(* ========================================================================= *) (* Binomial coefficients and the binomial theorem. *) (* ========================================================================= *) let binom = define `(!n. binom(n,0) = 1) /\ (!k. binom(0,SUC(k)) = 0) /\ (!n k. binom(SUC(n),SUC(k)) = binom(n,SUC(k)) + binom(n,k))`;; let BINOM_0 = prove (`!n. binom(0,n) = if n = 0 then 1 else 0`, INDUCT_TAC THEN REWRITE_TAC[binom; NOT_SUC]);; let BINOM_LT = prove (`!n k. n < k ==> binom(n,k) = 0`, INDUCT_TAC THEN INDUCT_TAC THEN REWRITE_TAC[binom; ARITH; LT_SUC; LT] THEN ASM_SIMP_TAC[ARITH_RULE `n < k ==> n < SUC(k)`; ARITH]);; let BINOM_REFL = prove (`!n. binom(n,n) = 1`, INDUCT_TAC THEN ASM_SIMP_TAC[binom; BINOM_LT; LT; ARITH]);; let BINOM_1 = prove (`!n. binom(n,1) = n`, REWRITE_TAC[num_CONV `1`] THEN INDUCT_TAC THEN ASM_REWRITE_TAC[binom] THEN ARITH_TAC);; let BINOM_FACT = prove (`!n k. FACT n * FACT k * binom(n+k,k) = FACT(n + k)`, INDUCT_TAC THEN REWRITE_TAC[FACT; ADD_CLAUSES; MULT_CLAUSES; BINOM_REFL] THEN INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; FACT; MULT_CLAUSES; binom] THEN FIRST_X_ASSUM(MP_TAC o SPEC `SUC k`) THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[ADD_CLAUSES; FACT; binom] THEN CONV_TAC NUM_RING);; let BINOM_EQ_0 = prove (`!n k. binom(n,k) = 0 <=> n < k`, REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[BINOM_LT]] THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[NOT_LT; LE_EXISTS] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN DISCH_TAC THEN MP_TAC(SYM(SPECL [`d:num`; `k:num`] BINOM_FACT)) THEN ASM_REWRITE_TAC[GSYM LT_NZ; MULT_CLAUSES; FACT_LT]);; let BINOM_PENULT = prove (`!n. binom(SUC n,n) = SUC n`, INDUCT_TAC THEN ASM_REWRITE_TAC [binom; ONE; BINOM_REFL] THEN SUBGOAL_THEN `binom(n,SUC n) = 0` SUBST1_TAC THENL [REWRITE_TAC [BINOM_EQ_0; LT]; REWRITE_TAC [ADD; ADD_0; ADD_SUC; SUC_INJ]]);; let BINOM_GE_TOP = prove (`!m n. 1 <= m /\ m < n ==> n <= binom(n,m)`, INDUCT_TAC THEN INDUCT_TAC THEN REWRITE_TAC[binom] THEN CONV_TAC NUM_REDUCE_CONV THEN STRIP_TAC THEN ASM_CASES_TAC `m = 0` THEN ASM_SIMP_TAC[BINOM_1; ARITH_SUC; binom] THEN REWRITE_TAC[ADD1; LE_REFL] THEN FIRST_X_ASSUM(MP_TAC o SPEC `n:num`) THEN ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC(ARITH_RULE `~(c = 0) ==> n <= b ==> n + 1 <= c + b`) THEN REWRITE_TAC[BINOM_EQ_0] THEN ASM_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* More potentially useful lemmas. *) (* ------------------------------------------------------------------------- *) let BINOM_TOP_STEP = prove (`!n k. ((n + 1) - k) * binom(n + 1,k) = (n + 1) * binom(n,k)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `n < k:num` THENL [FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP (ARITH_RULE `n < k ==> n + 1 = k \/ n + 1 < k`)) THEN ASM_SIMP_TAC[BINOM_LT; SUB_REFL; MULT_CLAUSES]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o REWRITE_RULE[NOT_LT; LE_EXISTS]) THEN DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN REWRITE_TAC[GSYM ADD_ASSOC; ADD_SUB; ADD_SUB2] THEN MP_TAC(SPECL [`d + 1`; `k:num`] BINOM_FACT) THEN MP_TAC(SPECL [`d:num`; `k:num`] BINOM_FACT) THEN REWRITE_TAC[GSYM ADD1; ADD_CLAUSES; FACT; ADD_AC] THEN MAP_EVERY (fun t -> MP_TAC(SPEC t FACT_LT)) [`d:num`; `k:num`] THEN REWRITE_TAC[LT_NZ] THEN CONV_TAC NUM_RING);; let BINOM_BOTTOM_STEP = prove (`!n k. (k + 1) * binom(n,k + 1) = (n - k) * binom(n,k)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `n < k + 1` THENL [FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP (ARITH_RULE `n < k + 1 ==> n = k \/ n < k`)) THEN ASM_SIMP_TAC[BINOM_LT; SUB_REFL; MULT_CLAUSES]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o REWRITE_RULE[NOT_LT; LE_EXISTS]) THEN DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN REWRITE_TAC[GSYM ADD_ASSOC; ADD_SUB; ADD_SUB2] THEN MP_TAC(SPECL [`d + 1`; `k:num`] BINOM_FACT) THEN MP_TAC(SPECL [`d:num`; `k + 1`] BINOM_FACT) THEN REWRITE_TAC[GSYM ADD1; ADD_CLAUSES; FACT; ADD_AC] THEN MAP_EVERY (fun t -> MP_TAC(SPEC t FACT_LT)) [`d:num`; `k:num`] THEN REWRITE_TAC[LT_NZ] THEN CONV_TAC NUM_RING);; (* ------------------------------------------------------------------------- *) (* The "number of combinations", number of size-m subsets of a size-n set. *) (* ------------------------------------------------------------------------- *) let HAS_SIZE_RESTRICTED_POWERSET = prove (`!n m s:A->bool. s HAS_SIZE n ==> {t | t SUBSET s /\ t HAS_SIZE m} HAS_SIZE binom(n,m)`, let binom_induct = prove (`!P. (!n. P n 0) /\ (!k. P 0 (SUC k)) /\ (!n k. P n (SUC k) /\ P n k ==> P (SUC n) (SUC k)) ==> !m n. P m n`, GEN_TAC THEN STRIP_TAC THEN REPEAT INDUCT_TAC THEN ASM_MESON_TAC[]) and setstep_lemma = prove (`~(a IN t) ==> {u | u SUBSET (a:A INSERT t) /\ u HAS_SIZE (SUC m)} = {u | u SUBSET t /\ u HAS_SIZE (SUC m)} UNION IMAGE (\u. a INSERT u) {u | u SUBSET t /\ u HAS_SIZE m}`, REWRITE_TAC[REWRITE_RULE[EXTENSION; IN_ELIM_THM] POWERSET_CLAUSES] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[IN_ELIM_THM; SET_RULE `{y | y IN t UNION IMAGE f s /\ P y} = {y | y IN t /\ P y} UNION IMAGE f {x | x IN s /\ P(f x)}`] THEN AP_TERM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[HAS_SIZE; FINITE_INSERT] THEN ONCE_REWRITE_TAC[TAUT `p /\ q /\ r <=> ~(p /\ q ==> ~r)`] THEN SIMP_TAC[CARD_CLAUSES] THEN MP_TAC SUC_INJ THEN ASM SET_TAC[]) in MATCH_MP_TAC binom_induct THEN REWRITE_TAC[binom] THEN REPEAT CONJ_TAC THENL [REPEAT STRIP_TAC THEN CONV_TAC HAS_SIZE_CONV THEN EXISTS_TAC `{}:A->bool` THEN SIMP_TAC[EXTENSION; IN_SING; IN_ELIM_THM] THEN REWRITE_TAC[NOT_IN_EMPTY; HAS_SIZE_0] THEN SET_TAC[]; SIMP_TAC[HAS_SIZE_0; SUBSET_EMPTY; HAS_SIZE_SUC] THEN SET_TAC[]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`n:num`; `m:num`] THEN STRIP_TAC THEN GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [HAS_SIZE_CLAUSES] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a:A`; `t:A->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN ASM_SIMP_TAC[setstep_lemma] THEN MATCH_MP_TAC HAS_SIZE_UNION THEN ASM_SIMP_TAC[] THEN CONJ_TAC THENL [MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN ASM_SIMP_TAC[] THEN UNDISCH_TAC `~(a:A IN t)` THEN SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[DISJOINT; EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN REWRITE_TAC[IN_IMAGE; IN_ELIM_THM; HAS_SIZE_SUC] THEN UNDISCH_TAC `~(a:A IN t)` THEN SET_TAC[]);; let CARD_RESTRICTED_POWERSET = prove (`!s k. FINITE s ==> CARD {t | t SUBSET s /\ t HAS_SIZE k} = binom(CARD s,k)`, REPEAT GEN_TAC THEN REWRITE_TAC[FINITE_HAS_SIZE] THEN DISCH_THEN (MP_TAC o SPEC `k:num` o MATCH_MP HAS_SIZE_RESTRICTED_POWERSET) THEN SIMP_TAC[HAS_SIZE]);; (* ------------------------------------------------------------------------- *) (* Binomial expansion. *) (* ------------------------------------------------------------------------- *) let BINOMIAL_THEOREM = prove (`!n x y. (x + y) EXP n = nsum(0..n) (\k. binom(n,k) * x EXP k * y EXP (n - k))`, INDUCT_TAC THEN REPEAT GEN_TAC THEN ASM_REWRITE_TAC[EXP] THEN REWRITE_TAC[NSUM_SING_NUMSEG; binom; SUB_REFL; EXP; MULT_CLAUSES] THEN SIMP_TAC[NSUM_CLAUSES_LEFT; ADD1; ARITH_RULE `0 <= n + 1`; NSUM_OFFSET] THEN ASM_REWRITE_TAC[EXP; binom; GSYM ADD1; GSYM NSUM_LMUL] THEN REWRITE_TAC[RIGHT_ADD_DISTRIB; NSUM_ADD_NUMSEG; MULT_CLAUSES; SUB_0] THEN MATCH_MP_TAC(ARITH_RULE `a:num = e /\ b = c + d ==> a + b = c + d + e`) THEN CONJ_TAC THENL [REWRITE_TAC[MULT_AC; SUB_SUC]; REWRITE_TAC[GSYM EXP]] THEN SIMP_TAC[ADD1; SYM(REWRITE_CONV[NSUM_OFFSET]`nsum(m+1..n+1) (\i. f i)`)] THEN REWRITE_TAC[NSUM_CLAUSES_NUMSEG; GSYM ADD1; LE_SUC; LE_0] THEN SIMP_TAC[NSUM_CLAUSES_LEFT; LE_0] THEN SIMP_TAC[BINOM_LT; LT; MULT_CLAUSES; ADD_CLAUSES; SUB_0; EXP; binom] THEN SIMP_TAC[ARITH; ARITH_RULE `k <= n ==> SUC n - k = SUC(n - k)`; EXP] THEN REWRITE_TAC[MULT_AC]);; (* ------------------------------------------------------------------------- *) (* Same thing for the reals. *) (* ------------------------------------------------------------------------- *) let REAL_BINOMIAL_THEOREM = prove (`!n x y. (x + y) pow n = sum(0..n) (\k. &(binom(n,k)) * x pow k * y pow (n - k))`, INDUCT_TAC THEN REPEAT GEN_TAC THEN ASM_REWRITE_TAC[real_pow] THEN REWRITE_TAC[SUM_SING_NUMSEG; binom; SUB_REFL; real_pow; REAL_MUL_LID] THEN SIMP_TAC[SUM_CLAUSES_LEFT; ADD1; ARITH_RULE `0 <= n + 1`; SUM_OFFSET] THEN ASM_REWRITE_TAC[real_pow; binom; GSYM ADD1; GSYM SUM_LMUL] THEN REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN REWRITE_TAC[REAL_ADD_RDISTRIB; SUM_ADD_NUMSEG; REAL_MUL_LID; SUB_0] THEN MATCH_MP_TAC(REAL_ARITH `a:real = e /\ b = c + d ==> a + b = c + d + e`) THEN CONJ_TAC THENL [SIMP_TAC[REAL_MUL_AC; SUB_SUC]; SIMP_TAC[GSYM real_pow]] THEN SIMP_TAC[ADD1; SYM(REWRITE_CONV[SUM_OFFSET]`sum(m+1..n+1) (\i. f i)`)] THEN REWRITE_TAC[SUM_CLAUSES_NUMSEG; GSYM ADD1; LE_SUC; LE_0] THEN SIMP_TAC[SUM_CLAUSES_LEFT; LE_0; BINOM_LT; LT; REAL_MUL_LID; SUB_0; real_pow; binom; REAL_MUL_LZERO; REAL_ADD_RID] THEN SIMP_TAC[ARITH; ARITH_RULE `k <= n ==> SUC n - k = SUC(n - k)`; real_pow] THEN REWRITE_TAC[REAL_MUL_AC]);; (* ------------------------------------------------------------------------- *) (* More direct stepping theorems over the reals. *) (* ------------------------------------------------------------------------- *) let BINOM_TOP_STEP_REAL = prove (`!n k. &(binom(n + 1,k)):real = if k = n + 1 then &1 else (&n + &1) / (&n + &1 - &k) * &(binom(n,k))`, REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[BINOM_REFL] THEN FIRST_X_ASSUM(STRIP_ASSUME_TAC o MATCH_MP (ARITH_RULE `~(k = n + 1) ==> n < k /\ n + 1 < k \/ k <= n /\ k <= n + 1`)) THEN ASM_SIMP_TAC[BINOM_LT; REAL_MUL_RZERO] THEN MP_TAC(SPECL [`n:num`; `k:num`] BINOM_TOP_STEP) THEN ASM_SIMP_TAC[GSYM REAL_OF_NUM_EQ; GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_SUB] THEN UNDISCH_TAC `k <= n:num` THEN REWRITE_TAC[GSYM REAL_OF_NUM_LE] THEN CONV_TAC REAL_FIELD);; let BINOM_BOTTOM_STEP_REAL = prove (`!n k. &(binom(n,k+1)):real = (&n - &k) / (&k + &1) * &(binom(n,k))`, REPEAT GEN_TAC THEN DISJ_CASES_TAC(ARITH_RULE `n:num < k \/ k <= n`) THENL [ASM_SIMP_TAC[BINOM_LT; ARITH_RULE `n < k ==> n < k + 1`; REAL_MUL_RZERO]; MP_TAC(SPECL [`n:num`; `k:num`] BINOM_BOTTOM_STEP) THEN ASM_SIMP_TAC[GSYM REAL_OF_NUM_EQ; GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_SUB] THEN CONV_TAC REAL_FIELD]);; let REAL_OF_NUM_BINOM = prove (`!n k. &(binom(n,k)):real = if k <= n then &(FACT n) / (&(FACT(n - k)) * &(FACT k)) else &0`, REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[BINOM_LT; GSYM NOT_LE] THEN SIMP_TAC[REAL_EQ_RDIV_EQ; REAL_LT_MUL; REAL_OF_NUM_LT; FACT_LT] THEN FIRST_ASSUM(CHOOSE_THEN SUBST1_TAC o REWRITE_RULE[LE_EXISTS]) THEN REWRITE_TAC[ADD_SUB2] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN REWRITE_TAC[GSYM BINOM_FACT] THEN REWRITE_TAC[REAL_OF_NUM_MUL; MULT_AC]);; (* ------------------------------------------------------------------------- *) (* Some additional theorems for stepping both arguments together. *) (* ------------------------------------------------------------------------- *) let BINOM_BOTH_STEP_REAL = prove (`!p k. &(binom(p + 1,k + 1)):real = (&p + &1) / (&k + &1) * &(binom(p,k))`, REWRITE_TAC[BINOM_TOP_STEP_REAL; BINOM_BOTTOM_STEP_REAL] THEN REPEAT GEN_TAC THEN REWRITE_TAC[EQ_ADD_RCANCEL] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[BINOM_REFL] THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_EQ] THEN CONV_TAC REAL_FIELD);; let BINOM_BOTH_STEP = prove (`!p k. (k + 1) * binom(p + 1,k + 1) = (p + 1) * binom(p,k)`, REWRITE_TAC[GSYM REAL_OF_NUM_EQ; GSYM REAL_OF_NUM_MUL] THEN REWRITE_TAC[BINOM_BOTH_STEP_REAL; GSYM REAL_OF_NUM_ADD] THEN CONV_TAC REAL_FIELD);; let BINOM_BOTH_STEP_DOWN = prove (`!p k. (k = 0 ==> p = 0) ==> k * binom(p,k) = p * binom(p - 1,k - 1)`, REPEAT INDUCT_TAC THEN SIMP_TAC[BINOM_LT; LT_0; LT_REFL; ARITH] THEN REWRITE_TAC[SUC_SUB1; ADD1; BINOM_BOTH_STEP] THEN REWRITE_TAC[MULT_CLAUSES]);; let BINOM = prove (`!n k. binom(n,k) = if k <= n then FACT(n) DIV (FACT(n - k) * FACT(k)) else 0`, REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[BINOM_EQ_0; GSYM NOT_LE] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `0` THEN SIMP_TAC[LT_MULT; FACT_LT; ADD_CLAUSES] THEN FIRST_X_ASSUM(CHOOSE_THEN SUBST1_TAC o GEN_REWRITE_RULE I [LE_EXISTS]) THEN ONCE_REWRITE_TAC[ADD_SYM] THEN REWRITE_TAC[GSYM BINOM_FACT; ADD_SUB] THEN REWRITE_TAC[MULT_AC]);; (* ------------------------------------------------------------------------- *) (* Additional