(* ========================================================================= *) (* Parsing and printing for bitmatch expressions. *) (* *) (* This supports term constructions like *) (* *) (* bitmatch (word 17) with *) (* | [hi3:3; 0b00:2; lo3:3] -> foo hi3 lo3 *) (* | [hi3:3; 0b1:1; lo4:4] -> bar hi3 lo4 *) (* | [0b1010101:7; b] -> baz b *) (* *) (* which decomposes the number 17 = 0b00010001 into the 3 high bits *) (* (hi3 = 0), a 1 bit in the middle, and the 4 low bits (lo4 = 1) and calls *) (* `bar`. The patterns are written with the low bits on the right. *) (* A pattern variable without a digit matches one bit as a bool. *) (* *) (* (c) Copyright, Mario Carneiro 2020 *) (* ========================================================================= *) needs "Library/words.ml";; prioritize_num();; (* Like CHOOSE, but the variable is the same as the one in the existential *) let TRIV_CHOOSE = let P = `P:A->bool` and Q = `Q:bool` and an = `(/\)` in let pth = (* `(\x:A. Q /\ P x) = P, (?) P |- Q` *) let th1 = AP_THM (ASSUME `(\x:A. Q /\ P x) = P`) `x:A` in let th1 = TRANS (SYM th1) (BETA `(\x:A. Q /\ P x) x`) in let th1 = CONJUNCT1 (EQ_MP th1 (ASSUME `(P:A->bool) x`)) in let th1 = GEN `x:A` (DISCH `(P:A->bool) x` th1) in let th2 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM EXISTS_DEF P) in MP (SPEC `Q:bool` (EQ_MP th2 (ASSUME `(?) (P:A->bool)`))) th1 in fun th1 th2 -> try let P' = rand (concl th1) in let v,bod = dest_abs P' in let Q' = concl th2 in let anQ = mk_comb (an, Q') in let th3 = DEDUCT_ANTISYM_RULE (CONJ th2 (ASSUME bod)) (CONJUNCT2 (ASSUME (mk_comb (anQ, bod)))) in let th4 = AP_TERM anQ (BETA (mk_comb (P', v))) in let th5 = PINST [snd(dest_var v),aty] [P',P; Q',Q] pth in PROVE_HYP th1 (PROVE_HYP (ABS v (TRANS th4 th3)) th5) with Failure _ -> failwith "TRIV_CHOOSE";; let (WITH_GOAL:(term->tactic)->tactic) = fun tac (_,w as st) -> tac w st;; let _BITMATCH = new_definition `_BITMATCH (s:N word) c = _MATCH (val s) c`;; let _ELSEPATTERN = new_definition `_ELSEPATTERN (e:B) (a:A) = \x. e = x`;; let bitpat = let th = prove (`?x:num#(num->bool). !a. SND x a ==> a < 2 EXP FST x`, EXISTS_TAC `0, \i:num. F` THEN REWRITE_TAC[SND]) in new_type_definition "bitpat" ("mk_bitpat","dest_bitpat") th;; let pat_size = new_definition `pat_size p = FST (dest_bitpat p)`;; let pat_set = new_definition `pat_set p = SND (dest_bitpat p)`;; let pat_set_lt = prove (`!p s. pat_set p s ==> s < 2 EXP pat_size p`, REWRITE_TAC [pat_set; pat_size; bitpat]);; let pat_thm = prove (`p = mk_bitpat (n, f) /\ (!a. f a ==> a < 2 EXP n) ==> pat_size p = n /\ !s. pat_set p s = f s`, REPEAT DISCH_TAC THEN SUBGOAL_THEN `dest_bitpat (mk_bitpat (n,f)) = (n,f)` (fun th -> ASM_REWRITE_TAC [pat_size; pat_set; th]) THEN ASM_REWRITE_TAC [GSYM (CONJUNCT2 bitpat)] THEN FIRST_X_ASSUM (ASSUME_TAC o MATCH_MP pat_set_lt));; let NILPAT = new_definition `NILPAT = mk_bitpat(0,\s:num. s = 0)`;; let NILPAT_pat_size,NILPAT_pat_set = (CONJ_PAIR o prove) (`pat_size NILPAT = 0 /\ !s. pat_set NILPAT s <=> s = 0`, MATCH_MP_TAC pat_thm THEN REWRITE_TAC [NILPAT] THEN STRIP_TAC THEN DISCH_THEN SUBST1_TAC THEN ARITH_TAC);; let CONSPAT = new_definition `CONSPAT p (a:N word) = let n = dimindex(:N) in mk_bitpat(n + pat_size p, \s:num. (?t. pat_set p t /\ s = val a + 2 EXP n * t))`;; let CONSPAT_pat_size,CONSPAT_pat_set = (CONJ_PAIR o prove) (`pat_size (CONSPAT p (a:N word)) = dimindex(:N) + pat_size p /\ !s. pat_set (CONSPAT p (a:N word)) s <=> ?t. pat_set p t /\ s = val a + 2 EXP dimindex(:N) * t`, MATCH_MP_TAC pat_thm THEN REWRITE_TAC [CONV_RULE (ONCE_DEPTH_CONV let_CONV) CONSPAT] THEN REPEAT STRIP_TAC THEN POP_ASSUM SUBST1_TAC THEN MATCH_MP_TAC LTE_TRANS THEN EXISTS_TAC `2 EXP dimindex (:N) * SUC t` THEN POP_ASSUM (fun th -> REWRITE_TAC [EXP_ADD; LE_MULT_LCANCEL; LE_SUC_LT; MATCH_MP pat_set_lt th]) THEN REWRITE_TAC [MULT_SUC; LT_ADD_RCANCEL; VAL_BOUND]);; reserve_words["BITPAT"; "bitmatch"];; let word1 = new_definition `word1 p = (word (bitval p)):1 word`;; let BIT0_WORD1 = prove (`bit 0 (word1 b) = b`, REWRITE_TAC [word1; BIT_LSB; bitval; VAL_WORD] THEN DIMINDEX_TAC THEN BOOL_CASES_TAC `b:bool` THEN REWRITE_TAC [] THEN ARITH_TAC);; let VAL_WORD1 = prove (`val (word1 b) = bitval b`, REWRITE_TAC [word1; VAL_WORD_BITVAL]);; let WORD1_ODD = prove (`word1 (ODD n) = word n`, CONV_TAC SYM_CONV THEN REWRITE_TAC [word1; WORD_EQ; DIMINDEX_CLAUSES] THEN ASM_CASES_TAC `ODD n` THEN ASM_REWRITE_TAC[ODD_MOD; BITVAL_CLAUSES; EXP_1; CONG] THEN CONV_TAC NUM_REDUCE_CONV THEN ASM_REWRITE_TAC[GSYM EVEN_MOD; GSYM ODD_MOD; GSYM NOT_ODD]);; let preparse_bitpat,preparse_bitmatch = let bitmatch_ptm = Varp("_BITMATCH",dpty) and NILPAT_ptm = Varp("NILPAT",dpty) and CONSPAT_ptm = Varp("CONSPAT",dpty) and word_ptm = Varp("word",dpty) and word1_ptm = Varp("word1",dpty) and arb_ptm = Varp("ARB",dpty) and ung_ptm = Varp("_UNGUARDED_PATTERN",dpty) and seqp_ptm = Varp("_SEQPATTERN",dpty) and else_ptm = Varp("_ELSEPATTERN",dpty) in let rec pfrees ptm = match ptm with | Varp(v,pty) -> if v = "" && pty = dpty then [] else if can get_const_type v || can num_of_string v || exists (fun (w,_) -> v = w) (!the_interface) then [] else [ptm] | Constp(_,_) -> [] | Combp(p1,p2) -> union (pfrees p1) (pfrees p2) | Absp(p1,p2) -> subtract (pfrees p2) (pfrees p1) | Typing(p,_) -> pfrees p in let pgenvar = let gcounter = ref 0 in fun () -> let count = !gcounter in (gcounter := count + 