIC_IMAGE = prove (`!G H (f:A->B) s. group_epimorphism (G,H) f /\ pgroup s G ==> pgroup s H`, REPEAT GEN_TAC THEN REWRITE_TAC[group_epimorphism] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN REWRITE_TAC[pgroup] THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM; IMP_CONJ; FORALL_IN_IMAGE] THEN ASM_MESON_TAC[GROUP_ELEMENT_ORDER_HOMOMORPHIC_IMAGE; DIVIDES_TRANS]);; let PGROUP_QUOTIENT_GROUP = prove (`!(G:A group) n s. n normal_subgroup_of G /\ pgroup s G ==> pgroup s (quotient_group G n)`, MESON_TAC[PGROUP_EPIMORPHIC_IMAGE; GROUP_EPIMORPHISM_RIGHT_COSET]);; let PGROUP_SUBGROUP_GENERATED = prove (`!(G:A group) s h. pgroup s G ==> pgroup s (subgroup_generated G h)`, MESON_TAC[GROUP_MONOMORPHISM_INCLUSION; PGROUP_MONOMORPHIC_PREIMAGE]);; let PGROUP_PROD_GROUP = prove (`!(G:A group) (H:A group) s. pgroup s (prod_group G H) <=> pgroup s G /\ pgroup s H`, REPEAT GEN_TAC THEN EQ_TAC THENL [MESON_TAC[GROUP_EPIMORPHISM_FST; GROUP_EPIMORPHISM_SND; PGROUP_EPIMORPHIC_IMAGE]; REWRITE_TAC[pgroup; PROD_GROUP; FORALL_PAIR_THM; IN_CROSS] THEN SIMP_TAC[GROUP_ELEMENT_ORDER_PROD_GROUP; IMP_CONJ] THEN MESON_TAC[PRIME_DIVIDES_LCM]]);; let PGROUP_EMPTY = prove (`!G:A group. pgroup {} G <=> trivial_group G`, REWRITE_TAC[pgroup; NOT_IN_EMPTY; MESON[PRIME_FACTOR; DIVIDES_ONE; PRIME_1] `(!p x. ~(prime p /\ P x /\ p divides f x)) <=> (!x. P x ==> f x = 1)`] THEN SIMP_TAC[GROUP_ELEMENT_ORDER_EQ_1; TRIVIAL_GROUP_SUBSET] THEN SET_TAC[]);; let PGROUP_MONO = prove (`!(G:A group) s t. pgroup s G /\ s SUBSET t ==> pgroup t G`, REWRITE_TAC[pgroup] THEN SET_TAC[]);; let PGROUP_SUM_GROUP = prove (`!k (G:K->A group) s. pgroup s (sum_group k G) <=> !i. i IN k ==> pgroup s (G i)`, REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_THEN(fun th -> REPEAT STRIP_TAC THEN MP_TAC th) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] PGROUP_EPIMORPHIC_IMAGE) THEN ASM_MESON_TAC[GROUP_EPIMORPHISM_SUM_PROJECTION]; DISCH_TAC THEN REWRITE_TAC[pgroup; IMP_CONJ]] THEN MAP_EVERY X_GEN_TAC [`p:num`; `x:K->A`] THEN SIMP_TAC[GROUP_ELEMENT_ORDER_SUM_GROUP; PRIME_DIVIDES_ITERATE_LCM_GEN] THEN REWRITE_TAC[SUM_GROUP_CLAUSES; IN_CARTESIAN_PRODUCT; IN_ELIM_THM] THEN ASM_MESON_TAC[pgroup; DIVIDES_TRANS]);; let PGROUP_SING = prove (`!(G:A group) p. prime p ==> (pgroup {p} G <=> !x. x IN group_carrier G ==> ?k. group_element_order G x = p EXP k)`, REWRITE_TAC[pgroup; IN_SING] THEN MESON_TAC[PRIME_POWER_EXISTS]);; let SYLOW_THEOREM_COUNT_MOD = prove (`!(G:A group) p k. FINITE(group_carrier G) /\ prime p /\ p EXP k divides CARD(group_carrier G) ==> (CARD {h | h subgroup_of G /\ CARD h = p EXP k} == 1) (mod p)`, let lemma = prove (`!(s:A->bool) (t:B->bool) k. FINITE s /\ FINITE t /\ CARD s = CARD t ==> CARD {s' | s' SUBSET s /\ CARD s' = k} = CARD {t' | t' SUBSET t /\ CARD t' = k}`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM (X_CHOOSE_THEN `f:A->B` MP_TAC o MATCH_MP CARD_EQ_BIJECTION) THEN REWRITE_TAC[INJECTIVE_ON_ALT] THEN STRIP_TAC THEN SUBGOAL_THEN `t = IMAGE (f:A->B) s` SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[SUBSET_IMAGE; SET_RULE `{t' | (?u. u SUBSET s /\ t' = f u) /\ P t'} = IMAGE f {u | u SUBSET s /\ P(f u)}`] THEN W(MP_TAC o PART_MATCH (lhand o rand) CARD_IMAGE_INJ o rand o snd) THEN ASM_SIMP_TAC[FINITE_RESTRICTED_SUBSETS] THEN ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN SUBST1_TAC] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN X_GEN_TAC `u:A->bool` THEN REWRITE_TAC[IN_ELIM_THM] THEN MATCH_MP_TAC(MESON[] `(p ==> y = x) ==> (p /\ x = k <=> p /\ y = k)`) THEN DISCH_TAC THEN MATCH_MP_TAC CARD_IMAGE_INJ THEN CONJ_TAC THENL [ASM SET_TAC[]; ASM_MESON_TAC[FINITE_SUBSET]]) and SYLOW_LEMMA = prove (`!(G:A group) p k n. FINITE(group_carrier G) /\ prime p /\ p EXP k * n = CARD(group_carrier G) ==> (CARD {t | t SUBSET group_carrier G /\ CARD t = p EXP k} == CARD {h | h subgroup_of G /\ CARD h = p EXP k} * n) (mod (p * n))`, REPEAT STRIP_TAC THEN MAP_EVERY ABBREV_TAC [`m = {t:A->bool | t SUBSET group_carrier G /\ t HAS_SIZE p EXP k}`; `a = \x:A. IMAGE (group_mul G x)`] THEN SUBGOAL_THEN `FINITE(m:(A->bool)->bool)` ASSUME_TAC THENL [EXPAND_TAC "m" THEN MATCH_MP_TAC FINITE_RESTRICTED_SUBSETS THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `group_action (G:A group) (m:(A->bool)->bool) a` ASSUME_TAC THENL [MAP_EVERY EXPAND_TAC ["m"; "a"] THEN MATCH_MP_TAC(REWRITE_RULE[o_DEF] GROUP_ACTION_IMAGE_SIZED) THEN REWRITE_TAC[GROUP_ACTION_GROUP_TRANSLATION; ETA_AX]; ALL_TAC] THEN SUBGOAL_THEN `!t. t IN m ==> CARD(group_stabilizer G (a:A->(A->bool)->(A->bool)) t) divides p EXP k` ASSUME_TAC THENL [EXPAND_TAC "m" THEN REWRITE_TAC[IN_ELIM_THM; HAS_SIZE] THEN X_GEN_TAC `t:A->bool` THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `t:A->bool` o MATCH_MP (REWRITE_RULE[IMP_CONJ] SUBGROUP_OF_GROUP_STABILIZER)) THEN EXPAND_TAC "m" THEN REWRITE_TAC[IN_ELIM_THM; HAS_SIZE] THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN MP_TAC(ISPECL [`subgroup_generated G (group_stabilizer G (a:A->(A->bool)->(A->bool)) t)`; `t:A->bool`; `group_mul(G:A group)`] GROUP_ORBIT_COMMON_DIVISOR) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN CONJ_TAC THENL [MATCH_MP_TAC GROUP_ACTION_ON_SUBSET THEN EXISTS_TAC `group_carrier G:A->bool` THEN ASM_SIMP_TAC[GROUP_ACTION_FROM_SUBGROUP; CARRIER_SUBGROUP_GENERATED_SUBGROUP; GROUP_ACTION_GROUP_TRANSLATION] THEN EXPAND_TAC "a" THEN REWRITE_TAC[group_stabilizer; IN_ELIM_THM] THEN SET_TAC[]; X_GEN_TAC `x:A` THEN DISCH_TAC THEN SUBGOAL_THEN `(x:A) IN group_carrier G` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MP_TAC(ISPECL [`subgroup_generated G (group_stabilizer G (a:A->(A->bool)->(A->bool)) t)`; `group_carrier G:A->bool`; `t:A->bool`; `group_mul(G:A group)`] GROUP_ORBIT_ON_SUBSET) THEN ASM_SIMP_TAC[GROUP_ORBIT_SUBGROUP_TRANSLATION] THEN DISCH_THEN SUBST1_TAC THEN SUBGOAL_THEN `t INTER right_coset G (group_stabilizer G a t) x = right_coset G (group_stabilizer G (a:A->(A->bool)->(A->bool)) t) x` SUBST1_TAC THENL [REWRITE_TAC[SET_RULE `s INTER t = t <=> t SUBSET s`] THEN REWRITE_TAC[right_coset; group_setmul; SUBSET; FORALL_IN_GSPEC] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; IN_SING] THEN EXPAND_TAC "a" THEN REWRITE_TAC[group_stabilizer] THEN REWRITE_TAC[IN_ELIM_THM; FORALL_UNWIND_THM2] THEN ASM SET_TAC[]; MATCH_MP_TAC(NUMBER_RULE `m:num = n ==> n divides m`) THEN MATCH_MP_TAC CARD_EQ_CARD_IMP THEN ASM_SIMP_TAC[FINITE_GROUP_STABILIZER] THEN MATCH_MP_TAC CARD_EQ_RIGHT_COSET_SUBGROUP THEN ASM_MESON_TAC[]]]; ALL_TAC] THEN SUBGOAL_THEN `(!t r. t SUBSET group_carrier G /\ CARD t = r <=> t SUBSET group_carrier G /\ t HAS_SIZE r) /\ (!h r. (h:A->bool) subgroup_of G /\ CARD h = r <=> h subgroup_of G /\ h HAS_SIZE r)` (fun th -> REWRITE_TAC[th]) THENL [ASM_MESON_TAC[subgroup_of; HAS_SIZE; FINITE_SUBSET]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] NSUM_CARD_GROUP_ORBITS)) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC(NUMBER_RULE `!g. (nsum s g == nsum s f) (mod n) /\ nsum s g = z ==> (nsum s f == z) (mod n)`) THEN EXISTS_TAC `\s:(A->bool)->bool. if CARD s = n then CARD s else 0` THEN CONJ_TAC THENL [MATCH_MP_TAC CONG_NSUM THEN ASM_SIMP_TAC[SIMPLE_IMAGE; FINITE_IMAGE; FORALL_IN_IMAGE] THEN X_GEN_TAC `t:A->bool` THEN DISCH_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[NUMBER_RULE `(a:num == a) (mod n)`] THEN MP_TAC(ISPECL [`G:A group`; `m:(A->bool)->bool`; `a:A->(A->bool)->(A->bool)`; `t:A->bool`] ORBIT_STABILIZER_MUL) THEN FIRST_X_ASSUM(MP_TAC o SPEC `t:A->bool`) THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[DIVIDES_PRIMEPOW] THEN REWRITE_TAC[SYM(ASSUME `p EXP k * n = CARD(group_carrier G:A->bool)`)] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; LE_LT; IMP_CONJ] THEN X_GEN_TAC `i:num` THEN DISCH_THEN(DISJ_CASES_THEN2 ASSUME_TAC SUBST1_TAC) THEN DISCH_THEN SUBST1_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LT_EXISTS]) THEN DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN REWRITE_TAC[EXP_ADD; GSYM MULT_ASSOC; EXP]; ALL_TAC] THEN REWRITE_TAC[NUM_RING `a * p = p * b <=> p = 0 \/ a = b`] THEN ASM_SIMP_TAC[EXP_EQ_0; PRIME_IMP_NZ] THEN CONV_TAC NUMBER_RULE; SIMP_TAC[] THEN REWRITE_TAC[GSYM NSUM_RESTRICT_SET; SIMPLE_IMAGE] THEN ASM_SIMP_TAC[NSUM_CONST; ETA_AX; FINITE_IMAGE; FINITE_RESTRICT]] THEN AP_THM_TAC THEN AP_TERM_TAC THEN SUBGOAL_THEN `{x | x IN IMAGE (group_orbit G m (a:A->(A->bool)->(A->bool))) m /\ CARD x = n} = IMAGE (\h. {left_coset G x h | x | x IN group_carrier G}) {h | h subgroup_of G /\ h HAS_SIZE p EXP k}` SUBST1_TAC THENL [ALL_TAC; MATCH_MP_TAC CARD_IMAGE_INJ THEN ASM_SIMP_TAC[FINITE_RESTRICTED_SUBGROUPS] THEN MAP_EVERY X_GEN_TAC [`h1:A->bool`; `h2:A->bool`] THEN REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o ISPEC `group_id G:A` o MATCH_MP (SET_RULE `{f x | x IN u} = {g x | x IN u} ==> !a. a IN u ==> ?b. b IN u /\ g b = f a`)) THEN ASM_SIMP_TAC[GROUP_ID; LEFT_COSET_ID; SUBGROUP_OF_IMP_SUBSET] THEN ASM_MESON_TAC[SUBGROUP_OF_LEFT_COSET]] THEN MATCH_MP_TAC(SET_RULE `!Q. s'' SUBSET {x | x IN s /\ Q x} /\ (!x. x IN s ==> f x = f' x) /\ (!x. x IN s ==> ?x'. x' IN s /\ Q x' /\ f x' = f x) /\ (!x. x IN s /\ Q x ==> (P(f x) <=> x IN s'')) ==> {y | y IN IMAGE f s /\ P y} = IMAGE f' s''`) THEN EXISTS_TAC `\t:A->bool. group_id G IN t` THEN REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [EXPAND_TAC "m" THEN REWRITE_TAC[subgroup_of] THEN SET_TAC[]; ASM_SIMP_TAC[GROUP_ORBIT] THEN EXPAND_TAC "a" THEN REWRITE_TAC[o_THM; LEFT_COSET_AS_IMAGE]; ONCE_REWRITE_TAC[TAUT `p /\ q <=> ~(p ==> ~q)`] THEN ASM_SIMP_TAC[GROUP_ORBIT_EQ] THEN FIRST_ASSUM(MP_TAC o MATCH_MP GROUP_ORBIT_SYM_EQ) THEN DISCH_THEN(fun th -> ONCE_REWRITE_TAC[th]) THEN SIMP_TAC[group_orbit; NOT_IMP; CONJ_ASSOC; RIGHT_AND_EXISTS_THM] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[UNWIND_THM1] THEN ONCE_REWRITE_TAC[TAUT `p /\ q <=> ~(q ==> ~p)`] THEN FIRST_ASSUM(MP_TAC o CONJUNCT1 o GEN_REWRITE_RULE I [group_action]) THEN SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN EXPAND_TAC "a" THEN REWRITE_TAC[IN_IMAGE] THEN ONCE_REWRITE_TAC[TAUT `p /\ q <=> ~(q ==> ~p)`] THEN EXPAND_TAC "m" THEN SIMP_TAC[IN_ELIM_THM; SUBSET; GROUP_RULE `group_id G = group_mul G g h <=> g = group_inv G h`] THEN REWRITE_TAC[NOT_IMP] THEN X_GEN_TAC `t:A->bool` THEN ASM_CASES_TAC `t:A->bool = {}` THENL [ASM_REWRITE_TAC[HAS_SIZE; CARD_CLAUSES] THEN ASM_MESON_TAC[EXP_EQ_0; PRIME_0]; ASM_MESON_TAC[GROUP_INV; MEMBER_NOT_EMPTY]]; X_GEN_TAC `t:A->bool` THEN DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC(CONJUNCT1 th)) THEN EXPAND_TAC "m" THEN REWRITE_TAC[IN_ELIM_THM; HAS_SIZE] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_REWRITE_TAC[GSYM HAS_SIZE]] THEN TRANS_TAC EQ_TRANS `CARD(group_stabilizer G (a:A->(A->bool)->(A->bool)) t) = p EXP k` THEN CONJ_TAC THENL [MATCH_MP_TAC(NUM_RING `x * y = p * n /\ ~(p * n = 0) ==> (x = n <=> y = p)`) THEN ASM_SIMP_TAC[CARD_EQ_0; GROUP_CARRIER_NONEMPTY] THEN ASM_SIMP_TAC[ORBIT_STABILIZER_MUL]; SUBST1_TAC(SYM(ASSUME `CARD(t:A->bool) = p EXP k`))] THEN SUBGOAL_THEN `group_stabilizer G (a:A->(A->bool)->(A->bool)) t SUBSET t` ASSUME_TAC THENL [EXPAND_TAC "a" THEN REWRITE_TAC[group_stabilizer; SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `x:A` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (SUBST1_TAC o SYM)) THEN REWRITE_TAC[IN_IMAGE] THEN EXISTS_TAC `group_id G:A` THEN ASM_SIMP_TAC[GROUP_MUL_RID]; ASM_SIMP_TAC[SUBSET_CARD_EQ]] THEN EQ_TAC THENL [ASM_MESON_TAC[SUBGROUP_OF_GROUP_STABILIZER]; DISCH_TAC] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN ASM_REWRITE_TAC[] THEN EXPAND_TAC "a" THEN REWRITE_TAC[group_stabilizer] THEN MATCH_MP_TAC(SET_RULE `t SUBSET u /\ (!x. x IN u ==> (P x <=> x IN t)) ==> t SUBSET {x | x IN u /\ P x}`) THEN ASM_SIMP_TAC[GSYM LEFT_COSET_AS_IMAGE; LEFT_COSET_EQ_SUBGROUP]) in REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [divides]) THEN DISCH_THEN(X_CHOOSE_THEN `n:num` (ASSUME_TAC o SYM)) THEN MP_TAC(ISPECL [`G:A group`; `p:num`; `k:num`; `n:num`] SYLOW_LEMMA) THEN MP_TAC(ISPECL [`integer_mod_group (p EXP k * n)`; `p:num`; `k:num`; `n:num`] SYLOW_LEMMA) THEN ASM_SIMP_TAC[ORDER_INTEGER_MOD_GROUP; CARD_EQ_0; GROUP_CARRIER_NONEMPTY; FINITE_INTEGER_MOD_GROUP] THEN MATCH_MP_TAC(NUMBER_RULE `~(n = 0) /\ s = s' /\ t = 1 ==> (s == t * n) (mod (p * n)) ==> (s' == t' * n) (mod (p * n)) ==> (t' == 1) (mod p)`) THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[MULT_EQ_0; CARD_EQ_0; GROUP_CARRIER_NONEMPTY]; MATCH_MP_TAC lemma THEN ASM_SIMP_TAC[ORDER_INTEGER_MOD_GROUP; CARD_EQ_0; GROUP_CARRIER_NONEMPTY; FINITE_INTEGER_MOD_GROUP]; ASM_SIMP_TAC[ORDER_INTEGER_MOD_GROUP; FINITE_INTEGER_MOD_GROUP; CYCLIC_GROUP_INTEGER_MOD_GROUP; GROUP_CARRIER_NONEMPTY; CARD_EQ_0; COUNT_FINITE_CYCLIC_GROUP_SUBGROUPS]]);; let SYLOW_THEOREM = prove (`!(G:A group) p k. FINITE(group_carrier G) /\ prime p /\ p EXP k divides CARD(group_carrier G) ==> ?h. h subgroup_of G /\ CARD h = p EXP k`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [SET_RULE `(?x. P x) <=> ~({x | P x} = {})`] THEN ASM_SIMP_TAC[GSYM CARD_EQ_0; FINITE_RESTRICTED_SUBGROUPS] THEN DISCH_TAC THEN MP_TAC(ISPECL [`G:A group`; `p:num`; `k:num`] SYLOW_THEOREM_COUNT_MOD) THEN ASM_REWRITE_TAC[NUMBER_RULE `(0 == n) (mod p) <=> p divides n`] THEN ASM_MESON_TAC[DIVIDES_ONE; prime]);; let CAUCHY_GROUP_THEOREM = prove (`!(G:A group) p. FINITE(group_carrier G) /\ prime p /\ p divides CARD(group_carrier G) ==> ?x. x IN group_carrier G /\ group_element_order G x = p`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`G:A group`; `p:num`; `1`] SYLOW_THEOREM) THEN ASM_REWRITE_TAC[EXP_1; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `h:A->bool` THEN STRIP_TAC THEN SUBGOAL_THEN `~trivial_group(subgroup_generated G (h:A->bool))` MP_TAC THENL [ASM_SIMP_TAC[TRIVIAL_GROUP_HAS_SIZE_1; HAS_SIZE; FINITE_SUBGROUP_GENERATED] THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_SUBGROUP] THEN ASM_MESON_TAC[PRIME_1]; ASM_SIMP_TAC[TRIVIAL_GROUP_SUBSET; CARRIER_SUBGROUP_GENERATED_SUBGROUP; CONJUNCT2 SUBGROUP_GENERATED]] THEN DISCH_THEN(X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC o MATCH_MP (SET_RULE `~(h SUBSET {a}) ==> ?x. x IN h /\ ~(x = a)`)) THEN SUBGOAL_THEN `(a:A) IN group_carrier G` ASSUME_TAC THENL [ASM_MESON_TAC[SUBGROUP_OF_IMP_SUBSET; SUBSET]; ALL_TAC] THEN MP_TAC(SPECL [`subgroup_generated G h:A group`; `a:A`] GROUP_ELEMENT_ORDER_DIVIDES_GROUP_ORDER) THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_SUBGROUP] THEN ANTS_TAC THENL [ASM_MESON_TAC[SUBGROUP_OF_IMP_SUBSET; FINITE_SUBSET]; REWRITE_TAC[GROUP_ELEMENT_ORDER_SUBGROUP_GENERATED]] THEN ASM_MESON_TAC[prime; GROUP_ELEMENT_ORDER_EQ_1]);; let PRIME_DIVIDES_GROUP_ORDER = prove (`!(G:A group) p. FINITE(group_carrier G) /\ prime p ==> ((?x. x IN group_carrier G /\ p divides (group_element_order G x)) <=> p divides CARD(group_carrier G))`, MESON_TAC[GROUP_ELEMENT_ORDER_DIVIDES_GROUP_ORDER; CAUCHY_GROUP_THEOREM; DIVIDES_REFL; DIVIDES_TRANS]);; let COPRIME_GROUP_ORDER = prove (`!(G:A group) n. FINITE(group_carrier G) ==> ((!x. x IN group_carrier G ==> coprime(group_element_order G x,n)) <=> coprime(CARD(group_carrier G),n))`, REWRITE_TAC[COPRIME_PRIME_EQ] THEN MESON_TAC[PRIME_DIVIDES_GROUP_ORDER]);; let FINITE_PGROUP = prove (`!s (G:A group). FINITE(group_carrier G) ==> (pgroup s G <=> !p. prime p /\ p divides CARD(group_carrier G) ==> p IN s)`, REWRITE_TAC[pgroup] THEN ASM_MESON_TAC[CAUCHY_GROUP_THEOREM; GROUP_ELEMENT_ORDER_DIVIDES_GROUP_ORDER; DIVIDES_PRIME_PRIME; DIVIDES_TRANS]);; let FINITE_PGROUP_SING = prove (`!(G:A group) p. FINITE(group_carrier G) /\ prime p ==> (pgroup {p} G <=> ?k. CARD(group_carrier G) = p EXP k)`, SIMP_TAC[FINITE_PGROUP; IN_SING] THEN MESON_TAC[PRIME_POWER_EXISTS]);; let FINITE_AND_PGROUP_SING = prove (`!(G:A group) p. prime p ==> (FINITE(group_carrier G) /\ pgroup {p} G <=> ?k. (group_carrier G) HAS_SIZE (p EXP k))`, REWRITE_TAC[HAS_SIZE] THEN MESON_TAC[FINITE_PGROUP_SING]);; let FINITE_GROUP_POW_INJECTIVE_EQ = prove (`!(G:A group) n. FINITE(group_carrier G) ==> ((!x y. x IN group_carrier G /\ y IN group_carrier G /\ group_pow G x n = group_pow G y n ==> x = y) <=> coprime(n,CARD(group_carrier G)))`, REPEAT STRIP_TAC THEN EQ_TAC THENL [ALL_TAC; ASM_MESON_TAC[GROUP_POW_CANCEL]] THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN REWRITE_TAC[COPRIME_PRIME_EQ; LEFT_IMP_EXISTS_THM; NOT_FORALL_THM] THEN X_GEN_TAC `p:num` THEN STRIP_TAC THEN REWRITE_TAC[NOT_IMP] THEN MP_TAC(ISPECL [`G:A group`; `p:num`] CAUCHY_GROUP_THEOREM) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:A` THEN STRIP_TAC THEN EXISTS_TAC `group_id G:A` THEN ASM_SIMP_TAC[GROUP_POW_ID; GROUP_ID] THEN ASM_SIMP_TAC[GROUP_POW_EQ_ID; GSYM GROUP_ELEMENT_ORDER_EQ_1] THEN ASM_MESON_TAC[PRIME_1]);; let FINITE_GROUP_ZPOW_INJECTIVE_EQ = prove (`!(G:A group) n. FINITE(group_carrier G) ==> ((!x y. x IN group_carrier G /\ y IN group_carrier G /\ group_zpow G x n = group_zpow G y n ==> x = y) <=> coprime(n,&(CARD(group_carrier G))))`, REWRITE_TAC[FORALL_INT_CASES; GROUP_ZPOW_POW; GSYM num_coprime; INTEGER_RULE `coprime(--x:int,y) <=> coprime(x,y)`] THEN SIMP_TAC[IMP_CONJ; GROUP_INV_EQ; GROUP_POW] THEN REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC; FINITE_GROUP_POW_INJECTIVE_EQ]);; let FINITE_GROUP_POW_SURJECTIVE_EQ = prove (`!(G:A group) n. FINITE(group_carrier G) ==> ((!x. x IN group_carrier G ==> ?y. y IN group_carrier G /\ group_pow G y n = x) <=> coprime(n,CARD(group_carrier G)))`, REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH (lhand o rand) SURJECTIVE_IFF_INJECTIVE o lhand o snd) THEN ASM_REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; GROUP_POW] THEN DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC FINITE_GROUP_POW_INJECTIVE_EQ THEN ASM_REWRITE_TAC[]);; let FINITE_GROUP_ZPOW_SURJECTIVE_EQ = prove (`!(G:A group) n. FINITE(group_carrier G) ==> ((!x. x IN group_carrier G ==> ?y. y IN group_carrier G /\ group_zpow G y n = x) <=> coprime(n,&(CARD(group_carrier G))))`, REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH (lhand o rand) SURJECTIVE_IFF_INJECTIVE o lhand o snd) THEN ASM_REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; GROUP_ZPOW] THEN DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC FINITE_GROUP_ZPOW_INJECTIVE_EQ THEN ASM_REWRITE_TAC[]);; let FINITE_GROUP_ZROOT_EXISTS = prove (`!G n x:A. FINITE(group_carrier G) /\ coprime(n,&(CARD(group_carrier G))) /\ x IN group_carrier G ==> ?y. y IN group_carrier G /\ group_zpow G y n = x`, MESON_TAC[FINITE_GROUP_ZPOW_SURJECTIVE_EQ]);; let FINITE_GROUP_ROOT_EXISTS = prove (`!G n x:A. FINITE(group_carrier G) /\ coprime(n,CARD(group_carrier G)) /\ x IN group_carrier G ==> ?y. y IN group_carrier G /\ group_pow G y n = x`, MESON_TAC[FINITE_GROUP_POW_SURJECTIVE_EQ]);; let ABELIAN_GROUP_MONOMORPHISM_POWERING_EQ = prove (`!(G:A group) n. abelian_group G /\ FINITE(group_carrier G) ==> (group_monomorphism (G,G) (\x. group_pow G x n) <=> coprime(n,CARD(group_carrier G)))`, SIMP_TAC[group_monomorphism; ABELIAN_GROUP_HOMOMORPHISM_POWERING] THEN MESON_TAC[FINITE_GROUP_POW_INJECTIVE_EQ]);; let ABELIAN_GROUP_MONOMORPHISM_POWERING = prove (`!(G:A group) n. abelian_group G /\ FINITE(group_carrier G) /\ coprime(n,CARD(group_carrier G)) ==> group_monomorphism (G,G) (\x. group_pow G x n)`, MESON_TAC[ABELIAN_GROUP_MONOMORPHISM_POWERING_EQ]);; let ABELIAN_GROUP_ISOMORPHISM_POWERING_EQ = prove (`!(G:A group) n. abelian_group G /\ FINITE(group_carrier G) ==> (group_isomorphism (G,G) (\x. group_pow G x n) <=> coprime(n,CARD(group_carrier G)))`, ASM_SIMP_TAC[GROUP_ISOMORPHISM_EQ_MONOMORPHISM_FINITE] THEN REWRITE_TAC[ABELIAN_GROUP_MONOMORPHISM_POWERING_EQ]);; let ABELIAN_GROUP_ISOMORPHISM_POWERING = prove (`!(G:A group) n. abelian_group G /\ FINITE(group_carrier G) /\ coprime(n,CARD(group_carrier G)) ==> group_isomorphism (G,G) (\x. group_pow G x n)`, MESON_TAC[ABELIAN_GROUP_ISOMORPHISM_POWERING_EQ]);; let ABELIAN_GROUP_EPIMORPHISM_POWERING_EQ = prove (`!(G:A group) n. abelian_group G /\ FINITE(group_carrier G) ==> (group_epimorphism (G,G) (\x. group_pow G x n) <=> coprime(n,CARD(group_carrier G)))`, ASM_SIMP_TAC[GSYM GROUP_ISOMORPHISM_EQ_EPIMORPHISM_FINITE] THEN REWRITE_TAC[ABELIAN_GROUP_ISOMORPHISM_POWERING_EQ]);; let ABELIAN_GROUP_EPIMORPHISM_POWERING = prove (`!(G:A group) n. abelian_group G /\ FINITE(group_carrier G) /\ coprime(n,CARD(group_carrier G)) ==> group_epimorphism (G,G) (\x. group_pow G x n)`, MESON_TAC[ABELIAN_GROUP_EPIMORPHISM_POWERING_EQ]);; let PGROUP_ACTION_FIXPOINTS = prove (`!G s (a:A->X->X) p. group_action G s a /\ FINITE s /\ prime p /\ FINITE(group_carrier G) /\ pgroup {p} G ==> (CARD {x | x IN s /\ !g. g IN group_carrier G ==> a g x = x} == CARD s) (mod p)`, REPEAT GEN_TAC THEN REPLICATE_TAC 3 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ASM_SIMP_TAC[FINITE_AND_PGROUP_SING; HAS_SIZE; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN ASM_SIMP_TAC[GSYM GROUP_ORBIT_HAS_SIZE_1] THEN MATCH_MP_TAC(NUMBER_RULE `!y:num. x = y /\ (y == z) (mod n) ==> (x == z) (mod n)`) THEN EXISTS_TAC `nsum {t | t IN {group_orbit G s (a:A->X->X) x | x | x IN s} /\ t HAS_SIZE 1} (\i. 1)` THEN CONJ_TAC THENL [ASM_SIMP_TAC[SIMPLE_IMAGE; FINITE_RESTRICT; NSUM_CONST; FINITE_IMAGE] THEN REWRITE_TAC[MULT_CLAUSES; SET_RULE `{y | y IN IMAGE f s /\ P y} = IMAGE f {x | x IN s /\ P(f x)}`] THEN ASM_SIMP_TAC[GROUP_ORBIT_HAS_SIZE_1; TAUT `p /\ p /\ q <=> p /\ q`] THEN CONV_TAC SYM_CONV THEN ASM_SIMP_TAC[GSYM GROUP_ORBIT_HAS_SIZE_1] THEN MATCH_MP_TAC CARD_IMAGE_INJ THEN ASM_SIMP_TAC[GROUP_ORBIT_HAS_SIZE_1; FINITE_RESTRICT] THEN ASM_SIMP_TAC[GSYM GROUP_ORBIT_EQ_SING_SELF] THEN SET_TAC[]; REWRITE_TAC[NSUM_RESTRICT_SET]] THEN FIRST_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] NSUM_CARD_GROUP_ORBITS)) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC CONG_NSUM THEN ASM_SIMP_TAC[SIMPLE_IMAGE; FINITE_IMAGE; FORALL_IN_IMAGE] THEN X_GEN_TAC `x:X` THEN DISCH_TAC THEN ASM_SIMP_TAC[HAS_SIZE; FINITE_GROUP_ORBIT] THEN MP_TAC(ISPECL [`G:A group`; `s:X->bool`; `a:A->X->X`; `x:X`] CARD_GROUP_ORBIT_DIVIDES) THEN ASM_SIMP_TAC[DIVIDES_PRIMEPOW; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[NUMBER_RULE `(n:num == n) (mod p)`] THEN REWRITE_TAC[NUMBER_RULE `(0 == n) (mod p) <=> p divides n`] THEN ASM_SIMP_TAC[PRIME_DIVEXP_EQ; DIVIDES_REFL] THEN ASM_MESON_TAC[EXP]);; let PGROUP_ACTION_FIXPOINT = prove (`!G s (a:A->X->X) p. group_action G s a /\ prime p /\ FINITE(group_carrier G) /\ pgroup {p} G /\ FINITE s /\ ~(p divides CARD s) ==> ?x. x IN s /\ !g. g IN group_carrier G ==> a g x = x`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`G:A group`; `s:X->bool`; `a:A->X->X`; `p:num`] PGROUP_ACTION_FIXPOINTS) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP (NUMBER_RULE `(x == y) (mod p) ==> x = 0 ==> p divides y`)) THEN ASM_SIMP_TAC[CARD_EQ_0; FINITE_RESTRICT] THEN SET_TAC[]);; let SYLOW_THEOREM_CONJUGATE_GEN = prove (`!(G:A group) p k h j. prime p /\ h subgroup_of G /\ FINITE {left_coset G x h | x | x IN group_carrier G} /\ ~(p divides CARD {left_coset G x h | x | x IN group_carrier G}) /\ j subgroup_of G /\ FINITE j /\ CARD j = p EXP k ==> ?a. a IN group_carrier G /\ j SUBSET IMAGE (group_conjugation G a) h`, REPEAT STRIP_TAC THEN ABBREV_TAC `a:A->(A->bool)->(A->bool) = IMAGE o group_mul G` THEN SUBGOAL_THEN `group_action (subgroup_generated G j:A group) {left_coset G x h | x | x IN group_carrier G} a` MP_TAC THENL [MATCH_MP_TAC GROUP_ACTION_FROM_SUBGROUP THEN ASM_REWRITE_TAC[] THEN EXPAND_TAC "a" THEN MATCH_MP_TAC GROUP_ACTION_LEFT_COSET_MULTIPLICATION THEN ASM_SIMP_TAC[SUBGROUP_OF_IMP_SUBSET]; DISCH_TAC] THEN FIRST_ASSUM(MP_TAC o SPEC `p:num` o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] PGROUP_ACTION_FIXPOINT)) THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_SUBGROUP; FINITE_PGROUP_SING; HAS_SIZE] THEN ANTS_TAC THENL [MESON_TAC[]; REWRITE_TAC[EXISTS_IN_GSPEC]] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `y:A` THEN STRIP_TAC THEN ASM_REWRITE_TAC[SUBSET] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `group_inv G x:A`) THEN ASM_SIMP_TAC[IN_SUBGROUP_INV] THEN SUBGOAL_THEN `(x:A) IN group_carrier G` ASSUME_TAC THENL [ASM_MESON_TAC[SUBGROUP_OF_IMP_SUBSET; SUBSET]; ALL_TAC] THEN EXPAND_TAC "a" THEN REWRITE_TAC[GSYM LEFT_COSET_AS_IMAGE; o_THM] THEN ASM_SIMP_TAC[LEFT_COSET_LEFT_COSET; SUBGROUP_OF_IMP_SUBSET; GROUP_INV; GROUP_MUL; LEFT_COSET_EQ] THEN ASM_SIMP_TAC[IN_IMAGE_GROUP_CONJUGATION; SUBGROUP_OF_IMP_SUBSET] THEN REWRITE_TAC[group_conjugation] THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN GROUP_TAC);; let SYLOW_THEOREM_CONJUGATE_SUBSET = prove (`!