(* ========================================================================= *) (* A formulation of free Abelian groups on :A using a type :(A)frag. *) (* ========================================================================= *) let frag_tybij = let th = prove (`?f:A->int. FINITE {x | ~(f x = &0)}`, EXISTS_TAC `(\x. &0):A->int` THEN REWRITE_TAC[EMPTY_GSPEC; FINITE_EMPTY]) in new_type_definition "frag" ("mk_frag","dest_frag") th;; let frag_support = new_definition `frag_support (x:A frag) = {a | ~(dest_frag x a = &0)}`;; let frag_0 = new_definition `frag_0:A frag = mk_frag (\x. &0)`;; let frag_of = new_definition `frag_of (c:A) = mk_frag (\a. if a = c then &1 else &0)`;; let frag_neg = new_definition `frag_neg (x:A frag) = mk_frag (\a. --(dest_frag x a))`;; let frag_cmul = new_definition `frag_cmul c (x:A frag) = mk_frag (\a. c * dest_frag x a)`;; let frag_add = new_definition `frag_add (x:A frag) y = mk_frag (\a. dest_frag x a + dest_frag y a)`;; let frag_sub = new_definition `frag_sub (x:A frag) y = mk_frag (\a. dest_frag x a - dest_frag y a)`;; let FRAG_EQ = prove (`!c1 c2:A frag. c1 = c2 <=> dest_frag c1 = dest_frag c2`, MESON_TAC[frag_tybij]);; let DEST_FRAG_0 = prove (`dest_frag(frag_0:A frag) = \x. &0`, REWRITE_TAC[frag_0; GSYM(CONJUNCT2 frag_tybij)] THEN REWRITE_TAC[EMPTY_GSPEC; FINITE_EMPTY]);; let DEST_FRAG_OF = prove (`!c:A. dest_frag(frag_of c) = \a. if a = c then &1 else &0`, REWRITE_TAC[frag_of; GSYM(CONJUNCT2 frag_tybij)] THEN ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN CONV_TAC INT_REDUCE_CONV THEN REWRITE_TAC[MESON[] `~(if p then F else T) <=> p`] THEN REWRITE_TAC[SING_GSPEC; FINITE_SING]);; let DEST_FRAG_NEG = prove (`!x:A frag. dest_frag(frag_neg x) = \a. --(dest_frag x a)`, REWRITE_TAC[frag_neg; GSYM(CONJUNCT2 frag_tybij)] THEN REWRITE_TAC[INT_NEG_EQ_0] THEN REWRITE_TAC[frag_tybij; ETA_AX]);; let DEST_FRAG_CMUL = prove (`!c x:A frag. dest_frag(frag_cmul c x) = \a. c * dest_frag x a`, REPEAT GEN_TAC THEN REWRITE_TAC[frag_cmul; GSYM(CONJUNCT2 frag_tybij)] THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{a:A | ~(dest_frag x a = &0)}` THEN SIMP_TAC[SUBSET; IN_ELIM_THM; CONTRAPOS_THM; INT_MUL_RZERO] THEN REWRITE_TAC[frag_tybij; ETA_AX]);; let DEST_FRAG_ADD = prove (`!x y:A frag. dest_frag(frag_add x y) = \a. dest_frag x a + dest_frag y a`, REPEAT GEN_TAC THEN REWRITE_TAC[frag_add; GSYM(CONJUNCT2 frag_tybij)] THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{a:A | ~(dest_frag x a = &0)} UNION {a | ~(dest_frag y a = &0)}` THEN SIMP_TAC[SUBSET; IN_ELIM_THM; IN_UNION] THEN SIMP_TAC[GSYM DE_MORGAN_THM; CONTRAPOS_THM; INT_ADD_LID] THEN REWRITE_TAC[FINITE_UNION; frag_tybij; ETA_AX]);; let DEST_FRAG_SUB = prove (`!x y:A frag. dest_frag(frag_sub x y) = \a. dest_frag x a - dest_frag y a`, REPEAT GEN_TAC THEN