1; Varp("BM%PVAR%"^(string_of_int count),dpty)) in let pmk_exists v ptm = Combp(Varp("?",dpty),Absp(v,ptm)) in let pmk_bitmatch (((_,e),_),cs) = let x = pgenvar() and y = pgenvar() in let rec pmk_clauses cs = match pmk_clauses_opt cs with | Some t -> t | None -> Combp(else_ptm, arb_ptm) and pmk_clauses_opt cs = match cs with | [] -> None | (None,res)::cs -> Some (Combp(else_ptm, res)) | (Some pat,res)::cs -> let tx = Combp(Combp(Varp("pat_set",dpty),pat),x) and ty = Combp(Combp(Varp("=",dpty),res),y) in let t = itlist pmk_exists (pfrees pat) (Combp(Combp(ung_ptm,tx),ty)) in Some(Combp(Combp(seqp_ptm, Absp(x, Absp(y, t))), pmk_clauses cs)) in Combp(Combp(bitmatch_ptm,e), pmk_clauses cs) in let rec to_bitpat p e = match e with | Varp("NIL",_) -> p | Combp(Combp(Varp("CONS",_),a),e) -> let e2 = match a with | Typing(a,i) -> let a = match a with | Varp(s,_) when can num_of_string s -> Combp(word_ptm,a) | _ -> a in Typing(a,Ptycon("word",[i])) | a -> Combp(word1_ptm,a) in to_bitpat (Combp(Combp(CONSPAT_ptm,p),e2)) e | _ -> raise Noparse in let bitpat = parse_preterm >> to_bitpat NILPAT_ptm in let pattern = (a (Ident "_") >> (fun _ -> None)) ||| (bitpat >> fun x -> Some(x)) in let clause = pattern ++ (a (Resword "->") ++ parse_preterm >> snd) in let clauses = possibly (a (Resword "|")) ++ listof clause (a (Resword "|")) "pattern-match clause" >> snd in (a (Resword "BITPAT") ++ bitpat >> snd), (a (Resword "bitmatch") ++ parse_preterm ++ a (Resword "with") ++ clauses >> pmk_bitmatch);; install_parser("bitpat",preparse_bitpat);; install_parser("bitmatch",preparse_bitmatch);; let pp_print_bitpat,pp_print_bitmatch = let rec dest_pat_rev tm = match tm with | Comb(Comb(Const("CONSPAT",_),p),a) -> a::dest_pat_rev p | Const("NILPAT",_) -> [] | _ -> failwith "dest_pat" in let dest_pat = rev o dest_pat_rev in let dest_clause tm = match snd(strip_exists(body(body tm))) with | Comb(Comb(Const("_UNGUARDED_PATTERN",_),lhs), Comb(Comb(Const("=",_),res),_)) -> (match lhs with | Comb(Comb(Const("pat_set",_),pat),_) -> dest_pat pat, res | _ -> failwith "dest_clause") | _ -> failwith "dest_clause" in let rec dest_clauses tm = match tm with | Comb(Comb(Const("_SEQPATTERN",_),c),cs) -> let c = dest_clause c and l,r = dest_clauses cs in c::l,r | Comb(Const("_ELSEPATTERN",_),res) -> [],res | _ -> failwith "dest_clauses" in let f fmt = let unword i = function | Comb(Const("word",_),a) when is_numeral a -> if dest_numeral a < power_num (Int 2) (dest_finty i) then a else failwith "numeral out of range" | a -> a in let print_pat = function | Comb(Const("word1",_),a) -> pp_print_term fmt a | a -> match type_of a with | Tyapp("word",[i]) -> (pp_print_term fmt (unword i a); pp_print_string fmt ":"; pp_print_type fmt i) | _ -> failwith "print_pat" in let print_opat = function | None -> pp_print_string fmt "_" | Some [] -> pp_print_string fmt "[]" | Some (x::xs) -> (pp_print_string fmt "["; print_pat x; List.iter (fun x -> pp_print_string fmt "; "; print_pat x) xs; pp_print_string fmt "]") in let print_clause p r = (print_opat p; pp_print_string fmt " -> "; pp_print_term fmt r) in let rec print_clauses cls r = match cls,r with | [p,res],Const("ARB",_) -> print_clause (Some p) res | (p,res)::cs,_ -> ( print_clause (Some p) res; pp_print_break fmt 1 0; pp_print_string fmt "| "; print_clauses cs r) | [],r -> print_clause None r in let pp_print_bitpat tm = let pat = dest_pat tm in (pp_open_hvbox fmt 0; pp_print_string fmt "(BITPAT"; pp_print_space fmt (); print_opat (Some pat); pp_print_string fmt ")"; pp_close_box fmt ()) in let pp_print_bitmatch = function | Comb(Comb(Const("_BITMATCH",_),e),c) -> let cls,r = dest_clauses c in (pp_open_hvbox fmt 0; pp_print_string fmt "(bitmatch "; pp_print_term fmt e; pp_print_string fmt " with"; pp_print_break fmt 1 2; print_clauses cls r; pp_close_box fmt (); pp_print_string fmt ")") | _ -> failwith "print_bitmatch" in pp_print_bitpat,pp_print_bitmatch in fst o f, snd o f;; let print_bitpat = pp_print_bitpat std_formatter and string_of_bitpat = print_to_string pp_print_bitpat;; let print_bitmatch = pp_print_bitmatch std_formatter and string_of_bitmatch = print_to_string pp_print_bitmatch;; install_user_printer("bitpat",pp_print_bitpat);; install_user_printer("bitmatch",pp_print_bitmatch);; (* ------------------------------------------------------------------------- *) (* Some tactics for dealing with bitmatch *) (* ------------------------------------------------------------------------- *) let dest_word_ty = function | Tyapp("word",[i]) -> i | _ -> failwith "dest_word_ty";; let SPLIT_IF = let th = (UNDISCH_ALL o TAUT) `(p ==> a:A = t1) ==> (~p ==> a = t2) ==> a = if p then t1 else t2` in let [Var(_,A) as a; p; t1; t2] = frees (concl th) and tnot = `~` in fun p' th1 th2 -> let a',t1' = dest_eq (concl th1) and t2' = snd (dest_eq (concl th2)) in (PROVE_HYP (DISCH p' th1) o PROVE_HYP (DISCH (mk_comb(tnot, p')) th2)) (PINST [type_of a',A] [p',p; a',a; t1',t1; t2',t2] th);; let MATCH_SEQPATTERN = prove (`_MATCH (e:A) (_SEQPATTERN c cs) = if ?y:B. c e y then _MATCH e c else _MATCH e cs`, COND_CASES_TAC THEN ASM_REWRITE_TAC [_MATCH; _SEQPATTERN]);; let BITMATCH_SEQPATTERN = prove (`_BITMATCH (e:N word) (_SEQPATTERN c cs) = if ?y:B. c (val e) y then _BITMATCH e c else _BITMATCH e cs`, REWRITE_TAC [_BITMATCH; MATCH_SEQPATTERN]);; let BITMATCH_SEQPATTERN2 = prove (`_BITMATCH (e:N word) (_SEQPATTERN c cs) = if ?y:B. c (val e) y then _BITMATCH e (_SEQPATTERN c (_ELSEPATTERN ARB)) else _BITMATCH e cs`, REWRITE_TAC [BITMATCH_SEQPATTERN] THEN COND_CASES_TAC THEN REWRITE_TAC []);; let MATCH_ELSEPATTERN = prove (`_MATCH (e:B) (_ELSEPATTERN (a:A)) = a`, REWRITE_TAC [_MATCH; _ELSEPATTERN] THEN METIS_TAC[]);; let BITMATCH_ELSEPATTERN = prove (`_BITMATCH (e:N word) (_ELSEPATTERN (a:A)) = a`, REWRITE_TAC [_BITMATCH; MATCH_ELSEPATTERN]);; let pat_extract = new_definition `pat_extract p i b <=> (!n. pat_set p n ==> numbit i n = b)`;; let PAT_EXTRACT_THM = let N,n,m,i,p,b = `:N`,`n:num`,`m:num`,`i:num`,`p:bitpat`,`b:bool` and a,lt,pl,nb,di = `a:N word`,`(<)`,`(+)`,`numbit`,`dimindex(:N)` in let word1_eq = prove (`pat_extract (CONSPAT p (word1 b)) 0 b`, REWRITE_TAC [pat_extract; numbit; CONSPAT_pat_set; word1; VAL_WORD] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM SUBST1_TAC THEN DIMINDEX_TAC THEN NUM_REDUCE_TAC THEN REWRITE_TAC [DIV_1; EVEN_ADD; GSYM NOT_EVEN; EVEN_DOUBLE] THEN BOOL_CASES_TAC `b:bool` THEN REWRITE_TAC [bitval] THEN ARITH_TAC) in let word_lt = (UNDISCH_ALL o prove) (`dimindex(:N) = n ==> numbit i m = b ==> (i < n <=> T) ==> pat_extract (CONSPAT p (word m:N word)) i b`, REWRITE_TAC[] THEN REPEAT (DISCH_THEN (SUBST1_TAC o SYM)) THEN REWRITE_TAC [pat_extract; CONSPAT_pat_set; numbit] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM SUBST1_TAC THEN REWRITE_TAC [VAL_WORD; ODD_MOD; DIV_MOD] THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN ONCE_REWRITE_TAC [MULT_SYM] THEN REWRITE_TAC [GSYM (CONJUNCT2 EXP)] THEN ONCE_REWRITE_TAC [GSYM MOD_ADD_MOD] THEN FIRST_X_ASSUM (SUBST1_TAC o GSYM o MATCH_MP (ARITH_RULE `m <= n ==> (m + (n - m) = n:num)`) o REWRITE_RULE [GSYM LE_SUC_LT]) THEN REWRITE_TAC [EXP_ADD; MOD_MOD] THEN ONCE_REWRITE_TAC [MULT_AC] THEN REWRITE_TAC [MOD_MULT; ADD_0; MOD_MOD_REFL]) in let word_skip = (UNDISCH_ALL o prove) (`dimindex(:N) = n ==> m + n = i ==> pat_extract p m b ==> pat_extract (CONSPAT p (a:N word)) i b`, REPEAT (DISCH_THEN (SUBST1_TAC o SYM)) THEN REWRITE_TAC [pat_extract; CONSPAT_pat_set; numbit] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM SUBST1_TAC THEN POP_ASSUM (fun th -> POP_ASSUM (fun f -> REWRITE_TAC [GSYM (MATCH_MP f th)])) THEN REWRITE_TAC [SPECL [m;`dimindex(:N)`] ADD_SYM] THEN REWRITE_TAC [EXP_ADD; GSYM DIV_DIV] THEN AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN IMP_REWRITE_TAC [DIV_MULT_ADD; DIV_LT; ADD; VAL_BOUND; EXP_2_NE_0]) in let rec go = function | Comb(Comb(Const("CONSPAT",_),p'),a'),i' -> let i'' = dest_numeral i' in let aty = type_of a' in let Tyapp(_,[N']) = aty in let n'' = dest_finty N' in if i'' < n'' then match a' with | Comb(Const("word1",_),b') -> INST [p',p; b',b] word1_eq | Comb(Const("word",_),m') when is_numeral m' -> let th = INST_TYPE [N',N] word_lt in let th1 = DIMINDEX_CONV (inst [N',N] di) in let n' = rhs (concl th1) in let th2 = NUMBIT_CONV (mk_comb (mk_comb (nb,i'),m')) in let b' = rhs (concl th2) in let th3 = NUM_LT_CONV (mk_comb (mk_comb (lt,i'),n')) in (PROVE_HYP th3 o PROVE_HYP th2 o PROVE_HYP th1) (INST [i',i; m',m; n',n; p',p; b',b] th) | _ -> failwith "PAT_EXTRACT_THM: not a constant at this position" else let th = INST_TYPE [N',N] word_skip in let th1 = DIMINDEX_CONV (inst [N',N] di) in let n' = rhs (concl th1) in let m' = mk_numeral (sub_num i'' n'') in let th2 = NUM_ADD_CONV (mk_comb (mk_comb (pl,m'),n')) in let th3 = go (p', m') in let b' = rand (concl th3) in (PROVE_HYP th3 o PROVE_HYP th2 o PROVE_HYP th1) (INST [i',i; m',m; n',n; p',p; b',b; a',mk_var("a",aty)] th) | _ -> failwith "PAT_EXTRACT_THM: out of range" in go;; (* (pat_to_bit false `i` `pat_set p (val e)`) proves `bit i e |- ~pat_set p (val e)` or `~bit i e |- ~pat_set p (val e)` (pat_to_bit true `i` `pat_set p (val e)`) proves `pat_set p (val e) |- ~bit i e` or `pat_set p (val e) |- bit i e` *) let pat_to_bit = (* thT := ~bit i e, pat_extract p i T |- ~pat_set p (val e) thF := bit i e, pat_extract p i F |- ~pat_set p (val e) *) let thT_pos,thF_pos = (* TODO: I got frustrated with tactics so this is just a direct proof. *) let a = PURE_REWRITE_RULE [pat_extract] (ASSUME `pat_extract p i b`) in let a = UNDISCH (SPEC `val (e:N word)` a) in let th = TRANS (SYM NUMBIT_VAL) a in EQT_ELIM (INST [`T`,`b:bool`] th), EQF_ELIM (INST [`F`,`b:bool`] th) in let thT_neg,thF_neg = let f x y = NOT_INTRO (DISCH `pat_set p (val (e:N word))` (MP (NOT_ELIM x) y)) in f (ASSUME `~bit i (e:N word)`) thT_pos, f thF_pos (ASSUME `bit i (e:N word)`) in let N,i,e,p = `:N`,`i:num`,`e:N word`,`p:bitpat` in fun pos i' -> function | Comb(Comb(Const("pat_set",_),p'), Comb(Const("val",Tyapp(_,[Tyapp(_, [N']); _])),e')) -> let thp = PAT_EXTRACT_THM (p', i') in let th = match rand (concl thp) with | Const("T",_) -> if pos then thT_pos else thT_neg | Const("F",_) -> if pos then thF_pos else thF_neg | _ -> failwith "pat_to_bit" in PROVE_HYP thp (PINST [N',N] [i',i; e',e; p',p] th) | _ -> failwith "pat_to_bit";; let bm_analyze_pat sz = let A = Array.make sz None in let rec go i = function | Comb(Comb(Const("CONSPAT",_),p),a) -> let n = Num.int_of_num (dest_finty (dest_word_ty (type_of a))) in if i + n > sz then raise (Invalid_argument "incorrect bit length") else let () = match a with | Comb(Const("word1",_),a) -> A.(i) <- (match a with | Const("T",_) -> Some true | Const("F",_) -> Some false | Var(_,_) -> None | _ -> failwith "bm_analyze_pat") | Comb(Const("word",_),Comb(Const("NUMERAL",_),a)) -> let rec analyze_num n a = match a with | Comb(Const("BIT0",_),a) -> (A.