(G:A group) p k l h j. FINITE(group_carrier G) /\ prime p /\ ~(p EXP (k + 1) divides CARD(group_carrier G)) /\ h subgroup_of G /\ CARD h = p EXP k /\ j subgroup_of G /\ CARD j = p EXP l ==> ?a. a IN group_carrier G /\ j SUBSET IMAGE (group_conjugation G a) h`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SYLOW_THEOREM_CONJUGATE_GEN THEN MAP_EVERY EXISTS_TAC [`p:num`; `l:num`] THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[SIMPLE_IMAGE; FINITE_IMAGE] THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[FINITE_SUBSET; subgroup_of]] THEN MP_TAC(ISPECL [`G:A group`; `h:A->bool`] LAGRANGE_THEOREM_LEFT) THEN ASM_REWRITE_TAC[TAUT `p ==> ~q <=> ~(p /\ q)`; GSYM SIMPLE_IMAGE] THEN DISCH_THEN(MP_TAC o MATCH_MP (NUMBER_RULE `m * p EXP k = n /\ p divides m ==> p EXP k * p EXP 1 divides n`)) THEN ASM_REWRITE_TAC[GSYM EXP_ADD]);; let SYLOW_THEOREM_CONJUGATE_ALT = prove (`!(G:A group) p k h h'. FINITE(group_carrier G) /\ prime p /\ ~(p EXP (k + 1) divides CARD(group_carrier G)) /\ h subgroup_of G /\ CARD h = p EXP k /\ h' subgroup_of G /\ CARD h' = p EXP k ==> group_conjugate G h h'`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[group_conjugate; SUBGROUP_OF_IMP_SUBSET] THEN MP_TAC(ISPECL [`G:A group`; `p:num`; `k:num`; `k:num`; `h:A->bool`; `h':A->bool`] SYLOW_THEOREM_CONJUGATE_SUBSET) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:A` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC CARD_SUBSET_LE THEN ASM_MESON_TAC[FINITE_IMAGE; FINITE_SUBSET; CARD_IMAGE_LE; subgroup_of]);; let SYLOW_THEOREM_CONJUGATE = prove (`!(G:A group) p k h h'. FINITE(group_carrier G) /\ prime p /\ index p (CARD(group_carrier G)) = k /\ h subgroup_of G /\ CARD h = p EXP k /\ h' subgroup_of G /\ CARD h' = p EXP k ==> group_conjugate G h h'`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SYLOW_THEOREM_CONJUGATE_ALT THEN MAP_EVERY EXISTS_TAC [`p:num`; `k:num`] THEN ASM_REWRITE_TAC[] THEN ASM_REWRITE_TAC[PRIMEPOW_DIVIDES_INDEX; DE_MORGAN_THM] THEN ASM_SIMP_TAC[CARD_EQ_0; GROUP_CARRIER_NONEMPTY] THEN REWRITE_TAC[ARITH_RULE `~(k + 1 <= k)`] THEN ASM_MESON_TAC[PRIME_1]);; let SYLOW_THEOREM_CONJUGATE_EQ = prove (`!(G:A group) p k h h'. FINITE(group_carrier G) /\ prime p /\ index p (CARD(group_carrier G)) = k /\ h subgroup_of G /\ CARD h = p EXP k ==> (h' subgroup_of G /\ CARD h' = p EXP k <=> group_conjugate G h h')`, REPEAT STRIP_TAC THEN EQ_TAC THEN STRIP_TAC THENL [ASM_MESON_TAC[SYLOW_THEOREM_CONJUGATE]; ALL_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[GROUP_CONJUGATE_SUBGROUP_OF]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP GROUP_CONJUGATE_IMP_CARD_EQ) THEN ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN ASM_MESON_TAC[CARD_EQ_CARD_IMP; FINITE_SUBSET; SUBGROUP_OF_IMP_SUBSET]);; let SYLOW_THEOREM_PGROUP_SUPERSET = prove (`!G p k (h:A->bool). FINITE(group_carrier G) /\ prime p /\ h subgroup_of G /\ CARD h = p EXP k ==> ?h'. h' subgroup_of G /\ h SUBSET h' /\ CARD h' = p EXP (index p (CARD(group_carrier G)))`, REPEAT STRIP_TAC THEN MP_TAC(SPECL [`G:A group`; `p:num`; `index p (CARD(group_carrier G:A->bool))`] SYLOW_THEOREM) THEN ASM_REWRITE_TAC[PRIMEPOW_DIVIDES_INDEX; LE_REFL] THEN DISCH_THEN(X_CHOOSE_THEN `s:A->bool` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`G:A group`; `p:num`; `index p (CARD(group_carrier G:A->bool))`; `k:num`; `s:A->bool`; `h:A->bool`] SYLOW_THEOREM_CONJUGATE_SUBSET) THEN ASM_REWRITE_TAC[PRIMEPOW_DIVIDES_INDEX; ARITH_RULE `~(p + 1 <= p)`] THEN ASM_SIMP_TAC[CARD_EQ_0; GROUP_CARRIER_NONEMPTY] THEN ANTS_TAC THENL [ASM_MESON_TAC[prime]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC) THEN EXISTS_TAC `IMAGE (group_conjugation G (a:A)) s` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[SUBGROUP_OF_HOMOMORPHIC_IMAGE; GROUP_HOMOMORPHISM_CONJUGATION]; W(MP_TAC o PART_MATCH (lhand o rand) CARD_IMAGE_INJ o lhand o snd) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_MESON_TAC[GROUP_CONJUGATION_EQ; SUBSET; FINITE_SUBSET; subgroup_of]]);; let SYLOW_THEOREM_NORMAL_UNIQUE = prove (`!(G:A group) p k h h'. FINITE(group_carrier G) /\ prime p /\ index p (CARD(group_carrier G)) = k /\ h normal_subgroup_of G /\ CARD h = p EXP k ==> (h' subgroup_of G /\ CARD h' = p EXP k <=> h' = h)`, MESON_TAC[SYLOW_THEOREM_CONJUGATE_EQ; normal_subgroup_of; NORMAL_SUBGROUP_CONJUGATE_EQ]);; let SYLOW_THEOREM_COUNT_NORMALIZER = prove (`!(G:A group) h p k. FINITE(group_carrier G) /\ prime p /\ index p (CARD(group_carrier G)) = k /\ h subgroup_of G /\ CARD h = p EXP k ==> CARD {h | h subgroup_of G /\ CARD h = p EXP k} = CARD(group_carrier G) DIV CARD(group_normalizer G h)`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GSYM CARD_CONJUGATE_SUBSETS; SUBGROUP_OF_IMP_SUBSET] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN GEN_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN MATCH_MP_TAC SYLOW_THEOREM_CONJUGATE_EQ THEN ASM_REWRITE_TAC[]);; let SYLOW_THEOREM_COUNT_NORMALIZER_MUL = prove (`!(G:A group) h p k. FINITE(group_carrier G) /\ prime p /\ index p (CARD(group_carrier G)) = k /\ h subgroup_of G /\ CARD h = p EXP k ==> CARD {h | h subgroup_of G /\ CARD h = p EXP k} * CARD(group_normalizer G h) = CARD(group_carrier G)`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`G:A group`; `h:A->bool`] CARD_CONJUGATE_SUBSETS_MUL) THEN ASM_SIMP_TAC[SUBGROUP_OF_IMP_SUBSET] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN GEN_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN MATCH_MP_TAC SYLOW_THEOREM_CONJUGATE_EQ THEN ASM_REWRITE_TAC[]);; let SYLOW_THEOREM_NORMAL_UNIQUE_EQ = prove (`!G p k h:A->bool. FINITE (group_carrier G) /\ prime p /\ index p (CARD (group_carrier G)) = k /\ h subgroup_of G /\ CARD h = p EXP k ==> ((!h'. h' subgroup_of G /\ CARD h' = p EXP k <=> h' = h) <=> h normal_subgroup_of G)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [ALL_TAC; ASM_MESON_TAC[SYLOW_THEOREM_NORMAL_UNIQUE]] THEN REWRITE_TAC[SET_RULE `(!x. P x <=> x = a) <=> {x | P x} = {a}`] THEN DISCH_TAC THEN MP_TAC(ISPECL [`G:A group`; `h:A->bool`; `p:num`; `k:num`] SYLOW_THEOREM_COUNT_NORMALIZER_MUL) THEN ASM_REWRITE_TAC[CARD_SING; MULT_CLAUSES] THEN STRIP_TAC THEN ASM_REWRITE_TAC[NORMAL_SUBGROUP_NORMALIZER_EQ_CARRIER] THEN MATCH_MP_TAC CARD_SUBSET_EQ THEN ASM_REWRITE_TAC[GROUP_NORMALIZER_SUBSET_CARRIER]);; let SYLOW_THEOREM_UNIQUE = prove (`!(G:A group) p k. FINITE(group_carrier G) /\ prime p /\ index p (CARD(group_carrier G)) = k ==> ((?!h. h subgroup_of G /\ CARD h = p EXP k) <=> (?h. h normal_subgroup_of G /\ CARD h = p EXP k))`, REPEAT STRIP_TAC THEN REWRITE_TAC[EXISTS_UNIQUE] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `h:A->bool` THEN ASM_CASES_TAC `CARD(h:A->bool) = p EXP k` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `(h:A->bool) subgroup_of G` THENL [ALL_TAC; ASM_MESON_TAC[normal_subgroup_of]] THEN MP_TAC(ISPECL [`G:A group`; `p:num`; `k:num`; `h:A->bool`] SYLOW_THEOREM_NORMAL_UNIQUE_EQ) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);; let SYLOW_THEOREM_COUNT_DIVISOR = prove (`!(G:A group) p k. FINITE(group_carrier G) /\ prime p /\ index p (CARD(group_carrier G)) = k ==> CARD {h | h subgroup_of G /\ CARD h = p EXP k} divides (CARD(group_carrier G)) DIV (p EXP k)`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`G:A group`; `p:num`; `k:num`] SYLOW_THEOREM) THEN ASM_SIMP_TAC[LEFT_IMP_EXISTS_THM; PRIMEPOW_DIVIDES_INDEX; DIVIDES_DIVIDES_DIV; LE_REFL] THEN X_GEN_TAC `s:A->bool` THEN STRIP_TAC THEN MP_TAC(ISPECL [`G:A group`; `s:A->bool`; `p:num`; `k:num`] SYLOW_THEOREM_COUNT_NORMALIZER_MUL) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC(NUMBER_RULE `(p:num) divides n ==> p * m divides m * n`) THEN MP_TAC(ISPECL [`subgroup_generated G (group_normalizer G s):A group`; `s:A->bool`] LAGRANGE_THEOREM) THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_SUBGROUP; SUBGROUP_GROUP_NORMALIZER; SUBGROUP_OF_SUBGROUP_GENERATED_SUBGROUP_EQ] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[FINITE_GROUP_NORMALIZER] THEN ASM_SIMP_TAC[GROUP_NORMALIZER_SUBSET]);; let PGROUP_NONTRIVIAL_CENTRE_GEN = prove (`!G (n:A->bool) p. prime p /\ FINITE(group_carrier G) /\ pgroup {p} G /\ n normal_subgroup_of G /\ ~(n = {group_id G}) ==> {group_id G} PSUBSET (group_centralizer G (group_carrier G) INTER n)`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`G:A group`; `n DELETE (group_id G:A)`; `group_conjugation (G:A group)`; `p:num`] PGROUP_ACTION_FIXPOINT) THEN ASM_SIMP_TAC[HAS_SIZE; FINITE_DELETE; CARD_DELETE; IMP_CONJ] THEN FIRST_X_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [NORMAL_SUBGROUP_CONJUGATION]) THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP SUBGROUP_OF_IMP_SUBSET) THEN ANTS_TAC THENL [MATCH_MP_TAC GROUP_ACTION_ON_SUBSET THEN EXISTS_TAC `group_carrier G:A->bool` THEN REWRITE_TAC[GROUP_ACTION_CONJUGATION] THEN CONJ_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[IN_DELETE]] THEN MAP_EVERY X_GEN_TAC [`a:A`; `x:A`] THEN STRIP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN ASM_SIMP_TAC[GROUP_CONJUGATION_EQ_ID] THEN ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q ==> r) ==> (p ==> q) ==> r`) THEN CONJ_TAC THENL [ASM_MESON_TAC[FINITE_SUBSET]; DISCH_TAC] THEN ANTS_TAC THENL [UNDISCH_TAC `pgroup {p} (G:A group)` THEN ASM_SIMP_TAC[FINITE_PGROUP_SING] THEN STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [subgroup_of]) THEN ASM_SIMP_TAC[DIVIDES_SUB_1] THEN DISCH_THEN(K ALL_TAC) THEN FIRST_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] LAGRANGE_THEOREM)) THEN ASM_SIMP_TAC[DIVIDES_PRIMEPOW; LEFT_IMP_EXISTS_THM] THEN ASM_SIMP_TAC[EXP_EQ_0; PRIME_IMP_NZ] THEN MATCH_MP_TAC num_INDUCTION THEN SIMP_TAC[EXP; NUMBER_RULE `(p * q == 1) (mod p) <=> p = 1`] THEN ASM_SIMP_TAC[MESON[PRIME_1] `prime p ==> ~(p = 1)`] THEN DISCH_THEN(ASSUME_TAC o CONJUNCT2) THEN DISCH_THEN(K ALL_TAC) THEN SUBGOAL_THEN `(n:A->bool) HAS_SIZE 1` MP_TAC THENL [ASM_REWRITE_TAC[HAS_SIZE]; CONV_TAC(LAND_CONV HAS_SIZE_CONV)] THEN RULE_ASSUM_TAC(REWRITE_RULE[subgroup_of]) THEN ASM SET_TAC[]; MATCH_MP_TAC(SET_RULE `z IN s /\ (!x. P x ==> x IN s DELETE z) ==> (?x. P x) ==> {z} PSUBSET s`) THEN REWRITE_TAC[IN_DELETE; IN_INTER] THEN CONJ_TAC THENL [ASM_MESON_TAC[subgroup_of; SUBGROUP_GROUP_CENTRALIZER]; ALL_TAC] THEN X_GEN_TAC `x:A` THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN REWRITE_TAC[group_centralizer; IN_ELIM_THM] THEN ASM_SIMP_TAC[GROUP_CONJUGATION_EQ_SELF]]);; let PGROUP_NONTRIVIAL_CENTRE = prove (`!(G:A group) p k. prime p /\ ~(k = 0) /\ (group_carrier G) HAS_SIZE (p EXP k) ==> {group_id G} PSUBSET (group_centralizer G (group_carrier G))`, REWRITE_TAC[HAS_SIZE] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`G:A group`; `group_carrier G:A->bool`; `p:num`] PGROUP_NONTRIVIAL_CENTRE_GEN) THEN ASM_SIMP_TAC[FINITE_PGROUP_SING; CARRIER_NORMAL_SUBGROUP_OF] THEN ASM_REWRITE_TAC[GSYM trivial_group; TRIVIAL_GROUP_HAS_SIZE_1; HAS_SIZE] THEN ANTS_TAC THENL [ASM_MESON_TAC[EXP_EQ_1; PRIME_1]; ALL_TAC] THEN REWRITE_TAC[group_centralizer] THEN SET_TAC[]);; let PGROUP_DIVIDES_NORMALIZER_QUOTIENT = prove (`!G p k h:A->bool. FINITE(group_carrier G) /\ prime p /\ h subgroup_of G /\ CARD h = p EXP k /\ p divides CARD(group_carrier G) DIV CARD h ==> p divides CARD(group_normalizer G h) DIV CARD h`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `FINITE(h:A->bool)` ASSUME_TAC THENL [ASM_MESON_TAC[subgroup_of; FINITE_SUBSET]; ALL_TAC] THEN ABBREV_TAC `a:A->(A->bool)->(A->bool) = IMAGE o group_mul G` THEN SUBGOAL_THEN `group_action (subgroup_generated G h:A group) {left_coset G x h | x | x IN group_carrier G} a` MP_TAC THENL [MATCH_MP_TAC GROUP_ACTION_FROM_SUBGROUP THEN ASM_REWRITE_TAC[] THEN EXPAND_TAC "a" THEN MATCH_MP_TAC GROUP_ACTION_LEFT_COSET_MULTIPLICATION THEN ASM_SIMP_TAC[SUBGROUP_OF_IMP_SUBSET]; DISCH_TAC] THEN FIRST_ASSUM(MP_TAC o SPEC `p:num` o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] PGROUP_ACTION_FIXPOINTS)) THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_SUBGROUP; FINITE_PGROUP_SING] THEN ASM_SIMP_TAC[LAGRANGE_THEOREM_LEFT_DIV] THEN ANTS_TAC THENL [ASM_SIMP_TAC[SIMPLE_IMAGE; FINITE_IMAGE] THEN MESON_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(NUMBER_RULE `p divides y /\ x:num = z ==> (x == y) (mod p) ==> p divides z`) THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN TRANS_TAC EQ_TRANS `CARD { left_coset (subgroup_generated G (group_normalizer G h)) x h |x| (x:A) IN group_carrier (subgroup_generated G (group_normalizer G h))}` THEN CONJ_TAC THENL [REWRITE_TAC[LEFT_COSET_SUBGROUP_GENERATED] THEN AP_TERM_TAC THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_SUBGROUP; SUBGROUP_OF_IMP_SUBSET; SUBGROUP_GROUP_NORMALIZER; GROUP_NORMALIZER_CONJUGATION] THEN MATCH_MP_TAC(SET_RULE `(!x. P x /\ R(f x) <=> Q x) ==> {y | y IN {f x | P x} /\ R y} = {f x | Q x}`) THEN X_GEN_TAC `x:A` THEN ASM_CASES_TAC `(x:A) IN group_carrier G` THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN EXPAND_TAC "a" THEN REWRITE_TAC[o_THM; GSYM LEFT_COSET_AS_IMAGE] THEN MATCH_MP_TAC(MESON[IN_SUBGROUP_INV; subgroup_of; SUBSET; GROUP_INV_INV] `h subgroup_of G /\ ((!x. x IN h ==> P(group_inv G x)) <=> Q) ==> ((!x. x IN h ==> P x) <=> Q)`) THEN SUBGOAL_THEN `!x:A. x IN h ==> x IN group_carrier G` MP_TAC THENL [ASM_MESON_TAC[SUBSET; subgroup_of]; ALL_TAC] THEN ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 4) [LEFT_COSET_LEFT_COSET; LEFT_COSET_EQ; GROUP_MUL; GROUP_INV; GROUP_INV_INV; SUBGROUP_OF_IMP_SUBSET; GROUP_INV_MUL; GSYM GROUP_MUL_ASSOC] THEN DISCH_TAC THEN W(MP_TAC o PART_MATCH (rand o rand) IMAGE_GROUP_CONJUGATION_BY_INV o rand o snd) THEN ASM_SIMP_TAC[SUBGROUP_OF_IMP_SUBSET] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x = g x) /\ (IMAGE g s SUBSET s ==> IMAGE g s = s) ==> ((!x. x IN s ==> f x IN s) <=> IMAGE g s = s)`) THEN CONJ_TAC THENL [ASM_SIMP_TAC[group_conjugation; GROUP_INV_INV]; DISCH_TAC] THEN MATCH_MP_TAC CARD_SUBSET_EQ THEN REPEAT(CONJ_TAC THENL [FIRST_X_ASSUM ACCEPT_TAC; ALL_TAC]) THEN MATCH_MP_TAC CARD_IMAGE_INJ THEN ASM_MESON_TAC[GROUP_CONJUGATION_EQ; GROUP_INV]; W(MP_TAC o PART_MATCH (lhand o rand) LAGRANGE_THEOREM_LEFT_DIV o lhand o snd) THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_SUBGROUP; GROUP_NORMALIZER_SUBSET; SUBGROUP_GROUP_NORMALIZER; FINITE_GROUP_NORMALIZER; SUBGROUP_OF_SUBGROUP_GENERATED_SUBGROUP_EQ]]);; let PGROUP_SUBGROUP_PSUBSET_NORMALIZER = prove (`!G p h:A->bool. prime p /\ FINITE(group_carrier G) /\ pgroup {p} G /\ h subgroup_of G /\ ~(h = group_carrier G) ==> h PSUBSET group_normalizer G h`, SIMP_TAC[IMP_CONJ; FINITE_PGROUP_SING] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`G:A group`; `h:A->bool`] LAGRANGE_THEOREM) THEN ASM_SIMP_TAC[DIVIDES_PRIMEPOW; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `i:num` THEN REWRITE_TAC[LE_LT] THEN STRIP_TAC THENL [ALL_TAC; ASM_MESON_TAC[CARD_SUBSET_EQ; subgroup_of]] THEN ASM_SIMP_TAC[PSUBSET; GROUP_NORMALIZER_SUBSET] THEN DISCH_THEN(ASSUME_TAC o SYM) THEN MP_TAC(ISPECL [`G:A group`; `p:num`; `i:num`; `h:A->bool`] PGROUP_DIVIDES_NORMALIZER_QUOTIENT) THEN ASM_REWRITE_TAC[NOT_IMP] THEN SUBGOAL_THEN `~(p = 0) /\ ~(p = 1)` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[PRIME_0; PRIME_1]; ALL_TAC] THEN ASM_SIMP_TAC[DIV_REFL; EXP_EQ_0; DIVIDES_ONE] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LT_EXISTS]) THEN DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN ASM_SIMP_TAC[EXP_ADD; DIV_MULT; EXP_EQ_0; EXP] THEN CONV_TAC NUMBER_RULE);; let PGROUP_MAXIMAL_NORMAL_SUBGROUP_OF = prove (`!G p h:A->bool. prime p /\ FINITE(group_carrier G) /\ pgroup {p} G /\ h subgroup_of G /\ (!h'. h' subgroup_of G /\ h PSUBSET h' ==> h' = group_carrier G) ==> h normal_subgroup_of G`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `h:A->bool = group_carrier G` THEN ASM_REWRITE_TAC[CARRIER_NORMAL_SUBGROUP_OF] THEN ASM_REWRITE_TAC[NORMAL_SUBGROUP_NORMALIZER_EQ_CARRIER] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[SUBGROUP_GROUP_NORMALIZER] THEN MATCH_MP_TAC PGROUP_SUBGROUP_PSUBSET_NORMALIZER THEN ASM_MESON_TAC[]);; let PGROUP_FRATTINI = prove (`!(G:A group) p k h j. prime p /\ FINITE j /\ j normal_subgroup_of G /\ h SUBSET j /\ h subgroup_of G /\ index p (CARD j) = k /\ CARD h = p EXP k ==> group_setmul G (group_normalizer G h) j = group_carrier G`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN ASM_SIMP_TAC[GROUP_SETMUL; GROUP_NORMALIZER_SUBSET_CARRIER; NORMAL_SUBGROUP_OF_IMP_SUBSET] THEN REWRITE_TAC[SUBSET] THEN GEN_REWRITE_TAC I [GSYM FORALL_IN_GROUP_CARRIER_INV] THEN X_GEN_TAC `g:A` THEN DISCH_TAC THEN MP_TAC(ISPECL [`subgroup_generated G (j:A->bool)`; `p:num`; `k:num`; `h:A->bool`; `IMAGE (group_conjugation G (g:A)) h`] SYLOW_THEOREM_CONJUGATE) THEN ASM_SIMP_TAC[group_conjugate; CARRIER_SUBGROUP_GENERATED_SUBGROUP; NORMAL_SUBGROUP_IMP_SUBGROUP; SUBGROUP_OF_SUBGROUP_GENERATED_SUBGROUP_EQ; GROUP_CONJUGATION_SUBGROUP_GENERATED] THEN ANTS_TAC THENL [REPEAT CONJ_TAC THENL [ASM_MESON_TAC[SUBGROUP_OF_HOMOMORPHIC_IMAGE; GROUP_HOMOMORPHISM_CONJUGATION]; ASM_MESON_TAC[NORMAL_SUBGROUP_CONJUGATION; IMAGE_SUBSET; SUBSET_TRANS]; W(MP_TAC o PART_MATCH (lhand o rand) CARD_IMAGE_INJ o lhand o snd) THEN ASM_MESON_TAC[GROUP_CONJUGATION_EQ; SUBSET; subgroup_of; FINITE_SUBSET]]; DISCH_THEN(X_CHOOSE_THEN `x:A` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `(x:A) IN group_carrier G` ASSUME_TAC THENL [ASM_MESON_TAC[SUBSET; normal_subgroup_of; subgroup_of]; ALL_TAC] THEN REWRITE_TAC[group_setmul; IN_ELIM_THM] THEN MAP_EVERY EXISTS_TAC [`group_mul G (group_inv G g) x:A`; `group_inv G x:A`] THEN ASM_SIMP_TAC[GSYM GROUP_MUL_ASSOC; GROUP_MUL_RINV; GROUP_MUL_RID; GROUP_INV; GROUP_MUL] THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[normal_subgroup_of; IN_SUBGROUP_INV]] THEN ASM_SIMP_TAC[GROUP_NORMALIZER_CONJUGATION; SUBGROUP_OF_IMP_SUBSET] THEN ASM_SIMP_TAC[IN_ELIM_THM; GROUP_INV; GROUP_MUL; IMAGE_GROUP_CONJUGATION_BY_MUL; SUBGROUP_OF_IMP_SUBSET] THEN ASM_SIMP_TAC[IMAGE_GROUP_CONJUGATION_BY_INV; GROUP_INV; SUBGROUP_OF_IMP_SUBSET; IMAGE_GROUP_CONJUGATION_SUBSET]]);; let PGROUP_SELF_NORMALIZER = prove (`!G p k s h:A->bool. FINITE(group_carrier G) /\ prime p /\ index p (CARD(group_carrier G)) = k /\ s subgroup_of G /\ CARD s = p EXP k /\ h subgroup_of G /\ group_normalizer G s SUBSET h ==> group_normalizer G h = h`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN ASM_SIMP_TAC[GROUP_NORMALIZER_SUBSET] THEN MP_TAC(ISPECL [`subgroup_generated G (group_normalizer G (h:A->bool))`; `p:num`; `k:num`; `s:A->bool`; `h:A->bool`] PGROUP_FRATTINI) THEN ASM_REWRITE_TAC[NORMAL_SUBGROUP_OF_NORMALIZER] THEN ANTS_TAC THENL [REPEAT CONJ_TAC THENL [ASM_MESON_TAC[FINITE_SUBSET; subgroup_of]; ASM_MESON_TAC[GROUP_NORMALIZER_SUBSET; SUBSET_TRANS]; ASM_SIMP_TAC[SUBGROUP_OF_SUBGROUP_GENERATED_SUBGROUP_EQ; SUBGROUP_GROUP_NORMALIZER] THEN ASM_MESON_TAC[GROUP_NORMALIZER_SUBSET; SUBSET_TRANS]; REWRITE_TAC[GSYM LE_ANTISYM] THEN CONJ_TAC THENL [MP_TAC(ISPECL [`G:A group`; `h:A->bool`] LAGRANGE_THEOREM) THEN ASM_REWRITE_TAC[DIVIDES_INDEX] THEN ASM_SIMP_TAC[CARD_EQ_0; GROUP_CARRIER_NONEMPTY] THEN ASM_MESON_TAC[]; MP_TAC(ISPECL [`subgroup_generated G h:A group`; `s:A->bool`] LAGRANGE_THEOREM) THEN ASM_SIMP_TAC[SUBGROUP_OF_SUBGROUP_GENERATED_SUBGROUP_EQ; CARRIER_SUBGROUP_GENERATED_SUBGROUP] THEN ANTS_TAC THENL [ASM_MESON_TAC[FINITE_SUBSET; subgroup_of; GROUP_NORMALIZER_SUBSET; SUBSET_TRANS]; SIMP_TAC[LE_INDEX] THEN ASM_MESON_TAC[PRIME_1; CARD_EQ_0; FINITE_SUBSET; subgroup_of; SUBGROUP_OF_IMP_NONEMPTY]]]]; REWRITE_TAC[GROUP_SETMUL_SUBGROUP_GENERATED] THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_SUBGROUP; SUBGROUP_GROUP_NORMALIZER] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN FIRST_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM(MATCH_MP GROUP_SETMUL_SUBGROUP th)]) THEN MATCH_MP_TAC GROUP_SETMUL_MONO THEN REWRITE_TAC[SUBSET_REFL] THEN TRANS_TAC SUBSET_TRANS `group_normalizer G s:A->bool` THEN ASM_REWRITE_TAC[] THEN W(MP_TAC o PART_MATCH (lhand o rand) GROUP_NORMALIZER_SUBGROUP_GENERATED o lhand o snd) THEN ANTS_TAC THENL [ALL_TAC; SET_TAC[]] THEN REWRITE_TAC[SUBGROUP_GROUP_NORMALIZER] THEN ASM_MESON_TAC[GROUP_NORMALIZER_SUBSET; SUBSET_TRANS]]);; let PGROUP_NORMALIZER_NORMALIZER = prove (`!G p k h:A->bool. FINITE(group_carrier G) /\ prime p /\ index p (CARD(group_carrier G)) = k /\ h subgroup_of G /\ CARD h = p EXP k ==> group_normalizer G (group_normalizer G h) = group_normalizer G h`, REPEAT STRIP_TAC THEN MATCH_MP_TAC PGROUP_SELF_NORMALIZER THEN MAP_EVERY EXISTS_TAC [`p:num`; `k:num`; `h:A->bool`] THEN ASM_REWRITE_TAC[SUBSET_REFL; SUBGROUP_GROUP_NORMALIZER]);; (* ------------------------------------------------------------------------- *) (* Theorems related to "internal" direct sums. *) (* ------------------------------------------------------------------------- *) let GROUP_DISJOINT_SUM_ALT = prove (`!G g h:A->bool. g subgroup_of G /\ h subgroup_of G ==> (g INTER h SUBSET {group_id G} <=> g INTER h = {group_id G})`, REWRITE_TAC[subgroup_of] THEN SET_TAC[]);; let GROUP_DISJOINT_SUM_ID = prove (`!G g h:A->bool. g subgroup_of G /\ h subgroup_of G ==> (g INTER h SUBSET {group_id G} <=> !x y. x IN g /\ y IN h /\ group_mul G x y = group_id G ==> x = group_id G /\ y = group_id G)`, REWRITE_TAC[SUBSET; IN_INTER; IN_SING; subgroup_of] THEN REPEAT STRIP_TAC THEN TRANS_TAC EQ_TRANS `!x y:A. x IN g /\ y IN h /\ group_mul G x (group_inv G y) = group_id G ==> x = group_id G /\ group_inv G y = group_id G` THEN CONJ_TAC THENL [ASM_SIMP_TAC[GSYM group_div; GROUP_DIV_EQ_ID; GROUP_INV_EQ_ID; IMP_CONJ] THEN MESON_TAC[]; ASM_MESON_TAC[GROUP_INV_INV]]);; let GROUP_DISJOINT_SUM_CANCEL = prove (`!G g h:A->bool. g subgroup_of G /\ h subgroup_of G ==> (g INTER h SUBSET {group_id G} <=> !x x' y y'. x IN g /\ x' IN g /\ y IN h /\ y' IN h /\ group_mul G x y = group_mul G x' y' ==> x = x' /\ y = y')`, SIMP_TAC[GROUP_DISJOINT_SUM_ID] THEN REWRITE_TAC[SUBSET; subgroup_of] THEN REPEAT STRIP_TAC THEN EQ_TAC THEN DISCH_TAC THENL [MAP_EVERY X_GEN_TAC [`x:A`; `x':A`; `y:A`; `y':A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`group_mul G (group_inv G x') x:A`; `group_div G y y':A`]) THEN ASM_SIMP_TAC[GROUP_DIV_EQ_ID; GROUP_INV_EQ_ID; GROUP_DIV] THEN ASM_SIMP_TAC[GSYM GROUP_LINV_EQ; GROUP_INV; GROUP_INV_INV] THEN ANTS_TAC THENL [ALL_TAC; SIMP_TAC[]] THEN FIRST_X_ASSUM(MP_TAC o AP_TERM `\z:A. group_mul G (group_inv G x') (group_mul G z (group_inv G y'))`) THEN ASM_SIMP_TAC[GROUP_RULE `group_mul G (group_inv G x) (group_mul G (group_mul G x y) (group_inv G y)) = group_id G`] THEN ASM_SIMP_TAC[group_div] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN W(fun (_,w) -> ASM_SIMP_TAC[GROUP_RULE w]); MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x:A`; `group_id G:A`; `y:A`; `group_id G:A`]) THEN ASM_SIMP_TAC[GROUP_MUL_LID; GROUP_ID]]);; let GROUP_SUM_COMMUTING_IMP_NORMAL = prove (`!G g h:A->bool. g subgroup_of G /\ h subgroup_of G /\ group_carrier G SUBSET group_setmul G g h /\ (!x y. x IN g /\ y IN h ==> group_mul G x y = group_mul G y x) ==> g normal_subgroup_of G /\ h normal_subgroup_of G`, REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[normal_subgroup_of] THEN X_GEN_TAC `a:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `a:A` o GEN_REWRITE_RULE I [SUBSET]) THEN ASM_REWRITE_TAC[group_setmul] THEN SPEC_TAC(`a:A`,`a:A`) THEN REWRITE_TAC[FORALL_IN_GSPEC; left_coset; right_coset] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN (SUBGOAL_THEN `(x:A) IN group_carrier G /\ y IN group_carrier G /\ g SUBSET group_carrier G /\ h SUBSET group_carrier G` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[subgroup_of; SUBSET]; ALL_TAC]) THEN REWRITE_TAC[GSYM GROUP_SETMUL_SING] THENL [ASM_SIMP_TAC[GROUP_SETMUL_ASSOC; GROUP_SETMUL; SING_SUBSET] THEN TRANS_TAC EQ_TRANS `group_setmul G (group_setmul G {x:A} g) {y}` THEN CONJ_TAC THENL [ASM_SIMP_TAC[GSYM GROUP_SETMUL_ASSOC; GROUP_SETMUL; SING_SUBSET] THEN AP_TERM_TAC THEN REWRITE_TAC[group_setmul] THEN ASM SET_TAC[]; AP_THM_TAC THEN