REWRITE_TAC[frag_sub; GSYM(CONJUNCT2 frag_tybij)] THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{a:A | ~(dest_frag x a = &0)} UNION {a | ~(dest_frag y a = &0)}` THEN SIMP_TAC[SUBSET; IN_ELIM_THM; IN_UNION] THEN SIMP_TAC[GSYM DE_MORGAN_THM; CONTRAPOS_THM; INT_SUB_RZERO] THEN REWRITE_TAC[FINITE_UNION; frag_tybij; ETA_AX]);; let FRAG_OF_NONZERO = prove (`!a:A. ~(frag_of a = frag_0)`, GEN_TAC THEN DISCH_THEN(MP_TAC o SPEC `a:A` o MATCH_MP (MESON[] `c = d ==> !a:A. dest_frag c a = dest_frag d a`)) THEN REWRITE_TAC[DEST_FRAG_OF; DEST_FRAG_0] THEN CONV_TAC INT_REDUCE_CONV);; let FRAG_MODULE = let tac = REPEAT(CONJ_TAC ORELSE GEN_TAC) THEN GEN_REWRITE_TAC ONCE_DEPTH_CONV [MESON[CONJUNCT1 frag_tybij; FUN_EQ_THM] `!x y:A frag. x = y <=> !a. dest_frag x a = dest_frag y a`] THEN GEN_REWRITE_TAC TOP_DEPTH_CONV [DEST_FRAG_0; DEST_FRAG_NEG; DEST_FRAG_CMUL; DEST_FRAG_ADD; DEST_FRAG_SUB; BETA_THM] THEN GEN_REWRITE_TAC DEPTH_CONV [AND_FORALL_THM; LEFT_OR_FORALL_THM; RIGHT_OR_FORALL_THM] THEN ((MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) ORELSE TRY(AP_TERM_TAC THEN ABS_TAC)) THEN CONV_TAC INT_RING in fun tm -> prove(tm,tac);; let FINITE_FRAG_SUPPORT = prove (`!x:A frag. FINITE(frag_support (x:A frag))`, REWRITE_TAC[frag_support; frag_tybij; ETA_AX]);; let FRAG_SUPPORT_0 = prove (`frag_support frag_0 = {}`, REWRITE_TAC[frag_support; DEST_FRAG_0; EMPTY_GSPEC]);; let FRAG_SUPPORT_OF = prove (`!a:A. frag_support(frag_of a) = {a}`, REWRITE_TAC[frag_support; DEST_FRAG_OF] THEN ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN CONV_TAC INT_REDUCE_CONV THEN REWRITE_TAC[MESON[] `~(if p then F else T) <=> p`] THEN REWRITE_TAC[SING_GSPEC]);; let FRAG_SUPPORT_NEG = prove (`!x:A frag. frag_support(frag_neg x) = frag_support x`, REWRITE_TAC[frag_support; DEST_FRAG_NEG; INT_NEG_EQ_0]);; let FRAG_SUPPORT_CMUL = prove (`!a x:A frag. frag_support(frag_cmul a x) SUBSET frag_support x`, REWRITE_TAC[frag_support; DEST_FRAG_CMUL] THEN SIMP_TAC[SUBSET; IN_ELIM_THM; CONTRAPOS_THM; INT_MUL_RZERO] THEN REWRITE_TAC[frag_tybij; ETA_AX]);; let FRAG_SUPPORT_ADD = prove (`!x y:A frag. frag_support(frag_add x y) SUBSET frag_support x UNION frag_support y`, REWRITE_TAC[frag_support; DEST_FRAG_ADD] THEN SIMP_TAC[SUBSET; IN_ELIM_THM; IN_UNION] THEN SIMP_TAC[GSYM DE_MORGAN_THM; CONTRAPOS_THM; INT_ADD_LID]);; let FRAG_SUPPORT_SUB = prove (`!x y:A frag. frag_support(frag_sub x y) SUBSET frag_support x UNION frag_support y`, REWRITE_TAC[frag_support; DEST_FRAG_SUB] THEN SIMP_TAC[SUBSET; IN_ELIM_THM; IN_UNION] THEN SIMP_TAC[GSYM DE_MORGAN_THM; CONTRAPOS_THM; INT_SUB_RZERO]);; let FRAG_SUPPORT_EQ_EMPTY = prove (`!c:A frag. frag_support c = {} <=> c = frag_0`, REWRITE_TAC[EXTENSION; NOT_IN_EMPTY] THEN REWRITE_TAC[MESON[frag_tybij] `c = d <=> dest_frag c = dest_frag d`] THEN