(n) <- Some false; analyze_num (n+1) a) | Comb(Const("BIT1",_),a) -> (A.(n) <- Some true; analyze_num (n+1) a) | Const("_0",_) -> Array.fill A n (sz - n) (Some false) | _ -> failwith "bm_analyze_pat" in analyze_num i a | Var(_,_) -> Array.fill A i n None | _ -> failwith "bm_analyze_pat" in go (i + n) p | Const("NILPAT",_) -> if i = sz then () else raise (Invalid_argument "incorrect bit length") | Abs(_,c) -> go i c | Comb(Const("?",_),c) -> go i c | Comb(Comb(Const("_UNGUARDED_PATTERN",_),c),_) -> go i c | Comb(Comb(Const("pat_set",_),c),_) -> go i c | _ -> failwith "bm_analyze_pat" in fun pat -> try go 0 pat; A with Invalid_argument _ -> failwith (sprintf "bm_analyze_pat: pattern %s has incorrect bit length" (string_of_term pat));; let rec bm_analyze_clauses sz = function | Comb(Comb(Const("_SEQPATTERN",_),c),cs) -> let pat = (lhand o lhand o snd o strip_exists o body o body) c in bm_analyze_pat sz pat :: bm_analyze_clauses sz cs | _ -> [];; (* (bm_skip_clause f `_BITMATCH e (_SEQPATTERN r rs)`) returns `A |- _BITMATCH e (_SEQPATTERN r rs) = _BITMATCH e rs` if (f `pat_set p (val e)`) proves `A |- ~pat_set p (val e)` (probably via pat_to_bit false) *) let bm_skip_clause = let th = (UNDISCH o prove) (`(?) (r (val e)) = F ==> (_BITMATCH e (_SEQPATTERN r rs):B) = _BITMATCH (e:N word) rs`, REPEAT DISCH_TAC THEN REWRITE_TAC [BITMATCH_SEQPATTERN] THEN CONV_TAC (ONCE_DEPTH_CONV ETA_CONV) THEN ASM_REWRITE_TAC []) in let N,B,e,r,rs = `:N`,`:B`,`e:N word`,`r:num->B->bool`,`rs:num->B->bool` in (* (strip_ex `x` `A |- P[x] = F`) proves `A |- (?x. P[x]) = F` *) let strip_ex = let th1 = (UNDISCH o prove) (`(P = \x:A. F) ==> (?) P = F`, DISCH_TAC THEN ASM_REWRITE_TAC[]) in let A = `:A` and P = `P:A->bool` in fun x th -> let th' = ABS x th in PROVE_HYP th' (PINST [type_of x,A] [lhs (concl th'),P] th1) in (* (skip_guard `A` `B`) proves `~A |- _UNGUARDED_PATTERN A B = F` *) let skip_guard = let th = (UNDISCH o prove) (`~A ==> _UNGUARDED_PATTERN A B = F`, DISCH_TAC THEN ASM_REWRITE_TAC [_UNGUARDED_PATTERN]) in let A = `A:bool` and B = `B:bool` in fun A' B' -> INST [A',A; B',B] th in fun f -> function | Comb(Comb(Const("_BITMATCH",ty),e'), Comb(Comb(Const("_SEQPATTERN",_),c),rs')) -> let Tyapp(_, [N']),Tyapp(_, [_; B']) = dest_fun_ty ty in let th = PINST [N',N;B',B] [e',e; c,r; rs',rs] th in let ex,h = dest_comb (lhs (hd (hyp th))) in let th2 = BETA_CONV h in let th3 = AP_TERM ex th2 in let rec skip_exs = function | Comb(Const("?",_),Abs(y,c)) -> strip_ex y (skip_exs c) | Comb(Comb(Const("_UNGUARDED_PATTERN",_),p),res) -> PROVE_HYP (f p) (skip_guard p res) | _ -> failwith "skip_exs" in PROVE_HYP (TRANS th3 (skip_exs (rhs (concl th3)))) th | _ -> failwith "bm_skip_clause";; type 'a discrim_tree = Leaf_dt of 'a | Split_dt of int * term * 'a discrim_tree * 'a discrim_tree;; let rec map_dt f = function | Leaf_dt a -> Leaf_dt (f a) | Split_dt(i, bit, tr1, tr2) -> Split_dt(i, bit, map_dt f tr1, map_dt f tr2);; let bm_build_tree' = let bit_tm = let N = `:N` in fun i e -> let Tyapp("word",[N']) = type_of e in let bit = mk_const("bit",[N',N]) in mk_comb(mk_comb(bit,i),e) in (* (seqp_rand `r` `A |- _BITMATCH e rs1 = _BITMATCH e rs2`) proves `A |- _BITMATCH e (_SEQPATTERN r rs1) = _BITMATCH e (_SEQPATTERN r rs2)` *) let seqp_rand = let th = (UNDISCH o prove) (`_BITMATCH (e:N word) (rs1:num->B->bool) = _BITMATCH e rs2 ==> _BITMATCH e (_SEQPATTERN r rs1) = _BITMATCH e (_SEQPATTERN r rs2)`, DISCH_TAC THEN ASM_REWRITE_TAC [BITMATCH_SEQPATTERN]) in let [rs1; e; r; rs2] = frees (concl th) and N,B = `:N`,`:B` in fun r' th' -> match dest_eq (concl th') with | Comb(Comb(Const(_,ty),e'),rs1'),Comb(_,rs2') -> let Tyapp(_, [N']),Tyapp(_, [_; B']) = dest_fun_ty ty in PROVE_HYP th' (PINST [N',N; B',B] [e',e; r',r; rs1',rs1; rs2',rs2] th) | _ -> failwith "seqp_rand" in let aMerge a b = match a,b with | None,_ -> a | _,None -> None | Some(a0,a1),Some false -> Some(a0+1, a1) | Some(a0,a1),Some true -> Some(a0, a1+1) in fun sz cls -> function | Comb(Comb(Const("_BITMATCH",_),e) as m, cs) as tm -> let rec build eqth cls cs = let analysis = Array.make sz (Some(0,0)) in let _ = List.iter (Array.iteri (fun i a -> analysis.(i) <- aMerge analysis.(i) a)) cls in let r = let r = ref None in let f i a = match a with | Some(n1,n2) when n1 != 0 && n2 != 0 -> let v = abs (n1 - n2) in (match !r with | Some(v',_) when v' <= v -> () | _ -> r := Some(v, i)) | _ -> () in (Array.iteri f analysis; !r) in match r with | None -> Leaf_dt eqth | Some(_,i) -> let ii = mk_numeral (Int i) in let bit = bit_tm ii e in let skip_th sc th = let sm, rs' = dest_comb (lhs (concl th)) in let tm = mk_comb (sm, mk_comb (sc, rs')) in TRANS (bm_skip_clause (pat_to_bit false ii) tm) th in let rec split_ths = function | [], cs -> let th = REFL (mk_comb(m,cs)) in [],[],th,th | cl::cls, Comb(Comb(Const("_SEQPATTERN",_),c) as sc,cs) -> let cls1,cls2,th1,th2 = split_ths(cls, cs) in if let Some(b) = cl.(i) in b then cls1, cl::cls2, skip_th sc th1, seqp_rand c th2 else cl::cls1, cls2, seqp_rand c th1, skip_th sc th2 | cl::cls, cs -> let cls1,cls2,th1,th2 = split_ths(cls, cs) in if let Some(b) = cl.