AP_TERM_TAC THEN ASM_SIMP_TAC[GROUP_SETMUL_LSUBSET; GROUP_SETMUL_RSUBSET; SING_SUBSET; NOT_INSERT_EMPTY]]; ASM_SIMP_TAC[GROUP_SETMUL_ASSOC; GROUP_SETMUL; SING_SUBSET] THEN TRANS_TAC EQ_TRANS `group_setmul G (group_setmul G {x:A} h) {y}` THEN CONJ_TAC THENL [ASM_SIMP_TAC[GSYM GROUP_SETMUL_ASSOC; GROUP_SETMUL; SING_SUBSET] THEN ASM_SIMP_TAC[GROUP_SETMUL_LSUBSET; GROUP_SETMUL_RSUBSET; SING_SUBSET; NOT_INSERT_EMPTY]; AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[group_setmul] THEN ASM SET_TAC[]]]);; let GROUP_SUM_NORMAL_IMP_COMMUTING = prove (`!G g h:A->bool. g normal_subgroup_of G /\ h normal_subgroup_of G /\ g INTER h SUBSET {group_id G} ==> !x y. x IN g /\ y IN h ==> group_mul G x y = group_mul G y x`, REPEAT GEN_TAC THEN REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN W(MP_TAC o PART_MATCH (lhand o rand) GROUP_DISJOINT_SUM_CANCEL o lhand o snd) THEN ANTS_TAC THENL [ASM_MESON_TAC[NORMAL_SUBGROUP_IMP_SUBGROUP]; DISCH_THEN SUBST1_TAC] THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN SUBGOAL_THEN `(x:A) IN group_carrier G /\ y IN group_carrier G` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[normal_subgroup_of; subgroup_of; SUBSET]; ALL_TAC] THEN MP_TAC(CONJ (ASSUME `(g:A->bool) normal_subgroup_of G`) (ASSUME `(h:A->bool) normal_subgroup_of G`)) THEN REWRITE_TAC[normal_subgroup_of; IMP_IMP] THEN DISCH_THEN(CONJUNCTS_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(CONJUNCTS_THEN2 (MP_TAC o SPEC `x:A`) (MP_TAC o SPEC `y:A`)) THEN ASM_REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(MP_TAC o MATCH_MP (MESON[] `u = v /\ s = t ==> (!x. x IN t ==> x IN s) /\ (!x. x IN u ==> x IN v)`)) THEN REWRITE_TAC[right_coset; left_coset; group_setmul; FORALL_IN_GSPEC] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; IN_SING; FORALL_UNWIND_THM2] THEN REWRITE_TAC[IN_ELIM_THM; GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM] THEN REWRITE_TAC[UNWIND_THM2] THEN DISCH_THEN(MP_TAC o SPEC `y:A`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `y':A` (STRIP_ASSUME_TAC o GSYM)) THEN DISCH_THEN(MP_TAC o SPEC `x:A`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `x':A` (STRIP_ASSUME_TAC o GSYM)) THEN ASM_MESON_TAC[]);; let GROUP_SUM_NORMAL_EQ_COMMUTING = prove (`!G g h:A->bool. g subgroup_of G /\ h subgroup_of G /\ group_carrier G SUBSET group_setmul G g h /\ g INTER h SUBSET {group_id G} ==> (g normal_subgroup_of G /\ h normal_subgroup_of G <=> !x y. x IN g /\ y IN h ==> group_mul G x y = group_mul G y x)`, REPEAT STRIP_TAC THEN EQ_TAC THEN STRIP_TAC THENL [MATCH_MP_TAC GROUP_SUM_NORMAL_IMP_COMMUTING THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC GROUP_SUM_COMMUTING_IMP_NORMAL THEN ASM_REWRITE_TAC[]]);; let GROUP_HOMOMORPHISM_GROUP_MUL_GEN = prove (`!G g h:A->bool. group_homomorphism (prod_group (subgroup_generated G g) (subgroup_generated G h),G) (\(x,y). group_mul G x y) <=> !x y. x IN group_carrier G /\ x IN g /\ y IN group_carrier G /\ y IN h ==> group_mul G x y = group_mul G y x`, REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `(x:A,y:A)` o MATCH_MP GROUP_HOMOMORPHISM_INV) THEN ASM_SIMP_TAC[PROD_GROUP; IN_CROSS; CONJUNCT2 SUBGROUP_GENERATED] THEN ASM_SIMP_TAC[SUBGROUP_GENERATED_INC_GEN] THEN GROUP_TAC; ALL_TAC] THEN REWRITE_TAC[GSYM GROUP_COMMUTES_SUBGROUPS_GENERATED_EQ] THEN DISCH_TAC THEN REWRITE_TAC[GROUP_HOMOMORPHISM; SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[PROD_GROUP; FORALL_PAIR_THM; IN_CROSS] THEN CONJ_TAC THENL [ASM_MESON_TAC[GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET; SUBSET; GROUP_MUL]; REWRITE_TAC[CONJUNCT2 SUBGROUP_GENERATED]] THEN MAP_EVERY X_GEN_TAC [`x1:A`; `y1:A`; `x2:A`; `y2:A`] THEN STRIP_TAC THEN SUBGOAL_THEN `(x1:A) IN group_carrier G /\ (x2:A) IN group_carrier G /\ (y1:A) IN group_carrier G /\ (y2:A) IN group_carrier G` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET; SUBSET]; ASM_SIMP_TAC[GSYM GROUP_MUL_ASSOC; GROUP_MUL]] THEN AP_TERM_TAC THEN ASM_SIMP_TAC[GROUP_MUL_ASSOC; GROUP_MUL] THEN ASM_MESON_TAC[]);; let GROUP_HOMOMORPHISM_GROUP_MUL_EQ = prove (`!G g h:A->bool. g subgroup_of G /\ h subgroup_of G ==> (group_homomorphism (prod_group (subgroup_generated G g) (subgroup_generated G h),G) (\(x,y). group_mul G x y) <=> !x y. x IN g /\ y IN h ==> group_mul G x y = group_mul G y x)`, REPEAT STRIP_TAC THEN REWRITE_TAC[GROUP_HOMOMORPHISM_GROUP_MUL_GEN] THEN ASM_MESON_TAC[subgroup_of; SUBSET]);; let GROUP_HOMOMORPHISM_GROUP_MUL = prove (`!G g h:A->bool. abelian_group G ==> group_homomorphism (prod_group (subgroup_generated G g) (subgroup_generated G h),G) (\(x,y). group_mul G x y)`, SIMP_TAC[GROUP_HOMOMORPHISM_GROUP_MUL_GEN] THEN REWRITE_TAC[abelian_group; subgroup_of; SUBSET] THEN SET_TAC[]);; let GROUP_EPIMORPHISM_GROUP_MUL_EQ = prove (`!G g h:A->bool. g subgroup_of G /\ h subgroup_of G ==> (group_epimorphism (prod_group (subgroup_generated G g) (subgroup_generated G h),G) (\(x,y). group_mul G x y) <=> group_setmul G g h = group_carrier G /\ !x y. x IN g /\ y IN h ==> group_mul G x y = group_mul G y x)`, SIMP_TAC[group_epimorphism; GROUP_HOMOMORPHISM_GROUP_MUL_EQ] THEN REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [CONJ_SYM] THEN AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_IMAGE; EXISTS_PAIR_THM; group_setmul] THEN ASM_SIMP_TAC[PROD_GROUP; CARRIER_SUBGROUP_GENERATED_SUBGROUP; IN_CROSS] THEN SET_TAC[]);; let GROUP_MONOMORPHISM_GROUP_MUL_EQ = prove (`!G g h:A->bool. g subgroup_of G /\ h subgroup_of G ==> (group_monomorphism (prod_group (subgroup_generated G g) (subgroup_generated G h),G) (\(x,y). group_mul G x y) <=> g INTER h = {group_id G} /\ !x y. x IN g /\ y IN h ==> group_mul G x y = group_mul G y x)`, SIMP_TAC[group_monomorphism; GROUP_HOMOMORPHISM_GROUP_MUL_EQ] THEN REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [CONJ_SYM] THEN AP_TERM_TAC THEN ASM_SIMP_TAC[GROUP_DISJOINT_SUM_CANCEL; GSYM GROUP_DISJOINT_SUM_ALT] THEN ASM_SIMP_TAC[PROD_GROUP; CARRIER_SUBGROUP_GENERATED_SUBGROUP] THEN REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS; PAIR_EQ] THEN MESON_TAC[]);; let GROUP_ISOMORPHISM_GROUP_MUL_ALT = prove (`!G g h:A->bool. g subgroup_of G /\ h subgroup_of G ==> (group_isomorphism (prod_group (subgroup_generated G g) (subgroup_generated G h),G) (\(x,y). group_mul G x y) <=> g INTER h = {group_id G} /\ group_setmul G g h = group_carrier G /\ !x y. x IN g /\ y IN h ==> group_mul G x y = group_mul G y x)`, REWRITE_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM] THEN ASM_SIMP_TAC[GROUP_EPIMORPHISM_GROUP_MUL_EQ; GROUP_MONOMORPHISM_GROUP_MUL_EQ] THEN CONV_TAC TAUT);; let GROUP_ISOMORPHISM_GROUP_MUL_EQ = prove (`!G g h:A->bool. g subgroup_of G /\ h subgroup_of G ==> (group_isomorphism (prod_group (subgroup_generated G g) (subgroup_generated G h),G) (\(x,y). group_mul G x y) <=> g normal_subgroup_of G /\ h normal_subgroup_of G /\ g INTER h = {group_id G} /\ group_setmul G g h = group_carrier G)`, SIMP_TAC[GROUP_ISOMORPHISM_GROUP_MUL_ALT] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(TAUT `(i /\ s ==> (n /\ n' <=> c)) ==> (i /\ s /\ c <=> n /\ n' /\ i /\ s)`) THEN STRIP_TAC THEN MATCH_MP_TAC GROUP_SUM_NORMAL_EQ_COMMUTING THEN ASM_REWRITE_TAC[SUBSET_REFL]);; let GROUP_ISOMORPHISM_GROUP_MUL_GEN = prove (`!G g h:A->bool. g normal_subgroup_of G /\ h normal_subgroup_of G ==> (group_isomorphism (prod_group (subgroup_generated G g) (subgroup_generated G h),G) (\(x,y). group_mul G x y) <=> g INTER h SUBSET {group_id G} /\ group_setmul G g h = group_carrier G)`, SIMP_TAC[GROUP_ISOMORPHISM_GROUP_MUL_EQ; NORMAL_SUBGROUP_IMP_SUBGROUP; GROUP_DISJOINT_SUM_ALT]);; let GROUP_ISOMORPHISM_GROUP_MUL = prove (`!G g h:A->bool. abelian_group G /\ g subgroup_of G /\ h subgroup_of G ==> (group_isomorphism (prod_group (subgroup_generated G g) (subgroup_generated G h),G) (\(x,y). group_mul G x y) <=> g INTER h SUBSET {group_id G} /\ group_setmul G g h = group_carrier G)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_ISOMORPHISM_GROUP_MUL_GEN THEN ASM_MESON_TAC[ABELIAN_GROUP_NORMAL_SUBGROUP]);; let ISOMORPHIC_PROD_GROUP_SUBGROUP_GENERATED = prove (`!G g h:A->bool. g normal_subgroup_of G /\ h normal_subgroup_of G /\ g INTER h = {group_id G} ==> prod_group (subgroup_generated G g) (subgroup_generated G h) isomorphic_group subgroup_generated G (group_setmul G g h)`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`subgroup_generated G (group_setmul G g h:A->bool)`; `g:A->bool`; `h:A->bool`] GROUP_ISOMORPHISM_GROUP_MUL_EQ) THEN ASM_SIMP_TAC[GROUP_SETMUL_INC; NORMAL_SUBGROUP_IMP_SUBGROUP; SUBGROUP_OF_SUBGROUP_GENERATED_EQ; GROUP_SETMUL_SUBGROUP_GENERATED; NORMAL_SUBGROUP_OF_SUBGROUP_GENERATED; CARRIER_SUBGROUP_GENERATED_SUBGROUP; CONJUNCT2 SUBGROUP_GENERATED; GROUP_SETMUL_NORMAL_SUBGROUP_LEFT; SUBGROUP_GENERATED_IDEMPOT] THEN REWRITE_TAC[GROUP_ISOMORPHISM_IMP_ISOMORPHIC]);; let GROUP_INTER_IM_KER = prove (`!(f:A->B) (g:B->C) G H K. group_homomorphism(G,H) f /\ group_homomorphism(H,K) g /\ group_monomorphism(G,K) (g o f) ==> (group_image(G,H) f) INTER (group_kernel(H,K) g) = {group_id H}`, SIMP_TAC[GSYM GROUP_DISJOINT_SUM_ALT; SUBGROUP_GROUP_IMAGE; SUBGROUP_GROUP_KERNEL] THEN REWRITE_TAC[GROUP_MONOMORPHISM; group_image; group_kernel; o_THM] THEN REWRITE_TAC[group_homomorphism] THEN SET_TAC[]);; let GROUP_SUM_IM_KER = prove (`!(f:A->B) (g:B->C) G H K. group_homomorphism(G,H) f /\ group_homomorphism(H,K) g /\ group_epimorphism(G,K) (g o f) ==> group_setmul H (group_image(G,H) f) (group_kernel(H,K) g) = group_carrier H`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN ASM_SIMP_TAC[GROUP_SETMUL; SUBGROUP_OF_IMP_SUBSET; SUBGROUP_GROUP_IMAGE; SUBGROUP_GROUP_KERNEL] THEN REWRITE_TAC[SUBSET] THEN X_GEN_TAC `y:B` THEN DISCH_TAC THEN REWRITE_TAC[group_setmul; IN_ELIM_THM] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [group_epimorphism]) THEN DISCH_THEN(MP_TAC o SPEC `(g:B->C) y` o MATCH_MP (SET_RULE `P /\ IMAGE f s = t ==> !y. y IN t ==> ?x. x IN s /\ f x = y`)) THEN RULE_ASSUM_TAC(REWRITE_RULE [group_homomorphism; SUBSET; FORALL_IN_IMAGE]) THEN ASM_SIMP_TAC[LEFT_IMP_EXISTS_THM; o_THM] THEN X_GEN_TAC `x:A` THEN STRIP_TAC THEN REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM] THEN REWRITE_TAC[group_image; group_kernel; IN_ELIM_THM; EXISTS_IN_IMAGE] THEN EXISTS_TAC `x:A` THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `group_mul H (group_inv H ((f:A->B) x)) y` THEN ASM_SIMP_TAC[GROUP_MUL; GROUP_INV; GROUP_MUL_ASSOC; GROUP_MUL_RINV; GROUP_MUL_LID; GROUP_MUL_LINV]);; let GROUP_SUM_KER_IM = prove (`!(f:A->B) (g:B->C) G H K. group_homomorphism(G,H) f /\ group_homomorphism(H,K) g /\ group_epimorphism(G,K) (g o f) ==> group_setmul H (group_kernel(H,K) g) (group_image(G,H) f) = group_carrier H`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN ASM_SIMP_TAC[GROUP_SETMUL; SUBGROUP_OF_IMP_SUBSET; SUBGROUP_GROUP_IMAGE; SUBGROUP_GROUP_KERNEL] THEN REWRITE_TAC[SUBSET] THEN X_GEN_TAC `y:B` THEN DISCH_TAC THEN REWRITE_TAC[group_setmul; IN_ELIM_THM] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [group_epimorphism]) THEN DISCH_THEN(MP_TAC o SPEC `(g:B->C) y` o MATCH_MP (SET_RULE `P /\ IMAGE f s = t ==> !y. y IN t ==> ?x. x IN s /\ f x = y`)) THEN RULE_ASSUM_TAC(REWRITE_RULE [group_homomorphism; SUBSET; FORALL_IN_IMAGE]) THEN ASM_SIMP_TAC[LEFT_IMP_EXISTS_THM; o_THM] THEN X_GEN_TAC `x:A` THEN STRIP_TAC THEN ONCE_REWRITE_TAC[TAUT `(p /\ q) /\ r <=> q /\ p /\ r`] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN REWRITE_TAC[group_image; group_kernel; IN_ELIM_THM; EXISTS_IN_IMAGE] THEN EXISTS_TAC `x:A` THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `group_mul H y (group_inv H ((f:A->B) x))` THEN ASM_SIMP_TAC[GROUP_MUL; GROUP_INV; GSYM GROUP_MUL_ASSOC; GROUP_MUL_RINV; GROUP_MUL_RID; GROUP_MUL_LINV]);; let GROUP_SEMIDIRECT_SUM_IM_KER = prove (`!(f:A->B) (g:B->C) G H K. group_homomorphism(G,H) f /\ group_homomorphism(H,K) g /\ group_isomorphism(G,K) (g o f) ==> (group_image(G,H) f) INTER (group_kernel(H,K) g) = {group_id H} /\ group_setmul H (group_image(G,H) f) (group_kernel(H,K) g) = group_carrier H`, SIMP_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM; GROUP_INTER_IM_KER] THEN SIMP_TAC[GROUP_SUM_IM_KER]);; let GROUP_SEMIDIRECT_SUM_KER_IM = prove (`!(f:A->B) (g:B->C) G H K. group_homomorphism(G,H) f /\ group_homomorphism(H,K) g /\ group_isomorphism(G,K) (g o f) ==> (group_kernel(H,K) g) INTER (group_image(G,H) f) = {group_id H} /\ group_setmul H (group_kernel(H,K) g) (group_image(G,H) f) = group_carrier H`, ONCE_REWRITE_TAC[INTER_COMM] THEN SIMP_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM; GROUP_INTER_IM_KER] THEN SIMP_TAC[GROUP_SUM_KER_IM]);; let GROUP_ISOMORPHISM_GROUP_MUL_IM_KER = prove (`!(f:A->B) (g:B->C) G H K. abelian_group H /\ group_homomorphism(G,H) f /\ group_homomorphism(H,K) g /\ group_isomorphism(G,K) (g o f) ==> group_isomorphism (prod_group (subgroup_generated H (group_image(G,H) f)) (subgroup_generated H (group_kernel(H,K) g)),H) (\(x,y). group_mul H x y)`, SIMP_TAC[GROUP_ISOMORPHISM_GROUP_MUL; SUBGROUP_GROUP_IMAGE; SUBGROUP_GROUP_KERNEL] THEN SIMP_TAC[GROUP_SEMIDIRECT_SUM_IM_KER; SUBSET_REFL]);; let GROUP_ISOMORPHISM_GROUP_MUL_KER_IM = prove (`!(f:A->B) (g:B->C) G H K. abelian_group H /\ group_homomorphism(G,H) f /\ group_homomorphism(H,K) g /\ group_isomorphism(G,K) (g o f) ==> group_isomorphism (prod_group (subgroup_generated H (group_kernel(H,K) g)) (subgroup_generated H (group_image(G,H) f)),H) (\(x,y). group_mul H x y)`, SIMP_TAC[GROUP_ISOMORPHISM_GROUP_MUL; SUBGROUP_GROUP_IMAGE; SUBGROUP_GROUP_KERNEL] THEN SIMP_TAC[GROUP_SEMIDIRECT_SUM_KER_IM; SUBSET_REFL]);; (* ------------------------------------------------------------------------- *) (* Internal versus external direct sums over an arbitrary indexing set. *) (* ------------------------------------------------------------------------- *) let GROUP_HOMOMORPHISM_GROUP_SUM_GEN = prove (`!k l G (h:K->A->bool). k SUBSET l ==> (group_homomorphism (sum_group l (\i. subgroup_generated G (h i)),G) (group_sum G k) <=> pairwise (\i j. !x y. x IN group_carrier G /\ x IN (h i) /\ y IN group_carrier G /\ y IN (h j) ==> group_mul G x y = group_mul G y x) k)`, REWRITE_TAC[SUBSET] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM GROUP_COMMUTES_SUBGROUPS_GENERATED_EQ] THEN EQ_TAC THENL [DISCH_TAC THEN REWRITE_TAC[pairwise] THEN MAP_EVERY X_GEN_TAC [`i:K`; `j:K`] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN SUBGOAL_THEN `(x:A) IN group_carrier G /\ y IN group_carrier G` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET; SUBSET]; ALL_TAC] THEN MAP_EVERY ASM_CASES_TAC [`x:A = group_id G`; `y:A = group_id G`] THEN ASM_SIMP_TAC[GROUP_MUL_LID; GROUP_MUL_RID] THEN FIRST_ASSUM(MP_TAC o SPEC `RESTRICTION l (\l. if l = i then x else if l = j then y else group_id G):K->A` o MATCH_MP GROUP_HOMOMORPHISM_INV) THEN REWRITE_TAC[SUM_GROUP_CLAUSES; CONJUNCT2 SUBGROUP_GENERATED] THEN REWRITE_TAC[IN_ELIM_THM; RESTRICTION_IN_CARTESIAN_PRODUCT] THEN SIMP_TAC[RESTRICTION_THM] THEN ANTS_TAC THENL [CONJ_TAC THENL [X_GEN_TAC `l:K` THEN DISCH_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[GROUP_ID_SUBGROUP]); MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{i:K,j:K}` THEN REWRITE_TAC[FINITE_INSERT; FINITE_EMPTY] THEN SET_TAC[]]; ALL_TAC] THEN DISCH_THEN(MP_TAC o SPEC `{i:K,j:K}` o MATCH_MP (MESON[] `group_sum G k f = group_inv G(group_sum G k g) ==> !k'. group_sum G k' f = group_sum G k f /\ group_sum G k' g = group_sum G k g ==> group_sum G k' f = group_inv G (group_sum G k' g)`)) THEN ANTS_TAC THENL [ONCE_REWRITE_TAC[GSYM GROUP_SUM_SUPPORT] THEN CONJ_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[IN_INSERT; IN_ELIM_THM; NOT_IN_EMPTY] THEN ASM_MESON_TAC[GROUP_INV_EQ_ID; GROUP_ID]; ALL_TAC] THEN REWRITE_TAC[group_sum] THEN ABBREV_TAC `(<<=) = @l. woset l /\ fld l = (:K)` THEN SUBGOAL_THEN `woset(<<=) /\ fld(<<=) = (:K)` STRIP_ASSUME_TAC THENL [EXPAND_TAC "<<=" THEN CONV_TAC SELECT_CONV THEN REWRITE_TAC[WO]; ALL_TAC] THEN SUBGOAL_THEN `(i:K) <<= j \/ j <<= i` STRIP_ASSUME_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [woset]) THEN ASM_REWRITE_TAC[IN_UNIV] THEN SIMP_TAC[]; ALL_TAC; ONCE_REWRITE_TAC[SET_RULE `{i,j} = {j,i}`]] THEN (W(MP_TAC o PART_MATCH (lhand o rand) (CONJUNCT2(SPEC_ALL GROUP_PRODUCT_CLAUSES)) o lhand o lhand o snd) THEN W(MP_TAC o PART_MATCH (lhand o rand) (CONJUNCT2(SPEC_ALL GROUP_PRODUCT_CLAUSES)) o rand o rand o lhand o rand o snd) THEN REPLICATE_TAC 2 (ANTS_TAC THENL [SIMP_TAC[FINITE_RESTRICT; FINITE_SING] THEN ASM_REWRITE_TAC[IN_SING; FORALL_UNWIND_THM2] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [woset]) THEN ASM_REWRITE_TAC[IN_UNIV] THEN ASM_MESON_TAC[]; DISCH_THEN SUBST1_TAC])) THEN ASM_SIMP_TAC[GROUP_INV; IN_SING; GROUP_PRODUCT_SING] THEN GROUP_TAC; DISCH_TAC THEN REWRITE_TAC[GROUP_HOMOMORPHISM; SUM_GROUP_CLAUSES] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; GROUP_SUM] THEN MAP_EVERY X_GEN_TAC [`f:K->A`; `g:K->A`] THEN REWRITE_TAC[CONJUNCT2 SUBGROUP_GENERATED; IN_ELIM_THM] THEN REWRITE_TAC[IN_CARTESIAN_PRODUCT] THEN STRIP_TAC THEN W(MP_TAC o PART_MATCH (rand o rand) GROUP_SUM_MUL o rand o snd) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [GEN_REWRITE_TAC I [CONJ_ASSOC] THEN CONJ_TAC THENL [CONJ_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (MESON[FINITE_SUBSET] `FINITE {i | i IN l /\ P i} ==> {i | i IN k /\ P i} SUBSET {i | i IN l /\ P i} ==> FINITE {i | i IN k /\ P i}`)) THEN ASM SET_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [ASM_MESON_TAC[GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET; SUBSET]; FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] PAIRWISE_IMP)) THEN ASM SET_TAC[]]; DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC GROUP_SUM_EQ THEN ASM_SIMP_TAC[RESTRICTION]]]);; let GROUP_HOMOMORPHISM_GROUP_SUM_EQ = prove (`!k l G (h:K->A->bool). k SUBSET l /\ (!i. i IN k ==> (h i) subgroup_of G) ==> (group_homomorphism (sum_group l (\i. subgroup_generated G (h i)),G) (group_sum G k) <=> pairwise (\i j. !x y. x IN (h i) /\ y IN (h j) ==> group_mul G x y = group_mul G y x) k)`, REWRITE_TAC[subgroup_of] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GROUP_HOMOMORPHISM_GROUP_SUM_GEN; pairwise] THEN ASM SET_TAC[]);; let GROUP_HOMOMORPHISM_GROUP_SUM = prove (`!k G (h:K->A->bool). pairwise (\i j. !x y. x IN h i /\ y IN h j ==> group_mul G x y = group_mul G y x) k ==> group_homomorphism (sum_group k (\i. subgroup_generated G (h i)),G) (group_sum G k)`, REPEAT GEN_TAC THEN SIMP_TAC[GROUP_HOMOMORPHISM_GROUP_SUM_GEN; SUBSET_REFL] THEN REWRITE_TAC[pairwise] THEN MESON_TAC[]);; let GROUP_HOMOMORPHISM_ABELIAN_GROUP_SUM = prove (`!k G (h:K->A->bool). abelian_group G ==> group_homomorphism (sum_group k (\i. subgroup_generated G (h i)),G) (group_sum G k)`, REWRITE_TAC[abelian_group] THEN REPEAT STRIP_TAC THEN SIMP_TAC[GROUP_HOMOMORPHISM_GROUP_SUM_GEN; SUBSET_REFL; pairwise] THEN ASM_SIMP_TAC[]);; let ABELIAN_GROUP_HOMOMORPHISM_GROUP_SUM = prove (`!(f:K->A->B) k A B. abelian_group B /\ (!i. i IN k ==> group_homomorphism (A i,B) (f i)) ==> group_homomorphism (sum_group k A,B) (\x. group_sum B k (\i. (f i) (x i)))`, REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_HOMOMORPHISM_EQ THEN EXISTS_TAC `group_sum B k o (\x. RESTRICTION k (\i. ((f:K->A->B) i) (x i)))` THEN CONJ_TAC THENL [MATCH_MP_TAC GROUP_HOMOMORPHISM_COMPOSE; REWRITE_TAC[o_THM; RESTRICTION_THM] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_SUM_EQ THEN SIMP_TAC[]] THEN EXISTS_TAC `sum_group k (\i:K. (B:B group))` THEN ASM_REWRITE_TAC[GROUP_HOMOMORPHISM_SUM] THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o RAND_CONV o BINDER_CONV) [GSYM SUBGROUP_GENERATED_GROUP_CARRIER] THEN MATCH_MP_TAC GROUP_HOMOMORPHISM_ABELIAN_GROUP_SUM THEN ASM_REWRITE_TAC[]);; let SUBGROUP_EPIMORPHISM_GROUP_SUM_GEN = prove (`!k l G (h:K->A->bool). k SUBSET l ==> (group_epimorphism (sum_group l (\i. subgroup_generated G (h i)), subgroup_generated G (UNIONS {h i | i IN k})) (group_sum G k) <=> pairwise (\i j. !x y. x IN group_carrier G /\ x IN (h i) /\ y IN group_carrier G /\ y IN (h j) ==> group_mul G x y = group_mul G y x) k)`, REPEAT GEN_TAC THEN REWRITE_TAC[GROUP_EPIMORPHISM_INTO_SUBGROUP_EQ_GEN] THEN SIMP_TAC[GSYM GROUP_HOMOMORPHISM_GROUP_SUM_GEN] THEN REWRITE_TAC[TAUT `(p /\ q <=> p) <=> p ==> q`] THEN REPEAT DISCH_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN X_GEN_TAC `z:K->A` THEN REWRITE_TAC[SUM_GROUP_CLAUSES; IN_CARTESIAN_PRODUCT; IN_ELIM_THM] THEN STRIP_TAC THEN MATCH_MP_TAC IN_SUBGROUP_SUM THEN REWRITE_TAC[SUBGROUP_SUBGROUP_GENERATED] THEN X_GEN_TAC `i:K` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `i:K`) THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(SET_RULE `s SUBSET t ==> a IN s ==> a IN t`) THEN MATCH_MP_TAC SUBGROUP_GENERATED_MONO THEN ASM SET_TAC[]; W(MP_TAC o PART_MATCH (lhand o rand) SUBGROUP_GENERATED_MINIMAL_EQ o snd) THEN ANTS_TAC THENL [ASM_MESON_TAC[CARRIER_SUBGROUP_OF; SUBGROUP_OF_HOMOMORPHIC_IMAGE]; DISCH_THEN SUBST1_TAC] THEN MATCH_MP_TAC(SET_RULE `(!i. i IN f ==> !x. x IN i /\ x IN u ==> x IN t) ==> u INTER UNIONS f SUBSET t`) THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN X_GEN_TAC `i:K` THEN DISCH_TAC THEN X_GEN_TAC `x:A` THEN STRIP_TAC THEN REWRITE_TAC[IN_IMAGE] THEN EXISTS_TAC `RESTRICTION l (\l. if l = i then x else group_id G):K->A` THEN REWRITE_TAC[SUM_GROUP_CLAUSES; RESTRICTION_IN_CARTESIAN_PRODUCT; IN_ELIM_THM; CONJUNCT2 SUBGROUP_GENERATED] THEN ONCE_REWRITE_TAC[GSYM GROUP_SUM_SUPPORT] THEN REWRITE_TAC[TAUT `p /\ ~q <=> ~(p ==> q)`] THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN ASM_SIMP_TAC[RESTRICTION_THM] THEN ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN ASM_SIMP_TAC[MESON[] `(if p then q else T) <=> p ==> q`] THEN ASM_SIMP_TAC[SUBGROUP_GENERATED_INC_GEN; GROUP_ID_SUBGROUP; COND_ID] THEN REWRITE_TAC[SET_RULE `{j | ~(P j ==> j = i ==> Q)} = {j | j = i /\ P i /\ ~Q}`] THEN ASM_CASES_TAC `x:A = group_id G` THEN ASM_REWRITE_TAC[GROUP_SUM_CLAUSES_EXISTS; EMPTY_GSPEC; FINITE_EMPTY] THEN ASM_SIMP_TAC[SING_GSPEC; GROUP_SUM_SING; FINITE_SING]]);; let SUBGROUP_EPIMORPHISM_GROUP_SUM_EQ = prove (`!k l G (h:K->A->bool). k SUBSET l /\ (!i. i IN k ==> (h i) subgroup_of G) ==> (group_epimorphism (sum_group l (\i. subgroup_generated G (h i)), subgroup_generated G (UNIONS {h i | i IN k})) (group_sum G k) <=> pairwise (\i j. !x y. x IN (h i) /\ y IN (h j) ==> group_mul G x y = group_mul G y x) k)`, REWRITE_TAC[subgroup_of] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[SUBGROUP_EPIMORPHISM_GROUP_SUM_GEN; pairwise] THEN ASM SET_TAC[]);; let SUBGROUP_EPIMORPHISM_GROUP_SUM = prove (`!k G (h:K->A->bool). pairwise (\i j. !x y. x IN h i /\ y IN h j ==> group_mul G x y = group_mul G y x) k ==> group_epimorphism (sum_group k (\i. subgroup_generated G (h i)), subgroup_generated G (UNIONS {h i | i IN k})) (group_sum G k)`, REPEAT GEN_TAC THEN SIMP_TAC[SUBGROUP_EPIMORPHISM_GROUP_SUM_GEN; SUBSET_REFL] THEN REWRITE_TAC[pairwise] THEN MESON_TAC[]);; let SUBGROUP_EPIMORPHISM_ABELIAN_GROUP_SUM = prove (`!k G (h:K->A->bool). abelian_group G ==> group_epimorphism (sum_group k (\i. subgroup_generated G (h i)), subgroup_generated G (UNIONS {h i | i IN k})) (group_sum G k)`, REWRITE_TAC[abelian_group] THEN REPEAT STRIP_TAC THEN SIMP_TAC[SUBGROUP_EPIMORPHISM_GROUP_SUM_GEN; SUBSET_REFL; pairwise] THEN ASM_SIMP_TAC[]);; let GROUP_EPIMORPHISM_GROUP_SUM_GEN = prove (`!k l G (h:K->A->bool). k SUBSET l ==> (group_epimorphism (sum_group l (\i. subgroup_generated G (h i)),G) (group_sum G k) <=> pairwise (\i j. !x y. x IN group_carrier G /\ x IN (h i) /\ y IN group_carrier G /\ y IN (h j) ==> group_mul G x y = group_mul G y x) k /\ subgroup_generated G (UNIONS {h i | i IN k}) = G)`, REWRITE_TAC[group_epimorphism] THEN SIMP_TAC[GROUP_HOMOMORPHISM_GROUP_SUM_GEN] THEN SIMP_TAC[GSYM SUBGROUP_EPIMORPHISM_GROUP_SUM_GEN] THEN REWRITE_TAC[group_epimorphism; SUBGROUP_GENERATED_EQ] THEN MESON_TAC[]);; let GROUP_EPIMORPHISM_GROUP_SUM_EQ = prove (`!k l G (h:K->A->bool). k SUBSET l /\ (!i. i IN k ==> (h i) subgroup_of G) ==> (group_epimorphism (sum_group l (\i. subgroup_generated G (h i)),G) (group_sum G k) <=> pairwise (\i j. !x y. x IN (h i) /\ y IN (h j) ==> group_mul G x y = group_mul G y x) k /\ subgroup_generated G (UNIONS {h i | i IN