REWRITE_TAC[DEST_FRAG_0; FUN_EQ_THM; frag_support; IN_ELIM_THM]);; let FRAG_OF_EQ = prove (`!x y:A. frag_of x = frag_of y <=> x = y`, MESON_TAC[FRAG_SUPPORT_OF; SET_RULE `{x} = {y} <=> x = y`]);; let FRAG_ADD_EQ_0 = prove (`!c1 c2:A frag. DISJOINT (frag_support c1) (frag_support c2) /\ frag_add c1 c2 = frag_0 ==> c1 = frag_0 /\ c2 = frag_0`, REPEAT GEN_TAC THEN REWRITE_TAC[frag_support; FRAG_EQ] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[DEST_FRAG_ADD; DEST_FRAG_0; FUN_EQ_THM; AND_FORALL_THM] THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN MATCH_MP_TAC(INT_ARITH `~(~(x:int = &0) /\ ~(y = &0)) ==> x + y = &0 ==> x = &0 /\ y = &0`) THEN ASM SET_TAC[]);; let NEUTRAL_FRAG_ADD = prove (`neutral frag_add :A frag = frag_0`, REWRITE_TAC[neutral; FRAG_MODULE `(frag_add x y = y <=> x = frag_0) /\ (frag_add y x = y <=> x = frag_0)`]);; let MONOIDAL_FRAG_ADD = prove (`monoidal frag_add`, REWRITE_TAC[monoidal; NEUTRAL_FRAG_ADD] THEN CONV_TAC FRAG_MODULE);; let FRAG_CMUL_SUM = prove (`!f:B->A frag k a. frag_cmul a (iterate frag_add k f) = iterate frag_add k (\b. frag_cmul a (f b))`, REPEAT GEN_TAC THEN ASM_CASES_TAC `a:int = &0` THEN ASM_SIMP_TAC[INT_MUL_LZERO; FRAG_MODULE `frag_cmul (&0) x = frag_0`; REWRITE_RULE[NEUTRAL_FRAG_ADD] (MATCH_MP ITERATE_EQ_NEUTRAL MONOIDAL_FRAG_ADD)] THEN ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN ASM_REWRITE_TAC[support; NEUTRAL_FRAG_ADD; FRAG_MODULE `frag_cmul a c = frag_0 <=> a = &0 \/ c = frag_0`] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[FRAG_MODULE `frag_cmul a frag_0 = frag_0`] THEN UNDISCH_TAC `FINITE {x | x IN k /\ ~((f:B->A frag) x = frag_0)}` THEN SPEC_TAC(`{x | x IN k /\ ~((f:B->A frag) x = frag_0)}`,`k:B->bool`) THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[MATCH_MP ITERATE_CLAUSES MONOIDAL_FRAG_ADD] THEN REWRITE_TAC[NEUTRAL_FRAG_ADD; FRAG_MODULE `frag_cmul a frag_0 = frag_0`] THEN SIMP_TAC[FRAG_MODULE `frag_cmul a (frag_add x y) = frag_add (frag_cmul a x) (frag_cmul a y)`]);; let FRAG_SUPPORT_SUM = prove (`!f:B->A frag k. frag_support(iterate frag_add k f) SUBSET UNIONS {frag_support(f i) | i IN k}`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN REWRITE_TAC[NEUTRAL_FRAG_ADD] THEN COND_CASES_TAC THEN REWRITE_TAC[FRAG_SUPPORT_0; EMPTY_SUBSET] THEN TRANS_TAC SUBSET_TRANS `UNIONS {frag_support (f i) |i| i IN support frag_add (f:B->A frag) k}` THEN CONJ_TAC THENL [POP_ASSUM MP_TAC THEN SPEC_TAC(`support frag_add (f:B->A frag) k`,`k:B->bool`) THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[MATCH_MP ITERATE_CLAUSES MONOIDAL_FRAG_ADD] THEN REWRITE_TAC[SIMPLE_IMAGE; IMAGE_CLAUSES; NEUTRAL_FRAG_ADD] THEN REWRITE_TAC[FRAG_SUPPORT_0; EMPTY_SUBSET] THEN REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH lhand FRAG_SUPPORT_ADD o lhand o snd) THEN ASM