(i) in b then cls1, cl::cls2, th1, th2 else cl::cls1, cls2, th1, th2 | _ -> failwith "split_ths" in let cls1,cls2,th1,th2 = split_ths(cls, cs) in let tr1 = build (TRANS eqth th1) cls1 (rand (rhs (concl th1))) and tr2 = build (TRANS eqth th2) cls2 (rand (rhs (concl th2))) in Split_dt(i, bit, tr1, tr2) in build (REFL tm) cls cs | _ -> failwith "bm_build_tree'";; let bm_build_tree = function | Comb(Comb(Const("_BITMATCH",_),e),cs) as tm -> let sz = Num.int_of_num (dest_finty (dest_word_ty (type_of e))) in let cls = bm_analyze_clauses sz cs in cls, bm_build_tree' sz cls tm | _ -> failwith "bm_build_tree";; let BM_IF_CONV = let rec of_tree = function | Leaf_dt th -> th | Split_dt(_, bit, tr1, tr2) -> SPLIT_IF bit (of_tree tr2) (of_tree tr1) in of_tree o snd o bm_build_tree;; let MATCH_EQ = prove (`(r:A->B->bool) e = (\y. x = y) ==> _MATCH e r = x`, REWRITE_TAC [_MATCH] THEN DISCH_THEN SUBST1_TAC THEN METIS_TAC[]);; let bitpat_inverts = new_definition `bitpat_inverts p f (x:A) <=> (!y. pat_set p y ==> f y = x)`;; let bitpat_down = new_definition `bitpat_down(:N) (f:num->A) (n:num) = f (n DIV 2 EXP dimindex(:N))`;; let CONSPAT_down_inverts = prove (`bitpat_inverts p f (x:A) ==> bitpat_inverts (CONSPAT p (a:N word)) (bitpat_down(:N) f) x`, REWRITE_TAC [bitpat_inverts; bitpat_down; CONSPAT_pat_set] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_X_ASSUM SUBST1_TAC THEN IMP_REWRITE_TAC [DIV_MULT_ADD; DIV_LT; VAL_BOUND; EXP_2_NE_0] THEN ASM_REWRITE_TAC [ADD]);; let CONSPAT_word_inverts = prove (`bitpat_inverts (CONSPAT p (a:N word)) word a`, REWRITE_TAC [bitpat_inverts; CONSPAT_pat_set] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM SUBST1_TAC THEN REWRITE_TAC [WORD_VAL_GALOIS; MOD_MULT_ADD] THEN REWRITE_TAC [GSYM WORD_VAL_GALOIS; WORD_VAL]);; let bitpat_inverts_comp = MESON [bitpat_inverts; o_DEF] `bitpat_inverts p f (x:A) ==> bitpat_inverts p (g o f) (g x:B)`;; let CONSPAT_word1_inverts = (* `bitpat_inverts (CONSPAT p (word1 b)) (bit 0 o word) b` *) REWRITE_RULE [BIT0_WORD1] (PART_MATCH rand (MATCH_MP bitpat_inverts_comp CONSPAT_word_inverts) (lhs (concl BIT0_WORD1)));; (* Given a pattern `p` and a target variable `z`, (build_inverts `p`) produces an association list mapping `z` to `|- bitpat_inverts p f z` for some term `f` not containing `z`. *) let build_inverts = let N,A,p,a,f,x,b = `:N`,`:A`,`p:bitpat`,`a:N word`,`f:num->A`,`x:A`,`b:bool` and th0 = ASSUME `bitpat_inverts p f (x:A)` and th1 = UNDISCH CONSPAT_down_inverts in let rec go = function | Const("NILPAT",_),_ -> [] | (Comb(Comb(Const("CONSPAT",_),p'),a') as cp),thunk -> let Tyapp(_, [N']) = type_of a' in let next th = let th' = PINST [N',N] [a',a] th1 in let Comb(Comb(_,p'),f') = rator (concl th') in PROVE_HYP th' (INST [p',p; f',f] th) in let var v thv = let th = thunk() in let f' = rand (rator (concl thv)) in let th' = PROVE_HYP thv (PINST [type_of v,A] [cp,p; f',f; v,x] th) in (v,th') :: go (p', fun () -> next th) in (match a' with | Var(_,_) -> var a' (PINST [N',N] [p',p; a',a] CONSPAT_word_inverts) | Comb(Const("word1",_), (Var(_,_) as b')) -> var b' (INST [p',p; b',b] CONSPAT_word1_inverts) | _ -> go (p', next o thunk)) | _ -> failwith "build_inverts" in fun p' -> go (p', fun () -> th0);; (* Given `bitmatch e with p -> res | ...` proves `bit_set p (val e) |- (bitmatch e with p -> res | ...) = res`, and given `bitmatch e with _ -> res` proves `(bitmatch e with _ -> res) = res`. *) let BM_FIRST_CASE_CONV = let th1 = (UNDISCH o prove) (`r (val (e:N word)) = (\y:A. x = y) ==> _BITMATCH e (_SEQPATTERN r s) = x`, DISCH_TAC THEN ASM_REWRITE_TAC [BITMATCH_SEQPATTERN; _BITMATCH; MESON[] `?y:A. x=y`] THEN POP_ASSUM (ACCEPT_TAC o MATCH_MP MATCH_EQ)) in let th2 = (UNDISCH o METIS[_UNGUARDED_PATTERN]) `A ==> (_UNGUARDED_PATTERN A B <=> B)` in let th3 = EQ_MP (SYM th2) (ASSUME `B:bool`) in let th4 = (UNDISCH_ALL o prove) (`bitpat_inverts p f (x:A) ==> pat_set p e ==> f e = x`, DISCH_THEN (MATCH_ACCEPT_TAC o REWRITE_RULE [bitpat_inverts])) in let thg1,thg2 = (CONJ_PAIR o UNDISCH o METIS[_UNGUARDED_PATTERN]) `_UNGUARDED_PATTERN A B ==> A /\ B` in let nty,eA,eB,ep,ef,ex = `:N`,`A:bool`,`B:bool`,`p:bitpat`,`f:num->A`,`x:A` and ee,ea,er,es = `e:N word`,`a:A`,`r:num->A->bool`,`s:num->A->bool` in function | Comb(Comb(Const("_BITMATCH",_),e), Comb(Comb(Const("_SEQPATTERN",_), (Abs(x,Abs(y,c')) as c)),cs)) as tm -> let A' = type_of tm in let N = dest_word_ty (type_of e) in let val_e = mk_comb (mk_const("val", [N,nty]), e) in let zs, Comb(Comb(Const("_UNGUARDED_PATTERN",_), (Comb((Comb(_,p) as mp),_) as ps)),restm) = strip_exists c' in let res = lhand restm in let instAB = INST [ps,eA; restm,eB] in let ps' = mk_comb (mp, val_e) in let th' = if zs = [] then instAB th2 else let inverts = build_inverts p in let rec prove_ex c1 pr eqth = match c1 with | Comb(Const("?",_),Abs(z,c')) -> let inv = assoc z inverts in let f = lhand (concl inv) in let inv = PROVE_HYP inv (PINST [type_of z,aty] [p,ep; f,ef; z,ex; x,`e:num`] th4) in let abr = mk_abs (z, lhs (concl eqth)) in let eqth1 = TRANS (AP_TERM abr (ASSUME (concl inv))) (BETA (mk_comb (abr, z))) in let pr',th = prove_ex c' (PROVE_HYP inv o pr) (TRANS eqth1 eqth) in pr', TRANS (SYM eqth1) (TRIV_CHOOSE (ASSUME c1) th) | _ -> pr, TRANS (PROVE_HYP (instAB thg1) (pr eqth)) (instAB thg2) in let pr,thR = prove_ex c' I (REFL res) in DEDUCT_ANTISYM_RULE (itlist SIMPLE_EXISTS zs (instAB th3)) (pr thR) in let th' = INST [val_e,x] (TRANS (BETA (mk_comb (c, x))) (ABS y th')) in PROVE_HYP th' (PINST [N,nty; A',aty] [e,ee; res,ex; c,er; cs,es] th1) | Comb(Comb(Const("_BITMATCH",_),e), Comb(Const("_ELSEPATTERN",_), a)) -> let