k}) = G)`, REWRITE_TAC[subgroup_of] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GROUP_EPIMORPHISM_GROUP_SUM_GEN; pairwise] THEN ASM SET_TAC[]);; let GROUP_EPIMORPHISM_GROUP_SUM = prove (`!k G (h:K->A->bool). pairwise (\i j. !x y. x IN h i /\ y IN h j ==> group_mul G x y = group_mul G y x) k /\ subgroup_generated G (UNIONS {h i | i IN k}) = G ==> group_epimorphism (sum_group k (\i. subgroup_generated G (h i)),G) (group_sum G k)`, REPEAT GEN_TAC THEN SIMP_TAC[GROUP_EPIMORPHISM_GROUP_SUM_GEN; SUBSET_REFL] THEN REWRITE_TAC[pairwise] THEN MESON_TAC[]);; let GROUP_EPIMORPHISM_ABELIAN_GROUP_SUM = prove (`!k G (h:K->A->bool). abelian_group G /\ subgroup_generated G (UNIONS {h i | i IN k}) = G ==> group_epimorphism (sum_group k (\i. subgroup_generated G (h i)),G) (group_sum G k)`, REWRITE_TAC[abelian_group] THEN REPEAT STRIP_TAC THEN SIMP_TAC[GROUP_EPIMORPHISM_GROUP_SUM_GEN; SUBSET_REFL; pairwise] THEN ASM_SIMP_TAC[]);; let GROUP_MONOMORPHISM_GROUP_SUM_GEN = prove (`!k G (h:K->A->bool). group_monomorphism (sum_group k (\i. subgroup_generated G (h i)),G) (group_sum G k) <=> pairwise (\i j. !x y. x IN group_carrier G /\ x IN (h i) /\ y IN group_carrier G /\ y IN (h j) ==> group_mul G x y = group_mul G y x) k /\ !i. i IN k ==> group_carrier (subgroup_generated G (h i)) INTER group_carrier (subgroup_generated G (UNIONS {h j | j IN k DELETE i})) = {group_id G}`, REPEAT GEN_TAC THEN REWRITE_TAC[GROUP_MONOMORPHISM_ALT] THEN ASM_SIMP_TAC[GROUP_HOMOMORPHISM_GROUP_SUM_GEN; SUBSET_REFL] THEN MATCH_MP_TAC(TAUT `(p ==> (q <=> r)) ==> (p /\ q <=> p /\ r)`) THEN REWRITE_TAC[GSYM GROUP_COMMUTES_SUBGROUPS_GENERATED_EQ] THEN DISCH_TAC THEN EQ_TAC THEN DISCH_TAC THENL [X_GEN_TAC `i:K` THEN DISCH_TAC THEN SIMP_TAC[GSYM GROUP_DISJOINT_SUM_ALT; SUBGROUP_SUBGROUP_GENERATED] THEN REWRITE_TAC[SUBSET; IN_INTER; IN_SING] THEN X_GEN_TAC `x:A` THEN STRIP_TAC THEN SUBGOAL_THEN `(x:A) IN group_carrier G` ASSUME_TAC THENL [ASM_MESON_TAC[GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET; SUBSET]; ALL_TAC] THEN MP_TAC(ISPECL [`k DELETE (i:K)`; `k:K->bool`; `G:A group`; `h:K->A->bool`] SUBGROUP_EPIMORPHISM_GROUP_SUM_GEN) THEN ASM_REWRITE_TAC[group_epimorphism; DELETE_SUBSET] THEN ASM_REWRITE_TAC[GSYM GROUP_COMMUTES_SUBGROUPS_GENERATED_EQ] THEN DISCH_THEN(MP_TAC o snd o EQ_IMP_RULE) THEN ANTS_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] PAIRWISE_MONO)) THEN SET_TAC[]; DISCH_THEN(MP_TAC o SPEC `x:A` o MATCH_MP (SET_RULE `P /\ IMAGE f s = t ==> !y. y IN t ==> ?x. x IN s /\ f x = y`))] THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `z:K->A` THEN REWRITE_TAC[SUM_GROUP_CLAUSES; IN_ELIM_THM] THEN REWRITE_TAC[IN_CARTESIAN_PRODUCT; CONJUNCT2 SUBGROUP_GENERATED] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `RESTRICTION k (\j. if j = i then group_inv G x else (z:K->A) j)`) THEN ANTS_TAC THENL [CONJ_TAC THENL [REWRITE_TAC[SUM_GROUP_CLAUSES; IN_ELIM_THM] THEN REWRITE_TAC[RESTRICTION_IN_CARTESIAN_PRODUCT] THEN CONJ_TAC THENL [ASM_MESON_TAC[GROUP_INV; SUBGROUP_GENERATED]; ALL_TAC] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (MESON[FINITE_INSERT; FINITE_SUBSET] `FINITE t ==> !x. s SUBSET x INSERT t ==> FINITE s`)) THEN EXISTS_TAC `i:K` THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN SIMP_TAC[IMP_CONJ; RESTRICTION; CONJUNCT2 SUBGROUP_GENERATED] THEN SET_TAC[]; MP_TAC(ISPECL [`G:A group`; `i:K`; `k DELETE (i:K)`; `\j. if j = i then group_inv G x else (z:K->A) j`] GROUP_SUM_CLAUSES_COMMUTING) THEN ANTS_TAC THENL [CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (MESON[FINITE_INSERT; FINITE_SUBSET] `FINITE t ==> !x. s SUBSET x INSERT t ==> FINITE s`)) THEN EXISTS_TAC `i:K` THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN SIMP_TAC[IMP_CONJ; RESTRICTION; CONJUNCT2 SUBGROUP_GENERATED] THEN SET_TAC[]; X_GEN_TAC `j:K` THEN REWRITE_TAC[IN_DELETE] THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN MATCH_MP_TAC GROUP_COMMUTES_INV THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [pairwise]) THEN ASM_MESON_TAC[]]; ASM_SIMP_TAC[RESTRICTION_THM; SET_RULE `i IN k ==> i INSERT (k DELETE i) = k`] THEN DISCH_THEN SUBST1_TAC] THEN ASM_SIMP_TAC[GROUP_INV; IN_DELETE] THEN MATCH_MP_TAC(MESON[GROUP_MUL_LINV] `x IN group_carrier G /\ x = y ==> group_mul G (group_inv G x) y = group_id G`) THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [SYM th]) THEN MATCH_MP_TAC GROUP_SUM_EQ THEN SIMP_TAC[IN_DELETE]]; GEN_REWRITE_TAC LAND_CONV [FUN_EQ_THM] THEN DISCH_THEN(MP_TAC o SPEC `i:K`) THEN ASM_REWRITE_TAC[RESTRICTION; SUM_GROUP_CLAUSES] THEN REWRITE_TAC[CONJUNCT2 SUBGROUP_GENERATED] THEN GROUP_TAC]; X_GEN_TAC `z:K->A` THEN REWRITE_TAC[SUM_GROUP_CLAUSES; IN_ELIM_THM] THEN REWRITE_TAC[IN_CARTESIAN_PRODUCT; CONJUNCT2 SUBGROUP_GENERATED] THEN STRIP_TAC THEN CONV_TAC SYM_CONV THEN ASM_REWRITE_TAC[RESTRICTION_UNIQUE] THEN X_GEN_TAC `i:K` THEN STRIP_TAC THEN MP_TAC(ISPECL [`G:A group`; `i:K`; `k DELETE (i:K)`; `z:K->A`] GROUP_SUM_CLAUSES_COMMUTING) THEN ANTS_TAC THENL [CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN SET_TAC[]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [pairwise]) THEN REWRITE_TAC[IN_DELETE] THEN ASM_MESON_TAC[]]; DISCH_THEN(MP_TAC o SYM)] THEN ASM_SIMP_TAC[RESTRICTION_THM; IN_DELETE; SET_RULE `i IN k ==> i INSERT (k DELETE i) = k`] THEN COND_CASES_TAC THENL [ASM_MESON_TAC[GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET; SUBSET]; DISCH_TAC THEN CONV_TAC SYM_CONV] THEN FIRST_X_ASSUM(MP_TAC o SPEC `i:K` o GEN_REWRITE_RULE (BINDER_CONV o RAND_CONV) [EXTENSION]) THEN ASM_REWRITE_TAC[IN_SING] THEN DISCH_THEN(SUBST1_TAC o SYM o SPEC `(z:K->A) i`) THEN ASM_SIMP_TAC[IN_INTER] THEN FIRST_ASSUM(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ_ALT] (REWRITE_RULE[CONJ_ASSOC] GROUP_RINV_UNIQUE))) THEN REWRITE_TAC[GROUP_SUM] THEN ANTS_TAC THENL [ASM_MESON_TAC[GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET; SUBSET]; DISCH_THEN(SUBST1_TAC o SYM)] THEN MATCH_MP_TAC IN_SUBGROUP_INV THEN REWRITE_TAC[SUBGROUP_SUBGROUP_GENERATED] THEN MATCH_MP_TAC IN_SUBGROUP_SUM THEN REWRITE_TAC[SUBGROUP_SUBGROUP_GENERATED] THEN X_GEN_TAC `j:K` THEN REWRITE_TAC[IN_DELETE] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `j:K`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(SET_RULE `s SUBSET t ==> x IN s ==> x IN t`) THEN MATCH_MP_TAC SUBGROUP_GENERATED_MONO THEN ASM SET_TAC[]]);; let GROUP_MONOMORPHISM_GROUP_SUM_EQ = prove (`!k G (h:K->A->bool). (!i. i IN k ==> (h i) subgroup_of G) ==> (group_monomorphism (sum_group k (\i. subgroup_generated G (h i)),G) (group_sum G k) <=> pairwise (\i j. !x y. x IN (h i) /\ y IN (h j) ==> group_mul G x y = group_mul G y x) k /\ !i. i IN k ==> h i INTER group_carrier (subgroup_generated G (UNIONS {h j | j IN k DELETE i})) = {group_id G})`, SIMP_TAC[GROUP_MONOMORPHISM_GROUP_SUM_GEN; CARRIER_SUBGROUP_GENERATED_SUBGROUP] THEN REWRITE_TAC[subgroup_of; pairwise] THEN SET_TAC[]);; let GROUP_MONOMORPHISM_GROUP_SUM = prove (`!k G (h:K->A->bool). (!i. i IN k ==> (h i) subgroup_of G) /\ pairwise (\i j. !x y. x IN h i /\ y IN h j ==> group_mul G x y = group_mul G y x) k /\ (!i. i IN k ==> h i INTER group_carrier (subgroup_generated G (UNIONS {h j | j IN k DELETE i})) = {group_id G}) ==> group_monomorphism (sum_group k (\i. subgroup_generated G (h i)),G) (group_sum G k)`, SIMP_TAC[GROUP_MONOMORPHISM_GROUP_SUM_EQ]);; let GROUP_MONOMORPHISM_ABELIAN_GROUP_SUM = prove (`!k G (h:K->A->bool). abelian_group G /\ (!i. i IN k ==> (h i) subgroup_of G) /\ (!i. i IN k ==> h i INTER group_carrier (subgroup_generated G (UNIONS {h j | j IN k DELETE i})) = {group_id G}) ==> group_monomorphism (sum_group k (\i. subgroup_generated G (h i)),G) (group_sum G k)`, SIMP_TAC[GROUP_MONOMORPHISM_GROUP_SUM_EQ] THEN REWRITE_TAC[abelian_group; subgroup_of; pairwise] THEN SET_TAC[]);; let SUBGROUP_ISOMORPHISM_GROUP_SUM_GEN = prove (`!k G (h:K->A->bool). group_isomorphism (sum_group k (\i. subgroup_generated G (h i)), subgroup_generated G (UNIONS {h i | i IN k})) (group_sum G k) <=> pairwise (\i j. !x y. x IN group_carrier G /\ x IN (h i) /\ y IN group_carrier G /\ y IN (h j) ==> group_mul G x y = group_mul G y x) k /\ !i. i IN k ==> group_carrier (subgroup_generated G (h i)) INTER group_carrier (subgroup_generated G (UNIONS {h j | j IN k DELETE i})) = {group_id G}`, REWRITE_TAC[GSYM SUBGROUP_MONOMORPHISM_EPIMORPHISM] THEN REWRITE_TAC[GROUP_MONOMORPHISM_GROUP_SUM_GEN] THEN SIMP_TAC[SUBGROUP_EPIMORPHISM_GROUP_SUM_GEN; SUBSET_REFL] THEN CONV_TAC TAUT);; let SUBGROUP_ISOMORPHISM_GROUP_SUM_EQ = prove (`!k G (h:K->A->bool). (!i. i IN k ==> (h i) subgroup_of G) ==> (group_isomorphism (sum_group k (\i. subgroup_generated G (h i)), subgroup_generated G (UNIONS {h i | i IN k})) (group_sum G k) <=> pairwise (\i j. !x y. x IN (h i) /\ y IN (h j) ==> group_mul G x y = group_mul G y x) k /\ !i. i IN k ==> h i INTER group_carrier (subgroup_generated G (UNIONS {h j | j IN k DELETE i})) = {group_id G})`, REWRITE_TAC[GSYM SUBGROUP_MONOMORPHISM_EPIMORPHISM] THEN SIMP_TAC[GROUP_MONOMORPHISM_GROUP_SUM_EQ] THEN SIMP_TAC[SUBGROUP_EPIMORPHISM_GROUP_SUM_EQ; SUBSET_REFL] THEN CONV_TAC TAUT);; let SUBGROUP_ISOMORPHISM_GROUP_SUM = prove (`!k G (h:K->A->bool). (!i. i IN k ==> (h i) subgroup_of G) /\ pairwise (\i j. !x y. x IN h i /\ y IN h j ==> group_mul G x y = group_mul G y x) k /\ (!i. i IN k ==> h i INTER group_carrier (subgroup_generated G (UNIONS {h j | j IN k DELETE i})) = {group_id G}) ==> group_isomorphism (sum_group k (\i. subgroup_generated G (h i)), subgroup_generated G (UNIONS {h i | i IN k})) (group_sum G k)`, REWRITE_TAC[GSYM SUBGROUP_MONOMORPHISM_EPIMORPHISM] THEN SIMP_TAC[GROUP_MONOMORPHISM_GROUP_SUM] THEN SIMP_TAC[SUBGROUP_EPIMORPHISM_GROUP_SUM; SUBSET_REFL] THEN CONV_TAC TAUT);; let SUBGROUP_ISOMORPHISM_ABELIAN_GROUP_SUM = prove (`!k G (h:K->A->bool). abelian_group G /\ (!i. i IN k ==> (h i) subgroup_of G) /\ (!i. i IN k ==> h i INTER group_carrier (subgroup_generated G (UNIONS {h j | j IN k DELETE i})) = {group_id G}) ==> group_isomorphism (sum_group k (\i. subgroup_generated G (h i)), subgroup_generated G (UNIONS {h i | i IN k})) (group_sum G k)`, REWRITE_TAC[abelian_group] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[SUBGROUP_ISOMORPHISM_GROUP_SUM_EQ; SUBSET_REFL; pairwise] THEN RULE_ASSUM_TAC(REWRITE_RULE[subgroup_of]) THEN ASM SET_TAC[]);; let GROUP_ISOMORPHISM_GROUP_SUM_GEN = prove (`!k G (h:K->A->bool). group_isomorphism (sum_group k (\i. subgroup_generated G (h i)),G) (group_sum G k) <=> pairwise (\i j. !x y. x IN group_carrier G /\ x IN (h i) /\ y IN group_carrier G /\ y IN (h j) ==> group_mul G x y = group_mul G y x) k /\ subgroup_generated G (UNIONS {h i | i IN k}) = G /\ !i. i IN k ==> group_carrier (subgroup_generated G (h i)) INTER group_carrier (subgroup_generated G (UNIONS {h j | j IN k DELETE i})) = {group_id G}`, REWRITE_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM] THEN REWRITE_TAC[GROUP_MONOMORPHISM_GROUP_SUM_GEN] THEN SIMP_TAC[GROUP_EPIMORPHISM_GROUP_SUM_GEN; SUBSET_REFL] THEN CONV_TAC TAUT);; let GROUP_ISOMORPHISM_GROUP_SUM_EQ = prove (`!k G (h:K->A->bool). (!i. i IN k ==> (h i) subgroup_of G) ==> (group_isomorphism (sum_group k (\i. subgroup_generated G (h i)),G) (group_sum G k) <=> pairwise (\i j. !x y. x IN (h i) /\ y IN (h j) ==> group_mul G x y = group_mul G y x) k /\ subgroup_generated G (UNIONS {h i | i IN k}) = G /\ !i. i IN k ==> h i INTER group_carrier (subgroup_generated G (UNIONS {h j | j IN k DELETE i})) = {group_id G})`, REWRITE_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM] THEN SIMP_TAC[GROUP_MONOMORPHISM_GROUP_SUM_EQ] THEN SIMP_TAC[GROUP_EPIMORPHISM_GROUP_SUM_EQ; SUBSET_REFL] THEN CONV_TAC TAUT);; let GROUP_ISOMORPHISM_GROUP_SUM = prove (`!k G (h:K->A->bool). (!i. i IN k ==> (h i) subgroup_of G) /\ pairwise (\i j. !x y. x IN h i /\ y IN h j ==> group_mul G x y = group_mul G y x) k /\ subgroup_generated G (UNIONS {h i | i IN k}) = G /\ (!i. i IN k ==> h i INTER group_carrier (subgroup_generated G (UNIONS {h j | j IN k DELETE i})) = {group_id G}) ==> group_isomorphism (sum_group k (\i. subgroup_generated G (h i)),G) (group_sum G k)`, REWRITE_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM] THEN SIMP_TAC[GROUP_MONOMORPHISM_GROUP_SUM] THEN SIMP_TAC[GROUP_EPIMORPHISM_GROUP_SUM; SUBSET_REFL] THEN CONV_TAC TAUT);; let GROUP_ISOMORPHISM_ABELIAN_GROUP_SUM = prove (`!k G (h:K->A->bool). abelian_group G /\ (!i. i IN k ==> (h i) subgroup_of G) /\ subgroup_generated G (UNIONS {h i | i IN k}) = G /\ (!i. i IN k ==> h i INTER group_carrier (subgroup_generated G (UNIONS {h j | j IN k DELETE i})) = {group_id G}) ==> group_isomorphism (sum_group k (\i. subgroup_generated G (h i)),G) (group_sum G k)`, REWRITE_TAC[abelian_group] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GROUP_ISOMORPHISM_GROUP_SUM_EQ; SUBSET_REFL; pairwise] THEN RULE_ASSUM_TAC(REWRITE_RULE[subgroup_of]) THEN ASM SET_TAC[]);; let ISOMORPHIC_SUM_GROUP_GEN = prove (`!k G (h:K->A->bool). pairwise (\i j. !x y. x IN group_carrier G /\ x IN (h i) /\ y IN group_carrier G /\ y IN (h j) ==> group_mul G x y = group_mul G y x) k /\ subgroup_generated G (UNIONS {h i | i IN k}) = G /\ (!i. i IN k ==> group_carrier (subgroup_generated G (h i)) INTER group_carrier (subgroup_generated G (UNIONS {h j | j IN k DELETE i})) = {group_id G}) ==> sum_group k (\i. subgroup_generated G (h i)) isomorphic_group G`, REWRITE_TAC[GSYM GROUP_ISOMORPHISM_GROUP_SUM_GEN; isomorphic_group] THEN MESON_TAC[]);; let ISOMORPHIC_SUM_GROUP = prove (`!k G (h:K->A->bool). (!i. i IN k ==> (h i) subgroup_of G) /\ pairwise (\i j. !x y. x IN h i /\ y IN h j ==> group_mul G x y = group_mul G y x) k /\ subgroup_generated G (UNIONS {h i | i IN k}) = G /\ (!i. i IN k ==> h i INTER group_carrier (subgroup_generated G (UNIONS {h j | j IN k DELETE i})) = {group_id G}) ==> sum_group k (\i. subgroup_generated G (h i)) isomorphic_group G`, REPEAT STRIP_TAC THEN REWRITE_TAC[isomorphic_group] THEN EXISTS_TAC `group_sum (G:A group) (k:K->bool)` THEN ASM_SIMP_TAC[GROUP_ISOMORPHISM_GROUP_SUM]);; let ISOMORPHIC_ABELIAN_SUM_GROUP = prove (`!k G (h:K->A->bool). abelian_group G /\ (!i. i IN k ==> (h i) subgroup_of G) /\ subgroup_generated G (UNIONS {h i | i IN k}) = G /\ (!i. i IN k ==> h i INTER group_carrier (subgroup_generated G (UNIONS {h j | j IN k DELETE i})) = {group_id G}) ==> sum_group k (\i. subgroup_generated G (h i)) isomorphic_group G`, REPEAT STRIP_TAC THEN REWRITE_TAC[isomorphic_group] THEN EXISTS_TAC `group_sum (G:A group) (k:K->bool)` THEN ASM_SIMP_TAC[GROUP_ISOMORPHISM_ABELIAN_GROUP_SUM]);; let ISOMORPHIC_NORMAL_SUM_GROUP = prove (`!k G (h:K->A->bool). (!i. i IN k ==> (h i) normal_subgroup_of G) /\ subgroup_generated G (UNIONS {h i | i IN k}) = G /\ (!i. i IN k ==> h i INTER group_carrier (subgroup_generated G (UNIONS {h j | j IN k DELETE i})) = {group_id G}) ==> sum_group k (\i. subgroup_generated G (h i)) isomorphic_group G`, REPEAT STRIP_TAC THEN MATCH_MP_TAC ISOMORPHIC_SUM_GROUP THEN ASM_SIMP_TAC[NORMAL_SUBGROUP_IMP_SUBGROUP] THEN REWRITE_TAC[pairwise] THEN MAP_EVERY X_GEN_TAC [`i:K`; `j:K`] THEN STRIP_TAC THEN MATCH_MP_TAC GROUP_SUM_NORMAL_IMP_COMMUTING THEN ASM_SIMP_TAC[] THEN FIRST_X_ASSUM(MP_TAC o SPEC `i:K` o GEN_REWRITE_RULE (BINDER_CONV o RAND_CONV) [EXTENSION]) THEN ASM_REWRITE_TAC[GSYM EXTENSION] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC(SET_RULE `t SUBSET t' ==> s INTER t SUBSET s INTER t'`) THEN TRANS_TAC SUBSET_TRANS `group_carrier(subgroup_generated G ((h:K->A->bool) j))` THEN CONJ_TAC THENL [ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_SUBGROUP; NORMAL_SUBGROUP_IMP_SUBGROUP; SUBSET_REFL]; MATCH_MP_TAC SUBGROUP_GENERATED_MONO THEN ASM SET_TAC[]]);; let CARRIER_SUBGROUP_GENERATED_UNIONS = prove (`!(G:A group) u. abelian_group G ==> group_carrier(subgroup_generated G (UNIONS u)) = IMAGE (group_sum G u) (group_carrier (sum_group u (\i. subgroup_generated G i)))`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`u:(A->bool)->bool`; `u:(A->bool)->bool`; `G:A group`; `\u:A->bool. u`] SUBGROUP_EPIMORPHISM_GROUP_SUM_GEN) THEN REWRITE_TAC[SUBSET_REFL; IN_GSPEC; pairwise; group_epimorphism] THEN DISCH_THEN(MP_TAC o snd o EQ_IMP_RULE) THEN ANTS_TAC THENL [ASM_MESON_TAC[abelian_group; SUBSET]; SIMP_TAC[]]);; let CARRIER_SUBGROUP_GENERATED_UNIONS_ALT = prove (`!(G:A group) u. abelian_group G ==> group_carrier(subgroup_generated G (UNIONS u)) = { group_sum G u f | f | (!s. s IN u ==> f s IN group_carrier(subgroup_generated G s)) /\ FINITE {s | s IN u /\ ~(f s = group_id G)}}`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_UNIONS] THEN REWRITE_TAC[SUM_GROUP_CLAUSES; CARTESIAN_PRODUCT_AS_RESTRICTIONS] THEN REWRITE_TAC[CONJUNCT2 SUBGROUP_GENERATED; SET_RULE `{y | y IN {f x | P x} /\ Q y} = IMAGE f {x | P x /\ Q(f x)}`] THEN ONCE_REWRITE_TAC[TAUT `p /\ ~q <=> ~(p ==> q)`] THEN SIMP_TAC[RESTRICTION] THEN REWRITE_TAC[NOT_IMP; GSYM IMAGE_o; o_DEF] THEN GEN_REWRITE_TAC RAND_CONV [SIMPLE_IMAGE_GEN] THEN MATCH_MP_TAC(SET_RULE `(!x. x IN s ==> f x = g x) ==> IMAGE f s = IMAGE g s`) THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_SUM_EQ THEN SIMP_TAC[RESTRICTION]);; let CARRIER_SUBGROUP_GENERATED_UNIONS_FINITE = prove (`!(G:A group) u. abelian_group G /\ FINITE u ==> group_carrier(subgroup_generated G (UNIONS u)) = { group_sum G u f | f | (!s. s IN u ==> f s IN group_carrier(subgroup_generated G s))}`, SIMP_TAC[CARRIER_SUBGROUP_GENERATED_UNIONS_ALT; FINITE_RESTRICT]);; let CARRIER_SUBGROUP_GENERATED_UNIONS_EXPLICIT = prove (`!(G:A group) u. abelian_group G ==> group_carrier(subgroup_generated G (UNIONS u)) = { group_sum G t f | t,f | FINITE t /\ t SUBSET u /\ (!s. s IN t ==> f s IN group_carrier(subgroup_generated G s))}`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_UNIONS_ALT] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN ONCE_REWRITE_TAC[SUBSET] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN REWRITE_TAC[IN_ELIM_THM] THEN CONJ_TAC THENL [X_GEN_TAC `f:(A->bool)->A` THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`{s | s IN u /\ ~((f:(A->bool)->A) s = group_id G)}`; `f:(A->bool)->A`] THEN ASM_SIMP_TAC[IN_ELIM_THM; SUBSET_RESTRICT; GROUP_SUM_SUPPORT]; MAP_EVERY X_GEN_TAC [`t:(A->bool)->bool`; `f:(A->bool)->A`] THEN STRIP_TAC THEN EXISTS_TAC `\s. if s IN t then (f:(A->bool)->A) s else group_id G` THEN REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [ASM_MESON_TAC[GROUP_ID_SUBGROUP]; FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN SET_TAC[]; ONCE_REWRITE_TAC[GSYM GROUP_SUM_RESTRICT_SET] THEN ASM_SIMP_TAC[SET_RULE `t SUBSET u ==> {x | x IN u /\ x IN t} = t`]]]);; let CARRIER_SUBGROUP_GENERATED_ALT = prove (`!G (s:A->bool). abelian_group G /\ s SUBSET group_carrier G ==> group_carrier(subgroup_generated G s) = { group_sum G s (\x. group_zpow G x (n x)) | n | FINITE {x | x IN s /\ ~(n x = &0)}}`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL [ALL_TAC; REWRITE_TAC[SUBSET; FORALL_IN_GSPEC] THEN X_GEN_TAC `n:A->int` THEN DISCH_TAC THEN MATCH_MP_TAC IN_SUBGROUP_SUM THEN REWRITE_TAC[SUBGROUP_SUBGROUP_GENERATED] THEN X_GEN_TAC `x:A` THEN STRIP_TAC THEN MATCH_MP_TAC IN_SUBGROUP_ZPOW THEN ASM_SIMP_TAC[SUBGROUP_SUBGROUP_GENERATED; SUBGROUP_GENERATED_INC]] THEN REWRITE_TAC[SUBSET] THEN MATCH_MP_TAC SUBGROUP_GENERATED_INDUCT THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN REWRITE_TAC[IN_ELIM_THM] THEN REPEAT CONJ_TAC THENL [X_GEN_TAC `x:A` THEN REPEAT DISCH_TAC THEN EXISTS_TAC `\y:A. if y = x then &1:int else &0` THEN REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN CONV_TAC INT_REDUCE_CONV THEN REWRITE_TAC[MESON[] `(if p then F else T) <=> ~p`] THEN SIMP_TAC[GROUP_NPOW; group_pow; GSYM GROUP_SUM_RESTRICT_SET] THEN ASM_SIMP_TAC[SET_RULE `x IN s ==> {y | y IN s /\ y = x} = {x}`] THEN ASM_SIMP_TAC[FINITE_SING; GROUP_SUM_SING; GROUP_POW_1]; EXISTS_TAC `(\x. &0):A->int` THEN REWRITE_TAC[EMPTY_GSPEC; FINITE_EMPTY; GROUP_NPOW; group_pow] THEN REWRITE_TAC[GROUP_SUM_ID]; X_GEN_TAC `n:A->int` THEN DISCH_TAC THEN EXISTS_TAC `\x. --((n:A->int) x)` THEN ASM_REWRITE_TAC[INT_NEG_EQ_0] THEN W(MP_TAC o PART_MATCH (rand o rand) ABELIAN_GROUP_SUM_INV o lhand o snd) THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET; GSYM NOT_IMP]) THEN ASM_SIMP_TAC[GSYM NOT_IMP; GROUP_ZPOW] THEN ANTS_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; NOT_IMP] THEN MESON_TAC[GROUP_ZPOW_0]; DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC GROUP_SUM_EQ THEN ASM_SIMP_TAC[GROUP_ZPOW_NEG]]; X_GEN_TAC `m:A->int` THEN DISCH_TAC THEN X_GEN_TAC `n:A->int` THEN DISCH_TAC THEN EXISTS_TAC `\x. ((m:A->int) x) + n x` THEN CONJ_TAC THENL [MAP_EVERY UNDISCH_TAC [`FINITE {x | x IN s /\ ~((n:A->int) x = &0)}`; `FINITE {x | x IN s /\ ~((m:A->int) x = &0)}`] THEN REWRITE_TAC[IMP_IMP; GSYM FINITE_UNION] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_UNION] THEN MESON_TAC[INT_ADD_LID]; ALL_TAC] THEN W(MP_TAC o PART_MATCH (rand o rand) ABELIAN_GROUP_SUM_MUL o lhand o snd) THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN ASM_SIMP_TAC[GSYM NOT_IMP; GROUP_ZPOW] THEN ANTS_TAC THENL [CONJ_TAC THENL [UNDISCH_TAC `FINITE {x | x IN s /\ ~((m:A->int) x = &0)}`; UNDISCH_TAC `FINITE {x | x IN s /\ ~((n:A->int) x = &0)}`] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN MESON_TAC[GROUP_ZPOW_0]; DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC GROUP_SUM_EQ THEN ASM_SIMP_TAC[GROUP_ZPOW_ADD]]]);; let CARRIER_SUBGROUP_GENERATED_FINITE = prove (`!G (s:A->bool). abelian_group G /\ FINITE s /\ s SUBSET group_carrier G ==> group_carrier(subgroup_generated G s) = { group_sum G s (\x. group_zpow G x (n x)) | n IN (:A->int)}`, SIMP_TAC[CARRIER_SUBGROUP_GENERATED_ALT; IN_UNIV; FINITE_RESTRICT]);; let CARRIER_SUBGROUP_GENERATED_EXPLICIT = prove (`!G (s:A->bool). abelian_group G /\ s SUBSET group_carrier G ==> group_carrier(subgroup_generated G s) = { group_sum G t (\x. group_zpow G x (n x)) | t,n | FINITE t /\ t SUBSET s}`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_ALT] THEN MATCH_MP_TAC SUBSET_ANTISYM THEN ONCE_REWRITE_TAC[SUBSET] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN REWRITE_TAC[IN_ELIM_THM] THEN CONJ_TAC THENL [X_GEN_TAC `f:A->int` THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`{x | x IN s /\ ~((f:A->int) x = &0)}`; `f:A->int`] THEN ASM_REWRITE_TAC[SUBSET_RESTRICT] THEN MATCH_MP_TAC GROUP_SUM_SUPERSET THEN SIMP_TAC[SUBSET_RESTRICT; IN_ELIM_THM; IMP_CONJ; GROUP_ZPOW_0]; MAP_EVERY X_GEN_TAC [`t:A->bool`; `f:A->int`] THEN STRIP_TAC THEN EXISTS_TAC `\x. if x IN t then (f:A->int) x else &0` THEN REWRITE_TAC[] THEN CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN SET_TAC[]; REWRITE_TAC[COND_RAND; GROUP_ZPOW_0] THEN ONCE_REWRITE_TAC[GSYM GROUP_SUM_RESTRICT_SET] THEN ASM_SIMP_TAC[SET_RULE `t SUBSET u ==> {x | x IN u /\ x IN t} = t`]]]);; (* ------------------------------------------------------------------------- *) (* Structure theorems for periodic Abelian groups in terms of p-groups. *) (* ------------------------------------------------------------------------- *) let SUBGROUP_GENERATED_UNIONS_PRIME_TORSION_FINITE = prove (`!