SET_TAC[]; REWRITE_TAC[SIMPLE_IMAGE] THEN MATCH_MP_TAC SUBSET_UNIONS THEN SIMP_TAC[SUPPORT_SUBSET; IMAGE_SUBSET]]);; let frag_extend = new_definition `frag_extend (f:A->B frag) x = iterate frag_add (frag_support x) (\a. frag_cmul (dest_frag x a) (f a))`;; let FRAG_EXTEND = prove (`!f:A->B frag x. frag_extend f x = iterate frag_add UNIV (\a. frag_cmul (dest_frag x a) (f a))`, REPEAT STRIP_TAC THEN REWRITE_TAC[frag_extend] THEN MATCH_MP_TAC(MATCH_MP ITERATE_UNIV MONOIDAL_FRAG_ADD) THEN REWRITE_TAC[support; NEUTRAL_FRAG_ADD; frag_support; IN_UNIV] THEN SIMP_TAC[SUBSET; IN_ELIM_THM; CONTRAPOS_THM] THEN REPEAT STRIP_TAC THEN CONV_TAC FRAG_MODULE);; let FRAG_EXTEND_0 = prove (`!f:A->B frag. frag_extend f frag_0 = frag_0`, REWRITE_TAC[frag_extend; FRAG_SUPPORT_0] THEN REWRITE_TAC[MATCH_MP ITERATE_CLAUSES MONOIDAL_FRAG_ADD] THEN REWRITE_TAC[NEUTRAL_FRAG_ADD]);; let FRAG_EXTEND_OF = prove (`!f:A->B frag a. frag_extend f (frag_of a) = f a`, REWRITE_TAC[frag_extend; FRAG_SUPPORT_OF] THEN SIMP_TAC[MATCH_MP ITERATE_CLAUSES MONOIDAL_FRAG_ADD; FINITE_EMPTY] THEN REWRITE_TAC[NOT_IN_EMPTY; NEUTRAL_FRAG_ADD; DEST_FRAG_OF] THEN CONV_TAC FRAG_MODULE);; let FRAG_EXTEND_CMUL = prove (`!f:A->B frag c x. frag_extend f (frag_cmul c x) = frag_cmul c (frag_extend f x)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `c:int = &0` THEN ASM_REWRITE_TAC[FRAG_MODULE `frag_cmul (&0) x = frag_0`; FRAG_EXTEND_0] THEN REWRITE_TAC[frag_extend; frag_support; DEST_FRAG_CMUL] THEN ASM_REWRITE_TAC[INT_ENTIRE; FRAG_CMUL_SUM; FRAG_MODULE `frag_cmul (a * b) c = frag_cmul a (frag_cmul b c)`]);; let FRAG_EXTEND_NEG = prove (`!f:A->B frag x. frag_extend f (frag_neg x) = frag_neg(frag_extend f x)`, REWRITE_TAC[FRAG_MODULE `frag_neg x = frag_cmul (-- &1) x`] THEN REWRITE_TAC[FRAG_EXTEND_CMUL]);; let FRAG_EXTEND_ADD = prove (`!f:A->B frag x y. frag_extend f (frag_add x y) = frag_add (frag_extend f x) (frag_extend f y)`, REPEAT GEN_TAC THEN REWRITE_TAC[FRAG_EXTEND] THEN W(MP_TAC o PART_MATCH (rand o rand) (MATCH_MP ITERATE_OP_GEN MONOIDAL_FRAG_ADD) o rand o snd) THEN REWRITE_TAC[] THEN ANTS_TAC THENL [REWRITE_TAC[support; NEUTRAL_FRAG_ADD; IN_UNIV] THEN CONJ_TAC THEN MATCH_MP_TAC FINITE_SUBSET THENL [EXISTS_TAC `frag_support (x:A frag)`; EXISTS_TAC `frag_support (y:A frag)`] THEN REWRITE_TAC[FINITE_FRAG_SUPPORT] THEN SIMP_TAC[SUBSET; IN_ELIM_THM; CONTRAPOS_THM; frag_support] THEN REPEAT STRIP_TAC THEN CONV_TAC FRAG_MODULE; DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC(MATCH_MP ITERATE_EQ MONOIDAL_FRAG_ADD) THEN REWRITE_TAC[IN_UNIV] THEN CONV_TAC FRAG_MODULE]);; let FRAG_EXTEND_SUB = prove (`!f:A->B frag x y. frag_extend f (frag_sub x y) = frag_sub (frag_extend f x) (frag_extend f y)`, REWRITE_TAC[FRAG_MODULE `frag_sub x y = frag_add x (frag_cmul (-- &1) y)`] THEN REWRITE_TAC[FRAG_EXTEND_CMUL; FRAG_EXTEND_ADD]);; let FRAG_EXTEND_SUM = prove (`!f:A->B frag g k:C->bool. FINITE k ==> frag_extend f (iterate frag_add k g) = iterate frag_add k (frag_extend f o g)`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[MATCH_MP ITERATE_CLAUSES MONOIDAL_FRAG_ADD] THEN SIMP_TAC[NEUTRAL_FRAG_ADD; FRAG_EXTEND_0; FRAG_EXTEND_ADD; o_THM]);; let FRAG_EXTEND_EQ = prove (`!