A' = type_of a in let N = dest_word_ty (type_of e) in PINST [N,nty; A',aty] [e,ee; a,ea] BITMATCH_ELSEPATTERN | _ -> failwith "BM_FIRST_CASE_CONV";; let bm_add_pos tr = function | Comb(Comb(Const("_BITMATCH",_),e),cs) -> let N = dest_word_ty (type_of e) in let val_e = mk_comb (mk_const("val", [N,`:N`]), e) in let rec build_cases stk mth = function | Comb(Comb(Const("_SEQPATTERN",_), Abs(x,Abs(y,c'))),cs) -> let ps' = mk_comb (rator (lhand (snd (strip_exists c'))), val_e) in let th = itlist (fun n -> try PROVE_HYP (pat_to_bit true n ps') with Failure _ -> I) stk mth in TRANS th (BM_FIRST_CASE_CONV (rhs (concl th))) :: build_cases stk mth cs | _ -> [] in let rec build stk = function | Leaf_dt mth -> Leaf_dt (mth, build_cases stk mth (rand (rhs (concl mth)))) | Split_dt (i, bit, tr1, tr2) -> let stk' = lhand bit :: stk in Split_dt (i, bit, build stk' tr1, build stk' tr2) in build [] tr | _ -> failwith "bm_build_pos_tree";; let bm_build_pos_tree tm = let A, tr = bm_build_tree tm in A, bm_add_pos tr tm;; let rec get_dt A = function | Leaf_dt a -> [], a | Split_dt(i, bit, tr1, tr2) -> match A.(i) with | None -> failwith ("get_dt splitting on " ^ string_of_int i) | Some b -> let stk,r = get_dt A (if b then tr2 else tr1) in (b,bit)::stk, r;; let BM_CASES tm = let A, tr = bm_build_pos_tree tm in map (fun cl -> hd (snd (snd (get_dt cl tr)))) A;; (* (bitpat_matches `p` n) returns None if the pattern `p` would match `word n`, and Some(i) where i is the smallest differing bit otherwise. It throws if n >= 2^pat_size p. *) let rec bitpat_matches p i = match p with | Comb(Comb(Const("CONSPAT",_),p),a) -> let N = dest_word_ty (type_of a) in let n = Num.int_of_num (dest_finty N) in let m = power_num (Int 2) (Int n) in let i' = quo_num i m and a' = mod_num i m in let r = match a with | Comb(Const("word1",_),Const("T",_)) -> if a' = Int 1 then None else Some 0 | Comb(Const("word1",_),Const("F",_)) -> if a' = Int 0 then None else Some 0 | Comb(Const("word1",_),Var(_,_)) -> None | Comb(Const("word",_),n) -> let n' = dest_numeral n in if a' = n' then None else let rec f i r = if i land 1 != 0 then r else f (i lsr 1) (r+1) in Some (f ((Num.int_of_num a') lxor (Num.int_of_num n')) 0) | Var(_,_) -> None | _ -> failwith "bitpat_matches" in (match r with | Some j -> Some j | None -> match bitpat_matches p i' with | Some j -> Some (j + n) | None -> None) | Const("NILPAT",_) -> if i = Int 0 then None else failwith "bitpat_matches: out of range" | Abs(_,c) -> bitpat_matches c i | Comb(Const("?",_),c) -> bitpat_matches c i | Comb(Comb(Const("_UNGUARDED_PATTERN",_),c),_) -> bitpat_matches c i | Comb(Comb(Const("pat_set",_),c),_) -> bitpat_matches c i | _ -> failwith "bitpat_matches";; (* (inst_bitpat_numeral `pat_set p (val e)` n) will produce an instantiation theta for p and e such that e[theta] = word n, and a proof of `|- (pat_set p (val e))[theta]`. (inst_bitpat_numeral `pat_set p e` n) will produce an instantiation theta for p and e such that e[theta] = n, and a proof of `|- (pat_set p e)[theta]`. *) let inst_bitpat_numeral = let en,ep,ex,ei,ea = `n:num`,`p:bitpat`,`x:num`,`i:num`,`a:num` and eN,T,F = `:N`,`T`,`F` in let dim = let dN = `dimindex(:N)` in fun N -> DIMINDEX_CONV (inst [N,eN] dN) in let w0 = prove (`pat_set NILPAT _0`, REWRITE_TAC [NILPAT_pat_set; NUMERAL]) and wS,(w1T,w1F) = let pth = prove (`pat_set p x ==> pat_set (CONSPAT p (word a:N word)) (num_shift_add a x (dimindex(:N)))`, REWRITE_TAC [CONSPAT_pat_set; num_shift_add] THEN DISCH_THEN (fun th -> EXISTS_TAC ex THEN REWRITE_TAC [th; VAL_WORD; MULT_SYM])) in (UNDISCH_ALL o prove) (`dimindex(:N) = NUMERAL n ==> num_shift_add a x n = i ==> pat_set p x ==> pat_set (CONSPAT p (word (NUMERAL a):N word)) i`, REWRITE_TAC [NUMERAL] THEN REPEAT (DISCH_THEN (SUBST1_TAC o SYM)) THEN ACCEPT_TAC pth), (CONJ_PAIR o UNDISCH o prove) (`pat_set p x ==> pat_set (CONSPAT p (word1 T)) (BIT1 x) /\ pat_set (CONSPAT p (word1 F)) (BIT0 x)`, REWRITE_TAC [word1; bitval] THEN DISCH_THEN (fun th -> CONJ_TAC THEN ASSUME_TAC th) THENL [ POP_ASSUM (MP_TAC o MP (PINST [`:1`,eN] [`1`,ea] pth)) THEN SUBGOAL_THEN `num_shift_add 1 x (dimindex(:1)) = num_shift_add (BIT1 0) x (SUC 0)` (fun th -> REWRITE_TAC [th; num_shift_add_SUC; num_shift_add_0]) THEN CONV_TAC (ONCE_DEPTH_CONV DIMINDEX_CONV) THEN REWRITE_TAC [BIT1_0; ONE]; POP_ASSUM (MP_TAC o MP (PINST [`:1`,eN] [`0`,ea] pth)) THEN SUBGOAL_THEN `num_shift_add 0 x (dimindex(:1)) = num_shift_add (BIT0 0) x (SUC 0)` (fun th -> REWRITE_TAC [th; num_shift_add_SUC; num_shift_add_0]) THEN CONV_TAC (ONCE_DEPTH_CONV DIMINDEX_CONV) THEN REWRITE_TAC [BIT0_0; ONE]]) in let w1F0 = REWRITE_RULE [ARITH_ZERO] (INST [`_0`,ex] w1F) in let rec go i = function | Comb(Comb(Const("CONSPAT",_),p),a) -> let N = dest_word_ty (type_of a) in let n = Num.int_of_num (dest_finty N) in let m = power_num (Int 2) (Int n) in let i' = quo_num i m and a' = mod_num i m in let ls, th' = go i' p in let p',x = dest_comb (concl th') in let p' = rand p' in (match a with | Comb(Const("word1",_),a) -> let ls, b = match a with | Const("T",_) -> ls,true | Const("F",_) -> ls,false | Var(_,_) -> let b = a' = Int 1 in ((if b then T else F),a)::ls, b | _ -> failwith "inst_bitpat_numeral" in ls, PROVE_HYP th' ( if b then INST [x,ex; p',ep] w1T else if i = Int 0 then INST [p',ep] w1F0 else INST [x,ex; p',ep] w1F) | _ -> let thd = dim N in let n' = rand (rhs (concl thd)) in let ls, a = match a with | Comb(Const("word",_),Comb(Const("NUMERAL",_),a)) -> ls, a | Var(_,_) -> let n = mk_numeral a' in (mk_comb (mk_const ("word", [N,eN]), n), a) :: ls, rand n | _ -> failwith "inst_bitpat_numeral" in let thn = NUM_SHIFT_ADD_CORE a x n' in let e = rhs (concl thn) in ls, PROVE_HYP th' (PROVE_HYP thn (PROVE_HYP thd (INST [n',en; a,ea; x,ex; e,ei; p',ep] (INST_TYPE [N,eN] wS))))) | Const("NILPAT",_) -> [], w0 | _ -> failwith "inst_bitpat_numeral" in let pth1 = SYM (SPEC en NUMERAL) and pth2 = (UNDISCH_ALL o prove) (`pat_size p = NUMERAL n ==> dimindex(:N) = NUMERAL n ==> pat_set p x ==> pat_set p (val (word (NUMERAL x):N word))`, DISCH_THEN (SUBST1_TAC o SYM) THEN REPEAT STRIP_TAC THEN REWRITE_TAC [NUMERAL] THEN IMP_REWRITE_TAC [VAL_WORD_EQ] THEN POP_ASSUM (ACCEPT_TAC o MATCH_MP pat_set_lt)) and conv = let ps = `pat_size` in REWRITE_CONV [CONSPAT_pat_size; NILPAT_pat_size] THENC ONCE_DEPTH_CONV DIMINDEX_CONV THENC REDEPTH_CONV NUM_ADD_CONV o mk_comb o (fun tm -> (ps, tm)) in let check p i = match bitpat_matches p i with | None -> go i p | _ -> failwith "inst_bitpat_numeral: number does not match pattern" in function | Comb(Comb(Const("pat_set",_),p), Comb(Const("val",_), e)) -> let N' = dest_word_ty (type_of e) in let thd = dim N' in let pth2 = (PROVE_HYP thd o PROVE_HYP (conv p) o INST [p,ep; rand (rhs (concl thd)),en] o INST_TYPE [N',eN]) pth2 in fun i -> let ls, th = check p i in let e' = rand (concl th) in let th1 = PROVE_HYP th (INST ((e',ex)::ls) pth2) in (match e with | Var(_,_) -> (rand (rand (concl th1)),e)::ls, th1 | _ when aconv e (rand (rand (concl th1))) -> ls, th1 | _ -> failwith "inst_bitpat_numeral: pattern failed") | Comb(Comb(Const("pat_set",_),p), e) -> fun i -> let ls, th = check p i in let f, e' = dest_comb (concl th) in let th1 = INST [e',en] pth1 in let th2 = EQ_MP (AP_TERM f th1) th in (match e with | Var(_,_) -> (rhs (concl th1), e)::ls, th2 | _ when aconv e (rhs (concl th1)) -> ls, th2 | _ -> failwith "inst_bitpat_numeral: pattern failed") | _ -> failwith "inst_bitpat_numeral";; let BITMATCH_CONV = fun tm -> match tm with | Comb(Comb(Const("_BITMATCH",_), Comb(Const("word",Tyapp(_,[_;Tyapp(_,[N])])),n)),_) when is_numeral n -> let A, tr = bm_build_pos_tree tm in let n = Num.int_of_num (dest_numeral n) and sz = Num.int_of_num (dest_finty N) in let a = Array.init sz (fun i -> Some (n land (1 lsl i) != 0)) in (match snd (snd (get_dt a tr)) with | th::_ -> let ps = hd (hyp th) in let ls, th' = inst_bitpat_numeral ps (Int n) in PROVE_HYP th' (INST ls th) | _ -> failwith "BITMATCH_CONV") | _ -> failwith "BITMATCH_CONV";; let BITMATCH_SIMP_CONV asl = let pos,neg = let rec go = function | [] -> [],[] | th::ths -> let pos,neg = go ths in match concl th with | Comb(Const("~",_),c) when (match snd (strip_exists c) with | Comb(Comb(Const("pat_set",_),_),_) -> true | _ -> false) -> pos,th::neg | Comb(Comb(Const("pat_set",_),_),_) -> th::pos,neg | _ -> pos,neg in go asl in let rec conv = function | Comb(Comb(Const("_BITMATCH",_),_),Comb(Const("_ELSEPATTERN",_),_)) as tm -> PART_MATCH lhs BITMATCH_ELSEPATTERN tm | Comb(Comb(Const("_BITMATCH",_), Comb(Const("word",_),n)),_) as tm when is_numeral n -> BITMATCH_CONV tm | Comb(Comb(Const("_BITMATCH",_),e), Comb(Comb(Const("_SEQPATTERN",_),c),cs)) as tm -> let pat = mk_comb (rator (lhand (snd (strip_exists (body (body c))))), mk_comb (mk_const ("val", [dest_word_ty (type_of e),`:N`]), e)) in let vars = frees (lhand pat) in let rec check_pos = function | th::ths -> (try let _,ls,_ = term_unify vars pat (concl th) in PROVE_HYP th (INST ls (BM_FIRST_CASE_CONV tm)) with Failure _ -> check_pos ths) | [] -> let rec check_neg = function | th::ths -> (try let pat' = snd (strip_exists (rand (concl th))) in let _,ls,_ = term_unify (frees (lhand pat')) pat' pat in let ath = INST ls (SPEC_ALL (PURE_REWRITE_RULE [NOT_EXISTS_THM] (ASSUME (concl th)))) in let th' = PROVE_HYP th (bm_skip_clause (K ath) tm) in TRANS th' (TRY_CONV conv (rhs (concl th'))) with Failure _ -> check_neg ths) | [] -> let sz = Num.int_of_num (dest_finty (dest_word_ty (type_of e))) in let a = bm_analyze_pat sz pat in let rec check_disj = function | th::ths -> (try let h = concl th in let a' = bm_analyze_pat sz h in let r = ref None in Array.iteri (fun i x -> match x,a'.(i),!r with | Some b, Some c, None when b != c -> r := Some i | _ -> ()) a; let i = match !r with | Some i -> mk_numeral (Int i) | _ -> fail () in let th' = PROVE_HYP th (PROVE_HYP (pat_to_bit true i h) (bm_skip_clause (pat_to_bit false i) tm)) in TRANS th' (TRY_CONV conv (rhs (concl th'))) with Failure _ -> check_disj ths) | [] -> failwith "BITMATCH_SIMP_CONV" in check_disj pos in check_neg neg in check_pos pos | _ -> failwith "BITMATCH_SIMP_CONV" in conv;; let rec bitpat_irrefutable = function | Comb(Comb(Const("CONSPAT",_),p),a) -> (match a with | Comb(Const("word1",_),Var(_,_)) -> bitpat_irrefutable p | Var(_,_) -> bitpat_irrefutable p | _ -> false) | Const("NILPAT",_) -> true | Abs(_,c) -> bitpat_irrefutable c | Comb(Const("?",_),c) -> bitpat_irrefutable c | Comb(Comb(Const("_UNGUARDED_PATTERN",_),c),_) -> bitpat_irrefutable c | Comb(Comb(Const("pat_set",_),c),_) -> bitpat_irrefutable c | _ -> failwith "bitpat_irrefutable";; let bitpat_irrefutable_thm = let eN,ee,ee',en,em,ek = `:N`,`e:num`,`e:N word`,`n:num`,`m:num`,`k:num` and ep,dN,pl,_1 = `p:bitpat`,`dimindex(:N)`,`(+)`,`1` and