(G:A group) P. FINITE {p | prime p /\ P p} ==> subgroup_generated G (UNIONS {{ x | x IN group_carrier G /\ ?k. group_element_order G x = p EXP k} | prime p /\ P p}) = subgroup_generated G {x | x IN group_carrier G /\ !p. prime p /\ p divides group_element_order G x ==> P p}`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBGROUPS_GENERATED_EQ THEN CONJ_TAC THENL [REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_GSPEC] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_CARRIER_SUBGROUP_GENERATED THEN SIMP_TAC[SUBSET; IN_ELIM_THM] THEN GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[PRIME_DIVEXP_EQ; DIVIDES_PRIME_PRIME]; ALL_TAC] THEN TRANS_TAC SUBSET_TRANS `{x | x IN group_carrier G /\ !p. prime p /\ p divides group_element_order G (x:A) ==> p IN {p | prime p /\ P p}}` THEN CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [SIMPLE_IMAGE_GEN] THEN MP_TAC(SET_RULE `!p. p IN {p | prime p /\ P p} ==> prime p`) THEN UNDISCH_TAC `FINITE {p | prime p /\ P p}` THEN SPEC_TAC(`{p | prime p /\ P p}`,`t:num->bool`) THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[NOT_IN_EMPTY; IMAGE_CLAUSES; UNIONS_0] THEN CONJ_TAC THENL [REWRITE_TAC[CONJUNCT2 SUBGROUP_GENERATED; REWRITE_RULE[trivial_group] TRIVIAL_GROUP_SUBGROUP_GENERATED_EMPTY] THEN SIMP_TAC[SUBSET; IN_ELIM_THM; IN_SING; GSYM GROUP_ELEMENT_ORDER_EQ_1] THEN MESON_TAC[PRIME_FACTOR]; REWRITE_TAC[FORALL_IN_INSERT; UNIONS_INSERT]] THEN MAP_EVERY X_GEN_TAC [`p:num`; `t:num->bool`] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `z:A` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MP_TAC(ISPECL [`G:A group`; `z:A`; `p:num`] GROUP_ELEMENT_ORDER_PRIMEPOW_DECOMP) THEN ASM_REWRITE_TAC[TAUT `~p ==> q <=> p \/ q`] THEN DISCH_THEN(DISJ_CASES_THEN2 SUBST1_TAC MP_TAC) THENL [ASM_REWRITE_TAC[DIVIDES_0] THEN MATCH_MP_TAC(SET_RULE `~({p | prime p} SUBSET s) ==> (!p. prime p ==> p IN s) ==> Q`) THEN ASM_MESON_TAC[PRIMES_INFINITE; INFINITE; FINITE_INSERT; FINITE_SUBSET]; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`G:A group`; `x:A`; `y:A`] GROUP_ELEMENT_ORDER_MUL_EQ) THEN ASM_REWRITE_TAC[COPRIME_LEXP] THEN DISCH_THEN SUBST1_TAC THEN SIMP_TAC[IMP_CONJ; PRIME_DIVPROD_EQ; PRIME_DIVEXP_EQ] THEN DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE `(!q. prime q ==> P q \/ Q q ==> q IN p INSERT t) ==> ~Q p ==> (!q. prime q /\ Q q ==> q IN t)`)) THEN ASM_SIMP_TAC[GSYM PRIME_COPRIME_EQ] THEN DISCH_TAC THEN SUBST1_TAC(SYM(ASSUME `group_mul G x y:A = z`)) THEN MATCH_MP_TAC IN_SUBGROUP_MUL THEN REWRITE_TAC[SUBGROUP_SUBGROUP_GENERATED] THEN CONJ_TAC THENL [MATCH_MP_TAC SUBGROUP_GENERATED_INC THEN REWRITE_TAC[UNION_SUBSET; UNIONS_SUBSET; FORALL_IN_IMAGE] THEN ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(SET_RULE `group_carrier(subgroup_generated G t) SUBSET group_carrier(subgroup_generated G (s UNION t)) /\ x IN group_carrier(subgroup_generated G t) ==> x IN group_carrier(subgroup_generated G (s UNION t))`) THEN CONJ_TAC THENL [MATCH_MP_TAC SUBGROUP_GENERATED_MONO THEN SET_TAC[]; FIRST_X_ASSUM(MATCH_MP_TAC o REWRITE_RULE[SUBSET]) THEN ASM SET_TAC[]]);; let SUBGROUP_GENERATED_UNIONS_PRIME_TORSION = prove (`!(G:A group) P. subgroup_generated G (UNIONS {{ x | x IN group_carrier G /\ ?k. group_element_order G x = p EXP k} | prime p /\ P p}) = subgroup_generated G {x | x IN group_carrier G /\ ~(group_element_order G x = 0) /\ !p. prime p /\ p divides group_element_order G x ==> P p}`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBGROUPS_GENERATED_EQ THEN CONJ_TAC THENL [REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_GSPEC] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_CARRIER_SUBGROUP_GENERATED THEN SIMP_TAC[SUBSET; IN_ELIM_THM] THEN GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[EXP_EQ_0] THEN ASM_MESON_TAC[PRIME_DIVEXP_EQ; DIVIDES_PRIME_PRIME; PRIME_0]; REWRITE_TAC[SUBSET; FORALL_IN_GSPEC]] THEN X_GEN_TAC `x:A` THEN STRIP_TAC THEN MATCH_MP_TAC(SET_RULE `!s. x IN s /\ s SUBSET t ==> x IN t`) THEN EXISTS_TAC `group_carrier(subgroup_generated G (UNIONS {{y | y IN group_carrier G /\ ?k. group_element_order G y = q EXP k} |q| prime q /\ q IN {p | p divides group_element_order G (x:A)}}))` THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC SUBGROUP_GENERATED_MONO THEN ASM SET_TAC[]] THEN W(MP_TAC o PART_MATCH (lhand o rand) SUBGROUP_GENERATED_UNIONS_PRIME_TORSION_FINITE o rand o rand o snd) THEN ASM_SIMP_TAC[FINITE_SPECIAL_DIVISORS; IN_ELIM_THM] THEN DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC SUBGROUP_GENERATED_INC THEN ASM SET_TAC[]);; let SUBGROUP_GENERATED_UNIONS_PRIME_TORSION_FULL = prove (`!(G:A group). subgroup_generated G (UNIONS {{ x | x IN group_carrier G /\ ?k. group_element_order G x = p EXP k} | prime p}) = subgroup_generated G {x | x IN group_carrier G /\ ~(group_element_order G x = 0)}`, ONCE_REWRITE_TAC[SET_RULE `prime p <=> prime p /\ p IN (:num)`] THEN REWRITE_TAC[SUBGROUP_GENERATED_UNIONS_PRIME_TORSION] THEN REWRITE_TAC[IN_UNIV]);; let PGROUP_PRIME_TORSION = prove (`!(G:A group) p. abelian_group G /\ prime p ==> pgroup {p} (subgroup_generated G {x | x IN group_carrier G /\ ?k. group_element_order G x = p EXP k})`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[PGROUP_SING; CARRIER_SUBGROUP_GENERATED_SUBGROUP; SUBGROUP_OF_PRIME_TORSION; IN_ELIM_THM; GROUP_ELEMENT_ORDER_SUBGROUP_GENERATED]);; let PGROUP_SUBSET_PRIME_TORSION = prove (`!(G:A group) p s. prime p /\ s SUBSET group_carrier G /\ pgroup {p} (subgroup_generated G s) ==> s SUBSET {x | x IN group_carrier G /\ ?k. group_element_order G x = p EXP k}`, REPEAT GEN_TAC THEN SIMP_TAC[IMP_CONJ; PGROUP_SING; SUBSET] THEN REWRITE_TAC[GROUP_ELEMENT_ORDER_SUBGROUP_GENERATED] THEN REPEAT DISCH_TAC THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN ASM_SIMP_TAC[IN_ELIM_THM] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[SUBGROUP_GENERATED_INC_GEN]);; let ABELIAN_GROUP_TORSION_ISOMORPHISM = prove (`!G:A group. abelian_group G ==> group_isomorphism (sum_group {p | prime p} (\p. subgroup_generated G {x | x IN group_carrier G /\ ?k. group_element_order G x = p EXP k}), subgroup_generated G {x | x IN group_carrier G /\ ~(group_element_order G x = 0)}) (group_sum G {p | prime p})`, REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH (lhand o lhand o rand) SUBGROUP_ISOMORPHISM_ABELIAN_GROUP_SUM o lhand o lhand o snd) THEN REWRITE_TAC[SUBGROUP_GENERATED_UNIONS_PRIME_TORSION_FULL; IN_ELIM_THM] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[SUBGROUP_OF_PRIME_TORSION; IN_DELETE; IN_ELIM_THM] THEN REWRITE_TAC[SUBGROUP_GENERATED_UNIONS_PRIME_TORSION] THEN X_GEN_TAC `p:num` THEN DISCH_TAC THEN ASM_SIMP_TAC[GSYM GROUP_DISJOINT_SUM_ALT; SUBGROUP_OF_PRIME_TORSION; SUBGROUP_SUBGROUP_GENERATED] THEN REWRITE_TAC[SUBSET; IN_INTER; IN_ELIM_THM] THEN X_GEN_TAC `x:A` THEN DISCH_THEN(CONJUNCTS_THEN2 (CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_TAC `k:num`)) MP_TAC) THEN W(MP_TAC o PART_MATCH (lhand o rand) CARRIER_SUBGROUP_GENERATED_SUBGROUP o rand o lhand o snd) THEN ANTS_TAC THENL [ONCE_REWRITE_TAC[SET_RULE `{x | P x /\ Q x /\ R x} = {x | P x /\ Q x} INTER {x | P x /\ R x}`] THEN MATCH_MP_TAC SUBGROUP_OF_INTER THEN ASM_SIMP_TAC[SUBGROUP_OF_TORSION; SUBGROUP_OF_PRIMES_TORSION]; DISCH_THEN SUBST1_TAC] THEN ASM_REWRITE_TAC[IN_ELIM_THM; EXP_EQ_0; IMP_CONJ; IN_SING] THEN DISCH_THEN(K ALL_TAC) THEN ASM_SIMP_TAC[GSYM GROUP_ELEMENT_ORDER_EQ_1] THEN ASM_SIMP_TAC[PRIME_DIVEXP_EQ; DIVIDES_PRIME_PRIME; EXP_EQ_1] THEN ASM_MESON_TAC[]);; let ABELIAN_GROUP_TORSION_STRUCTURE = prove (`!G:A group. abelian_group G ==> subgroup_generated G {x | x IN group_carrier G /\ ~(group_element_order G x = 0)} isomorphic_group sum_group {p | prime p} (\p. subgroup_generated G {x | x IN group_carrier G /\ ?k. group_element_order G x = p EXP k})`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN DISCH_THEN(MP_TAC o MATCH_MP ABELIAN_GROUP_TORSION_ISOMORPHISM) THEN REWRITE_TAC[GROUP_ISOMORPHISM_IMP_ISOMORPHIC]);; let TORSION_ABELIAN_GROUP_ISOMORPHISM = prove (`!G:A group. abelian_group G /\ (!x. x IN group_carrier G ==> ~(group_element_order G x = 0)) ==> group_isomorphism (sum_group {p | prime p} (\p. subgroup_generated G {x | x IN group_carrier G /\ ?k. group_element_order G x = p EXP k}), G) (group_sum G {p | prime p})`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 (MP_TAC o MATCH_MP ABELIAN_GROUP_TORSION_ISOMORPHISM) ASSUME_TAC) THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC SUBGROUP_GENERATED_REFL THEN ASM SET_TAC[]);; let TORSION_ABELIAN_GROUP_STRUCTURE = prove (`!G:A group. abelian_group G /\ (!x. x IN group_carrier G ==> ~(group_element_order G x = 0)) ==> G isomorphic_group sum_group {p | prime p} (\p. subgroup_generated G {x | x IN group_carrier G /\ ?k. group_element_order G x = p EXP k})`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN DISCH_THEN(MP_TAC o MATCH_MP TORSION_ABELIAN_GROUP_ISOMORPHISM) THEN REWRITE_TAC[GROUP_ISOMORPHISM_IMP_ISOMORPHIC]);; let FINITE_ABELIAN_GROUP_STRUCTURE = prove (`!G:A group. abelian_group G /\ FINITE(group_carrier G) ==> G isomorphic_group sum_group {p | prime p /\ p divides CARD(group_carrier G)} (\p. subgroup_generated G {x | x IN group_carrier G /\ ?k. group_element_order G x = p EXP k})`, REPEAT STRIP_TAC THEN MP_TAC(ISPEC `G:A group` TORSION_ABELIAN_GROUP_STRUCTURE) THEN ANTS_TAC THENL [ASM_SIMP_TAC[FINITE_GROUP_ELEMENT_ORDER_NONZERO]; ALL_TAC] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] ISOMORPHIC_GROUP_TRANS) THEN MATCH_MP_TAC ISOMORPHIC_SUM_GROUP_SYMDIFF THEN X_GEN_TAC `p:num` THEN REWRITE_TAC[IN_UNION; IN_DIFF; IN_ELIM_THM] THEN ASM_CASES_TAC `prime p` THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN REWRITE_TAC[TRIVIAL_GROUP_SUBGROUP_GENERATED_EQ] THEN REWRITE_TAC[SUBSET; IN_INTER; IN_ELIM_THM; IN_SING] THEN X_GEN_TAC `x:A` THEN ASM_CASES_TAC `(x:A) IN group_carrier G` THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `k:num` THEN ASM_CASES_TAC `k = 0` THEN ASM_SIMP_TAC[EXP; GROUP_ELEMENT_ORDER_EQ_1] THEN UNDISCH_TAC `~(p divides CARD(group_carrier G:A->bool))` THEN MATCH_MP_TAC(TAUT `(q ==> p) ==> (~p ==> q ==> r)`) THEN MATCH_MP_TAC(NUMBER_RULE `p divides pk /\ x divides g ==> x = pk ==> p divides g`) THEN ASM_SIMP_TAC[GROUP_ELEMENT_ORDER_DIVIDES_GROUP_ORDER; PRIME_DIVEXP_EQ] THEN REWRITE_TAC[DIVIDES_REFL]);; let FINITE_ABELIAN_GROUP_STRUCTURE_ALT = prove (`!G:A group. abelian_group G /\ FINITE(group_carrier G) ==> G isomorphic_group product_group {p | prime p /\ p divides CARD(group_carrier G)} (\p. subgroup_generated G {x | x IN group_carrier G /\ ?k. group_element_order G x = p EXP k})`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP FINITE_ABELIAN_GROUP_STRUCTURE) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN MATCH_MP_TAC SUM_GROUP_EQ_PRODUCT_GROUP THEN MATCH_MP_TAC FINITE_SPECIAL_DIVISORS THEN ASM_SIMP_TAC[CARD_EQ_0; GROUP_CARRIER_NONEMPTY]);; let TORSION_ABELIAN_GROUP_AS_SUM_OF_PGROUPS = prove (`!G:A group. abelian_group G ==> ((!x. x IN group_carrier G ==> ~(group_element_order G x = 0)) <=> ?H:num->A group. (!p. prime p ==> pgroup {p} (H p)) /\ G isomorphic_group sum_group {p | prime p} H)`, REPEAT STRIP_TAC THEN EQ_TAC THENL [DISCH_TAC THEN EXISTS_TAC `\p. subgroup_generated G {x:A | x IN group_carrier G /\ ?k. group_element_order G x = p EXP k}` THEN ASM_SIMP_TAC[TORSION_ABELIAN_GROUP_STRUCTURE; PGROUP_PRIME_TORSION]; DISCH_THEN(X_CHOOSE_THEN `H:num->A group` STRIP_ASSUME_TAC)] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ISOMORPHIC_GROUP_SYM]) THEN REWRITE_TAC[isomorphic_group; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `f:(num->A)->A` THEN DISCH_TAC THEN SUBGOAL_THEN `group_carrier G = IMAGE (f:(num->A)->A) (group_carrier(sum_group {p | prime p} H))` SUBST1_TAC THENL [ASM_MESON_TAC[GROUP_ISOMORPHISM_IMP_EPIMORPHISM; group_epimorphism]; REWRITE_TAC[FORALL_IN_IMAGE]] THEN FIRST_ASSUM(fun th -> SIMP_TAC [MATCH_MP (REWRITE_RULE[IMP_CONJ] GROUP_ELEMENT_ORDER_MONOMORPHIC_IMAGE) (MATCH_MP GROUP_ISOMORPHISM_IMP_MONOMORPHISM th)]) THEN SIMP_TAC[GROUP_ELEMENT_ORDER_SUM_GROUP_EQ_0] THEN X_GEN_TAC `x:num->A` THEN REWRITE_TAC[SUM_GROUP_CLAUSES; IN_ELIM_THM; IN_CARTESIAN_PRODUCT] THEN STRIP_TAC THEN DISCH_THEN(X_CHOOSE_THEN `p:num` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `p:num`)) THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`(H:num->A group) p`; `p:num`] PGROUP_SING) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `(x:num->A) p`) THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[EXP_EQ_0; PRIME_0]);; (* ------------------------------------------------------------------------- *) (* Structure theorem for finitely generated Abelian groups. *) (* ------------------------------------------------------------------------- *) let FINITELY_GENERATED_ABELIAN_SUBGROUP_STRUCTURE_ISOMORPHISM = prove (`!G (s:A->bool). abelian_group G /\ FINITE s ==> ?t. FINITE t /\ CARD t <= CARD s /\ t SUBSET group_carrier G /\ subgroup_generated G t = subgroup_generated G s /\ group_isomorphism (sum_group t (\x. subgroup_generated G {x}), subgroup_generated G s) (group_sum G t)`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC(MESON[LE_REFL] `(!n s. FINITE s /\ CARD s <= n ==> P s) ==> (!s. FINITE s ==> P s)`) THEN MATCH_MP_TAC num_WF THEN X_GEN_TAC `r:num` THEN REWRITE_TAC[MESON[LET_TRANS; LE_REFL] `(!m. m < r ==> !s. FINITE s /\ CARD s <= m ==> Q s) <=> (!s. FINITE s /\ CARD s < r ==> Q s)`] THEN DISCH_THEN(LABEL_TAC "*") THEN X_GEN_TAC `s:A->bool` THEN STRIP_TAC THEN ASM_CASES_TAC `(s:A->bool) SUBSET group_carrier G` THENL [MAP_EVERY UNDISCH_TAC [`(s:A->bool) SUBSET group_carrier G`; `CARD(s:A->bool) <= r`; `FINITE(s:A->bool)`] THEN SPEC_TAC(`s:A->bool`,`s:A->bool`) THEN REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC]; FIRST_X_ASSUM(MP_TAC o SPEC `group_carrier G INTER s:A->bool`) THEN ANTS_TAC THENL [ASM_SIMP_TAC[FINITE_INTER] THEN TRANS_TAC LTE_TRANS `CARD(s:A->bool)` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CARD_PSUBSET THEN ASM SET_TAC[]; MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN REWRITE_TAC[GSYM SUBGROUP_GENERATED_RESTRICT] THEN REPEAT(MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[]) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] LE_TRANS) THEN MATCH_MP_TAC CARD_SUBSET THEN ASM_REWRITE_TAC[INTER_SUBSET]]] THEN MATCH_MP_TAC(MESON[] `!R. (!s. (!m. ~R m s) ==> P s) /\ (!(m:num) s. R m s ==> P s) ==> !s. P s`) THEN EXISTS_TAC `\m s. 0 < m /\ ?n x:A. group_sum G s (\x. group_zpow G x (n x)):A = group_id G /\ x IN s /\ abs(n x):int = &m` THEN REWRITE_TAC[] THEN CONJ_TAC THENL [REWRITE_TAC[TAUT `~(p /\ q) <=> q ==> ~p`] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; ARITH_RULE `~(0 < n) <=> n = 0`] THEN ONCE_REWRITE_TAC[MESON[] `(!x y z. P x y z) <=> (!y z x. P x y z)`] THEN X_GEN_TAC `s:A->bool` THEN DISCH_TAC THEN STRIP_TAC THEN EXISTS_TAC `s:A->bool` THEN ASM_REWRITE_TAC[LE_REFL] THEN MP_TAC(ISPECL [`s:A->bool`; `s:A->bool`; `G:A group`; `\x:A. {x}`] SUBGROUP_EPIMORPHISM_GROUP_SUM_GEN) THEN REWRITE_TAC[UNIONS_SINGS; SUBSET_REFL] THEN DISCH_THEN(MP_TAC o snd o EQ_IMP_RULE) THEN REWRITE_TAC[pairwise] THEN ANTS_TAC THENL [ASM_MESON_TAC[abelian_group]; ALL_TAC] THEN REWRITE_TAC[GROUP_ISOMORPHISM_ALT; group_epimorphism] THEN SIMP_TAC[group_homomorphism] THEN DISCH_THEN(K ALL_TAC) THEN ASM_SIMP_TAC[SUM_GROUP_EQ_PRODUCT_GROUP] THEN REWRITE_TAC[PRODUCT_GROUP; CONJUNCT2 SUBGROUP_GENERATED] THEN REWRITE_TAC[CARTESIAN_PRODUCT_AS_RESTRICTIONS; IMP_CONJ] THEN REWRITE_TAC[FORALL_IN_GSPEC; RESTRICTION_EXTENSION] THEN RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_BY_SING] THEN REWRITE_TAC[IN_ELIM_THM; IN_UNIV; RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN X_GEN_TAC `f:A->A` THEN DISCH_THEN(X_CHOOSE_TAC `n:A->int`) THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `n:A->int`) THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `x:A` THEN ASM_CASES_TAC `(x:A) IN s` THEN ASM_SIMP_TAC[] THEN REWRITE_TAC[INT_FORALL_POS; GSYM INT_OF_NUM_EQ] THEN DISCH_THEN(MP_TAC o SPEC `abs((n:A->int) x)`) THEN REWRITE_TAC[INT_ABS_ZERO; INT_ABS_POS] THEN ANTS_TAC THENL [ALL_TAC; MESON_TAC[GROUP_ZPOW_0]] THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN MATCH_MP_TAC GROUP_SUM_EQ THEN ASM_SIMP_TAC[RESTRICTION]; ALL_TAC] THEN MATCH_MP_TAC num_WF THEN X_GEN_TAC `m:num` THEN REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC] THEN DISCH_THEN(LABEL_TAC "+") THEN X_GEN_TAC `s:A->bool` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`n:A->int`; `a:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(DISJ_CASES_TAC o GEN_REWRITE_RULE I [LE_LT]) THENL [ASM_MESON_TAC[]; ASM_REWRITE_TAC[]] THEN ASM_CASES_TAC `?t (c:A->int) b. FINITE t /\ CARD t <= r /\ t SUBSET group_carrier G /\ subgroup_generated G t = subgroup_generated G s /\ group_sum G t (\x. group_zpow G x (c x)) = group_id G /\ b IN t /\ ~(c b = &0) /\ abs(c b) < &m` THENL [FIRST_X_ASSUM(X_CHOOSE_THEN `t:A->bool` (X_CHOOSE_THEN `c:A->int` (X_CHOOSE_THEN `b:A` STRIP_ASSUME_TAC))) THEN REMOVE_THEN "+" MP_TAC THEN REWRITE_TAC[INT_FORALL_POS; GSYM INT_OF_NUM_LT] THEN DISCH_THEN(MP_TAC o SPEC `abs((c:A->int) b)`) THEN ASM_REWRITE_TAC[INT_ABS_POS] THEN DISCH_THEN(MP_TAC o SPEC `t:A->bool`) THEN ASM_REWRITE_TAC[GSYM INT_ABS_NZ] THEN ASM_MESON_TAC[LE_TRANS]; REMOVE_THEN "+" (K ALL_TAC) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_THEN(LABEL_TAC "+")] THEN ABBREV_TAC `a':A = group_mul G a (group_sum G (s DELETE a) (\x. group_zpow G x (n x div n a)))` THEN ABBREV_TAC `s' = (a':A) INSERT (s DELETE a)` THEN SUBGOAL_THEN `(a':A) IN s'` ASSUME_TAC THENL [EXPAND_TAC "s'" THEN SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `FINITE(s':A->bool)` ASSUME_TAC THENL [ASM_MESON_TAC[FINITE_INSERT; FINITE_DELETE]; ALL_TAC] THEN SUBGOAL_THEN `(s':A->bool) SUBSET group_carrier G` ASSUME_TAC THENL [EXPAND_TAC "s'" THEN MATCH_MP_TAC(SET_RULE `a' IN u /\ s SUBSET u ==> a' INSERT (s DELETE a) SUBSET u`) THEN ASM_REWRITE_TAC[] THEN EXPAND_TAC "a'" THEN MATCH_MP_TAC GROUP_MUL THEN REWRITE_TAC[GROUP_SUM] THEN ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `subgroup_generated G (s:A->bool) = subgroup_generated G s'` (fun th -> SUBST_ALL_TAC th THEN ASSUME_TAC th) THENL [MATCH_MP_TAC SUBGROUPS_GENERATED_EQ THEN CONJ_TAC THENL [SUBGOAL_THEN `s = (a:A) INSERT (s DELETE a)` SUBST1_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[INSERT_SUBSET]] THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC SUBSET_CARRIER_SUBGROUP_GENERATED THEN ASM SET_TAC[]] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (MESON [GROUP_RULE `group_mul G a x = b <=> group_mul G b (group_inv G x) = a`] `group_mul G a x = b ==> x IN group_carrier G /\ a IN group_carrier G /\ b IN group_carrier G ==> a = group_mul G b (group_inv G x)`)) THEN REWRITE_TAC[GROUP_SUM] THEN ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN SUBST1_TAC]; EXPAND_TAC "s'" THEN REWRITE_TAC[INSERT_SUBSET] THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC SUBSET_CARRIER_SUBGROUP_GENERATED THEN ASM SET_TAC[]] THEN EXPAND_TAC "a'"] THEN (MATCH_MP_TAC IN_SUBGROUP_MUL THEN REWRITE_TAC[SUBGROUP_SUBGROUP_GENERATED] THEN CONJ_TAC THENL [MATCH_MP_TAC SUBGROUP_GENERATED_INC_GEN THEN ASM SET_TAC[]; ALL_TAC] THEN TRY(MATCH_MP_TAC IN_SUBGROUP_INV THEN REWRITE_TAC[SUBGROUP_SUBGROUP_GENERATED]) THEN MATCH_MP_TAC IN_SUBGROUP_SUM THEN REWRITE_TAC[SUBGROUP_SUBGROUP_GENERATED] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC IN_SUBGROUP_ZPOW THEN REWRITE_TAC[SUBGROUP_SUBGROUP_GENERATED] THEN MATCH_MP_TAC SUBGROUP_GENERATED_INC_GEN THEN ASM SET_TAC[]); ALL_TAC] THEN SUBGOAL_THEN `(a:A) IN group_carrier G /\ a' IN group_carrier G` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN ASM_CASES_TAC `(a':A) IN group_carrier(subgroup_generated G (s DELETE a))` THENL [SUBGOAL_THEN `subgroup_generated G s' = subgroup_generated G (s DELETE (a:A))` SUBST_ALL_TAC THENL [EXPAND_TAC "s'" THEN ONCE_REWRITE_TAC[SET_RULE `a INSERT s = {a} UNION s`] THEN ONCE_REWRITE_TAC[GSYM SUBGROUP_GENERATED_UNION_RIGHT] THEN ASM_SIMP_TAC[SET_RULE `a IN s ==> {a} UNION s = s`] THEN REWRITE_TAC[SUBGROUP_GENERATED_BY_SUBGROUP_GENERATED]; ALL_TAC] THEN REMOVE_THEN "*" (MP_TAC o SPEC `s DELETE (a:A)`) THEN ASM_REWRITE_TAC[FINITE_DELETE] THEN ANTS_TAC THENL [ASM_SIMP_TAC[CARD_CLAUSES; CARD_DELETE; FINITE_DELETE] THEN REWRITE_TAC[ARITH_RULE `r - 1 < r <=> ~(r = 0)`] THEN ASM_MESON_TAC[CARD_EQ_0; NOT_IN_EMPTY]; MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN REPEAT(MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[]) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] LE_TRANS) THEN ASM_MESON_TAC[CARD_SUBSET; DELETE_SUBSET]]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o MATCH_MP (SET_RULE `~(a IN group_carrier (subgroup_generated G t)) ==> t SUBSET group_carrier (subgroup_generated G t) ==> ~(a IN t)`)) THEN ANTS_TAC THENL [MATCH_MP_TAC SUBGROUP_GENERATED_SUBSET_CARRIER_SUBSET THEN ASM SET_TAC[]; DISCH_TAC] THEN SUBGOAL_THEN `CARD(s':A->bool) = r` ASSUME_TAC THENL [EXPAND_TAC "s'" THEN ASM_SIMP_TAC[CARD_CLAUSES; CARD_DELETE; FINITE_DELETE] THEN REWRITE_TAC[ARITH_RULE `SUC(r - 1) = r <=> ~(r = 0)`] THEN ASM_MESON_TAC[CARD_EQ_0; NOT_IN_EMPTY]; ALL_TAC] THEN SUBGOAL_THEN `group_pow G (a':A) m = group_id G` ASSUME_TAC THENL [ONCE_REWRITE_TAC[GSYM GROUP_NPOW] THEN SUBST1_TAC(SYM(ASSUME `abs((n:A->int) a) = &m`)) THEN W(MP_TAC o PART_MATCH (lhand o rand) GROUP_ZPOW_ABS_EQ_ID o snd) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[]; DISCH_THEN SUBST1_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPECL [`s':A->bool`; `\x:A. if x = a' then n a else n x rem n a`]) THEN ASM_REWRITE_TAC[LE_REFL] THEN REWRITE_TAC[TAUT `~(p /\ q /\ ~r /\ s) <=> p ==> q /\ s ==> r`] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN ANTS_TAC THENL [FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN SUBGOAL_THEN `s = (a:A) INSERT (s DELETE a)` MP_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(fun th -> GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [th]) THEN EXPAND_TAC "s'" THEN ASM_SIMP_TAC[ABELIAN_GROUP_SUM_CLAUSES; FINITE_RESTRICT; FINITE_DELETE; GROUP_ZPOW] THEN EXPAND_TAC "a'" THEN ASM_SIMP_TAC[ABELIAN_GROUP_MUL_ZPOW; GROUP_SUM; IN_DELETE] THEN ASM_SIMP_TAC[GSYM GROUP_MUL_ASSOC; GROUP_ZPOW; GROUP_SUM] THEN AP_TERM_TAC THEN W(MP_TAC o PART_MATCH (rand o rand) ABELIAN_GROUP_SUM_ZPOW o lhand o lhand o snd) THEN ASM_SIMP_TAC[FINITE_RESTRICT; FINITE_DELETE] THEN ANTS_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_ZPOW THEN ASM SET_TAC[]; DISCH_THEN(SUBST1_TAC o SYM)] THEN W(MP_TAC o PART_MATCH (rand o rand) ABELIAN_GROUP_SUM_MUL o lhand o snd) THEN ASM_SIMP_TAC[FINITE_RESTRICT; FINITE_DELETE] THEN ANTS_TAC THENL [REPEAT GEN_TAC THEN STRIP_TAC THEN COND_CASES_TAC THEN REPEAT STRIP_TAC THEN REPEAT(MATCH_MP_TAC GROUP_ZPOW) THEN ASM SET_TAC[]; DISCH_THEN(SUBST1_TAC o SYM)] THEN MATCH_MP_TAC GROUP_SUM_EQ THEN X_GEN_TAC `b:A` THEN ASM_CASES_TAC `b:A = a'` THENL [ASM SET_TAC[]; ASM_REWRITE_TAC[]] THEN DISCH_TAC THEN SUBGOAL_THEN `(b:A) IN group_carrier G` MP_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[GSYM GROUP_ZPOW_MUL; GSYM GROUP_ZPOW_ADD] THEN REWRITE_TAC[INT_DIVISION_SIMP]; DISCH_THEN(MP_TAC o SPECL [`s DELETE (a:A)`; `a':A`] o MATCH_MP (SET_RULE `(!b. b IN s /\ P b ==> Q b) ==> !t a. t SUBSET s DELETE a ==> !b. b IN t /\ ~(b = a) ==> P b ==> Q b`)) THEN ANTS_TAC THENL [ASM SET_TAC[]; SIMP_TAC[]] THEN DISCH_THEN(MP_TAC o MATCH_MP (MESON[] `(!x. P x /\ Q x ==> R x ==> S x) ==> (!x. P x ==> Q x) /\ (!x. R x) ==> (!x. P x ==> S x)`)) THEN ANTS_TAC THENL [CONJ_TAC THENL [ASM SET_TAC[]; GEN_TAC] THEN MATCH_MP_TAC(INT_ARITH `&0:int <= x /\ x < m ==> abs x < m`) THEN ASM_MESON_TAC[INT_DIVISION; INT_OF_NUM_EQ; INT_ABS_ZERO; LE_1]; REWRITE_TAC[MESON[INT_MUL_DIV_EQ; INT_REM_EQ_0] `m rem n = &0 <=> m div n * n = m`] THEN DISCH_TAC]] THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN SUBGOAL_THEN `s = (a:A) INSERT (s DELETE a)` MP_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN DISCH_THEN(fun th -> GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [th]) THEN EXPAND_TAC "s'" THEN ASM_SIMP_TAC[ABELIAN_GROUP_SUM_CLAUSES; FINITE_RESTRICT; FINITE_DELETE; GROUP_ZPOW] THEN EXPAND_TAC "a'" THEN ASM_SIMP_TAC[ABELIAN_GROUP_MUL_ZPOW; GROUP_SUM; IN_DELETE] THEN AP_TERM_TAC THEN W(MP_TAC o PART_MATCH (rand o rand) ABELIAN_GROUP_SUM_ZPOW o lhand o snd) THEN ASM_SIMP_TAC[FINITE_RESTRICT; FINITE_DELETE] THEN ANTS_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC GROUP_ZPOW THEN ASM SET_TAC[]; DISCH_THEN(SUBST1_TAC o SYM)] THEN MATCH_MP_TAC GROUP_SUM_EQ THEN X_GEN_TAC `b:A` THEN DISCH_TAC THEN SUBGOAL_THEN `(b:A) IN group_carrier G` MP_TAC THENL [ASM SET_TAC[]; ASM_SIMP_TAC[GSYM GROUP_ZPOW_MUL]]; ALL_TAC] THEN SUBGOAL_THEN `group_isomorphism (prod_group (subgroup_generated G {a'}) (subgroup_generated G (s DELETE a)), subgroup_generated G s') (\(x,y). group_mul G (x:A) y)` ASSUME_TAC THENL [REWRITE_TAC[GROUP_ISOMORPHISM_ALT] THEN REWRITE_TAC[PROD_GROUP; FORALL_PAIR_THM; IN_CROSS] THEN REWRITE_TAC[CONJUNCT2 SUBGROUP_GENERATED; PAIR_EQ] THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[LAMBDA_PAIR] THEN REWRITE_TAC[CROSS] THEN REWRITE_TAC[GSYM group_setmul; SET_RULE `IMAGE f {g(x,y) | P x y} = {f(g(x,y)) | P x y}`] THEN SUBGOAL_THEN `s' = {a':A} UNION (s DELETE a)` SUBST1_TAC THENL [ASM SET_TAC[]; ONCE_REWRITE_TAC[GSYM SUBGROUP_GENERATED_UNION]] THEN SIMP_TAC[GSYM