(g:A->B frag) h c. (!f. f IN frag_support c ==> g f = h f) ==> frag_extend g c = frag_extend h c`, REPEAT STRIP_TAC THEN REWRITE_TAC[frag_extend] THEN MATCH_MP_TAC(MATCH_MP ITERATE_EQ MONOIDAL_FRAG_ADD) THEN ASM_SIMP_TAC[]);; let FRAG_EXTEND_EQ_0 = prove (`!(f:A->B frag) c. (!a. a IN frag_support c ==> f a = frag_0) ==> frag_extend f c = frag_0`, REPEAT STRIP_TAC THEN REWRITE_TAC[frag_extend] THEN REWRITE_TAC[GSYM NEUTRAL_FRAG_ADD] THEN MATCH_MP_TAC(MATCH_MP ITERATE_EQ_NEUTRAL MONOIDAL_FRAG_ADD) THEN ASM_SIMP_TAC[NEUTRAL_FRAG_ADD] THEN REPEAT STRIP_TAC THEN CONV_TAC FRAG_MODULE);; let FRAG_SUPPORT_FRAG_EXTEND = prove (`!f:A->B frag c. frag_support(frag_extend f c) SUBSET UNIONS {frag_support(f a) | a IN frag_support c}`, REPEAT GEN_TAC THEN REWRITE_TAC[frag_extend] THEN W(MP_TAC o PART_MATCH lhand FRAG_SUPPORT_SUM o lhand o snd) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] SUBSET_TRANS) THEN REWRITE_TAC[SIMPLE_IMAGE] THEN MATCH_MP_TAC UNIONS_MONO_IMAGE THEN REWRITE_TAC[FRAG_SUPPORT_CMUL]);; let FRAG_EXPANSION = prove (`!x:A frag. x = frag_extend frag_of x`, GEN_TAC THEN REWRITE_TAC[frag_extend] THEN MATCH_MP_TAC(MESON[frag_tybij] `dest_frag x = dest_frag y ==> x = y`) THEN REWRITE_TAC[o_THM; FUN_EQ_THM; I_THM] THEN X_GEN_TAC `b:A` THEN SUBGOAL_THEN `!k. FINITE k ==> dest_frag(iterate frag_add k (\a:A. frag_cmul (dest_frag x a) (frag_of a))) b = if b IN k then dest_frag x b else &0` (fun th -> SIMP_TAC[th; FINITE_FRAG_SUPPORT]) THENL [MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[MATCH_MP ITERATE_CLAUSES MONOIDAL_FRAG_ADD] THEN REWRITE_TAC[NOT_IN_EMPTY; NEUTRAL_FRAG_ADD; DEST_FRAG_0] THEN SIMP_TAC[DEST_FRAG_ADD; DEST_FRAG_CMUL; DEST_FRAG_OF] THEN MAP_EVERY X_GEN_TAC [`a:A`; `k:A->bool`] THEN ASM_CASES_TAC `b:A = a` THEN ASM_SIMP_TAC[IN_INSERT] THEN INT_ARITH_TAC; REWRITE_TAC[frag_support; IN_ELIM_THM] THEN MESON_TAC[]]);; let FRAG_CLOSURE_SUB_CMUL = prove (`!P:A frag->bool. P frag_0 /\ (!c1 c2. P c1 /\ P c2 ==> P(frag_sub c1 c2)) ==> !a c. P c ==> P(frag_cmul a c)`, GEN_TAC THEN STRIP_TAC THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN SUBGOAL_THEN `!n. (P:(A frag)->bool) (frag_cmul (&n) c)` ASSUME_TAC THENL [INDUCT_TAC THEN REWRITE_TAC[GSYM INT_OF_NUM_SUC; FRAG_MODULE `frag_cmul (a + &1) x = frag_sub (frag_cmul a x) (frag_sub frag_0 x)`] THEN ASM_SIMP_TAC[DEST_FRAG_0; FRAG_MODULE `frag_cmul (&0) x = frag_0`]; ALL_TAC] THEN X_GEN_TAC `a:int` THEN DISJ_CASES_TAC(INT_ARITH `&0:int <= a \/ &0 <= --a`) THENL [UNDISCH_TAC `&0:int <= a` THEN SPEC_TAC(`a:int`,`a:int`); ONCE_REWRITE_TAC[FRAG_MODULE `frag_cmul a x = frag_sub frag_0 (frag_cmul (--a) x)`] THEN ASM_SIMP_TAC[DEST_FRAG_CMUL; DEST_FRAG_0; FRAG_MODULE `frag_sub x y = frag_sub x z <=> y = z`] THEN UNDISCH_TAC `&0:int <= --a` THEN SPEC_TAC(`--a:int`,`a:int`)] THEN ASM_SIMP_TAC[GSYM INT_FORALL_POS]);; let FRAG_INDUCTION = prove (`!P:A frag->bool s. P frag_0 /\ (!a. a IN s ==> P(frag_of a)) /\ (!c1 c2. P c1 /\ P c2 ==> P(frag_sub c1 c2)) ==> !c. frag_support c SUBSET s ==> P c`, REPEAT GEN_TAC THEN STRIP_TAC THEN MP_TAC(ISPEC `P:A frag->bool` FRAG_CLOSURE_SUB_CMUL) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN GEN_REWRITE_TAC (BINDER_CONV o RAND_CONV o RAND_CONV) [FRAG_EXPANSION] THEN REWRITE_TAC[frag_extend; o_THM] THEN X_GEN_TAC `c:A frag` THEN MP_TAC(ISPEC `c:A frag` FINITE_FRAG_SUPPORT) THEN SPEC_TAC(`frag_support(c:A frag)`,`k:A->bool`) THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[MATCH_MP ITERATE_CLAUSES MONOIDAL_FRAG_ADD] THEN ASM_REWRITE_TAC[NEUTRAL_FRAG_ADD; INSERT_SUBSET] THEN REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[FRAG_MODULE `frag_add x y = frag_sub x (frag_sub frag_0 y)`] THEN REPEAT(FIRST_ASSUM MATCH_MP_TAC THEN CONJ_TAC) THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM SET_TAC[]);; let FRAG_EXTEND_COMPOSE = prove (`!(f:B->C frag) (g:A->B) c. frag_extend f (frag_extend (frag_of o g) c) = frag_extend (f o g) c`, GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC(MESON[SUBSET_UNIV] `(!c. frag_support c SUBSET UNIV ==> P c) ==> (!c. P c)`) THEN MATCH_MP_TAC FRAG_INDUCTION THEN SIMP_TAC[FRAG_EXTEND_0; FRAG_EXTEND_SUB; FRAG_EXTEND_OF; o_THM]);; let FRAG_SPLIT = prove (`!c s t:A->bool. frag_support c SUBSET s UNION t ==> ?d e. frag_support d SUBSET s /\ frag_support e SUBSET t /\ frag_add d e = c`, REPEAT STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`frag_extend (\f. if f IN s then frag_of f else frag_0) c:A frag`; `frag_extend (\f. if f IN s then frag_0 else frag_of f) c:A frag`] THEN REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL [CONJ_TAC THEN W(MP_TAC o PART_MATCH lhand FRAG_SUPPORT_FRAG_EXTEND o lhand o snd) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] SUBSET_TRANS) THEN REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_GSPEC] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[FRAG_SUPPORT_0; EMPTY_SUBSET; FRAG_SUPPORT_OF] THEN ASM SET_TAC[]; POP_ASSUM MP_TAC THEN SPEC_TAC(`c:A frag`,`c:A frag`) THEN MATCH_MP_TAC FRAG_INDUCTION THEN REWRITE_TAC[FRAG_EXTEND_0; FRAG_EXTEND_SUB; FRAG_EXTEND_OF] THEN CONJ_TAC THENL [CONV_TAC FRAG_MODULE; ALL_TAC] THEN CONJ_TAC THENL [ALL_TAC; CONV_TAC FRAG_MODULE] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC FRAG_MODULE]);;