lemmas. *) (* ------------------------------------------------------------------------- *) let BINOM_SYM = prove (`!n k. binom(n,n-k) = if k <= n then binom(n,k) else 1`, REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[binom; ARITH_RULE `~(k <= n) ==> n - k = 0`] THEN REWRITE_TAC[GSYM REAL_OF_NUM_EQ; REAL_OF_NUM_BINOM] THEN ASM_REWRITE_TAC[ARITH_RULE `n - k:num <= n`] THEN ASM_SIMP_TAC[ARITH_RULE `k:num <= n ==> n - (n - k) = k`] THEN REWRITE_TAC[REAL_OF_NUM_MUL; MULT_SYM]);; let BINOM_MUL_SHIFT = prove (`!m n k. k <= m ==> binom(n,m) * binom(m,k) = binom(n,k) * binom(n - k,m - k)`, REPEAT STRIP_TAC THEN SIMP_TAC[GSYM REAL_OF_NUM_EQ; GSYM REAL_OF_NUM_MUL; REAL_OF_NUM_BINOM] THEN ASM_CASES_TAC `n:num < m` THENL [REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_RZERO]) THEN MATCH_MP_TAC(TAUT `F ==> p`) THEN ASM_ARITH_TAC; REPEAT(COND_CASES_TAC THENL [ALL_TAC; MATCH_MP_TAC(TAUT `F ==> p`) THEN ASM_ARITH_TAC]) THEN RULE_ASSUM_TAC(REWRITE_RULE[NOT_LT]) THEN ASM_SIMP_TAC[ARITH_RULE `k:num <= m /\ m <= n ==> n - k - (m - k) = n - m`] THEN MAP_EVERY (MP_TAC o C SPEC FACT_NZ) [`n:num`; `m:num`; `n - m:num`; `n - k:num`; `m - k:num`] THEN REWRITE_TAC[GSYM REAL_OF_NUM_EQ] THEN CONV_TAC REAL_FIELD]);; let APPELL_SEQUENCE = prove (`!c n x y. sum (0..n) (\k. &(binom(n,k)) * sum(0..k) (\l. &(binom(k,l)) * c l * x pow (k - l)) * y pow (n - k)) = sum (0..n) (\k. &(binom(n,k)) * c k * (x + y) pow (n - k))`, REPEAT GEN_TAC THEN REWRITE_TAC[REAL_BINOMIAL_THEOREM] THEN REWRITE_TAC[GSYM SUM_LMUL; GSYM SUM_RMUL] THEN SIMP_TAC[SUM_SUM_PRODUCT; FINITE_NUMSEG] THEN MATCH_MP_TAC SUM_EQ_GENERAL_INVERSES THEN EXISTS_TAC `(\(x,y). y,x - y):num#num->num#num` THEN EXISTS_TAC `(\(x,y). x + y,x):num#num->num#num` THEN REWRITE_TAC[FORALL_IN_GSPEC; IN_ELIM_PAIR_THM] THEN REWRITE_TAC[PAIR_EQ; IN_NUMSEG] THEN CONJ_TAC THENL [ARITH_TAC; REPEAT GEN_TAC THEN STRIP_TAC] THEN REPEAT(CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC]) THEN ASM_SIMP_TAC[ARITH_RULE `j:num <= k /\ k <= n ==> (n - j) - (k - j) = n - k`] THEN MATCH_MP_TAC(REAL_RING `c * d:real = a * b ==> a * z * b * x * y = c * (d * z * x) * y`) THEN ASM_SIMP_TAC[REAL_OF_NUM_MUL; REAL_OF_NUM_EQ; BINOM_MUL_SHIFT]);; (* ------------------------------------------------------------------------- *) (* Numerical computation of binom. *) (* ------------------------------------------------------------------------- *) let NUM_BINOM_CONV = let pth_step = prove (`binom(n,k) = y ==> k <= n ==> (SUC n) * y = ((n + 1) - k) * x ==> binom(SUC n,k) = x`, DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[ADD1; GSYM BINOM_TOP_STEP; EQ_MULT_LCANCEL; SUB_EQ_0] THEN ARITH_TAC) and pth_0 = prove (`n < k ==> binom(n,k) = 0`, REWRITE_TAC[BINOM_LT]) and pth_1 = prove (`binom(n,n) = 1`, REWRITE_TAC[BINOM_REFL]) and pth_swap = prove (`k <= n ==> binom(n,k) = binom(n,n - k)`, MESON_TAC[BINOM_SYM]) and k_tm = `k:num` and n_tm = `n:num` and x_tm = `x:num` and y_tm = `y:num` and binom_tm = `binom` in let rec BINOM_RULE(n,k) = if n let bop,nkp = dest_comb tm in if bop <> binom_tm then failwith "NUM_BINOM_CONV" else let nt,kt = dest_pair nkp in BINOM_RULE(dest_numeral nt,dest_numeral kt);;