SUBGROUP_GENERATED_SETMUL; SUBGROUP_SUBGROUP_GENERATED] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC CARRIER_SUBGROUP_GENERATED_SUBGROUP THEN ASM_SIMP_TAC[SUBGROUP_SETMUL; SUBGROUP_SUBGROUP_GENERATED]; REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN (MP_TAC o MATCH_MP (REWRITE_RULE[SUBSET] GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET))) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ABELIAN_GROUP_MUL_AC]) THEN SIMP_TAC[GROUP_MUL]; ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_BY_SING]] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC; IN_UNIV] THEN MAP_EVERY X_GEN_TAC [`n:int`; `b:A`] THEN STRIP_TAC THEN MATCH_MP_TAC(MESON[GROUP_MUL_LID] `(x IN group_carrier G /\ y IN group_carrier G) /\ (group_mul G x y = group_id G ==> x = group_id G) ==> group_mul G x y = group_id G ==> x = group_id G /\ y = group_id G`) THEN CONJ_TAC THENL [ASM_SIMP_TAC[GROUP_ZPOW] THEN ASM_MESON_TAC[GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET; SUBSET]; UNDISCH_TAC `(b:A) IN group_carrier (subgroup_generated G (s DELETE a))`] THEN W(MP_TAC o PART_MATCH (lhand o rand) CARRIER_SUBGROUP_GENERATED_FINITE o rand o lhand o snd) THEN ASM_REWRITE_TAC[FINITE_DELETE] THEN ANTS_TAC THENL [ASM SET_TAC[]; DISCH_THEN SUBST1_TAC] THEN SPEC_TAC(`b:A`,`b:A`) THEN REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV] THEN X_GEN_TAC `r:A->int` THEN DISCH_THEN(LABEL_TAC "-") THEN MATCH_MP_TAC GROUP_ZPOW_EQ_ID_DIVISOR THEN EXISTS_TAC `&m:int` THEN ASM_REWRITE_TAC[GROUP_NPOW; GSYM INT_REM_EQ_0] THEN FIRST_X_ASSUM(MP_TAC o SPECL [`s':A->bool`; `\x:A. if x = a' then n rem &m else r x`; `a':A`]) THEN ASM_REWRITE_TAC[LE_REFL] THEN MATCH_MP_TAC(TAUT `r /\ p ==> ~(p /\ ~q /\ r) ==> q`) THEN CONJ_TAC THENL [MATCH_MP_TAC(INT_ARITH `&0:int <= x /\ x < m ==> abs x < m`) THEN ASM_MESON_TAC[INT_DIVISION; INT_OF_NUM_EQ; INT_ABS_NUM; LE_1]; EXPAND_TAC "s'" THEN ASM_SIMP_TAC[ABELIAN_GROUP_SUM_CLAUSES; FINITE_RESTRICT; FINITE_DELETE; GROUP_ZPOW]] THEN REMOVE_THEN "-" (fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN BINOP_TAC THENL [ASM_SIMP_TAC[GROUP_ZPOW_EQ_ALT; GSYM GROUP_ZPOW_EQ_ID] THEN MATCH_MP_TAC GROUP_ZPOW_EQ_ID_DIVISOR THEN EXISTS_TAC `&m:int` THEN ASM_REWRITE_TAC[int_divides; GROUP_NPOW] THEN EXISTS_TAC `n div &m` THEN REWRITE_TAC[INT_ARITH `n - r:int = m * q <=> q * m + r = n`] THEN REWRITE_TAC[INT_DIVISION_SIMP]; MATCH_MP_TAC GROUP_SUM_EQ THEN ASM SET_TAC[]]; ALL_TAC] THEN REMOVE_THEN "*" (MP_TAC o SPEC `s DELETE (a:A)`) THEN ASM_SIMP_TAC[CARD_DELETE; FINITE_DELETE] THEN ANTS_TAC THENL [REWRITE_TAC[ARITH_RULE `r - 1 < r<=> ~(r = 0)`] THEN ASM_MESON_TAC[CARD_EQ_0; NOT_IN_EMPTY]; DISCH_THEN(X_CHOOSE_THEN `t:A->bool` STRIP_ASSUME_TAC)] THEN EXISTS_TAC `(a':A) INSERT t` THEN ASM_SIMP_TAC[FINITE_INSERT; CARD_CLAUSES] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC(ARITH_RULE `t <= r - 1 /\ ~(r = 0) ==> (if p then t else SUC t) <= r`) THEN ASM_MESON_TAC[CARD_EQ_0; NOT_IN_EMPTY]; ASM SET_TAC[]; ONCE_REWRITE_TAC[SET_RULE `a INSERT s = {a} UNION s`] THEN ONCE_REWRITE_TAC[GSYM SUBGROUP_GENERATED_UNION_RIGHT] THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[SUBGROUP_GENERATED_UNION_RIGHT] THEN AP_TERM_TAC THEN EXPAND_TAC "s'" THEN SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `~((a':A) IN t)` MP_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `~(a IN group_carrier (subgroup_generated G s)) ==> t SUBSET group_carrier (subgroup_generated G s) ==> ~(a IN t)`)) THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [SYM th]) THEN MATCH_MP_TAC SUBGROUP_GENERATED_SUBSET_CARRIER_SUBSET THEN ASM SET_TAC[]; DISCH_TAC] THEN MATCH_MP_TAC GROUP_ISOMORPHISM_EQ THEN EXISTS_TAC `(\(x,y). group_mul G x y) o (\(x,y). x a',group_sum (G:A group) t y) o (\f:A->A. RESTRICTION {a'} f,RESTRICTION t f)` THEN REWRITE_TAC[o_THM] THEN CONJ_TAC THENL [ALL_TAC; SIMP_TAC[SUM_GROUP_CLAUSES; IN_CARTESIAN_PRODUCT; IN_ELIM_THM] THEN X_GEN_TAC `z:A->A` THEN STRIP_TAC THEN ASM_SIMP_TAC[ABELIAN_GROUP_SUM_CLAUSES; FINITE_RESTRICT] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (SET_RULE `(!x. x IN a INSERT s ==> P x) ==> P a`)) THEN DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[SUBSET] GROUP_CARRIER_SUBGROUP_GENERATED_SUBSET)) THEN DISCH_TAC THEN ASM_REWRITE_TAC[RESTRICTION; IN_SING] THEN AP_TERM_TAC THEN MATCH_MP_TAC GROUP_SUM_EQ THEN SIMP_TAC[RESTRICTION]] THEN MATCH_MP_TAC GROUP_ISOMORPHISM_COMPOSE THEN EXISTS_TAC `prod_group (subgroup_generated G {a':A}) (subgroup_generated G (s DELETE a))` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC GROUP_ISOMORPHISM_COMPOSE THEN EXISTS_TAC `prod_group (sum_group {a'} (\x:A. subgroup_generated G {x})) (sum_group t (\x. subgroup_generated G {x}))` THEN CONJ_TAC THENL [SUBST1_TAC(SET_RULE `a' INSERT t = {a':A} UNION t`) THEN MATCH_MP_TAC GROUP_ISOMORPHISM_SUM_GROUP_DISJOINT_UNION THEN ASM SET_TAC[]; ASM_REWRITE_TAC[GROUP_ISOMORPHISM_PAIRED2; ETA_AX]] THEN REWRITE_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM] THEN MATCH_MP_TAC(TAUT `q /\ (q ==> p) ==> p /\ q`) THEN CONJ_TAC THENL [MATCH_MP_TAC GROUP_EPIMORPHISM_SUM_PROJECTION THEN REWRITE_TAC[IN_SING]; SIMP_TAC[group_monomorphism; group_epimorphism] THEN DISCH_THEN(K ALL_TAC)] THEN REWRITE_TAC[SUM_GROUP_CLAUSES; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[IN_ELIM_THM; IMP_CONJ] THEN REWRITE_TAC[CARTESIAN_PRODUCT_AS_RESTRICTIONS; FORALL_IN_GSPEC] THEN REWRITE_TAC[RESTRICTION_EXTENSION] THEN REWRITE_TAC[RESTRICTION; IN_SING; FORALL_UNWIND_THM2]);; let FINITELY_GENERATED_ABELIAN_SUBGROUP_STRUCTURE_ISOMORPHISM_ALT = prove (`!G (s:A->bool). abelian_group G /\ FINITE s ==> ?t. FINITE t /\ CARD t <= CARD s /\ t SUBSET group_carrier G /\ subgroup_generated G t = subgroup_generated G s /\ group_isomorphism (product_group t (\x. subgroup_generated G {x}), subgroup_generated G s) (group_sum G t)`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP FINITELY_GENERATED_ABELIAN_SUBGROUP_STRUCTURE_ISOMORPHISM) THEN MATCH_MP_TAC MONO_EXISTS THEN MESON_TAC[SUM_GROUP_EQ_PRODUCT_GROUP]);; let FINITELY_GENERATED_ABELIAN_SUBGROUP_STRUCTURE_EXPLICIT = prove (`!G (s:A->bool). abelian_group G /\ FINITE s ==> ?t. FINITE t /\ CARD t <= CARD s /\ t SUBSET group_carrier G /\ subgroup_generated G t = subgroup_generated G s /\ subgroup_generated G s isomorphic_group sum_group t (\x. subgroup_generated G {x})`, REPEAT GEN_TAC THEN DISCH_TAC THEN ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN FIRST_ASSUM(MP_TAC o MATCH_MP FINITELY_GENERATED_ABELIAN_SUBGROUP_STRUCTURE_ISOMORPHISM) THEN MATCH_MP_TAC MONO_EXISTS THEN REWRITE_TAC[isomorphic_group] THEN MESON_TAC[]);; let FINITELY_GENERATED_ABELIAN_SUBGROUP_STRUCTURE_EXPLICIT_ALT = prove (`!G (s:A->bool). abelian_group G /\ FINITE s ==> ?t. FINITE t /\ CARD t <= CARD s /\ t SUBSET group_carrier G /\ subgroup_generated G t = subgroup_generated G s /\ subgroup_generated G s isomorphic_group product_group t (\x. subgroup_generated G {x})`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP FINITELY_GENERATED_ABELIAN_SUBGROUP_STRUCTURE_EXPLICIT) THEN MATCH_MP_TAC MONO_EXISTS THEN MESON_TAC[SUM_GROUP_EQ_PRODUCT_GROUP]);; let FINITELY_GENERATED_ABELIAN_GROUP_STRUCTURE_EXPLICIT = prove (`!G:A group. finitely_generated_group G /\ abelian_group G <=> ?t. FINITE t /\ t SUBSET group_carrier G /\ G isomorphic_group sum_group t (\x. subgroup_generated G {x})`, GEN_TAC THEN EQ_TAC THEN STRIP_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [FINITELY_GENERATED_GROUP]) THEN DISCH_THEN(X_CHOOSE_THEN `s:A->bool` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`G:A group`; `s:A->bool`] FINITELY_GENERATED_ABELIAN_SUBGROUP_STRUCTURE_EXPLICIT) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[]; FIRST_ASSUM(SUBST1_TAC o MATCH_MP ISOMORPHIC_GROUP_FINITE_GENERATION) THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP ISOMORPHIC_GROUP_ABELIANNESS) THEN ASM_REWRITE_TAC[FINITELY_GENERATED_SUM_GROUP; ABELIAN_SUM_GROUP] THEN ASM_SIMP_TAC[FINITE_RESTRICT; CYCLIC_IMP_FINITELY_GENERATED_GROUP; CYCLIC_IMP_ABELIAN_GROUP; CYCLIC_GROUP_GENERATED]]);; let FINITELY_GENERATED_ABELIAN_GROUP_STRUCTURE_EXPLICIT_ALT = prove (`!G:A group. finitely_generated_group G /\ abelian_group G <=> ?t. FINITE t /\ t SUBSET group_carrier G /\ G isomorphic_group product_group t (\x. subgroup_generated G {x})`, REWRITE_TAC[FINITELY_GENERATED_ABELIAN_GROUP_STRUCTURE_EXPLICIT] THEN MESON_TAC[SUM_GROUP_EQ_PRODUCT_GROUP]);; let FINITELY_GENERATED_ABELIAN_GROUP_AS_SUM_OF_CYCLIC_GROUPS = prove (`!G:A group. finitely_generated_group G /\ abelian_group G <=> ?n H:num->A group. (!i. 1 <= i /\ i <= n ==> cyclic_group (H i)) /\ G isomorphic_group sum_group (1..n) H`, GEN_TAC THEN EQ_TAC THENL [GEN_REWRITE_TAC LAND_CONV [FINITELY_GENERATED_ABELIAN_GROUP_STRUCTURE_EXPLICIT] THEN DISCH_THEN(X_CHOOSE_THEN `t:A->bool` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`t:A->bool`; `1..CARD(t:A->bool)`] CARD_EQ_BIJECTIONS) THEN ASM_REWRITE_TAC[FINITE_NUMSEG; CARD_NUMSEG_1; LEFT_IMP_EXISTS_THM] THEN ABBREV_TAC `n = CARD(t:A->bool)` THEN REWRITE_TAC[GSYM IN_NUMSEG] THEN MAP_EVERY X_GEN_TAC [`f:A->num`; `g:num->A`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`n:num`; `\i. subgroup_generated G {(g:num->A) i}`] THEN REWRITE_TAC[CYCLIC_GROUP_GENERATED] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] ISOMORPHIC_GROUP_TRANS)) THEN MATCH_MP_TAC ISOMORPHIC_SUM_GROUP_BIJECTIONS THEN MAP_EVERY EXISTS_TAC [`f:A->num`; `g:num->A`] THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[ISOMORPHIC_GROUP_REFL]; STRIP_TAC THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP ISOMORPHIC_GROUP_FINITE_GENERATION) THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP ISOMORPHIC_GROUP_ABELIANNESS) THEN REWRITE_TAC[FINITELY_GENERATED_SUM_GROUP; ABELIAN_SUM_GROUP] THEN ASM_SIMP_TAC[FINITE_RESTRICT; CYCLIC_IMP_FINITELY_GENERATED_GROUP; CYCLIC_IMP_ABELIAN_GROUP; FINITE_NUMSEG; IN_NUMSEG]]);; let FINITELY_GENERATED_ABELIAN_GROUP_AS_PRODUCT_OF_CYCLIC_GROUPS = prove (`!G:A group. finitely_generated_group G /\ abelian_group G <=> ?n H:num->A group. (!i. 1 <= i /\ i <= n ==> cyclic_group (H i)) /\ G isomorphic_group product_group (1..n) H`, REWRITE_TAC[FINITELY_GENERATED_ABELIAN_GROUP_AS_SUM_OF_CYCLIC_GROUPS] THEN SIMP_TAC[SUM_GROUP_EQ_PRODUCT_GROUP; FINITE_NUMSEG]);; let FINITELY_GENERATED_ABELIAN_GROUP_AS_SUM_OF_INTEGER_MOD_GROUPS = prove (`!G:A group. finitely_generated_group G /\ abelian_group G <=> ?n d. G isomorphic_group sum_group (1..n) (\i. integer_mod_group(d i))`, GEN_TAC THEN EQ_TAC THENL [REWRITE_TAC[FINITELY_GENERATED_ABELIAN_GROUP_AS_SUM_OF_CYCLIC_GROUPS] THEN REWRITE_TAC[ISOMORPHIC_GROUP_CYCLIC_INTEGER] THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM; SKOLEM_THM; LEFT_AND_EXISTS_THM] THEN GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [SWAP_EXISTS_THM] THEN REWRITE_TAC[GSYM IN_NUMSEG] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `n:num` THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:num->num` THEN STRIP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] ISOMORPHIC_GROUP_TRANS)) THEN MATCH_MP_TAC ISOMORPHIC_GROUP_SUM_GROUP THEN ASM_REWRITE_TAC[]; STRIP_TAC THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP ISOMORPHIC_GROUP_FINITE_GENERATION) THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP ISOMORPHIC_GROUP_ABELIANNESS) THEN REWRITE_TAC[FINITELY_GENERATED_SUM_GROUP; ABELIAN_SUM_GROUP] THEN ASM_SIMP_TAC[FINITE_RESTRICT; CYCLIC_IMP_FINITELY_GENERATED_GROUP; FINITE_NUMSEG; CYCLIC_IMP_ABELIAN_GROUP; CYCLIC_GROUP_INTEGER_MOD_GROUP]]);; let FINITELY_GENERATED_ABELIAN_GROUP_AS_PRODUCT_OF_INTEGER_MOD_GROUPS = prove (`!G:A group. finitely_generated_group G /\ abelian_group G <=> ?n d. G isomorphic_group product_group (1..n) (\i. integer_mod_group(d i))`, REWRITE_TAC [FINITELY_GENERATED_ABELIAN_GROUP_AS_SUM_OF_INTEGER_MOD_GROUPS] THEN SIMP_TAC[SUM_GROUP_EQ_PRODUCT_GROUP; FINITE_NUMSEG]);; let FINITELY_GENERATED_ABELIAN_GROUP_AS_SUM_OF_INTEGER_GROUPS = prove (`!G:A group. finitely_generated_group G /\ abelian_group G /\ (!x. x IN group_carrier G ==> group_element_order G x <= 1) <=> ?n. G isomorphic_group sum_group (1..n) (\i. integer_group)`, GEN_TAC THEN EQ_TAC THENL [REWRITE_TAC[CONJ_ASSOC; FINITELY_GENERATED_ABELIAN_GROUP_AS_SUM_OF_INTEGER_MOD_GROUPS] THEN REWRITE_TAC[LEFT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`n:num`; `d:num->num`] THEN REWRITE_TAC[IMP_CONJ] THEN DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP ISOMORPHIC_GROUP_TORSION th] THEN MP_TAC th) THEN W(MP_TAC o PART_MATCH rand ISOMORPHIC_SUM_GROUP_SUPPORT o rand o lhand o snd) THEN GEN_REWRITE_TAC LAND_CONV [ISOMORPHIC_GROUP_SYM] THEN GEN_REWRITE_TAC I [GSYM IMP_CONJ_ALT] THEN DISCH_THEN(MP_TAC o MATCH_MP ISOMORPHIC_GROUP_TRANS) THEN REWRITE_TAC[TRIVIAL_INTEGER_MOD_GROUP] THEN REPEAT STRIP_TAC THEN ABBREV_TAC `m = CARD {i | i IN 1..n /\ ~(d i = 1)}` THEN EXISTS_TAC `m:num` THEN MP_TAC(ISPECL [`{i | i IN 1..n /\ ~(d i = 1)}`; `1..m`] CARD_EQ_BIJECTIONS) THEN ASM_SIMP_TAC[CARD_NUMSEG_1; FINITE_NUMSEG; FINITE_RESTRICT] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; IN_ELIM_THM] THEN MAP_EVERY X_GEN_TAC [`f:num->num`; `g:num->num`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] ISOMORPHIC_GROUP_TRANS)) THEN MATCH_MP_TAC ISOMORPHIC_SUM_GROUP_BIJECTIONS THEN MAP_EVERY EXISTS_TAC [`f:num->num`; `g:num->num`] THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN REWRITE_TAC[GSYM INTEGER_MOD_GROUP_TRIVIAL] THEN REWRITE_TAC[ISOMORPHIC_INTEGER_MOD_GROUPS] THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN MATCH_MP_TAC(TAUT `(~p ==> F) ==> p`) THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `RESTRICTION (1..n) (\j. if j = i then &1 else group_id (integer_mod_group(d j)))` o REWRITE_RULE[TORSION_FREE_GROUP]) THEN SIMP_TAC[GROUP_ELEMENT_ORDER_SUM_GROUP_EQ_0] THEN REWRITE_TAC[GROUP_SUM_INJECTION] THEN ASM_REWRITE_TAC[INTEGER_MOD_GROUP_1; SUM_GROUP_CLAUSES] THEN REWRITE_TAC[RESTRICTION_EXTENSION; INTEGER_MOD_GROUP] THEN ONCE_REWRITE_TAC[TAUT `p /\ q <=> ~(p ==> ~q)`] THEN SIMP_TAC[RESTRICTION] THEN ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN REWRITE_TAC[GROUP_ELEMENT_ORDER_INTEGER_MOD_GROUP] THEN REWRITE_TAC[INT_OF_NUM_EQ] THEN CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[NOT_EXISTS_THM] THEN X_GEN_TAC `j:num` THEN ASM_CASES_TAC `j:num = i` THEN ASM_REWRITE_TAC[GCD_1; DIV_1] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[ARITH_EQ; GCD_0] THEN ASM_SIMP_TAC[DIV_REFL; ARITH_EQ]; STRIP_TAC THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP ISOMORPHIC_GROUP_FINITE_GENERATION) THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP ISOMORPHIC_GROUP_ABELIANNESS) THEN REWRITE_TAC[FINITELY_GENERATED_SUM_GROUP; ABELIAN_SUM_GROUP] THEN ASM_SIMP_TAC[FINITE_RESTRICT; CYCLIC_IMP_FINITELY_GENERATED_GROUP; FINITE_NUMSEG; CYCLIC_IMP_ABELIAN_GROUP; CYCLIC_INTEGER_GROUP] THEN FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP ISOMORPHIC_GROUP_TORSION th]) THEN REWRITE_TAC[TORSION_FREE_GROUP] THEN SIMP_TAC[GROUP_ELEMENT_ORDER_SUM_GROUP_EQ_0] THEN SIMP_TAC[GROUP_ELEMENT_ORDER_INTEGER_GROUP; INTEGER_GROUP] THEN REWRITE_TAC[SUM_GROUP_CLAUSES; IMP_CONJ; IN_ELIM_THM] THEN REWRITE_TAC[CARTESIAN_PRODUCT_AS_RESTRICTIONS; FORALL_IN_GSPEC; IMP_CONJ; RESTRICTION_EXTENSION; INTEGER_GROUP] THEN GEN_TAC THEN DISCH_TAC THEN DISCH_TAC THEN REWRITE_TAC[NOT_FORALL_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN SIMP_TAC[NOT_IMP; RESTRICTION]]);; let FINITELY_GENERATED_ABELIAN_GROUP_AS_PRODUCT_OF_INTEGER_GROUPS = prove (`!G:A group. finitely_generated_group G /\ abelian_group G /\ (!x. x IN group_carrier G ==> group_element_order G x <= 1) <=> ?n. G isomorphic_group product_group (1..n) (\i. integer_group)`, REWRITE_TAC[FINITELY_GENERATED_ABELIAN_GROUP_AS_SUM_OF_INTEGER_GROUPS] THEN SIMP_TAC[SUM_GROUP_EQ_PRODUCT_GROUP; FINITE_NUMSEG]);; (* ------------------------------------------------------------------------- *) (* Free Abelian groups on a set, using the "frag" type constructor. *) (* ------------------------------------------------------------------------- *) let free_abelian_group = new_definition `free_abelian_group (s:A->bool) = group({c | frag_support c SUBSET s},frag_0,frag_neg,frag_add)`;; let FREE_ABELIAN_GROUP = prove (`(!s:A->bool. group_carrier(free_abelian_group s) = {c | frag_support c SUBSET s}) /\ (!s:A->bool. group_id(free_abelian_group s) = frag_0) /\ (!s:A->bool. group_inv(free_abelian_group s) = frag_neg) /\ (!s:A->bool. group_mul(free_abelian_group s) = frag_add)`, REWRITE_TAC[AND_FORALL_THM] THEN GEN_TAC THEN MP_TAC(fst(EQ_IMP_RULE (ISPEC(rand(rand(snd(strip_forall(concl free_abelian_group))))) (CONJUNCT2 group_tybij)))) THEN REWRITE_TAC[GSYM free_abelian_group] THEN ANTS_TAC THENL [SIMP_TAC[IN_ELIM_THM; FRAG_SUPPORT_NEG; FRAG_SUPPORT_0; EMPTY_SUBSET] THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH lhand FRAG_SUPPORT_ADD o lhand o snd) THEN ASM SET_TAC[]; REPEAT STRIP_TAC THEN CONV_TAC FRAG_MODULE]; SIMP_TAC[group_carrier; group_id; group_inv; group_mul]]);; let ABELIAN_FREE_ABELIAN_GROUP = prove (`!s:A->bool. abelian_group(free_abelian_group s)`, REWRITE_TAC[abelian_group; FREE_ABELIAN_GROUP] THEN REPEAT STRIP_TAC THEN CONV_TAC FRAG_MODULE);; let FREE_ABELIAN_GROUP_POW = prove (`!(s:A->bool) x n. group_pow (free_abelian_group s) x n = frag_cmul (&n) x`, GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[FREE_ABELIAN_GROUP; group_pow; GSYM INT_OF_NUM_SUC] THEN CONV_TAC FRAG_MODULE);; let FREE_ABELIAN_GROUP_ZPOW = prove (`!(s:A->bool) x n. group_zpow (free_abelian_group s) x n = frag_cmul n x`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[FORALL_INT_CASES] THEN REWRITE_TAC[GROUP_ZPOW_POW; FREE_ABELIAN_GROUP_POW; FREE_ABELIAN_GROUP] THEN CONV_TAC FRAG_MODULE);; let FRAG_OF_IN_FREE_ABELIAN_GROUP = prove (`!s x:A. frag_of x IN group_carrier(free_abelian_group s) <=> x IN s`, REWRITE_TAC[FREE_ABELIAN_GROUP; FRAG_SUPPORT_OF; SING_SUBSET; IN_ELIM_THM]);; let FREE_ABELIAN_GROUP_INDUCT = prove (`!P s:A->bool. P(frag_0) /\ (!x y. x IN group_carrier(free_abelian_group s) /\ y IN group_carrier(free_abelian_group s) /\ P x /\ P y ==> P(frag_sub x y)) /\ (!a. a IN s ==> P(frag_of a)) ==> !x. x IN group_carrier(free_abelian_group s) ==> P x`, REPEAT GEN_TAC THEN REWRITE_TAC[FREE_ABELIAN_GROUP; IN_ELIM_THM] THEN STRIP_TAC THEN ONCE_REWRITE_TAC[TAUT `p ==> q <=> p ==> p /\ q`] THEN MATCH_MP_TAC FRAG_INDUCTION THEN ASM_SIMP_TAC[FRAG_SUPPORT_OF; FRAG_SUPPORT_0; EMPTY_SUBSET; SING_SUBSET] THEN ASM_MESON_TAC[FRAG_SUPPORT_SUB; SUBSET_TRANS; UNION_SUBSET]);; let FREE_ABELIAN_GROUP_UNIVERSAL = prove (`!(f:A->B) s G. IMAGE f s SUBSET group_carrier G /\ abelian_group G ==> ?h. group_homomorphism(free_abelian_group s,G) h /\ !x. x IN s ==> h(frag_of x) = f x`, REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `\x. iterate (group_add G) s (\a. group_zpow G ((f:A->B) a) (dest_frag x a))` THEN REWRITE_TAC[] THEN CONJ_TAC THENL [ALL_TAC; X_GEN_TAC `x:A` THEN DISCH_TAC THEN TRANS_TAC EQ_TRANS `iterate (group_add G) {x} (\a. group_zpow G ((f:A->B) a) (dest_frag (frag_of x) a))` THEN CONJ_TAC THENL [FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP ITERATE_SUPERSET o GEN_REWRITE_RULE I [GSYM MONOIDAL_GROUP_ADD]) THEN SIMP_TAC[IN_UNIV; IN_SING; SUBSET; DEST_FRAG_OF; NEUTRAL_GROUP_ADD] THEN ASM_REWRITE_TAC[GROUP_ZPOW_0]; ASM_SIMP_TAC[ITERATE_SING; MONOIDAL_GROUP_ADD] THEN ASM_SIMP_TAC[DEST_FRAG_OF; GROUP_ZPOW_1]]] THEN REWRITE_TAC[GROUP_HOMOMORPHISM; SUBSET; FORALL_IN_IMAGE] THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [FIRST_ASSUM(MP_TAC o ISPEC `\x:B. x IN group_carrier G` o MATCH_MP ITERATE_CLOSED o GEN_REWRITE_RULE I [GSYM MONOIDAL_GROUP_ADD]) THEN REWRITE_TAC[GROUP_ID; NEUTRAL_GROUP_ADD; GROUP_ADD] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[FREE_ABELIAN_GROUP; SUBSET; IN_ELIM_THM]) THEN X_GEN_TAC `a:A` THEN ASM_CASES_TAC `dest_frag x (a:A) = &0` THEN ASM_REWRITE_TAC[GROUP_ZPOW_0] THEN STRIP_TAC THEN MATCH_MP_TAC GROUP_ZPOW THEN RULE_ASSUM_TAC(REWRITE_RULE[frag_support]) THEN ASM SET_TAC[]; DISCH_TAC] THEN ASM_SIMP_TAC[GSYM GROUP_ADD_EQ_MUL] THEN MAP_EVERY X_GEN_TAC [`x:A frag`; `y:A frag`] THEN STRIP_TAC THEN FIRST_ASSUM(fun th -> W(MP_TAC o PART_MATCH (rand o rand) (MATCH_MP ITERATE_OP_GEN (GEN_REWRITE_RULE I [GSYM MONOIDAL_GROUP_ADD] th)) o rand o snd)) THEN REWRITE_TAC[] THEN ANTS_TAC THENL [CONJ_TAC THEN MATCH_MP_TAC FINITE_SUBSET THENL [EXISTS_TAC `frag_support x:A->bool`; EXISTS_TAC `frag_support y:A->bool`] THEN REWRITE_TAC[FINITE_FRAG_SUPPORT] THEN REWRITE_TAC[support; frag_support; FREE_ABELIAN_GROUP] THEN SIMP_TAC[SUBSET; IN_ELIM_THM; IN_UNIV; CONTRAPOS_THM; IMP_CONJ] THEN REWRITE_TAC[NEUTRAL_GROUP_ADD; GROUP_NPOW; group_pow]; DISCH_THEN(SUBST1_TAC o SYM)] THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP ITERATE_EQ o GEN_REWRITE_RULE I [GSYM MONOIDAL_GROUP_ADD]) THEN ASM_SIMP_TAC[GROUP_ADD_EQ_MUL; FREE_ABELIAN_GROUP; DEST_FRAG_ADD; GROUP_ZPOW_ADD; GROUP_ZPOW]);; let ISOMORPHIC_GROUP_INTEGER_FREE_ABELIAN_GROUP_SING = prove (`!x:A. integer_group isomorphic_group free_abelian_group {x}`, GEN_TAC THEN REWRITE_TAC[isomorphic_group] THEN EXISTS_TAC `\n. frag_cmul n (frag_of(x:A))` THEN REWRITE_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM; GROUP_MONOMORPHISM_ALT; GROUP_EPIMORPHISM_ALT; group_image] THEN REWRITE_TAC[group_homomorphism; INTEGER_GROUP; FREE_ABELIAN_GROUP] THEN REWRITE_TAC[IN_UNIV; FRAG_OF_NONZERO; FRAG_MODULE `frag_cmul (--n) x = frag_neg(frag_cmul n x)`; FRAG_MODULE `frag_cmul(a + b) c = frag_add (frag_cmul a c) (frag_cmul b c)`; FRAG_MODULE `frag_cmul c x = frag_0 <=> c = &0 \/ x = frag_0`] THEN ONCE_REWRITE_TAC[SUBSET] THEN REWRITE_TAC[FORALL_IN_IMAGE; IN_ELIM_THM; IN_UNIV] THEN REWRITE_TAC[TAUT `p /\ p /\ q <=> p /\ q`] THEN CONJ_TAC THENL [MESON_TAC[FRAG_SUPPORT_CMUL; FRAG_SUPPORT_OF]; ALL_TAC] THEN MATCH_MP_TAC FRAG_INDUCTION THEN REWRITE_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY; IN_IMAGE; IN_UNIV] THEN MESON_TAC[FRAG_MODULE `frag_cmul (&0) x = frag_0`; FRAG_MODULE `frag_cmul (&1) x = x`; FRAG_MODULE `frag_sub (frag_cmul a c) (frag_cmul b c) = frag_cmul (a - b) c`]);; let GROUP_HOMOMORPHISM_FREE_ABELIAN_GROUPS_ID = prove (`!k k':A->bool. group_homomorphism (free_abelian_group k,free_abelian_group k') (\x. x) <=> k SUBSET k'`, REWRITE_TAC[group_homomorphism; SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[FREE_ABELIAN_GROUP; IN_ELIM_THM] THEN REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_TAC; SET_TAC[]] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `frag_of(x:A)`) THEN ASM_REWRITE_TAC[FRAG_SUPPORT_OF; SING_SUBSET]);; let GROUP_ISOMORPHISM_FREE_ABELIAN_GROUP_SUM = prove (`!k (f:K->A->bool). pairwise (\i j. DISJOINT (f i) (f j)) k ==> group_isomorphism (sum_group k (\i. free_abelian_group(f i)), free_abelian_group(UNIONS {f i | i IN k})) (iterate frag_add k)`, REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM; GROUP_EPIMORPHISM_ALT; GROUP_MONOMORPHISM_ALT] THEN MATCH_MP_TAC(TAUT `p /\ q /\ (p ==> r) ==> (p /\ q) /\ (p /\ r)`) THEN CONJ_TAC THENL [REWRITE_TAC[GROUP_HOMOMORPHISM; SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[SUM_GROUP_CLAUSES; FREE_ABELIAN_GROUP; IN_ELIM_THM] THEN REWRITE_TAC[cartesian_product; IN_ELIM_THM] THEN REPEAT STRIP_TAC THENL [W(MP_TAC o PART_MATCH lhand FRAG_SUPPORT_SUM o lhand o snd) THEN ASM SET_TAC[]; W(MP_TAC o PART_MATCH (rand o rand) (MATCH_MP ITERATE_OP_GEN MONOIDAL_FRAG_ADD) o rand o snd) THEN ASM_REWRITE_TAC[support; NEUTRAL_FRAG_ADD] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC(MATCH_MP ITERATE_EQ MONOIDAL_FRAG_ADD) THEN SIMP_TAC[RESTRICTION]]; ONCE_REWRITE_TAC[SUBSET]] THEN CONJ_TAC THENL [REWRITE_TAC[FREE_ABELIAN_GROUP; SUM_GROUP_CLAUSES; IN_ELIM_THM] THEN REWRITE_TAC[cartesian_product; IN_ELIM_THM; EXTENSIONAL] THEN X_GEN_TAC `x:K->A frag` THEN STRIP_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `i:K` THEN ASM_CASES_TAC `(i:K) IN k` THEN ASM_SIMP_TAC[RESTRICTION] THEN REWRITE_TAC[GSYM FRAG_SUPPORT_EQ_EMPTY] THEN SUBGOAL_THEN `iterate frag_add (i INSERT (k DELETE i)) (x:K->A frag) = frag_0` MP_TAC THENL [ASM_SIMP_TAC[SET_RULE `x IN s ==> x INSERT (s DELETE x) = s`]; W(MP_TAC o PART_MATCH (lhand o rand) (CONJUNCT2(MATCH_MP ITERATE_CLAUSES_GEN