e2n = `e DIV 2 EXP n` and pth,pth1 = let pth = prove (`dimindex(:N) = n ==> pat_set p (e DIV 2 EXP n) ==> pat_set (CONSPAT p (word e:N word)) e`, REWRITE_TAC [CONSPAT_pat_set] THEN DISCH_THEN (SUBST1_TAC o SYM) THEN DISCH_THEN (fun th -> EXISTS_TAC `e DIV 2 EXP dimindex(:N)` THEN REWRITE_TAC [th; VAL_WORD; ADD_SYM; MULT_SYM; GSYM (MATCH_MP DIVISION (SPEC `n:num` EXP_2_NE_0))])) in UNDISCH_ALL pth, (UNDISCH o prove) (`pat_set p (e DIV 2 EXP 1) ==> pat_set (CONSPAT p (word1 (ODD e))) e`, REWRITE_TAC [WORD1_ODD] THEN ACCEPT_TAC (MATCH_MP pth (DIMINDEX_CONV `dimindex(:1)`))) and pth0 = (UNDISCH o prove) (`e < 2 EXP 0 ==> pat_set NILPAT e`, REWRITE_TAC [EXP; ARITH_RULE `n < 1 <=> n = 0`; NILPAT_pat_set]) and pthS = (UNDISCH_ALL o prove) (`n + m = k ==> e < 2 EXP k ==> e DIV 2 EXP n < 2 EXP m`, DISCH_THEN (SUBST1_TAC o SYM) THEN IMP_REWRITE_TAC [EXP_ADD; RDIV_LT_EQ; EXP_2_NE_0]) and pthW = (UNDISCH_ALL o prove) (`dimindex(:N) = n ==> val (e:N word) < 2 EXP n`, DISCH_THEN (SUBST1_TAC o SYM) THEN REWRITE_TAC [VAL_BOUND]) in let rec build = function | Const("NILPAT",_),e -> [], INST [e,ee] pth0 | Comb(Comb(Const("CONSPAT",_),p),v),e -> let pthS n m = let th = NUM_ADD_CONV (mk_comb (mk_comb (pl, n), m)) in PROVE_HYP th (INST [n,en; m,em; rhs (concl th),ek; e,ee] pthS) in (match v with | Comb(Const("word1",_),(Var(_,_) as v)) -> let ls, th = build (p, vsubst [e,ee; _1,en] e2n) in let th' = PROVE_HYP th (INST [lhand (concl th),ep; e,ee] pth1) in (rand (rand (lhand (concl th'))),v)::ls, PROVE_HYP (pthS _1 (rand (rand (hd (hyp th))))) th' | Var(_,ty) -> let N = dest_word_ty ty in let th1 = DIMINDEX_CONV (inst [N,eN] dN) in let n = rhs (concl th1) in let ls, th = build (p, vsubst [e,ee; n,en] e2n) in let th' = PROVE_HYP th1 (INST [n,en; lhand (concl th),ep; e,ee] (INST_TYPE [N,eN] pth)) in let th' = PROVE_HYP th th' in (rand (lhand (concl th')),v)::ls, PROVE_HYP (pthS n (rand (rand (hd (hyp th))))) th' | _ -> failwith "bitpat_irrefutable_thm: not irrefutable") | _ -> failwith "bitpat_irrefutable_thm" in fun tm -> match snd (strip_exists tm) with | Comb(Comb(Const("pat_set",_),p),(Comb(Const("val",_),e') as e)) -> let ls,th = build (p, e) in let rec build_ex = function | Comb(Const("?",_),Abs(v,c)) as tm -> let e = rev_assoc v ls in EXISTS (tm, e) (build_ex (vsubst [e,v] c)) | tm when aconv (concl th) tm -> th | _ -> failwith "bitpat_irrefutable_thm: nonlinear pattern" in let th = build_ex tm in let N = dest_word_ty (type_of e') in let th1 = DIMINDEX_CONV (inst [N,eN] dN) in let n = rhs (concl th1) in if aconv n (rand (rand (hd (hyp th)))) then PROVE_HYP (PROVE_HYP th1 (PINST [N,eN] [n,en; e',ee'] pthW)) th else failwith "bitpat_irrefutable_thm: incorrect bit length" | _ -> failwith "bitpat_irrefutable_thm";; let ONLY_BITMATCH_CASES_THEN thltac = WITH_GOAL (fun w -> let e,cs = let f = function | Comb(Comb(Const("_BITMATCH",_),_),_) -> true | _ -> false in (rand F_F I) (dest_comb (find_term f w)) in let rec tac thl = function | Comb(Comb(Const("_SEQPATTERN",_),Abs(_,Abs(_,c))),cs) -> let rec go = function | Comb((Const("?",_) as f),Abs(z,c)) -> let tm, tac1 = go c in mk_comb (f, mk_abs (z, tm)), POP_ASSUM CHOOSE_TAC THEN tac1 | tm -> mk_comb (rator (lhand tm), mk_comb (mk_const ("val", [dest_word_ty (type_of e),`:N`]), e)), ALL_TAC in let tm, tac1 = go c in if bitpat_irrefutable c then ASSUME_TAC (bitpat_irrefutable_thm tm) THEN tac1 THEN POP_ASSUM (fun th -> thltac (th::thl)) else ASM_CASES_TAC tm THENL [ tac1 THEN POP_ASSUM (fun th -> thltac (th::thl)); POP_ASSUM (fun th -> tac (th::thl) cs)] | _ -> thltac thl in tac [] cs);; let BITMATCH_ASM_CASES_TAC = ONLY_BITMATCH_CASES_THEN (fun thl -> CONV_TAC (TOP_SWEEP_CONV (BITMATCH_SIMP_CONV thl)) THEN MAP_EVERY ASSUME_TAC thl);; let BITMATCH_CASES_TAC = ONLY_BITMATCH_CASES_THEN (CONV_TAC o TOP_SWEEP_CONV o BITMATCH_SIMP_CONV);; (* (bm_seq_numeral `bitmatch e with ...` n) will return `word n` and `(bitmatch word n with ...) = res` where `res` is the appropriate match branch. Unlike BITMATCH_CONV this also works with matches with non-disjoint cases. *) let bm_seq_numeral = function | Comb((Comb(Const("_BITMATCH",_),e) as me),cs) -> let N = dest_word_ty (type_of e) in let sz = Num.int_of_num (dest_finty N) in let word = mk_const ("word", [N,`:N`]) in let rec mk_fun cs = let tm = mk_comb (me, cs) in let th = BM_FIRST_CASE_CONV tm in let inst e' th = if is_var e then INST [e',e] th else th in match cs with | Comb(Comb(Const("_SEQPATTERN",_),c),cs') -> let ps = hd (hyp th) in let pats = Array.init sz (fun i -> try Some (bm_skip_clause (pat_to_bit false (mk_numeral (Int i))) tm) with Failure _ -> None) in let f = mk_fun cs' in fun n e' -> (match bitpat_matches c n with | None -> let ls, th' = inst_bitpat_numeral ps n in PROVE_HYP th' (INST ls th) | Some i -> let Some th' = pats.(i) in let th1 = inst e' th' in let th2 = match hd (hyp th1) with | Comb(Const("~",_),p) -> EQF_ELIM (WORD_RED_CONV p) | p -> EQT_ELIM (WORD_RED_CONV p) in TRANS (PROVE_HYP th2 th1) (f n e')) | Comb(Const("_ELSEPATTERN",_),_) -> fun _ e' -> inst e' th | _ -> failwith "bm_seq_numeral" in let f = mk_fun cs in fun n -> let e = mk_comb (word, mk_numeral n) in e, f n e | _ -> failwith "bm_seq_numeral";; let BITMATCH_SEQ_CONV = function | Comb(Comb(Const("_BITMATCH",_), Comb(Const("word",_),n)),_) as tm -> snd (bm_seq_numeral tm (dest_numeral n)) | _ -> failwith "BITMATCH_CONV";;