MONOIDAL_FRAG_ADD)) o lhand o lhand o snd)] THEN REWRITE_TAC[IN_DELETE] THEN ANTS_TAC THENL [REWRITE_TAC[support; NEUTRAL_FRAG_ADD] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN SET_TAC[]; DISCH_THEN SUBST1_TAC] THEN REWRITE_TAC[FREE_ABELIAN_GROUP; FRAG_MODULE `frag_add x y = frag_0 <=> y = frag_neg x`] THEN DISCH_THEN(MP_TAC o MATCH_MP(MESON[FRAG_SUPPORT_NEG] `x = frag_neg y ==> frag_support x = frag_support y`)) THEN MATCH_MP_TAC(SET_RULE `!u. s SUBSET u /\ DISJOINT t u ==> s = t ==> t = {}`) THEN EXISTS_TAC `UNIONS {(f:K->A->bool) j | j IN (k DELETE i)}` THEN CONJ_TAC THENL [W(MP_TAC o PART_MATCH lhand FRAG_SUPPORT_SUM o lhand o snd) THEN ASM SET_TAC[]; FIRST_X_ASSUM(MP_TAC o SPEC `i:K`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(SET_RULE `DISJOINT t u ==> s SUBSET t ==> DISJOINT s u`) THEN REWRITE_TAC[SET_RULE `DISJOINT a (UNIONS {f i | i IN s}) <=> !i. i IN s ==> DISJOINT a (f i)`] THEN X_GEN_TAC `j:K` THEN REWRITE_TAC[IN_DELETE] THEN STRIP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[pairwise]) THEN ASM_MESON_TAC[]]; DISCH_THEN(ASSUME_TAC o MATCH_MP SUBGROUP_GROUP_IMAGE) THEN REWRITE_TAC[FREE_ABELIAN_GROUP; IN_ELIM_THM] THEN MATCH_MP_TAC FRAG_INDUCTION THEN REPEAT CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o MATCH_MP IN_SUBGROUP_ID) THEN REWRITE_TAC[FREE_ABELIAN_GROUP]; ALL_TAC; FIRST_X_ASSUM(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ; RIGHT_FORALL_IMP_THM] IN_SUBGROUP_DIV)) THEN REWRITE_TAC[FREE_ABELIAN_GROUP; group_div] THEN SIMP_TAC[FRAG_MODULE `frag_add x (frag_neg y) = frag_sub x y`]] THEN REWRITE_TAC[FORALL_IN_UNIONS] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN X_GEN_TAC `i:K` THEN DISCH_TAC THEN X_GEN_TAC `a:A` THEN DISCH_TAC THEN REWRITE_TAC[group_image; IN_IMAGE] THEN EXISTS_TAC `RESTRICTION k (\j:K. if j = i then frag_of(a:A) else frag_0)` THEN REWRITE_TAC[SUM_GROUP_CLAUSES; IN_ELIM_THM; RESTRICTION_IN_CARTESIAN_PRODUCT] THEN REWRITE_TAC[FREE_ABELIAN_GROUP] THEN REPEAT CONJ_TAC THENL [TRANS_TAC EQ_TRANS `iterate frag_add {i} (RESTRICTION k (\j:K. if j = i then frag_of(a:A) else frag_0))` THEN CONJ_TAC THENL [SIMP_TAC[MATCH_MP ITERATE_SING MONOIDAL_FRAG_ADD] THEN ASM_REWRITE_TAC[RESTRICTION]; CONV_TAC SYM_CONV THEN MATCH_MP_TAC(REWRITE_RULE [IMP_IMP; RIGHT_IMP_FORALL_THM] ITERATE_SUPERSET) THEN REWRITE_TAC[MONOIDAL_FRAG_ADD] THEN ASM_REWRITE_TAC[SING_SUBSET; IN_SING; NEUTRAL_FRAG_ADD] THEN SIMP_TAC[RESTRICTION; IN_ELIM_THM]]; REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[IN_ELIM_THM; FRAG_SUPPORT_OF; SING_SUBSET] THEN REWRITE_TAC[FRAG_SUPPORT_0; EMPTY_SUBSET]; MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{i:K}` THEN REWRITE_TAC[FINITE_SING; SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `j:K` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[RESTRICTION; IN_SING] THEN MESON_TAC[]]]);; let ISOMORPHIC_FREE_ABELIAN_GROUP_UNIONS = prove (`!k:(A->bool)->bool. pairwise DISJOINT k ==> free_abelian_group(UNIONS k) isomorphic_group sum_group k free_abelian_group`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN MP_TAC(ISPECL [`k:(A->bool)->bool`; `\x:A->bool. x`] GROUP_ISOMORPHISM_FREE_ABELIAN_GROUP_SUM) THEN ASM_REWRITE_TAC[ETA_AX] THEN DISCH_THEN(MP_TAC o MATCH_MP GROUP_ISOMORPHISM_IMP_ISOMORPHIC) THEN REWRITE_TAC[IN_GSPEC]);; let ISOMORPHIC_SUM_INTEGER_GROUP = prove (`!k:A->bool. sum_group k (\i. integer_group) isomorphic_group free_abelian_group k`, GEN_TAC THEN TRANS_TAC ISOMORPHIC_GROUP_TRANS `sum_group k (\i:A. free_abelian_group {i})` THEN CONJ_TAC THENL [MATCH_MP_TAC ISOMORPHIC_GROUP_SUM_GROUP THEN REWRITE_TAC[ISOMORPHIC_GROUP_INTEGER_FREE_ABELIAN_GROUP_SING]; MP_TAC(ISPECL [`k:A->bool`; `\x:A. {x}`] GROUP_ISOMORPHISM_FREE_ABELIAN_GROUP_SUM) THEN REWRITE_TAC[pairwise; UNIONS_SINGS] THEN ANTS_TAC THENL [SET_TAC[]; ALL_TAC] THEN MESON_TAC[isomorphic_group]]);; let CARD_EQ_FREE_ABELIAN_GROUP_INFINITE = prove (`!s:A->bool. INFINITE s ==> group_carrier(free_abelian_group s) =_c s`, REPEAT STRIP_TAC THEN REWRITE_TAC[FREE_ABELIAN_GROUP] THEN REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN CONJ_TAC THENL [TRANS_TAC CARD_LE_TRANS `{f | IMAGE f s SUBSET (:int) /\ {x | ~(f x = &0)} SUBSET s /\ FINITE {x:A | ~(f x = &0)}}` THEN CONJ_TAC THENL [REWRITE_TAC[SUBSET_UNIV; le_c] THEN EXISTS_TAC `dest_frag:A frag->A->int` THEN SIMP_TAC[GSYM FRAG_EQ] THEN REWRITE_TAC[IN_ELIM_THM; FINITE_FRAG_SUPPORT; GSYM frag_support]; W(MP_TAC o PART_MATCH lhand CARD_LE_RESTRICTED_FUNSPACE o lhand o snd) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_TRANS) THEN MATCH_MP_TAC CARD_EQ_IMP_LE THEN W(MP_TAC o PART_MATCH (lhand o rand) CARD_EQ_FINITE_SUBSETS o lhand o snd) THEN REWRITE_TAC[INFINITE; FINITE_CROSS_EQ] THEN ASM_SIMP_TAC[INFINITE_NONEMPTY; UNIV_NOT_EMPTY] THEN ASM_REWRITE_TAC[DE_MORGAN_THM; GSYM INFINITE] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_EQ_TRANS) THEN REWRITE_TAC[CROSS; GSYM mul_c] THEN W(MP_TAC o PART_MATCH lhand CARD_MUL_SYM o lhand o snd) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_EQ_TRANS) THEN MATCH_MP_TAC CARD_MUL_ABSORB THEN ASM_REWRITE_TAC[UNIV_NOT_EMPTY] THEN MATCH_MP_TAC CARD_LE_COUNTABLE_INFINITE THEN ASM_REWRITE_TAC[INT_COUNTABLE]]; REWRITE_TAC[le_c] THEN EXISTS_TAC `frag_of:A->A frag` THEN REWRITE_TAC[IN_ELIM_THM; FRAG_SUPPORT_OF; SING_SUBSET] THEN SIMP_TAC[FRAG_OF_EQ]]);; let CARD_EQ_HOMOMORPHISMS_FROM_FREE_ABELIAN_GROUP = prove (`!(s:A->bool) (G:B group). abelian_group G ==> {f | EXTENSIONAL (group_carrier(free_abelian_group s)) f /\ group_homomorphism(free_abelian_group s,G) f} =_c (group_carrier G) ^_c s`, REPEAT STRIP_TAC THEN REWRITE_TAC[EXP_C; eq_c] THEN EXISTS_TAC `\(f:(A)frag->B). RESTRICTION s (f o frag_of)` THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; FORALL_IN_IMAGE] THEN REWRITE_TAC[REWRITE_RULE[IN] RESTRICTION_IN_EXTENSIONAL] THEN CONJ_TAC THENL [SIMP_TAC[group_homomorphism; RESTRICTION; o_THM; FREE_ABELIAN_GROUP; SUBSET; FORALL_IN_IMAGE] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[IN_ELIM_THM; FRAG_SUPPORT_OF; IN_SING]; X_GEN_TAC `f:A->B` THEN STRIP_TAC] THEN REWRITE_TAC[EXISTS_UNIQUE_DEF] THEN CONJ_TAC THENL [MP_TAC(ISPECL [`f:A->B`; `s:A->bool`; `G:B group`] FREE_ABELIAN_GROUP_UNIVERSAL) THEN ASM_REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `g:(A)frag->B` THEN STRIP_TAC THEN EXISTS_TAC `RESTRICTION (group_carrier(free_abelian_group s)) (g:A frag->B)` THEN REWRITE_TAC[REWRITE_RULE[IN] RESTRICTION_IN_EXTENSIONAL] THEN CONJ_TAC THENL [UNDISCH_TAC `group_homomorphism(free_abelian_group s,G) (g:A frag->B)` THEN REWRITE_TAC[GROUP_HOMOMORPHISM; SUBSET; FORALL_IN_IMAGE] THEN SIMP_TAC[RESTRICTION; GROUP_MUL]; UNDISCH_TAC `EXTENSIONAL s (f:A->B)` THEN SIMP_TAC[EXTENSIONAL; RESTRICTION; FUN_EQ_THM; IN_ELIM_THM; o_THM] THEN DISCH_TAC THEN X_GEN_TAC `x:A` THEN ASM_CASES_TAC `(x:A) IN s` THEN ASM_SIMP_TAC[FREE_ABELIAN_GROUP; FRAG_SUPPORT_OF; SING_SUBSET; IN_ELIM_THM]]; MAP_EVERY X_GEN_TAC [`g:A frag->B`; `h:A frag->B`] THEN REWRITE_TAC[FUN_EQ_THM; EXTENSIONAL; IN_ELIM_THM] THEN REWRITE_TAC[FREE_ABELIAN_GROUP; IN_ELIM_THM] THEN STRIP_TAC THEN SUBGOAL_THEN `!c. frag_support c SUBSET s ==> (g:A frag->B) c = h c` MP_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN ONCE_REWRITE_TAC[TAUT `p ==> q <=> p ==> p /\ q`] THEN MATCH_MP_TAC FRAG_INDUCTION THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[FRAG_SUPPORT_0; EMPTY_SUBSET]; REPEAT(FIRST_X_ASSUM(MP_TAC o el 1 o CONJUNCTS o GEN_REWRITE_RULE I [group_homomorphism])) THEN SIMP_TAC[FREE_ABELIAN_GROUP]; X_GEN_TAC `x:A` THEN DISCH_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `x:A`)) THEN ASM_REWRITE_TAC[RESTRICTION; o_THM; FRAG_SUPPORT_OF; SING_SUBSET] THEN SIMP_TAC[]; REPEAT STRIP_TAC THENL [ASM_MESON_TAC[FRAG_SUPPORT_SUB; SUBSET_TRANS; UNION_SUBSET]; REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP GROUP_HOMOMORPHISM_DIV)) THEN REWRITE_TAC[group_div; FREE_ABELIAN_GROUP; IN_ELIM_THM] THEN REWRITE_TAC[FRAG_MODULE `frag_add x (frag_neg y) = frag_sub x y`] THEN ASM_SIMP_TAC[]]]]);; let ISOMORPHIC_FREE_ABELIAN_GROUPS = prove (`!(s:A->bool) (t:B->bool). free_abelian_group s isomorphic_group free_abelian_group t <=> s =_c t`, REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_TAC THEN SUBGOAL_THEN `{&0:int,&1} ^_c (s:A->bool) =_c {&0:int, &1} ^_c (t:B->bool)` ASSUME_TAC THENL [REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`s:A->bool`; `integer_mod_group 2`] CARD_EQ_HOMOMORPHISMS_FROM_FREE_ABELIAN_GROUP) THEN MP_TAC(ISPECL [`t:B->bool`; `integer_mod_group 2`] CARD_EQ_HOMOMORPHISMS_FROM_FREE_ABELIAN_GROUP) THEN REWRITE_TAC[ABELIAN_INTEGER_MOD_GROUP] THEN SIMP_TAC[INTEGER_MOD_GROUP; ARITH_RULE `0 < 2`] THEN REWRITE_TAC[INT_ARITH `&0:int <= m /\ m < &2 <=> m = &0 \/ m = &1`] THEN REWRITE_TAC[SET_RULE `{x | x = a \/ x = b} = {a,b}`] THEN DISCH_THEN(fun th -> GEN_REWRITE_TAC LAND_CONV [CARD_EQ_SYM] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_EQ_TRANS) THEN MP_TAC th THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CARD_EQ_TRANS)) THEN REWRITE_TAC[EQ_C_BIJECTIONS; IN_ELIM_THM] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [isomorphic_group]) THEN REWRITE_TAC[group_isomorphism; group_isomorphisms; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`f:A frag->B frag`; `g:B frag->A frag`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`\(h:A frag->int). RESTRICTION (group_carrier (free_abelian_group t)) (h o (g:B frag->A frag))`; `\(h:B frag->int). RESTRICTION (group_carrier (free_abelian_group s)) (h o (f:A frag->B frag))`] THEN REWRITE_TAC[REWRITE_RULE[IN] RESTRICTION_IN_EXTENSIONAL] THEN CONJ_TAC THENL [X_GEN_TAC `h:A frag->int`; X_GEN_TAC `k:B frag->int`] THEN STRIP_TAC THEN (CONJ_TAC THENL [MATCH_MP_TAC(MESON[GROUP_HOMOMORPHISM_EQ] `group_homomorphism(G,H) f /\ (!x. x IN group_carrier G ==> RESTRICTION s f x = f x) ==> group_homomorphism(G,H) (RESTRICTION s f)`) THEN SIMP_TAC[RESTRICTION] THEN ASM_MESON_TAC[GROUP_HOMOMORPHISM_COMPOSE]; REPEAT(FIRST_X_ASSUM(MP_TAC o CONJUNCT1 o REWRITE_RULE[group_homomorphism])) THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN REPEAT STRIP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[EXTENSIONAL; IN_ELIM_THM]) THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN GEN_TAC THEN ASM_SIMP_TAC[RESTRICTION; o_THM] THEN ASM_MESON_TAC[]]); FIRST_ASSUM(MP_TAC o MATCH_MP CARD_FINITE_CONG) THEN REWRITE_TAC[CARD_EXP_FINITE_EQ; FINITE_INSERT; FINITE_EMPTY] THEN REWRITE_TAC[SET_RULE `{a,b} SUBSET {c} <=> a = b /\ a = c`] THEN CONV_TAC INT_REDUCE_CONV THEN REWRITE_TAC[MESON[FINITE_EMPTY] `s = {} \/ FINITE s <=> FINITE s`] THEN REWRITE_TAC[TAUT `(p <=> q) <=> p /\ q \/ ~p /\ ~q`] THEN STRIP_TAC THENL [UNDISCH_TAC `{&0:int, &1} ^_c (s:A->bool) =_c {&0:int, &1} ^_c (t:B->bool)` THEN ASM_SIMP_TAC[CARD_EQ_CARD; CARD_EXP_FINITE_EQ; FINITE_INSERT; FINITE_EMPTY; CARD_EXP_C] THEN REWRITE_TAC[EQ_EXP] THEN SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN REWRITE_TAC[IN_SING; NOT_IN_EMPTY] THEN CONV_TAC INT_REDUCE_CONV THEN CONV_TAC NUM_REDUCE_CONV; MP_TAC(ISPEC `t:B->bool` CARD_EQ_FREE_ABELIAN_GROUP_INFINITE) THEN ASM_REWRITE_TAC[INFINITE] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CARD_EQ_TRANS) THEN ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN MP_TAC(ISPEC `s:A->bool` CARD_EQ_FREE_ABELIAN_GROUP_INFINITE) THEN ASM_REWRITE_TAC[INFINITE] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CARD_EQ_TRANS) THEN ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN ASM_SIMP_TAC[ISOMORPHIC_GROUP_CARD_EQ]]]; REWRITE_TAC[EQ_C_BIJECTIONS; isomorphic_group; group_isomorphism] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`f:A->B`; `g:B->A`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`frag_of o (f:A->B)`; `s:A->bool`; `free_abelian_group(t:B->bool)`] FREE_ABELIAN_GROUP_UNIVERSAL) THEN REWRITE_TAC[ABELIAN_FREE_ABELIAN_GROUP; SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[FREE_ABELIAN_GROUP; o_THM; IN_ELIM_THM] THEN ASM_SIMP_TAC[FRAG_SUPPORT_OF; SING_SUBSET] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `h:A frag->B frag` THEN STRIP_TAC THEN MP_TAC(ISPECL [`frag_of o (g:B->A)`; `t:B->bool`; `free_abelian_group(s:A->bool)`] FREE_ABELIAN_GROUP_UNIVERSAL) THEN REWRITE_TAC[ABELIAN_FREE_ABELIAN_GROUP; SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[FREE_ABELIAN_GROUP; o_THM; IN_ELIM_THM] THEN ASM_SIMP_TAC[FRAG_SUPPORT_OF; SING_SUBSET] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:B frag->A frag` THEN STRIP_TAC THEN ASM_REWRITE_TAC[group_isomorphisms] THEN REWRITE_TAC[FREE_ABELIAN_GROUP; IN_ELIM_THM] THEN CONJ_TAC THEN ONCE_REWRITE_TAC[TAUT `p ==> q <=> p ==> p /\ q`] THEN MATCH_MP_TAC FRAG_INDUCTION THEN REWRITE_TAC[FRAG_SUPPORT_0; FRAG_SUPPORT_OF; IN_SING; EMPTY_SUBSET] THEN ASM_SIMP_TAC[SING_SUBSET] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [group_homomorphism])) THEN REWRITE_TAC[SET_RULE `IMAGE f s SUBSET t <=> !x. x IN s ==> f x IN t`] THEN SIMP_TAC[FREE_ABELIAN_GROUP; IN_ELIM_THM] THEN REWRITE_TAC[FRAG_MODULE `frag_sub x y = frag_add x (frag_neg y)`] THEN SIMP_TAC[FRAG_SUPPORT_NEG] THEN REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH lhand FRAG_SUPPORT_ADD o lhand o snd) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] SUBSET_TRANS) THEN ASM_REWRITE_TAC[UNION_SUBSET; FRAG_SUPPORT_NEG]]);; (* ------------------------------------------------------------------------- *) (* Basic things about exact sequences. *) (* ------------------------------------------------------------------------- *) let group_exactness = new_definition `group_exactness (G,H,K) ((f:A->B),(g:B->C)) <=> group_homomorphism (G,H) f /\ group_homomorphism (H,K) g /\ group_image (G,H) f = group_kernel (H,K) g`;; let short_exact_sequence = new_definition `short_exact_sequence(A,B,C) (f:A->B,g:B->C) <=> group_monomorphism (A,B) f /\ group_exactness (A,B,C) (f,g) /\ group_epimorphism (B,C) g`;; let SHORT_EXACT_SEQUENCE = prove (`!(f:A->B) (g:B->C) A B C. short_exact_sequence(A,B,C) (f,g) <=> group_monomorphism (A,B) f /\ group_epimorphism (B,C) g /\ group_image (A,B) f = group_kernel (B,C) g`, REWRITE_TAC[short_exact_sequence; group_monomorphism; group_exactness; group_epimorphism] THEN MESON_TAC[]);; let GROUP_EXACTNESS_MONOMORPHISM = prove (`!f:(A->B) (g:B->C) A B C. trivial_group A ==> (group_exactness (A,B,C) (f,g) <=> group_homomorphism(A,B) f /\ group_monomorphism (B,C) g)`, SIMP_TAC[GROUP_MONOMORPHISM; group_exactness; trivial_group; group_image; IMAGE_CLAUSES; group_homomorphism] THEN MESON_TAC[]);; let GROUP_EXACTNESS_EPIMORPHISM = prove (`!f:(A->B) (g:B->C) A B C. trivial_group C ==> (group_exactness (A,B,C) (f,g) <=> group_epimorphism(A,B) f /\ group_homomorphism (B,C) g)`, SIMP_TAC[GROUP_EPIMORPHISM; group_exactness; trivial_group] THEN SIMP_TAC[group_homomorphism; group_kernel] THEN SET_TAC[]);; let EXTREMELY_SHORT_EXACT_SEQUENCE = prove (`!f:(A->B) (g:B->C) A B C. group_exactness (A,B,C) (f,g) /\ trivial_group A /\ trivial_group C ==> trivial_group B`, REWRITE_TAC[group_exactness] THEN MESON_TAC[GROUP_KERNEL_TO_TRIVIAL_GROUP; GROUP_IMAGE_FROM_TRIVIAL_GROUP; trivial_group]);; let GROUP_EXACTNESS_EPIMORPHISM_EQ_TRIVIALITY = prove (`!(f:A->B) (g:B->C) (h:C->D) A B C D. group_exactness (A,B,C) (f,g) /\ group_exactness (B,C,D) (g,h) ==> (group_epimorphism (A,B) f <=> trivial_homomorphism(B,C) g)`, REWRITE_TAC[group_exactness; GROUP_EPIMORPHISM] THEN SIMP_TAC[TRIVIAL_HOMOMORPHISM_GROUP_KERNEL]);; let GROUP_EXACTNESS_MONOMORPHISM_EQ_TRIVIALITY = prove (`!(f:A->B) (g:B->C) (h:C->D) A B C D. group_exactness (A,B,C) (f,g) /\ group_exactness (B,C,D) (g,h) ==> (group_monomorphism (C,D) h <=> trivial_homomorphism(B,C) g)`, REWRITE_TAC[group_exactness; GROUP_MONOMORPHISM] THEN SIMP_TAC[TRIVIAL_HOMOMORPHISM_GROUP_IMAGE]);; let VERY_SHORT_EXACT_SEQUENCE = prove (`!(f:A->B) (g:B->C) (h:C->D) A B C D. group_exactness (A,B,C) (f,g) /\ group_exactness (B,C,D) (g,h) /\ trivial_group A /\ trivial_group D ==> group_isomorphism (B,C) g`, REWRITE_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM] THEN SIMP_TAC[GROUP_MONOMORPHISM; GROUP_EPIMORPHISM; group_exactness] THEN MESON_TAC[GROUP_IMAGE_FROM_TRIVIAL_GROUP; GROUP_KERNEL_TO_TRIVIAL_GROUP]);; let GROUP_EXACTNESS_EQ_TRIVIALITY = prove (`!f:(A->B) (g:B->C) (h:C->D) (k:D->E) A B C D E. group_exactness (A,B,C) (f,g) /\ group_exactness (B,C,D) (g,h) /\ group_exactness (C,D,E) (h,k) ==> (trivial_group C <=> group_epimorphism (A,B) f /\ group_monomorphism (D,E) k)`, REWRITE_TAC[group_exactness; GROUP_EPIMORPHISM; GROUP_MONOMORPHISM] THEN ASM_MESON_TAC[trivial_group; GROUP_IMAGE_FROM_TRIVIAL_GROUP; GROUP_KERNEL_IMAGE_TRIVIAL]);; let GROUP_EXACTNESS_IMP_TRIVIALITY = prove (`!(f:A->B) (g:B->C) (h:C->D) (k:D->E) A B C D E. group_exactness (A,B,C) (f,g) /\ group_exactness (B,C,D) (g,h) /\ group_exactness (C,D,E) (h,k) /\ group_isomorphism (A,B) f /\ group_isomorphism (D,E) k ==> trivial_group C`, REWRITE_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM] THEN MESON_TAC[GROUP_EXACTNESS_EQ_TRIVIALITY]);; let GROUP_EXACTNESS_ISOMORPHISM_EQ_TRIVIALITY = prove (`!(f:A->B) (g:B->C) (h:C->D) (j:D->E) (k:E->G) A B C D E G. group_exactness (A,B,C) (f,g) /\ group_exactness (B,C,D) (g,h) /\ group_exactness (C,D,E) (h,j) /\ group_exactness (D,E,G) (j,k) ==> (group_isomorphism (C,D) h <=> trivial_homomorphism(B,C) g /\ trivial_homomorphism(D,E) j)`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM] THEN ONCE_REWRITE_TAC[CONJ_ASSOC] THEN DISCH_THEN(CONJUNCTS_THEN2 (MP_TAC o MATCH_MP GROUP_EXACTNESS_MONOMORPHISM_EQ_TRIVIALITY) (MP_TAC o MATCH_MP GROUP_EXACTNESS_EPIMORPHISM_EQ_TRIVIALITY)) THEN MESON_TAC[]);; let GROUP_EXACTNESS_ISOMORPHISM_EQ_MONO_EPI = prove (`!(f:A->B) (g:B->C) (h:C->D) (j:D->E) (k:E->G) A B C D E G. group_exactness (A,B,C) (f,g) /\ group_exactness (B,C,D) (g,h) /\ group_exactness (C,D,E) (h,j) /\ group_exactness (D,E,G) (j,k) ==> (group_isomorphism (C,D) h <=> group_epimorphism(A,B) f /\ group_monomorphism(E,G) k)`, REWRITE_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM; GROUP_EPIMORPHISM; GROUP_MONOMORPHISM] THEN REWRITE_TAC[group_exactness] THEN MESON_TAC[GROUP_KERNEL_IMAGE_TRIVIAL]);; let SHORT_EXACT_SEQUENCE_NORMAL_SUBGROUP = prove (`!G n:A->bool. n normal_subgroup_of G ==> short_exact_sequence (subgroup_generated G n,G,quotient_group G n) ((\x. x),right_coset G n)`, REPEAT STRIP_TAC THEN REWRITE_TAC[SHORT_EXACT_SEQUENCE; I_DEF] THEN REWRITE_TAC[GROUP_MONOMORPHISM_INCLUSION] THEN ASM_SIMP_TAC[GROUP_EPIMORPHISM_RIGHT_COSET] THEN ASM_SIMP_TAC[GROUP_KERNEL_RIGHT_COSET; group_image; IMAGE_ID] THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_SUBGROUP; NORMAL_SUBGROUP_IMP_SUBGROUP]);; let SHORT_EXACT_SEQUENCE_PROD_GROUP = prove (`!(G:A group) (H:B group). short_exact_sequence(G,prod_group G H,H) ((\x. x,group_id H),SND)`, REPEAT GEN_TAC THEN REWRITE_TAC[SHORT_EXACT_SEQUENCE; GROUP_EPIMORPHISM_SND] THEN SIMP_TAC[group_monomorphism; PAIR_EQ] THEN REWRITE_TAC[GROUP_HOMOMORPHISM_PAIRED] THEN REWRITE_TAC[GROUP_HOMOMORPHISM_TRIVIAL; GROUP_HOMOMORPHISM_ID] THEN REWRITE_TAC[group_image; group_kernel; EXTENSION; IN_ELIM_THM; IN_IMAGE] THEN REWRITE_TAC[FORALL_PAIR_THM; PAIR_EQ; GSYM CONJ_ASSOC; UNWIND_THM1] THEN REWRITE_TAC[PROD_GROUP; IN_CROSS] THEN MESON_TAC[GROUP_ID]);; let SHORT_EXACT_SEQUENCE_PROD_GROUP_ALT = prove (`!(G:A group) (H:B group). short_exact_sequence(H,prod_group G H,G) ((\x. group_id G,x),FST)`, REPEAT GEN_TAC THEN REWRITE_TAC[SHORT_EXACT_SEQUENCE; GROUP_EPIMORPHISM_FST] THEN SIMP_TAC[group_monomorphism; PAIR_EQ] THEN REWRITE_TAC[GROUP_HOMOMORPHISM_PAIRED] THEN REWRITE_TAC[GROUP_HOMOMORPHISM_TRIVIAL; GROUP_HOMOMORPHISM_ID] THEN REWRITE_TAC[group_image; group_kernel; EXTENSION; IN_ELIM_THM; IN_IMAGE] THEN REWRITE_TAC[FORALL_PAIR_THM; PAIR_EQ; GSYM CONJ_ASSOC; UNWIND_THM1] THEN REWRITE_TAC[PROD_GROUP; IN_CROSS] THEN MESON_TAC[GROUP_ID]);; let EXACT_SEQUENCE_SUM_LEMMA = prove (`!(f:X->C) (g:X->D) (h:A->C) (i:A->X) (j:B->X) (k:B->D) A B C D X. abelian_group X /\ group_isomorphism(A,C) h /\ group_isomorphism(B,D) k /\ group_exactness(A,X,D) (i,g) /\ group_exactness(B,X,C) (j,f) /\ (!x. x IN group_carrier A ==> f(i x) = h x) /\ (!x. x IN group_carrier B ==> g(j x) = k x) ==> group_isomorphism (prod_group A B,X) (\(x,y). group_mul X (i x) (j y)) /\ group_isomorphism (X,prod_group C D) (\z. f z,g z)`, REPEAT GEN_TAC THEN REWRITE_TAC[group_exactness] THEN STRIP_TAC THEN ABBREV_TAC `ij:A#B->X = \(x,y). group_mul X (i x) (j y)` THEN ABBREV_TAC `gf:X->C#D = \z. f z,g z` THEN MATCH_MP_TAC GROUP_EPIMORPHISM_ISOMORPHISM_COMPOSE_REV THEN SUBGOAL_THEN `group_homomorphism (prod_group A B,X) (ij:A#B->X)` ASSUME_TAC THENL [EXPAND_TAC "ij" THEN REWRITE_TAC[LAMBDA_PAIR] THEN MATCH_MP_TAC ABELIAN_GROUP_HOMOMORPHISM_GROUP_MUL THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM o_DEF] THEN ASM_REWRITE_TAC[GROUP_HOMOMORPHISM_OF_FST; GROUP_HOMOMORPHISM_OF_SND]; ALL_TAC] THEN SUBGOAL_THEN `group_homomorphism (X,prod_group C D) (gf:X->C#D)` ASSUME_TAC THENL [EXPAND_TAC "gf" THEN REWRITE_TAC[GROUP_HOMOMORPHISM_PAIRED] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[GROUP_EPIMORPHISM_ALT] THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC GROUP_ISOMORPHISM_EQ THEN EXISTS_TAC `(\(x,y). h x,k y):A#B->C#D` THEN ASM_REWRITE_TAC[GROUP_ISOMORPHISM_PAIRED2] THEN MAP_EVERY EXPAND_TAC ["gf"; "ij"] THEN REWRITE_TAC[PROD_GROUP; o_DEF; PAIR_EQ; IN_CROSS; FORALL_PAIR_THM] THEN RULE_ASSUM_TAC(REWRITE_RULE [GROUP_ISOMORPHISM; group_homomorphism; SUBSET; FORALL_IN_IMAGE]) THEN ASM_SIMP_TAC[GROUP_LID_EQ; GROUP_RID_EQ] THEN RULE_ASSUM_TAC(REWRITE_RULE[group_image; group_kernel]) THEN ASM SET_TAC[]] THEN REWRITE_TAC[SUBSET] THEN X_GEN_TAC `x:X` THEN DISCH_TAC THEN UNDISCH_TAC `group_image (B,X) (j:B->X) = group_kernel (X,C) (f:X->C)` THEN MP_TAC(ASSUME `group_isomorphism (A,C) (h:A->C)`) THEN REWRITE_TAC[group_isomorphism; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `h':C->A` THEN REWRITE_TAC[group_isomorphisms] THEN STRIP_TAC THEN REWRITE_TAC[EXTENSION] THEN DISCH_THEN(MP_TAC o snd o EQ_IMP_RULE o SPEC `group_div X x ((i:A->X)((h':C->A)(f x)))`) THEN REWRITE_TAC[group_kernel; group_image; IN_ELIM_THM] THEN RULE_ASSUM_TAC(REWRITE_RULE [group_homomorphism; GROUP_ISOMORPHISM; SUBSET; FORALL_IN_IMAGE]) THEN ANTS_TAC THENL [ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 5) [group_div; GROUP_INV; GROUP_MUL; GROUP_MUL_RINV]; EXPAND_TAC "ij" THEN REWRITE_TAC[IN_IMAGE; EXISTS_PAIR_THM] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `y:B` THEN SIMP_TAC[PROD_GROUP; IN_CROSS] THEN DISCH_THEN(CONJUNCTS_THEN2 (SUBST1_TAC o SYM) ASSUME_TAC) THEN EXISTS_TAC `(h':C->A)(f(x:X))` THEN ASM_SIMP_TAC[] THEN FIRST_X_ASSUM(fun th -> W(MP_TAC o PART_MATCH (lhand o rand) (GEN_REWRITE_RULE I [abelian_group] th) o rand o snd)) THEN ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 5) [group_div; GROUP_INV; GROUP_MUL; GSYM GROUP_MUL_ASSOC; GROUP_MUL_LINV; GROUP_MUL_RID]]);; let SHORT_EXACT_SEQUENCE_QUOTIENT = prove (`!(f:A->B) (g:B->C) A B C. short_exact_sequence(A,B,C) (f,g) ==> subgroup_generated B (group_image(A,B) f) isomorphic_group A /\ quotient_group B (group_image(A,B) f) isomorphic_group C`, REWRITE_TAC[short_exact_sequence] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL [ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN REWRITE_TAC[isomorphic_group] THEN EXISTS_TAC `f:A->B` THEN ASM_REWRITE_TAC[GROUP_ISOMORPHISM_ONTO_IMAGE]; MP_TAC(ISPECL [`B:B group`; `C:C group`; `g:B->C`] FIRST_GROUP_ISOMORPHISM_THEOREM) THEN RULE_ASSUM_TAC(REWRITE_RULE[GROUP_EPIMORPHISM; group_exactness]) THEN ASM_REWRITE_TAC[SUBGROUP_GENERATED_GROUP_CARRIER]]);; let TRIVIAL_GROUPS_IMP_SHORT_EXACT_SEQUENCE = prove (`!(f:A->B) (g:B->C) (h:C->D) (k:D->E) A B C D E. trivial_group A /\ trivial_group E /\ group_exactness(A,B,C) (f,g) /\ group_exactness(B,C,D) (g,h) /\ group_exactness(C,D,E) (h,k) ==> short_exact_sequence(B,C,D) (g,h)`, SIMP_TAC[IMP_CONJ; GROUP_EXACTNESS_MONOMORPHISM; GROUP_EXACTNESS_EPIMORPHISM; short_exact_sequence]);; let SHORT_EXACT_SEQUENCE_TRIVIAL_GROUPS = prove (`!(g:B->C) h B C D. short_exact_sequence(B,C,D) (g,h) <=> ?f:(A->B) (k:D->E) A E. trivial_group A /\ trivial_group E /\ group_exactness(A,B,C) (f,g) /\ group_exactness(B,C,D) (g,h) /\ group_exactness(C,D,E) (h,k)`, REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[TRIVIAL_GROUPS_IMP_SHORT_EXACT_SEQUENCE] THEN REWRITE_TAC[short_exact_sequence] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`(\x. group_id B):A->B`; `(\x. ARB):D->E`; `singleton_group (ARB:A)`; `singleton_group (ARB:E)`] THEN ASM_SIMP_TAC[TRIVIAL_GROUP_SINGLETON_GROUP; GROUP_EXACTNESS_MONOMORPHISM; GROUP_EXACTNESS_EPIMORPHISM] THEN REWRITE_TAC[group_homomorphism; SINGLETON_GROUP] THEN SIMP_TAC[GROUP_INV_ID; GROUP_MUL_LID; GROUP_ID; SUBSET; FORALL_IN_IMAGE; IN_SING]);; let SPLITTING_SUBLEMMA_GEN = prove (`!(f:A->B) (g:B->C) A B C h k. group_exactness(A,B,C) (f,g) /\ group_image(A,B) f = h /\ k subgroup_of B /\ h INTER k SUBSET {group_id B} /\ group_setmul B h k = group_carrier B ==> group_isomorphism(subgroup_generated B k, subgroup_generated C (group_image(B,C) g)) g`, REPEAT GEN_TAC THEN REWRITE_TAC[group_exactness] THEN ASM_CASES_TAC `group_image(A,B) (f:A->B) = h` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `group_kernel(B,C) (g:B->C) = h` THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN SUBGOAL_THEN `(h:B->bool) subgroup_of B` ASSUME_TAC THENL [ASM_MESON_TAC[SUBGROUP_GROUP_KERNEL]; ALL_TAC] THEN REWRITE_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM; GROUP_MONOMORPHISM; GROUP_EPIMORPHISM_ALT] THEN REWRITE_TAC[TAUT `(p /\ q) /\ (p /\ r) <=> p /\ q /\ r`] THEN REPEAT CONJ_TAC THENL [ASM_SIMP_TAC[GROUP_HOMOMORPHISM_INTO_SUBGROUP_EQ_GEN; CARRIER_SUBGROUP_GENERATED_SUBGROUP; SUBGROUP_GROUP_IMAGE; GROUP_HOMOMORPHISM_FROM_SUBGROUP_GENERATED] THEN ASM_SIMP_TAC[group_image; SUBGROUP_OF_IMP_SUBSET; IMAGE_SUBSET]; ASM_SIMP_TAC[GROUP_KERNEL_FROM_SUBGROUP_GENERATED; GROUP_KERNEL_TO_SUBGROUP_GENERATED] THEN ASM_SIMP_TAC[SUBGROUP_GENERATED; GSYM GROUP_DISJOINT_SUM_ALT]; ASM_SIMP_TAC[SUBSET; CARRIER_SUBGROUP_GENERATED_SUBGROUP; SUBGROUP_GROUP_IMAGE] THEN REWRITE_TAC[group_image; FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[CARRIER_SUBGROUP_GENERATED_SUBGROUP] THEN SUBST1_TAC(SYM(ASSUME `group_setmul B (h:B->bool) k = group_carrier B`)) THEN REWRITE_TAC[group_setmul; FORALL_IN_GSPEC] THEN MAP_EVERY X_GEN_TAC [`x:B`; `y:B`] THEN STRIP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[group_epimorphism; group_homomorphism; subgroup_of; SUBSET; FORALL_IN_IMAGE]) THEN ASM_SIMP_TAC[IN_IMAGE] THEN EXISTS_TAC `y:B` THEN UNDISCH_TAC `(x:B) IN h` THEN SUBST1_TAC(SYM(ASSUME `group_kernel (B,C) (g:B->C) = h`)) THEN SIMP_TAC[group_kernel; IN_ELIM_THM] THEN ASM_SIMP_TAC[GROUP_MUL_LID]]);; let SPLITTING_SUBLEMMA = prove (`!(f:A->B) (g:B->C) A B C h k. short_exact_sequence(A,B,C) (f,g) /\ group_image(A,B) f = h /\ k subgroup_of B /\ h INTER k SUBSET {group_id B} /\ group_setmul B h k = group_carrier B ==> group_isomorphism(A,subgroup_generated B h) f /\ group_isomorphism(subgroup_generated B k,C) g`, REWRITE_TAC[short_exact_sequence] THEN REPEAT STRIP_TAC THENL [ASM_MESON_TAC[GROUP_ISOMORPHISM_ONTO_IMAGE]; ALL_TAC] THEN SUBGOAL_THEN `C = subgroup_generated C (group_image(B,C) (g:B->C))` SUBST1_TAC THENL [ASM_MESON_TAC[group_epimorphism; group_image; SUBGROUP_GENERATED_GROUP_CARRIER]; MATCH_MP_TAC SPLITTING_SUBLEMMA_GEN THEN ASM_MESON_TAC[]]);; let SPLITTING_LEMMA_LEFT_GEN = prove (`!(f:A->B) f' (g:B->C) A B C. short_exact_sequence(A,B,C) (f,g) /\ group_homomorphism(B,A) f' /\ group_isomorphism(A,A) (f' o f) ==> ?h k. h normal_subgroup_of B /\ k normal_subgroup_of B /\ h INTER k SUBSET {group_id B} /\ group_setmul B h k = group_carrier B /\ group_isomorphism(A,subgroup_generated B h) f /\ group_isomorphism(subgroup_generated B k,C) g`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`f:A->B`; `f':B->A`; `A:A group`; `B:B group`; `A:A group`] GROUP_SEMIDIRECT_SUM_IM_KER) THEN ANTS_TAC THENL [ASM_MESON_TAC[short_exact_sequence; group_exactness]; ALL_TAC] THEN MAP_EVERY ABBREV_TAC [`h = group_image(A,B) (f:A->B)`; `k = group_kernel(B,A) (f':B->A)`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`h:B->bool`; `k:B->bool`] THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN MATCH_MP_TAC(TAUT `(p /\ q) /\ (p /\ q ==> r) ==> p /\ q /\ r`) THEN CONJ_TAC THENL [ASM_MESON_TAC[NORMAL_SUBGROUP_GROUP_KERNEL; short_exact_sequence; group_exactness]; REWRITE_TAC[normal_subgroup_of] THEN STRIP_TAC THEN MATCH_MP_TAC SPLITTING_SUBLEMMA THEN ASM_REWRITE_TAC[SUBSET_REFL]]);; let SPLITTING_LEMMA_LEFT = prove (`!(f:A->B) f' (g:B->C) A B C. short_exact_sequence(A,B,C) (f,g) /\ group_homomorphism(B,A) f' /\ (!x. x IN group_carrier A ==> f'(f x) = x) ==> ?h k. h normal_subgroup_of B /\ k normal_subgroup_of B /\ h INTER k SUBSET {group_id B} /\ group_setmul B h k = group_carrier B /\ group_isomorphism(A,subgroup_generated B h) f /\ group_isomorphism(subgroup_generated B k,C) g`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SPLITTING_LEMMA_LEFT_GEN THEN EXISTS_TAC `f':B->A` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC GROUP_ISOMORPHISM_EQ THEN EXISTS_TAC `\x:A. x` THEN ASM_REWRITE_TAC[o_THM; GROUP_ISOMORPHISM_ID]);; let SPLITTING_LEMMA_LEFT_PROD_GROUP = prove (`!(f:A->B) f' (g:B->C) A B C. short_exact_sequence(A,B,C) (f,g) /\ abelian_group B /\ group_homomorphism(B,A) f' /\ (!x. x IN group_carrier A ==> f'(f x) = x) ==> B isomorphic_group prod_group A C`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`f:A->B`; `f':B->A`; `g:B->C`; `A:A group`; `B:B group`; `C:C group`] SPLITTING_LEMMA_LEFT) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`h:B->bool`; `k:B->bool`] THEN STRIP_TAC THEN TRANS_TAC ISOMORPHIC_GROUP_TRANS `prod_group (subgroup_generated B h) (subgroup_generated B (k:B->bool))` THEN CONJ_TAC THENL [ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN REWRITE_TAC[isomorphic_group] THEN EXISTS_TAC `\(x:B,y). group_mul B x y` THEN ASM_SIMP_TAC[GROUP_ISOMORPHISM_GROUP_MUL; NORMAL_SUBGROUP_IMP_SUBGROUP]; MATCH_MP_TAC ISOMORPHIC_GROUP_PROD_GROUPS THEN GEN_REWRITE_TAC LAND_CONV [ISOMORPHIC_GROUP_SYM] THEN REWRITE_TAC[isomorphic_group] THEN ASM_MESON_TAC[]]);; let SPLITTING_LEMMA_RIGHT_GEN = prove (`!(f:A->B) (g:B->C) g' A B C. short_exact_sequence(A,B,C) (f,g) /\ group_homomorphism(C,B) g' /\ group_isomorphism(C,C) (g o g') ==> ?h k. h normal_subgroup_of B /\ k subgroup_of B /\ h INTER k SUBSET {group_id B} /\ group_setmul B h k = group_carrier B /\ group_isomorphism(A,subgroup_generated B h) f /\ group_isomorphism(subgroup_generated B k,C) g`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`g':C->B`; `g:B->C`; `C:C group`; `B:B group`; `C:C group`] GROUP_SEMIDIRECT_SUM_KER_IM) THEN ANTS_TAC THENL [ASM_MESON_TAC[short_exact_sequence; group_exactness]; ALL_TAC] THEN MAP_EVERY ABBREV_TAC [`k = group_image(C,B) (g':C->B)`; `h = group_kernel(B,C) (g:B->C)`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`h:B->bool`; `k:B->bool`] THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN MATCH_MP_TAC(TAUT `(p /\ q) /\ (p /\ q ==> r) ==> p /\ q /\ r`) THEN CONJ_TAC THENL [ASM_MESON_TAC[SUBGROUP_GROUP_IMAGE; NORMAL_SUBGROUP_GROUP_KERNEL; short_exact_sequence; group_exactness]; REWRITE_TAC[normal_subgroup_of] THEN STRIP_TAC THEN MATCH_MP_TAC SPLITTING_SUBLEMMA THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN ASM_MESON_TAC[short_exact_sequence; group_exactness]]);; let SPLITTING_LEMMA_RIGHT = prove (`!(f:A->B) (g:B->C) g' A B C. short_exact_sequence(A,B,C) (f,g) /\ group_homomorphism(C,B) g' /\ (!z. z IN group_carrier C ==> g(g' z) = z) ==> ?h k. h normal_subgroup_of B /\ k subgroup_of B /\ h INTER k SUBSET {group_id B} /\ group_setmul B h k = group_carrier B /\ group_isomorphism(A,subgroup_generated B h) f /\ group_isomorphism(subgroup_generated B k,C) g`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SPLITTING_LEMMA_RIGHT_GEN THEN EXISTS_TAC `g':C->B` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC GROUP_ISOMORPHISM_EQ THEN EXISTS_TAC `\x:C. x` THEN ASM_REWRITE_TAC[o_THM; GROUP_ISOMORPHISM_ID]);; let SPLITTING_LEMMA_RIGHT_PROD_GROUP = prove (`!(f:A->B) (g:B->C) g' A B C. short_exact_sequence(A,B,C) (f,g) /\ abelian_group B /\ group_homomorphism(C,B) g' /\ (!z. z IN group_carrier C ==> g(g' z) = z) ==> B isomorphic_group prod_group A C`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`f:A->B`; `g:B->C`; `g':C->B`; `A:A group`; `B:B group`; `C:C group`] SPLITTING_LEMMA_RIGHT) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`h:B->bool`; `k:B->bool`] THEN STRIP_TAC THEN TRANS_TAC ISOMORPHIC_GROUP_TRANS `prod_group (subgroup_generated B h) (subgroup_generated B (k:B->bool))` THEN CONJ_TAC THENL [ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN REWRITE_TAC[isomorphic_group] THEN EXISTS_TAC `\(x:B,y). group_mul B x y` THEN ASM_SIMP_TAC[GROUP_ISOMORPHISM_GROUP_MUL; NORMAL_SUBGROUP_IMP_SUBGROUP]; MATCH_MP_TAC ISOMORPHIC_GROUP_PROD_GROUPS THEN GEN_REWRITE_TAC LAND_CONV [ISOMORPHIC_GROUP_SYM] THEN REWRITE_TAC[isomorphic_group] THEN ASM_MESON_TAC[]]);; let SPLITTING_LEMMA_FREE_ABELIAN_GROUP = prove (`!(f:A->B) (g:B->C) A B C (s:D->bool). short_exact_sequence (A,B,C) (f,g) /\ abelian_group B /\ C isomorphic_group free_abelian_group s ==> B isomorphic_group prod_group A C`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SPLITTING_LEMMA_RIGHT_PROD_GROUP THEN MAP_EVERY EXISTS_TAC [`f:A->B`; `g:B->C`] THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [short_exact_sequence]) THEN FIRST_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [group_epimorphism]) THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (SET_RULE `IMAGE f s = t ==> !y. ?x. y IN t ==> x IN s /\ f x = y`)) THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `g':C->B` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [isomorphic_group]) THEN REWRITE_TAC[isomorphic_group; group_isomorphism; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`h:C->D frag`; `h':D frag->C`] THEN REWRITE_TAC[group_isomorphisms] THEN STRIP_TAC THEN MP_TAC(ISPECL [`(g':C->B) o (h':D frag->C) o frag_of`; `s:D->bool`; `B:B group`] FREE_ABELIAN_GROUP_UNIVERSAL) THEN ASM_REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; o_THM] THEN ANTS_TAC THENL [GEN_REWRITE_TAC (BINDER_CONV o LAND_CONV) [GSYM FRAG_OF_IN_FREE_ABELIAN_GROUP] THEN RULE_ASSUM_TAC( REWRITE_RULE[group_homomorphism]) THEN ASM SET_TAC[]; DISCH_THEN(X_CHOOSE_THEN `k:D frag->B` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(k:D frag->B) o (h:C->D frag)` THEN CONJ_TAC THENL [ASM_MESON_TAC[GROUP_HOMOMORPHISM_COMPOSE]; ALL_TAC] THEN X_GEN_TAC `c:C` THEN DISCH_TAC THEN SUBGOAL_THEN `c = (h':D frag->C) (h c) /\ h c IN group_carrier(free_abelian_group s)` (CONJUNCTS_THEN2 SUBST1_TAC MP_TAC) THENL [RULE_ASSUM_TAC( REWRITE_RULE[group_homomorphism]) THEN ASM SET_TAC[]; SPEC_TAC(`(h:C->D frag) c`,`d:D frag`)] THEN ASM_SIMP_TAC[o_THM] THEN MATCH_MP_TAC FREE_ABELIAN_GROUP_INDUCT THEN ASM_SIMP_TAC[] THEN REPEAT(FIRST_X_ASSUM(fun th -> MP_TAC(MATCH_MP GROUP_HOMOMORPHISM_DIV th) THEN MP_TAC(REWRITE_RULE[group_homomorphism; SUBSET] th))) THEN REWRITE_TAC[FORALL_IN_IMAGE; group_div] THEN REWRITE_TAC[CONJUNCT2 FREE_ABELIAN_GROUP; FRAG_MODULE `frag_add x (frag_neg y) = frag_sub x y`] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[] THEN ASM_MESON_TAC[FRAG_OF_IN_FREE_ABELIAN_GROUP]]);; let FOUR_LEMMA_MONO = prove (`!(f:A->B) (g:B->C) (h:C->D) (f':A'->B') (g':B'->C') (h':C'->D') a b c d A B C D A' B' C' D'. group_epimorphism(A,A') a /\ group_monomorphism(B,B') b /\ group_homomorphism(C,C') c /\ group_monomorphism(D,D') d /\ group_exactness(A,B,C) (f,g) /\ group_exactness(B,C,D) (g,h) /\ group_exactness(A',B',C') (f',g') /\ group_exactness(B',C',D') (g',h') /\ (!x. x IN group_carrier A ==> f'(a x) = b(f x)) /\ (!y. y IN group_carrier B ==> g'(b y) = c(g y)) /\ (!z. z IN group_carrier C ==> h'(c z) = d(h z)) ==> group_monomorphism(C,C') c`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC RAND_CONV [GROUP_MONOMORPHISM_ALT] THEN REWRITE_TAC[group_epimorphism; group_monomorphism; group_exactness] THEN REWRITE_TAC[group_homomorphism; SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[group_image; group_kernel] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `x:C` THEN STRIP_TAC THEN MAP_EVERY (ASSUME_TAC o C ISPEC GROUP_ID) [`A:A group`; `B:B group`; `C:C group`; `D:D group`; `A':A' group`; `B':B' group`; `C':C' group`; `D':D' group`] THEN SUBGOAL_THEN `(h:C->D) x = group_id D` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `?y. y IN group_carrier B /\ (g:B->C) y = x` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `?w. w IN group_carrier A' /\ (f':A'->B') w = (b:B->B') y` STRIP_ASSUME_TAC THEN ASM SET_TAC[]);; let FOUR_LEMMA_EPI = prove (`!(f:A->B) (g:B->C) (h:C->D) (f':A'->B') (g':B'->C') (h':C'->D') a b c d A B C D A' B' C' D'. group_epimorphism(A,A') a /\ group_homomorphism(B,B') b /\ group_epimorphism(C,C') c /\ group_monomorphism(D,D') d /\ group_exactness(A,B,C) (f,g) /\ group_exactness(B,C,D) (g,h) /\ group_exactness(A',B',C') (f',g') /\ group_exactness(B',C',D') (g',h') /\ (!x. x IN group_carrier A ==> f'(a x) = b(f x)) /\ (!y. y IN group_carrier B ==> g'(b y) = c(g y)) /\ (!z. z IN group_carrier C ==> h'(c z) = d(h z)) ==> group_epimorphism(B,B') b`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC RAND_CONV [GROUP_EPIMORPHISM_ALT] THEN REWRITE_TAC[group_epimorphism; group_monomorphism; group_exactness] THEN REWRITE_TAC[group_homomorphism; SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[group_image; group_kernel] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `x:B'` THEN DISCH_TAC THEN MAP_EVERY (ASSUME_TAC o C ISPEC GROUP_ID) [`A:A group`; `B:B group`; `C:C group`; `D:D group`; `A':A' group`; `B':B' group`; `C':C' group`; `D':D' group`] THEN SUBGOAL_THEN `?y. y IN group_carrier C /\ (c:C->C') y = (g':B'->C') x` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `(h:C->D) y = group_id D` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `?z. z IN group_carrier B /\ (g:B->C) z = y` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN ABBREV_TAC `w = group_mul B' x (group_inv B' ((b:B->B') z))` THEN SUBGOAL_THEN `(w:B') IN group_carrier B'` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[GROUP_MUL; GROUP_INV]; ALL_TAC] THEN SUBGOAL_THEN `(g':B'->C') w = group_id C'` STRIP_ASSUME_TAC THENL [EXPAND_TAC "w" THEN ASM_SIMP_TAC[GROUP_INV; GROUP_MUL_RINV]; ALL_TAC] THEN SUBGOAL_THEN `?v. v IN group_carrier A' /\ (f':A'->B') v = w` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `?u. u IN group_carrier A /\ (a:A->A') u = v` STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[IN_IMAGE] THEN EXISTS_TAC `group_mul B ((f:A->B) u) z` THEN ASM_SIMP_TAC[GROUP_MUL] THEN SUBGOAL_THEN `(b:B->B') ((f:A->B) u) = w` SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN SUBST1_TAC(SYM(ASSUME `group_mul B' x (group_inv B' ((b:B->B') z)) = w`)) THEN ASM_SIMP_TAC[GSYM GROUP_MUL_ASSOC; GROUP_INV; GROUP_MUL_LINV; GROUP_MUL_RID]);; let FIVE_LEMMA = prove (`!(f:A->B) (g:B->C) (h:C->D) (k:D->E) (f':A'->B') (g':B'->C') (h':C'->D') (k':D'->E') a b c d e A B C D E A' B' C' D' E'. group_epimorphism(A,A') a /\ group_isomorphism(B,B') b /\ group_homomorphism(C,C') c /\ group_isomorphism(D,D') d /\ group_monomorphism(E,E') e /\ group_exactness(A,B,C) (f,g) /\ group_exactness(B,C,D) (g,h) /\ group_exactness(C,D,E) (h,k) /\ group_exactness(A',B',C') (f',g') /\ group_exactness(B',C',D') (g',h') /\ group_exactness(C',D',E') (h',k') /\ (!x. x IN group_carrier A ==> f'(a x) = b(f x)) /\ (!y. y IN group_carrier B ==> g'(b y) = c(g y)) /\ (!z. z IN group_carrier C ==> h'(c z) = d(h z)) /\ (!w. w IN group_carrier D ==> k'(d w) = e(k w)) ==> group_isomorphism(C,C') c`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM] THEN DISCH_THEN(MP_TAC o MATCH_MP (TAUT `a /\ (b /\ b') /\ c /\ (d /\ d') /\ e /\ fg /\ gh /\ hk /\ fg' /\ gh' /\ hk' /\ ca /\ cb /\ cc /\ cd ==> (a /\ b /\ c /\ d /\ fg /\ gh /\ fg' /\ gh' /\ ca /\ cb /\ cc) /\ (b' /\ c /\ d' /\ e /\ gh /\ hk /\ gh' /\ hk' /\ cb /\ cc /\ cd)`)) THEN MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[FOUR_LEMMA_MONO; FOUR_LEMMA_EPI]);; let SHORT_FIVE_LEMMA_MONO = prove (`!(f:A->B) (g:B->C) (f':A'->B') (g':B'->C') a b c A B C A' B' C'. group_monomorphism(A,A') a /\ group_homomorphism(B,B') b /\ group_monomorphism(C,C') c /\ short_exact_sequence(A,B,C) (f,g) /\ short_exact_sequence(A',B',C') (f',g') /\ (!x. x IN group_carrier A ==> f'(a x) = b(f x)) /\ (!y. y IN group_carrier B ==> g'(b y) = c(g y)) ==> group_monomorphism(B,B') b`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `(?(w:Z->A) (z:C->Z) W Z. trivial_group W /\ trivial_group Z /\ group_exactness (W,A,B) (w,f:A->B) /\ group_exactness (A,B,C) (f,g) /\ group_exactness (B,C,Z) (g:B->C,z)) /\ (?(w':Z->A') (z':C'->Z) W' Z'. trivial_group W' /\ trivial_group Z' /\ group_exactness (W',A',B') (w',f':A'->B') /\ group_exactness (A',B',C') (f',g') /\ group_exactness (B',C',Z') (g':B'->C',z'))` STRIP_ASSUME_TAC THENL [ASM_REWRITE_TAC[GSYM SHORT_EXACT_SEQUENCE_TRIVIAL_GROUPS]; ALL_TAC] THEN MP_TAC(ISPECL [`w:Z->A`; `f:A->B`; `g:B->C`; `w':Z->A'`; `f':A'->B'`; `g':B'->C'`; `(\x. group_id W'):Z->Z`; `a:A->A'`; `b:B->B'`; `c:C->C'`; `W:Z group`; `A:A group`; `B:B group`; `C:C group`; `W':Z group`; `A':A' group`; `B':B' group`; `C':C' group`] FOUR_LEMMA_MONO) THEN DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[GROUP_EPIMORPHISM_TO_TRIVIAL_GROUP] THEN ASM_REWRITE_TAC[GROUP_HOMOMORPHISM_TRIVIAL] THEN RULE_ASSUM_TAC(REWRITE_RULE[group_exactness; group_monomorphism; trivial_group; group_homomorphism]) THEN ASM SET_TAC[]);; let SHORT_FIVE_LEMMA_EPI = prove (`!(f:A->B) (g:B->C) (f':A'->B') (g':B'->C') a b c A B C A' B' C'. group_epimorphism(A,A') a /\ group_homomorphism(B,B') b /\ group_epimorphism(C,C') c /\ short_exact_sequence(A,B,C) (f,g) /\ short_exact_sequence(A',B',C') (f',g') /\ (!x. x IN group_carrier A ==> f'(a x) = b(f x)) /\ (!y. y IN group_carrier B ==> g'(b y) = c(g y)) ==> group_epimorphism(B,B') b`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `(?(w:Z->A) (z:C->Z) W Z. trivial_group W /\ trivial_group Z /\ group_exactness (W,A,B) (w,f:A->B) /\ group_exactness (A,B,C) (f,g) /\ group_exactness (B,C,Z) (g:B->C,z)) /\ (?(w':Z->A') (z':C'->Z) W' Z'. trivial_group W' /\ trivial_group Z' /\ group_exactness (W',A',B') (w',f':A'->B') /\ group_exactness (A',B',C') (f',g') /\ group_exactness (B',C',Z') (g':B'->C',z'))` STRIP_ASSUME_TAC THENL [ASM_REWRITE_TAC[GSYM SHORT_EXACT_SEQUENCE_TRIVIAL_GROUPS]; ALL_TAC] THEN MP_TAC(ISPECL [`f:A->B`; `g:B->C`; `z:C->Z`; `f':A'->B'`; `g':B'->C'`; `z':C'->Z`; `a:A->A'`; `b:B->B'`; `c:C->C'`; `(\x. group_id Z'):Z->Z`; `A:A group`; `B:B group`; `C:C group`; `Z:Z group`; `A':A' group`; `B':B' group`; `C':C' group`; `Z':Z group`] FOUR_LEMMA_EPI) THEN DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[GROUP_MONOMORPHISM_TO_TRIVIAL_GROUP] THEN ASM_REWRITE_TAC[GROUP_HOMOMORPHISM_TRIVIAL] THEN RULE_ASSUM_TAC(REWRITE_RULE[group_exactness; group_epimorphism; trivial_group; group_homomorphism]) THEN ASM SET_TAC[]);; let SHORT_FIVE_LEMMA = prove (`!(f:A->B) (g:B->C) (f':A'->B') (g':B'->C') a b c A B C A' B' C'. group_isomorphism(A,A') a /\ group_homomorphism(B,B') b /\ group_isomorphism(C,C') c /\ short_exact_sequence(A,B,C) (f,g) /\ short_exact_sequence(A',B',C') (f',g') /\ (!x. x IN group_carrier A ==> f'(a x) = b(f x)) /\ (!y. y IN group_carrier B ==> g'(b y) = c(g y)) ==> group_isomorphism(B,B') b`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM GROUP_MONOMORPHISM_EPIMORPHISM] THEN DISCH_THEN(MP_TAC o MATCH_MP (TAUT `(a /\ a') /\ b /\ (c /\ c') /\ d /\ e /\ f /\ g ==> (a /\ b /\ c /\ d /\ e /\ f /\ g) /\ (a' /\ b /\ c' /\ d /\ e /\ f /\ g)`)) THEN MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[SHORT_FIVE_LEMMA_MONO; SHORT_FIVE_LEMMA_EPI]);; let EXACT_SEQUENCE_HEXAGON_LEMMA = prove (`!(f:X->C) (g:X->D) (h:A->C) (h':C->A) (i:A->X) (j:B->X) (k:B->D) (k':D->B) (a:A->Y) (b:B->Y) (c:W->C) (d:W->D) (l:W->X) (m:X->Y) A B C D W X Y. abelian_group X /\ group_homomorphism(A,Y) a /\ group_homomorphism(B,Y) b /\ group_homomorphism(W,C) c /\ group_homomorphism(W,D) d /\ group_isomorphisms(A,C) (h,h') /\ group_isomorphisms(B,D) (k,k') /\ group_exactness(A,X,D) (i,g) /\ group_exactness(B,X,C) (j,f) /\ group_exactness(W,X,Y) (l,m) /\ (!x. x IN group_carrier W ==> f(l x) = c x) /\ (!x. x IN group_carrier W ==> g(l x) = d x) /\ (!x. x IN group_carrier A ==> f(i x) = h x) /\ (!x. x IN group_carrier A ==> m(i x) = a x) /\ (!x. x IN group_carrier B ==> g(j x) = k x) /\ (!x. x IN group_carrier B ==> m(j x) = b x) ==> !x. x IN group_carrier W ==> group_inv Y (a(h'(c x))) = b(k'(d x))`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `(l:W->X) x IN group_carrier X` ASSUME_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[group_homomorphism; group_exactness]) THEN ASM SET_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `(c:W->C) x IN group_carrier C /\ (h':C->A) (c x) IN group_carrier A /\ (a:A->Y) (h'(c x)) IN group_carrier Y /\ (i:A->X) (h'(c x)) IN group_carrier X /\ (d:W->D) x IN group_carrier D /\ (k':D->B) (d x) IN group_carrier B /\ (b:B->Y) (k'(d x)) IN group_carrier Y /\ (j:B->X) (k'(d x)) IN group_carrier X` STRIP_ASSUME_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE [group_isomorphisms; group_homomorphism; group_exactness]) THEN ASM SET_TAC[]; ALL_TAC] THEN MP_TAC(ISPECL [`f:X->C`; `g:X->D`; `h:A->C`; `i:A->X`; `j:B->X`; `k:B->D`; `A:A group`; `B:B group`; `C:C group`; `D:D group`; `X:X group`] EXACT_SEQUENCE_SUM_LEMMA) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[group_isomorphism]; ALL_TAC] THEN DISCH_THEN(MP_TAC o GEN_REWRITE_RULE I [GROUP_ISOMORPHISM_ALT] o CONJUNCT1) THEN DISCH_THEN(MP_TAC o SPEC `(l:W->X) x` o MATCH_MP(SET_RULE `IMAGE f s = t /\ P ==> !y. y IN t ==> ?x. x IN s /\ f x = y`)) THEN ASM_REWRITE_TAC[PROD_GROUP; LEFT_IMP_EXISTS_THM; FORALL_PAIR_THM] THEN MAP_EVERY X_GEN_TAC [`u:A`; `v:B`] THEN REWRITE_TAC[IN_CROSS] THEN STRIP_TAC THEN SUBGOAL_THEN `(i:A->X) u IN group_carrier X /\ (j:B->X) v IN group_carrier X /\ (f:X->C) (i u) IN group_carrier C /\ (f:X->C) (j v) IN group_carrier C /\ (g:X->D) (i u) IN group_carrier D /\ (g:X->D) (j v) IN group_carrier D` STRIP_ASSUME_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE [group_isomorphisms; group_homomorphism; group_exactness]) THEN ASM SET_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[GROUP_RULE `group_inv G x = y <=> group_mul G x y = group_id G`] THEN FIRST_X_ASSUM(fun th -> W(MP_TAC o PART_MATCH (rand o rand) th o lhand o lhand o snd)) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN FIRST_X_ASSUM(fun th -> W(MP_TAC o PART_MATCH (rand o rand) th o rand o lhand o snd)) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN UNDISCH_TAC `group_exactness (W,X,Y) ((l:W->X),(m:X->Y))` THEN REWRITE_TAC[group_exactness] THEN DISCH_THEN(MP_TAC o CONJUNCT2) THEN REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[group_homomorphism] THEN DISCH_THEN(fun th -> ASM_SIMP_TAC[GSYM(el 3 (CONJUNCTS th))]) THEN REWRITE_TAC[group_image; group_kernel] THEN MATCH_MP_TAC(SET_RULE `y IN s /\ y IN IMAGE l t ==> IMAGE l t = {x | x IN s /\ m x = z} ==> m y = z`) THEN ASM_SIMP_TAC[GROUP_MUL; IN_IMAGE] THEN EXISTS_TAC `x:W` THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM(SUBST1_TAC o SYM) THEN BINOP_TAC THEN AP_TERM_TAC THEN FIRST_X_ASSUM(fun th -> W(MP_TAC o PART_MATCH (rand o rand) th o rand o lhand o snd)) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC o SYM) THENL [SUBGOAL_THEN `group_mul C ((f:X->C) ((i:A->X) u)) ((f:X->C) (((j:B->X) v))) = h u` MP_TAC THENL [ALL_TAC; RULE_ASSUM_TAC(REWRITE_RULE [group_isomorphisms; group_homomorphism; group_exactness]) THEN ASM SET_TAC[]]; SUBGOAL_THEN `group_mul D ((g:X->D) ((i:A->X) u)) ((g:X->D) (((j:B->X) v))) = k v` MP_TAC THENL [ALL_TAC; RULE_ASSUM_TAC(REWRITE_RULE [group_isomorphisms; group_homomorphism; group_exactness]) THEN ASM SET_TAC[]]] THEN FIRST_X_ASSUM(fun th -> W(MP_TAC o PART_MATCH (rand o rand) th o rand o snd)) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_SIMP_TAC[GROUP_RULE `group_mul G x y = x <=> y = group_id G`] THEN ASM_SIMP_TAC[GROUP_RULE `group_mul G x y = y <=> x = group_id G`] THEN RULE_ASSUM_TAC(REWRITE_RULE [group_isomorphisms; group_homomorphism; group_exactness; group_image; group_kernel]) THEN ASM SET_TAC[]);;